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Preface

The 21st International Conference on Computational Statistics (COMPSTAT 2014) is held in
Geneva. This year the Conference also hosts the 5th IASC World Congress. The Geneva edition
coincides with the 40th anniversary of this biennial event which started in 1974 in Vienna and has
been organized all over Europe. In the preface of the 1974 proceedings we can read: ‘If we succeed
in making statisticians aware of the great possibilities of modern computing facilities, which at
any rate go beyond simple numerical computations, the Symposium serves its purpose.’ This
goal has since been reached with certainty, as by now statisticians fully integrate computational
tools in their work.

The Geneva edition seems to pursue ‘the success story’ with more than 400 participants and 370
presentations. The electronic Book of Proceedings includes a selection of 84 papers covering 700
pages, all peer reviewed.

Keynote lectures are addressed by Peter Bühlmann from the Swiss Federal Institute in Zurich,
Anthony Davison from the Swiss Federal Institute in Lausanne and Xuming He from University
of Michigan, USA. Two tutorials are offered, one by Dietmar Maringer, University of Basel,
Switzerland and one by Stefan Van Aelst from KU Leuven, Belgium.

The editors thank the contributing authors, the referees and the members of the scientific pro-
gram committee, and most importantly, all participants who are the soul of the conference.

The next edition of COMPSTAT will take place in Oviedo, Spain on August 23-26, 2016 and
will be organized by Prof. Ana Colubi. We wish her the best success.

COMPSTAT 2014 Editors:

Manfred Gilli, University of Geneva, Switzerland.
Gil González-Rodŕıguez, University of Oviedo, Spain.
Alicia Nieto-Reyes, University of Cantabria, Spain.
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Computation of Regularized Linear
Discriminant Analysis

Jan Kalina, Institute of Computer Science AS CR, kalina@cs.cas.cz
Zdeněk Valenta, Institute of Computer Science AS CR, valenta@cs.cas.cz
Jurjen Duintjer Tebbens, Institute of Computer Science AS CR, duintjertebbens@cs.cas.cz

Abstract. This paper is focused on regularized versions of classification analysis and their
computation for high-dimensional data. A variety of regularized classification methods has
been proposed and we critically discuss their computational aspects. We formulate several
new algorithms for shrinkage linear discriminant analysis, which exploits a shrinkage covariance
matrix estimator towards a regular target matrix. Numerical linear algebra considerations are
used to propose tailor-made algorithms for specific choices of the target matrix. Further, we
arrive at proposing a new classification method based on L2-regularization of group means and
the pooled covariance matrix and accompany it by an efficient algorithm for its computation.

Keywords. Classification analysis, Regularization, Matrix decomposition, Shrinkage eigenval-
ues, High-dimensional data

1 Introduction

Classification analysis methods have the aim to construct (learn) a decision rule based on a train-
ing data set, which is able to automatically assign new data to one of K groups. Linear dis-
criminant analysis (LDA) is a standard statistical classification method. In the whole paper,
we consider n observations with p variables, observed in K different samples (groups) with
p > K ≥ 2,

X11, . . . , X1n1 , . . . , XK1, . . . , XKnK , (1)

where n =
∑K
k=1 nk.

LDA assumes the data in each group to come from a Gaussian distribution, while the co-
variance matrix Σ is the same across groups. Its pooled estimator will be denoted by S. LDA
in its standard form assumes n > p and is unsuitable for high-dimensional data with a number
of variables exceeding the number of observations (large p/small n problem). In case where
n < p, the matrix S of size p is singular and computing its inverse must be replaced by an
appropriate alternative. Available approaches in this context are based e.g. on pseudoinverse



2 Computation of Regularized Linear Discriminant Analysis

matrices, which are however unstable due to a small n [4]. Other proposals are based on the
generalized SVD decomposition or on elimination of the common null space of the between-group
and within-group covariance matrices [2].

Various authors suggested to use a regularized version of LDA for n� p [3, 2, 4, 5]. Suitable
regularized estimators of the covariance matrix are guaranteed to be regular and positive definite
even for n� p. They have become established e.g. in image analysis, chemometrics, molecular
genetics, or econometrics, while their fast computation and numerical stability remains to be an
important issue [4, 7]. We will describe the most important approaches and critically discuss
their possible computation.

The first approach to a regularized discriminant analysis by [3] is based on a shrinkage
covariance matrix with two parameters, which are searched for in a grid search minimizing the
classification error. Later, the computation was criticized as computationally intensive in [8],
where a linear shrinkage estimator of the covariance matrix was proposed and the asymptotically
optimal value of the regularization parameter was derived. The method is implemented in the
corpcor package of R software; however, its computation for a large p is very slow.

Habitually used regularized versions of LDA are based either on regularizing only Σ using one
of approaches of [8] or on a double shrinkage applied on the covariance matrix as well as means
of each group. The latter approach was proposed by Guo et al. [4], who performed shrinking of
the covariance matrix towards an identity matrix and at the same time shrinking of the mean of
each group to zero. The method is implemented in the rda package of R software. For specific
values of the parameters, the computation is based on the SVD algorithm, without applying
methods of numerical linear algebra to decrease computational costs. The optimal values of
shrinkage parameters are optimized in a cross-validation over a 2-dimensional grid, which has
been described as tedious [4]. Moreover, there are many possible tuning parameters giving the
same cross-validation error rate. The computational effectivity and stability of habitually used
algorithms is not investigated even in the recent monograph [7] on covariance matrix estimation
for high-dimensional data.

This paper studies efficient algorithms for computing various regularized versions of LDA.
Section 2 of this paper formulates several algorithms for shrinkage LDA, which exploits a shrink-
age covariance matrix estimator towards a regular target matrix. The computational effectivity
of the algorithms is inspected using arguments of numerical linear algebra. For a specific choice
of the target matrix, we are able to propose a tailor-made algorithm with a lower computational
cost compared to algorithms which are formulated for a general context. Besides, we arrive at
proposing new versions of classification methods and accompany them by efficient algorithms
for their computation in Section 3. The classification performance of the methods is illustrated
on real data in Section 4.

2 Algorithms for Regularized Linear Discriminant
Analysis

This section is devoted to proposing and comparing new algorithms for a habitually used version
of the regularized LDA [4]. We use suitable matrix decompositions to propose efficient algorithms
either for a general choice of T or for its specific choices. To the best of our knowledge, tailor-
made algorithms for a specific T have not been described. We compare the new algorithms in
terms of their computational costs as well as numerical stability.

COMPSTAT 2014 Proceedings



Jan Kalina, Zdeněk Valenta and Jurjen Duintjer Tebbens 3

We will describe one of habitually used regularized versions of LDA. This will be denoted as
LDA∗ to avoid confusion, because the concept of regularized discriminant analysis encompasses
several different methods [4]. A given target matrix T will be used, which must be a regular
symmetric positive definite matrix of size p × p. Its most common choices include the identity
matrix Ip or a diagonal (non-identity) matrix; other target matrices have been considered by [8].

Let us denote the mean of the observed values in the k-th group (k = 1, . . . ,K) by X̄k.
LDA∗ assigns a new observation Z = (Z1, . . . , Zp)

T to group k, if l∗k > l∗j for every j 6= k, where
the regularized linear discriminant score for the k-th group has the form

l∗k = X̄T
k (S∗)−1Z − 1

2
X̄T
k (S∗)−1X̄k + log pk, k = 1, . . . ,K, (2)

where pk is a prior probability of observing an observation from the k-th group and

S∗ = λS + (1− λ)T (3)

for λ ∈ [0, 1] denotes a shrinkage estimator of the covariance matrix across groups. The situation
with l∗k = l∗k′ for k′ 6= k does not need a separate treatment, because it occurs with a zero
probability for data coming from a continuous distribution. Equivalently, LDA∗ assigns a new
observation Z to group k, if

(X̄k − Z)TS∗−1(X̄k − Z) = min
j=1,...,K

¶
(X̄j − Z)TS∗−1(X̄j − Z)

©
. (4)

First, the standard approach for computing LDA∗ may be improved by employing the eigen-
decomposition of S∗ for a fixed λ. A suitable value of λ is found by a cross-validation in the
form of a grid search over all possible values of λ ∈ [0, 1].

Algorithm 2.1.
LDA∗ for the general regularization (3) based on eigendecomposition.

Step 1 Compute the matrix

A = [X̄1 − Z, . . . , X̄K − Z] (5)

of size p×K whose k-th column is X̄k − Z.

Step 2 Compute S∗ according to (3) with a fixed λ ∈ [0, 1].

Step 3 Compute and store the eigenvalues of S∗ in the diagonal matrix D∗, and compute and
store the corresponding eigenvectors of S∗ in the orthogonal matrix Q∗.

Step 4 Compute the matrix

B = D
−1/2
∗ QT∗A (6)

and assign Z to group k if the column of B with largest Euclidean norm is the k-th column.

Step 5 Repeat steps 2 to 4 with different values of λ and find the classification rule with the
best classification performance.

The main computational costs are in step 3; the eigendecomposition costs about 9·p3 floating
point operations. Note that we need not (and should never) compute the inverse of S∗, thus

@ COMPSTAT 2014



4 Computation of Regularized Linear Discriminant Analysis

avoiding additional computations of the Mahalanobis distance, which is expensive of order p3

and numerically rather unstable. The group assignment (4) is done by using

(X̄j − Z)TS∗−1(X̄j − Z) = (X̄j − Z)TQ∗D
−1
∗ QT∗ (X̄j − Z) = ‖D−1/2

∗ QT∗ (X̄j − Z)‖2. (7)

The algorithm can be made cheaper by replacing the eigendecomposition of S∗ with its Cholesky
decomposition

S∗ = L∗L
T
∗ , (8)

where L∗ is a nonsingular lower triangular matrix. The costs of Cholesky decomposition are
about 1/3 · p3 floating point operations. On the other hand, Cholesky decomposition will suffer
from instability when S∗ is not positive definite.

Algorithm 2.2.
LDA∗ for the general regularization (3) based on Cholesky decomposition.

Step 1 Compute the matrix
A = [X̄1 − Z, . . . , X̄K − Z] (9)

of size p×K whose k-th column is X̄k − Z.

Step 2 Compute S∗ according to (3) with a fixed λ ∈ [0, 1].

Step 3 Compute the Cholesky factor L∗ of S∗.

Step 4 Compute the matrix
B = LT∗A (10)

and assign Z to group k if the column of B with largest Euclidean norm is the k-th column.

Step 5 Repeat steps 2 to 4 with different values of λ and find the classification rule with the
best classification performance.

For specific target matrices, we can further reduce computational costs by using the following
algorithm for LDA∗. The pooled estimator S can be written in the form

S = Y TY, Y = [X11 − X̄, . . . , X1n1 − X̄, . . . , XK1 − X̄, . . . , XKnK − X̄]T (11)

where Y is of size n× p. Then using the singular value decomposition (SVD) of Y in the form

Y = PΣQT , (12)

we can express the eigendecomposition of S as

S = Y TY = (PΣQT )TPΣQT = QΣ2QT . (13)

The costs will be about 4·np2 floating point operations, thus with p� n the gain is considerable.
Moreover, if

S∗ = λS + (1− λ)Ip, λ ∈ [0, 1], (14)

we immediately obtain the needed eigendecomposition of S∗ as

S∗ = λS + (1− λ)Ip = Q
Ä
λΣ2 + (1− λ)Ip

ä
QT . (15)

The SVD can be computed in a backward stable way with all singular values accurate up to
machine precision level [1]. For the special case (14), which is commonly denoted as Tikhonov
or ridge regularization of S, a more efficient computation can be performed as follows.

COMPSTAT 2014 Proceedings
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Algorithm 2.3.
LDA∗ for the ridge regularization (14).

Step 1 Compute the matrix
A = [X̄1 − Z, . . . , X̄K − Z] (16)

of size p×K whose k-th column is X̄k − Z and compute the matrix Y in (11).

Step 2 Compute the singular value decomposition of Y as

Y = PΣQT , (17)

with singular values {σ1, . . . , σn} and complement these singular values with p − n zero
values σn+1 = · · · = σp = 0.

Step 3 For a fixed λ ∈ [0, 1], compute

D∗ = diag{λσ2
1 + (1− λ), . . . , λσ2

p + (1− λ)}. (18)

Step 4 Compute the matrix

B = D
−1/2
∗ QTA (19)

and assign Z to group k if the column of B with largest Euclidean norm is the k-th column.

Step 5 Repeat steps 2 to 4 with different values of λ and find the classification rule with the
best classification performance.

Eigenvalues of the regularized covariance matrix forming the matrix D∗ in (18) can be
interpreted as shrinkage eigenvalues.

In an analogous manner, algorithms for a regularized quadratic discriminant analysis (QDA)
can be obtained, using a regularized estimator of the covariance matrix in each group separately.

3 L2-regularized linear discriminant analysis

Disadvantages of SCRDA [4] include a computational intensity as well as an inconsistent ap-
proach to shrinkage. The means are namely modified by an L1-norm regularization and the
covariance matrix in the sense of the L2-norm. As an alternative, this section proposes a new
regularized version of LDA denoted as L2-LDA together with an efficient algorithm for its com-
putation. It employs a shrinkage estimator of Σ and shrunken means towards the overall mean
across groups. As a unique feature, both shrinkage approaches have the form of an L2-norm
regularization.

The classification rule of L2-LDA assigns a new observation Z to the k-th group, if l†k > l†j
for every j 6= k, where

l†k = X̄
′T
k (S∗)−1Z − 1

2
X̄
′T
k (S∗)−1X̄

′
k + log pk (20)

and X̄
′
k denotes the shrunken mean of the k-th group towards the overall mean computed across

groups. The method can be interpreted as based on a L2 regularized Mahalanobis distance.
As another contrast with the habitually used algorithm of SCRDA [4], we will estimate the
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6 Computation of Regularized Linear Discriminant Analysis

parameter λ in a straightforward way using an asymptotically optimal value minimizing the
mean square error [8]. To avoid confusion, the asymptotically optimal value of λ will be denoted
by λ† and the corresponding shrinkage covariance matrix by

S† = λ†S + (1− λ†)T. (21)

Algorithm 3.1.
L2-LDA.

Step 1 Compute λ† as

λ† =
2
∑p
i=2

∑i−1
j=1‘var(Sij)

2
∑p
i=2

∑i−1
j=1 S

2
ij +

∑p
i=1(Sii − 1)2

, (22)

where ‘var(Sij) is the maximum likelihood estimator of the variance of values Sij for a fixed
i and j.

Step 2 Compute and store the eigenvalues of S† in the diagonal matrix D∗, and compute and
store the corresponding eigenvectors of S† in the orthogonal matrix Q∗.

Step 3 For a fixed δ ∈ [0, 1], compute X̄
′
k = δX̄k + (1− δ)X̄, k = 1, . . . ,K.

Step 4 Assign Z to group k, if

‖D−1/2
∗ QT∗ (X̄

′
k − Z)‖ = min

j=1,...,K
‖D−1/2
∗ QT∗ (X̄

′
j − Z)‖. (23)

Step 5 Repeat steps 3 and 4 for various δ and find the optimal classification rule yielding the
best classification performance.

Algorithm 3.1 is formulated for a general target matrix T . For a specific choice of T , a com-
putationally cheaper method can be obtained in an analogous way as Algorithms 2.2 and 2.3
from the general algorithm 2.1.

Another possibility is to regularize the within-group covariance matrix instead of regulariz-
ing S, which is however computationally more intensive.

4 Examples

We present two examples on real molecular genetic data sets in order to illustrate the behavior
of the newly proposed L2-LDA method.

Example 1 contains data from a cardiovascular genetic study of the Center of Biomedical
Informatics in Prague performed in 2006–2011. The data contain expressions of p = 38 590 gene
transcripts measured on 24 patients having a cerebrovascular stroke and 24 control persons.

In Example 2, a prostate cancer metabolomic data set [9] is analyzed, which contains p = 518
metabolites measured over two groups of patients, namely those with a benign prostate cancer
(16 patients) and with other cancer types (26 patients). The task in both examples is to learn
a classification rule allowing to discriminate between the two classes of individuals.

In both examples, we computed the classification methods described in this paper using the
algorithms of Sections 2 and 3. For comparison, we computed also other available classification
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Youden’s index
Method S∗ R Package Function Example 1 Example 2

SVM - e1071 svm 1.00 1.00
Classification tree - tree tree 0.94 0.97

Self-organizing map - kohonen som 0.88 0.93
Multilayer percpetron - nnet nnet Infeasible Infeasible

LDA - MASS lda Infeasible Infeasible
SCRDA (14) rda rda 1.00 1.00
LDA∗ (14) - - 1.00 1.00
LDA∗ (24) - - 1.00 1.00
L2-LDA (14) - - 1.00 1.00
L2-LDA (24) - - 1.00 1.00

PCA =⇒ LDA - - - 0.54 0.90
PCA =⇒ SCRDA (14) - - 0.71 0.92
PCA =⇒ LDA∗ (14) - - 0.63 0.81
PCA =⇒ LDA∗ (24) - - 0.63 0.81

PCA =⇒ L2-LDA (14) - - 0.71 0.92
PCA =⇒ L2-LDA (24) - - 0.71 0.92

PCA =⇒ MWCD-LDA - - - 0.69 0.90

Table 1: Results of Example 1 and Example 2. LDA∗ was computed using Algorithm 2.3 for
the choice (14) and Algorithm 2.2 for (24). L2-LDA was computed using Algorithm 3.1. PCA
uses 20 principal components.

methods, including the support vector machines (SVM), a classification tree, Kohonen’s self-
organizing map, a multilayer perceptron with 2 hidden layers, or the highly robust classification
method MWCD-LDA of [6]. Various regularized versions of LDA include the most common
choice T = Ip or another choice

S∗ = λS + (1− λ)sIp, λ ∈ [0, 1], s =
p∑
i=1

Sii/p. (24)

We used the default settings to compute them in R software packages, which are listed also in
Table 1. The classification performance is measured by means of the Youden’s index, which
is defined as sensitivity + specificity −1. The dimensionality reduction was performed by the
principal component analysis (PCA) with 20 principal components.

The results performed on raw data as well as after a dimensionality reduction reveal that
the regularized versions of LDA perform quite similarly. The newly proposed method L2-LDA
with an efficient algorithm seems to perform comparably with the available regularized methods
with less efficient computation. Besides, the choice of the target matrix T does not seem to play
an important role.

Further, we investigated the reduction in classification performance after reducing the dimen-
sionality to 20 principal components in both examples. The approach of Algorithm 3.1 (PCA
=⇒ L2-LDA) yields improved results compared to its standard counterpart (PCA =⇒ LDA).
The results of regularized methods do not greatly differ from the robust MWCD-LDA proce-
dure, which indicates that regularizaed versions of LDA do not greatly suffer by the presence of
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8 Computation of Regularized Linear Discriminant Analysis

outlying measurements in the data. Nevertheless, the robustness of regularized methods with
respect to outliers has not been systematically investigated [5].

To conclude the paper, several new algorithms for shrinkage LDA are proposed, exploiting
a shrinkage covariance matrix estimator towards a regular target matrix. Some algorithms
are tailor-made for a specific choice of the target matrix and their computational costs are
discussed. A new regularized classification method L2-LDA is proposed and accompanied by
an efficient algorithm. An analysis of two real data sets reveals its classification performance to
be comparable to available regularized classification methods for high-dimensional data.
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Fast Detection of Structural Breaks
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Abstract. A fundamental task in the analysis of time series is to detect structural breaks. A
break indicates a significant change in the behaviour of the series. One method to formalise the
notion of a break point, is to fit statistical models piecewise to the series. To find break points,
the endpoints of the pieces are varied as is their number. A structural break is indicated by
a significant change of the model parameters in adjacent pieces. Both, varying the pieces and
repeatedly fitting models to them, are usually computationally very expensive. By combining
genetic algorithms with a preprocessing of the time series we design a very fast algorithm for
structural break detection. It reduces the time for model-fitting from linear to logarithmic in
the length of the series. We show how this method can be used to find structural breaks for
time series which are piecewise generated by AR(p)-models. Moreover, we introduce a non-
parametric model for which the speed-up can also be achieved. Additionally we briefly present
simulation results which demonstrate the manifold applications of these methods. A reference
implementation is available at http://www2.imm.dtu.dk/~pafi/StructBreak/index.html

Keywords. Structural breaks, parametric and non-parametric models, efficient algorithms,
range trees.

1 Introduction

We consider the problem to detect structural breaks in time series. A structural break is a point
in time, where the behaviour of the time series changes. What precisely a “change of behaviour”
(also called change of regime) is depends on the application. It might be a change in the level
of the observed data or a change of the magnitude of the local variance (the volatility in terms
of econometrics).

Often the times series is assumed to be generated by a known stochastic process. In this
case, a structural break is defined as a change of the type of the underlying model or of its
parameters. For example if an autoregressive (AR-) model is assumed, a structural break can
be a change of the order (number of numerical parameters) or a significant change of the values
of these parameters. See [4] for a recent overview.

From the above discussion there clearly cannot be a single algorithm for the detection of
structural breaks. Very often visual inspection of the plot of the time series by an expert does
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it. We provide a generic framework for the design of such algorithms, where the user has to
supply the application specific knowledge, basically a procedure to evaluate how good a set of
points is as structural breaks.

In practice, background information to guide the search for break points is in most cases
not available and exhaustive search is not an option already for moderately long time series and
few break points. The problem can be formulated as a black box optimisation problem where
evolutionary algorithms are an obvious choice for a heuristic. For finding break points, the
algorithm starts with a number of sets of candidate break points. In the course of the algorithm
these sets are modified by moving, deleting or adding break points. The goodness of a set of
break points is evaluated and better sets are kept while worse ones are deleted, details can be
found in [3]. The efficiency of evolutionary algorithms has been proved also in other areas of
statistics, see [5].

For series generated by AR-Models, Davis et. al. [1] propose an evolutionary algorithm for
break point detection. The resulting algorithm requires repeatedly fitting AR-models to parts
of the time series, making it computationally quite demanding and limiting its use to relatively
short time series of a few thousands observations.

We present a generic framework which allows AR- and other parametric and non-parametric
models to be used and which is computationally much more efficient. With our approach we
can efficiently handle time series with millions of observations. The work was motivated by
an industrial application where very long time series (some millions of observations) had to be
analysed. Also the non-parametric method described in Section 3 has been designed for this
application because it simultaneously finds structural breaks and outliers in this type of series.

After introducing the notation in Section 2, the general framework for finding structural
breaks with evolutionary algorithms is introduced in Section 3. In Section 4 the central data
structure is introduced, which speeds up the algorithm. It is shown how different statistical
models can be adapted to profit from the speed-up. Simulation results on the running times and
precision of the algorithms are presented in Section 5.

A reference implementation which can be used on user-supplied time-series is available on
the net at http://www2.imm.dtu.dk/~pafi/StructBreak/index.html.

2 Notation and Problem Description

Formally a univariate time series is a sequence Y = (y0, . . . , yT−1) of real numbers, where yt
is the observation at time t ∈ {0, . . . , T − 1}. For notational convenience, we assume that the
observations are equidistant in time, though this is not necessary. Non-equidistant observations
might however have an influence on the complexity of fitting the model.

The (indices of the) break points constitute an integer sequence (b0, . . . , bk), where bj ∈
{0, . . . , T}, and bj < bj+1, for j = 0, . . . , k−1. We assume that b0 = 0, as it is the starting point
of the first regime, and we set bk = T , the first index after the end of the time series. In practice,
a minimum distance m between successive break points might be assumed (bj + m < bj+1) in
order to avoid unreasonable short regimes. However, for the use in outlier detection with the
rectangle model, it is essential that break points can be close. Associated with each break point
bj might be a statistical model Mj valid in the interval [bj ; bj+1 − 1] with parameter set Bj .

COMPSTAT 2014 Proceedings
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3 A Solution based on Evolutionary Algorithms

The general framework of our approach for break point detection, which uses evolutionary algo-
rithms, is as follows: Initially a number of candidate solutions is created, for example randomly.
Each solution is a set of indices and model parameters (potential break points). Then the evo-
lutionary algorithm creates a new solution set by: moving the positions of some points, deleting
some, creating new ones, or changing model parameters. The new solution is then evaluated,
and compared to the already existing solutions. If the new solutions is better than the worst old
one, the latter is replaced by the new one. The actual creation of a new solution is performed
by applying random crossover operations or mutations to existing solutions. In order to make
the implementation space-efficient, we uses an implicit representation of the break points. The
algorithm is run multiple times. Then the best solutions of each run are used as start solutions
for a final run.

The evolutionary algorithm is implemented in a generic manner, which means that the user
has to supply the “modules” that guide the execution. The essential module is the so called
fitness function, which associates a real number (the fitness) to a given solution, measuring how
good a given solutions is. Informally, we will define the fitness functions as follows: We are
given a time series (y0, . . . , yT−1), a sequence (b0, . . . , bk) of candidate break points, and a class
of statistical models, which are assumed to generate disjoint pieces of the series. We then fit a
model Mj to every interval [bj , bj+1 − 1], j = 0, . . . , k − 1. For every model Mj we determine
the goodness of fit gj on the corresponding interval. This can, for example, be the sum of the
absolute (or squared) residuals. Then the total fitness f associated to the sequence of break
points is the sum of individual ones. The fitness function can also contain a term p(k) controlling
the number k of break points, normally penalising a high number:

gj =

bj+1−1∑
i=bj

|yi −Mj(i)| and f = f(b0, . . . , bk) =

Ñ
k−1∑
j=0

gj

é
+ p(k) . (1)

The idea is that the best fit will be achieved when the candidate break points are the “true”
break points, i.e., when f is minimal. The other essential module the user has to supply is a
(randomised) method to generate the model data for a new break point, e.g., the order of the
AR-model to be used in the next interval, see [3] for a detailed description of the algorithm.

Subsequently we present two approaches how to evaluate the quality of a given solution into
a real numbered fitness value. The first one, called axes-aligned rectangles, does not assume that
the time series is piecewise generated by a certain process. The second one, named piecewise
AR-models, assumes that the time series is piecewise generated by AR-models.

Axes-aligned Rectangles. In this model we want to cover the time series with few axes-
aligned rectangles having a small total area. Clearly a minimum number of rectangles and a
minimal total area of them are conflicting aims. The fitness function must realise a balance
between them. A minimum number of rectangles would be achieved by using only one, the
bounding box of the whole time series, giving no internal break point. A minimum area would
be achieved by using a single zero-area rectangle at each observation of the time series, making
all points break points. Both are not desirable solutions.

Intuitively, the rectangle method detects large consecutive parts where the time series is
almost constant and small parts where it is rapidly in- or decreasing. Instead of applying the
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method to the original time series, it often yields better results when applied to a derived series
such as the series of moving variances.

For a formal definition, let (b0, . . . , bk) be a sequence of candidate break points. Between
break points bj , bj+1, we use the minimum axes-aligned rectangle (bounding-box) which contains
the observations ybj , . . . , ybj+1−1. That is the rectangle Rj defined by

Rj = [bj ; bj+1 − 1]× [min{yi | i = bj , . . . , bj+1 − 1}; max{yi | i = bj , . . . , bj+1 − 1}] .
An example is shown in Figure 1. All information stored at the break point is its index bj
for this non-parametric model. Let R denote the minimum axes-aligned rectangle containing
all observations yi, i.e., R is the bounding box of the whole time series. We define the fitness

Figure 1: Example of a time series and a cover by rectangles.

function, to be maximised in this case, as follows. Given the time series of observations yi, the
fitness function f depends only on the break points (b0, . . . , bk) and is composed of two terms.
As in (1), the first term fa is responsible for minimising the area of the Rj (goodness of fit), by
maximising the area of R not covered by the Rj and normalising to [0; 1]:

fa = fa(b0, . . . , bk) =
area(R)−∑k−1

j=0 area(Rj)

area(R)
.

The second term fr = fr(k) is responsible for minimising the number k of break points. We
would like also to normalise fr to [0; 1], for which we propose two approaches: One uses a
decreasing function of k, for example 1/k, 1/

√
k, or 1/ ln(e + k − 1). The first one decreases

fastest and thus prefers few break points, the last one decreases slowest thus allowing more
break points. Without any a priori knowledge, fr(k) = 1/

√
k proved to be a good choice in our

experiments. If one roughly knows how many break points to expect, other choices for fr are
meaningful. The fitness function is then defined as

f(b0, . . . , bk) = fa(b0, . . . , bk) + αfr(k) (2)

for some choice of fr. The parameter α ∈ [0; 1] controls the balance between minimising the
area (goodness of fit) and minimising the number of intervals. Values in the range [0.10; 0.75]
give good results in experiments on artificial and real world time series.

The identification of break points in a real-world time series is always subjective. For our
empirical evaluation we therefore used time series, where the experts we asked agreed on the
positions of the break points. Additionally we produced a number of artificial time series, where
the break points are clearly defined as level changes.

The computational complexity to compute the fitness of a solution is dominated by finding
the maxima and minima for all intervals [bj , bj+1 − 1]. In Section 4 we will see that this can be
performed in time O(log(T )) for every interval, thus in time O(k log(T )) for k − 1 intervals.
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Piecewise AR-models. In this setting we assume that there are indices 0 = s0, . . . , sm = T
(the “true” break points indices), such that the time series is generated by a particular AR(pj)-
model for every interval [sj , sj+1−1]. The orders pj and parameters of the models may vary. The
task is to identify the break points sj . As a side effect, the algorithms also produces estimations
for the AR-models, that is the orders pj and the parameters of the models.

As fitness function we used the sum of absolute (or squared) residuals to be minimised. Let
Mj be the AR-Model, say of order pj , fitted to the interval [bj ; bj+1 − 1]

yi = c+ φ1 yi−1 + . . .+ φpj yi−pj + εj (3)

where c is a constant, and the residual noise εi is N (0, σ) distributed for some σ > 0. The model
is evaluated at indices bj + pj through bj+1 − 1 using the observations yi of the time series. Let
Mj(i) be the value provided by the model at index i. We compute

fj =

bj+1−1∑
i=bj+p

|Mj(i)− yi| and f =
k−1∑
j=0

fj , (4)

where k is the number of break points, and use f as one term in the fitness function. For an
alternative, the sum of squares, we could not observe a significant change in the location of the
break points found.

The evolutionary algorithm starts again by randomly allocating a number of candidate break
points (b0, . . . , bk). The AR-model Mj associated with break point bj is specified by a set Bj of
parameters. (The set Bk at the end of the series irrelevant.) Then the evolutionary algorithm
modifies the locations bj and the orders pj . The user has to supply a rule for modifying the model
order. A straightforward way, used in our implementation, is to choose a maximum model order
pmax and select the pj randomly from 0, 1, . . . , pmax. We chose not to use more sophisticated
methods like analysing the partial autocorrelation function, Akaike’s information criterion (AIC)
or the Bayesian information criterion (BIC), see for example [7], because we want to support
randomised nature of evolutionary algorithms.

The fitness function again consists of two parts: 1) For every interval [bj , bj+1 − 1], an
AR(pj)-model is fitted (by setting up and solving the Yule-Walker equations). The fitness value
is evaluated as in Equation (4). 2) A term minimising the number of break points. These are
again conflicting aims. However, we observed that the second term (number of break points) is
of much less importance than for the rectangle model. For many time series the results do not
change when the first term (goodness of fit) is given very high (or even all) weight in the fitness
function. The reason is, that many break points give rise to shorter intervals. Fitting AR-models
to short intervals results in a worse fit, because the noise is not filtered well. This effect implicitly
reduces the number of break point. There are, however, cases where the second term is essential
for finding the right number and locations of the break points, e.g., a series which is composed
of few AR-models having all the same order and only slightly differing coefficients.

Setting up the Yule-Walker equations is by far the computationally most demanding sub-
task. We shall see below that, with an appropriate preprocessing, we can use a range tree to fit
an AR(p)-model to any interval [bj , bj+1−1] in time O(log(T )), for p ≤ pmax and pmax constant.
If pmax is not assumed constant then the time is bounded by O(p3

max log(T )).
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4 Range Trees

Range trees are a general data structure which support multiple queries on intervals of indexed
data. A description of the general concept of a range tree may be found in [2]. We restrict the
presentation to the situation where the data is a time series (y0, . . . , yT−1), that is, we consider
range trees for one-dimensional numerical data. A range query receives two indices a, b (the
range), 0 ≤ a ≤ b ≤ T − 1, as inputs and returns as answer a quantity q(a, b) = q(ya, . . . , yb)
which is determined by the data ya, . . . , yb. We first describe the concept for the case were the
query asks for the maximum value in a range (interval) [a, b]: q(a, b) = max{yi | a ≤ i ≤ b}. For
a single query on range [a, b], the most efficient way is to compute the answer q(a, b) directly
from the data, which takes time O(b− a) = O(T ). If multiple queries with different ranges have
to be performed, a preprocessing might pay off. A straightforward preprocessing is to compute
the maxima for all T (T + 1)/2 ranges [a, b] in advance and store them in a table. Then a query
[a, b] can be answered by a look-up in the table in constant time. The time for the preprocessing
is Θ(T 2). The quadratic preprocessing time and, especially, the quadratic space requirement
make this approach infeasible already for medium data sizes of around 10,000.

The idea behind range trees is to compute the maxima only for a few ranges and then
combine this information to determine the maximum for any other range. For example, if one
knows the maxima for two adjacent ranges, max(a, c − 1) = max{yi | a ≤ i ≤ c − 1} and
max(c, b) = max{yi | c ≤ i ≤ b}, then the maximum for the range [a, b] can be computed by a
single addition max(a, b) = max(a, c− 1) +max(c, b). It is this merging property which allows
the use of range trees. A range tree is a rooted, binary tree where every node covers a range
[a, b] and the left and right child, respectively, cover the ranges [a, (a+ b)/2] and [(a+ b)/2+1, b]
(here and in the following we omit the details for handling the case that the division by 2 gives
a remainder). The root covers all the data, i.e., range [0, T − 1]. The range tree is constructed
bottom up, starting with T leaves formed by singleton ranges [a, a] for which the maximum
trivially is a. Then pairs of adjacent nodes are merged and the common maximum is stored in
a new node which is the parent of two. For the maximum problem the preprocessing time is
Θ(T ) and the query time is O(log(T )).

Preparing Rectangle Models for Range Trees

In order to apply the rectangle method, we have to be able to find the maximum max(a, b) =
max{yi | a ≤ i ≤ b} for every interval [a, b] and likewise the minimum min(a, b). To achieve
this, we store at all nodes of the range tree the minimum and maximum of the range the node
covers. The preprocessing time is Θ(T ) and the query time is O(log(T )).

Preparing AR-Models for Range Trees

In order to fit an AR-model of order p to an interval [a, b] of the time series, 0 ≤ a < b ≤ T − 1,
using the Yule-Walker equations, we have to know the sample autocovariances r` for ` = 0, . . . , p.
In order to use range trees, one has to be able to compute the autocovariances for interval [a, b]
from those of the intervals [a, (a + b)/2] and [(a + b)/2 + 1, b]. Instead of storing the sample
autocovariances r` at the nodes of the range tree, we store a number of values from which the
r`’s can be computed. These are the sum of the values of the part of the time series covered by
the range and the sum of products of values with lags 0 and `:
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U` =
b−∑̀
i=a

yi+` , V` =
b−∑̀
i=a

yiyi+` , for ` = 0, 1, . . . , p . (5)

Also the size S = b− a+ 1 of the range is stored. Then the autocovariance r` for lag ` becomes

r` =
V`

(S − `+ 1)
− U0U`

(S − `+ 1)2
. (6)

Now we are in a position to describe the merging step which is crucial for using the range tree.
Let a < c < b be three indexes if the time series. Let I ′ denote the interval [a, c], and I ′′ denote
[c+ 1, b]. Let S′ = c− a+ 1, S′′ = b− c, and S = b− a+ 1. Let I = I ′ ∪ I ′′ = [a, b]. Let (U`, V`)
(resp. (U′`, V

′
` ) and (U′′` , V

′′
` )) be the aforementioned parameters for I (resp. I ′ and I ′′).

The parameters for I can be computed from those of I ′ and I ′′ by

S = S′ + S′′, U` = U
′
` + U

′′
` , V` = V ′` + V ′′` , for ` = 0, . . . , p .

In addition, some values at the merging point c have to be computed. Since, for example, V ′`
only contains products yiyi+` where both i and i + ` are in I ′. Hence those with i ∈ I ′ and
i + ` ∈ I ′′ have to be added to V . Alternatively, this data can be precomputed and stored in
the range tree. When the maximum order p of an AR-model is fixed then the construction of
the range tree can be done in time O(T ) and the time to fit an AR-model to a given range is
O(log(T )).

5 Simulation results

We only mention the most important results of our simulations, a much more detailed description
can be found at the website below. The test have been performed on artificial and real-world
time series. http://www2.imm.dtu.dk/~pafi/StructBreak/pfah-simulations.pdf.

Using range trees for the AR-model pays off for series longer than 400. For series with 50, 000
observations, fitting an AR-model to a randomly selected range is on average 40 times faster
using range trees than a direct fit and 500 times faster for series with 1 million observations.

In order to evaluate how well break points are found by our methods, we tested them on
artificially generated time series with well defined break points, but also on real world time series,
where the “true” break points had been determined by human experts. In all cases, the break
points were found with high precision, for short series (T ≤ 2000) most of the time perfectly.
For the rectangle model applied to series like the one in Figure 1 almost always the true break
points were recovered precisely. For artificial series constructed of 2 to 5 AR-models of order 1
to 5, the break points (changes between models) were found within maximal ±5 indices.

One has to remark, that using the residuals to measure the goodness of fit for the AR-model
requires linear time O(T ), however this is at least one order of magnitude less then the time
for naively fitting the model. In order to overcome using linear time, one can instead measure
the goodness of fit by using the Minimum Description Length principle of Rissanen [6], see
Davis [1] for details, which can be computed in constant time for fixed model order p. In our
tests, however, the break points found, did not match the true ones as good as when using the
residuals.
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6 Conclusion

We have shown how evolutionary algorithms and an efficient data structure can be combined
into very efficient and effective algorithms for detecting structural breaks. The method applies
to time series which are piecewise generated by statistical models, which meet the “merging
condition”, i.e., that the information for adjacent ranges can be merged into the information of
the union of the ranges. For two such models, the rectangle model and AR-models, it is shown
how the algorithm is used and that it performs very well on artificial and real world data.

The method generalises to higher dimensional data. For d-dimensional data, the complexity
depends on the type of range queries. If every query uses the same range in all dimensions, then
the time and space requirements are only increased by a factor d. Otherwise, the preprocessing
time for the range tree is O(T logd−1(T )) and the query time is O(logd(T )). An implementation
of the rectangle method for multi-dimensional data is under construction. We are also working
on an R-callable Java implementation.

In an industrial application, we have used the rectangle method with great success to detect
outliers in the series. It is a challenge to find further statistical models which meet the merging
condition and thus allow the speed-up by using range tree.
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Abstract. To detect outliers from a single regression model requires one, perhaps robust, fit to
the data. But if the “outlying observations” are other regression models, it may be necessary to
fit several different linear models in order to reveal the structure. We illustrate the diagnostic
use of random start forward searches to reveal mixtures of regression models.
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1 Introduction

The international trade data that inspired this study come from several linear regression models
that need to be distinguished. To detect outliers from a single regression model requires one,
perhaps robust, fit to the data. But if the “outlying observations” are other regression models,
it may be necessary to fit several different linear models in order to reveal the structure. In
this paper we illustrate the use of random start forward searches in exploring such mixtures of
regression models.

The Forward Search (FS) for a robust, diagnostic fit to a single regression model proceeds by
fitting subsets of the data of increasing size. The details are in S2. In S3 the random start FS
is illustrated on an example of 180 observations arising from international trade. Forward plots
of aspects of the data as the subset size increases clearly reveal the structure. In S4 we compare
our results with those obtained by robust fitting under the assumption of a single model. The
proposed method involving random starts, coupled with the graphical monitoring of residuals
during the FS, provides a powerful diagnostic method for detecting data coming from a mixture
of regression models.
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2 The Forward Search for Regression Data

The forward search achieves robustness by fitting the model to subsets of the data of increasing,
where the subsets are sequentially chosen to be as close as possible to the fitted model. The
introduction of outliers into the subset is diagnostically revealed by plots of residuals against
subset size as well as formally by statistically tuned tests.

In the regression model y = Xβ+ ε, y is the n×1 vector of responses, X is an n×p full-rank
matrix of known constants, with ith row xTi , and β is a vector of p unknown parameters. The
normal theory assumptions are that the errors εi are i.i.d. N(0, σ2).

The least squares estimator of β is β̂. Then the vector of n least squares residuals is e =
y − ŷ = y − Xβ̂ = (I − H)y, where H = X(XTX)−1XT is the ‘hat’ matrix, with diagonal
elements hi and off-diagonal elements hij . The residual mean square estimator of σ2 is s2 =
eT e/(n− p) =

∑n
i=1 e

2
i /(n− p).

FS fits subsets of observations of size m to the data, with m0 ≤ m < n. Let S∗(m) be the
subset of size m found by FS, for which the matrix of regressors is X(m). Least squares on this
subset of observations yields parameter estimates β̂(m) and s2(m), the mean square estimate of
σ2 on m− p degrees of freedom. Residuals can be calculated for all observations including those
not in S∗(m). The n resulting least squares residuals are

ei(m) = yi − xTi β̂(m). (1)

The search moves forward with the augmented subset S∗(m+ 1) consisting of the observations
with the m + 1 smallest absolute values of ei(m). To start we take m0 = p and search over
subsets of p observations to find the subset that yields the least median of squares (LMS,
Rousseeuw, 1984) estimate of β. However, this initial estimator is not important, provided
masking of outliers is broken.

To test for outliers the deletion residual is calculated for the n−m observations not in S∗(m).
These residuals, which form the maximum likelihood tests for the outlyingness of individual
observations, are

ri(m) =
yi − xTi β̂(m)»

s2(m){1 + hi(m)}
=

ei(m)»
s2(m){1 + hi(m)}

, (2)

where the leverage hi(m) = xTi {X(m)TX(m)}−1xi. Let the observation nearest to those forming
S∗(m) be imin where

imin = arg min
i/∈S∗(m)

|ri(m)|.

To test whether observation imin is an outlier we use the absolute value of the minimum deletion
residual, namely |rimin(m)|, as a test statistic. If the absolute value is too large, the observation
imin is considered to be an outlier, as well as all other observations not in S∗(m).

In S3 we use diagnostic plots of the evolution of all ri(m) with m in order to reveal the
structure of the data. In S4 we contrast this diagnostic approach with formal testing for outliers,
for which we need a reference distribution for ri(m) in (2). If we estimated σ2 from all n
observations, the statistics would have a t distribution on n − p degrees of freedom. However,
in the search we select the central m out of n observations to provide the estimate s2(m), so
that the variability is underestimated. To allow for estimation from this truncated distribution,
let the variance of the symmetrically truncated normal distribution containing the central m/n
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portion of the full distribution be σ2
T (m). See Riani et al. (2009) for a derivation from the

general method of Tallis (1963). We take as our approximately unbiased estimate of variance
s2
T = s2(m)/σ2

T = s2(m)/c(m,n). In the robustness literature c(m,n) is called a consistency
factor (Maronna et al., 2006).

For each m, the distribution of the minimum deletion residual |rimin(m)| can be found by
repeated simulation of samples of size n. However, in the formal approach to testing for outliers
of S4 we repeatedly superimpose envelopes for varying values of n to establish the number of
outliers. For this we use the order-statistics arguments of Riani et al. (2009).

3 The Random Start Forward Search for Regression Data

The international trade data record the transaction value and amount of imports of individual
goods into the EU. For any individual supplier there should be a straight line relationship
between value and quantity, although the relationship may be different for different suppliers.
There may also be numerous outliers due to misrecording of the values of the two variables,
or due to erroneous coding of goods. Interest is in detecting price-quantity relationships that
are consistently anomalous; these may indicate money laundering or tax fraud. We analyse 180
observations with such a structure.

Random start forward searches have been used as a diagnostic tool to indicate the number
of clusters in multivariate data and to suggest cluster membership. The analysis of Atkinson
et al. (2004, S3.4) of the Swiss banknote data of Flury (1997), in which there are two clusters
and some outliers, shows that the structure revealed by the search depends on whether the
search starts in one or other of the clusters, or with some units from both. For clustering such
data, Atkinson and Riani (2007) suggest running several hundred searches from random starting
points. Many of the forward searches are attracted to clusters in the data and the structure is
revealed.

We now exemplify this idea for the analysis of regression data. To run random start forward
searches we select 500 random subsets of m0 = 2 observations, and run a forward search from
each. Although the search moves forward by incrementing the value of m, the new subset is
chosen by ranking all n residuals using parameter estimates from the previous subset. Thus
observations that become outlying can be dropped from the subset, which is attracted towards
central observations from whichever is the nearest model. Such a process continues until all
observations near to the particular model have been used in fitting. Then outliers, or observations
close to other regressions, are included in the subset, and the parameter estimates may change
appreciably. Once two random starting points have converged to the same subset S∗(m), for
some m, the searches cannot diverge again. Thus a forward plot of the minimum deletion
residuals shows trajectories that converge to a few potentially informative curves. In Figure 1,
from around m = 100, the forward plots of the minimum deletion residuals are reduced to only
two trajectories. We now interrogate the plot to find out what structure is being revealed.

The darker trajectory in the figure lies above the 99% pointwise envelope from around m =
130 and continues to increase until m = 133. The lower left-hand panel of Figure 2 shows,
by circles, the 133 units that are included in the subset at this point, which clearly form one
line. The other units equally clearly fall on a second line; there are no outliers from these two
structures. The second trajectory in Figure 1 goes outside the upper envelope slightly earlier.
The bottom right-hand panel of Figure 2 shows a scatterplot of the units when this branch of
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Figure 1: Trade data: forward plots of minimum deletion residuals from 500 random starts with
pointwise 1% and 99% limits. There appear to be two distinct groups (regression lines)

the search is interrogated at m = 107. The structure of two lines is again revealed; as well as
units not in the subset lying below those in S∗(m) for larger values of x, there are also four units
above those in the subset for the lowest values of x.

The curves in the upper panels of Figure 2 show the 500 trajectories divided into those that
give one of the two peaks and those that give the other. We select one initial subset from each
panel and follow the residuals generated during these searches. The left-hand panel of Figure 3
shows the scaled residuals for all units; those that are included in the subset at m = 133 are
shaded grey and plotted with broken lines, whereas the remaining units are plotted with a
continuous black line. The units included in the subset have, for most of the search, residuals
that approximately lie between −1 and 1. The residuals plotted in black all have positive values,
as we would expect from the lower left-hand panel of Figure 2, with values between 1 and 4 for
much of the search. The two groups are quite distinct until around m = 150 when the increasing
presence of the observations from the upper line starts to influence the fitted slope. The effect
of merging of the two lines shows more dramatically in the right-hand panel of the figure where,
now, the residuals from observations not in the subset at m = 107 mostly lie below the majority.
However, the four observations for low x have the highest residuals. In this plot the dramatic
change for m between 158 and 162 comes from the interchange of units between those in the
subset and those not (in these five steps 20 new units join the subset and 15 leave it). The fits in
the left-hand and right-hand panels of the figure are now identical, although the vertical scales
of the panels are different. The identicality of the fits is also clear at the ends of the searches in
the two upper panels of Figure 2, where the upwards jump in the right-hand panel signals the
interchange.

Our analysis indicates that the data fall on two straight lines. Out of 180 observations, we
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Figure 2: Trade data divided according to the two peaks in Figure 1. Upper panels, forward
plots of minimum deletion residuals. Lower panels, scatterplots of observations; ◦ observations
included in the subset S∗(m)

50 100 150

−2

−1

0

1

2

3

4

Subset size m

50 100 150
−4

−3

−2

−1

0

1

2

3

Subset size m

Figure 3: Trade data divided according to the two peaks in Figure 1: forward plots of scaled
residuals. Black lines (blue in the .pdf); observations not in the subsets, plotted as + in Figure 2
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have 133 that seem to lie on one line and 107 that may well lie on the other. These figures are a
reminder that it is impossible to classify with any certainty those units that lie where the lines
overlap. However, for the analysis of the trade data, the diagnostic evidence of the existence of
two lines is the important outcome. The next stage is to return to the data and to identify the
units according to country of origin and importer.

4 Robust Analyses

It is very well-known that multiple outliers in regression models may mask each other, so that
they are not revealed by a least squares fit. A robust fit, using a single model, is needed. We
now investigate numerically how well such robust fits perform for the trade data which arise
from a mixture of regression models.

To calculate the confidence level for the observed value of |rmin(m)| in the FS we used the
results of Riani et al. (2009) to obtain the confidence level γ as

γ = 1− F2(n−m),2(m+1)

®
(m+ 1)

ñ
1

2Tm−p{rmin(m)σT (m)} − 1

ô
1

n−m

´
, (3)

for m = m0,m0 + 1, . . . , n − 1. Here F and T are the c.d.f.s of the F and T distributions. As
the envelopes in Figures 1 and 2 show, there is appreciable curvature in the plots as m→ n; the
envelopes increase rapidly, as, in the absence of outliers, large residuals occur at the end of the
search. To clarify visual presentation we now introduce a pointwise normal-score transformation
of the envelopes, and of the observed distances, in order to give plots with horizontal envelopes.
The plot in normal coordinates uses Φ−1(γ), which, of course, does not change the rule.

To avoid the problem of multiple testing (one outlier test for each value of m) we adapt the
rule of Riani et al. (2009) for multivariate data to obtain a procedure with a samplewise size
of around 1%, replacing Mahalanobis distances by the absolute value of the minimum deletion
residual. Now the FS starts from a single, carefully chosen subset using LMS. Outlier detection
follows a two-stage procedure. In the first we use envelopes for all n observations. If outliers
are present we receive a signal of an outlier at some value m†. Succeeding observations may be
outliers. However, the envelopes depend on the value of n. If we reject some observations as
outliers we need new envelopes for a smaller value of n, in general n∗. In the second stage of
the procedure we superimpose envelopes for values of n from this point until the first time we
introduce an observation we recognise as an outlier.

In the trade data the procedure from a robust starting subset yields a forward plot of values
of |rmin(m)| which is of the form of those in the upper left-hand panel of Figure 2. The rule
yields a signal at m† = 135 because of three successive values above the 99.99% threshold (the
values 133 and 107 in Figure 2 were chosen as the first of such three consecutive values for
searches leading to the respective peaks). We then superimpose envelopes for a series of values
of n∗. Figure 4 illustrates this point for n∗ = 138, 148, 156 and 158. For the two lower values of
n∗ the plot of residuals lies below the 95% envelope. That when n∗ = 156 lies within the 99%
envelope (as does that for n∗ = 157 which is not shown). However when n∗ = 158 one value of
the statistic lies above the 99.9% envelope. The conclusion is that there are 157 observations,
out of 180, that can be used for estimating the regression model by least squares. There are
therefore 23 outliers.

We now compare this analysis of the trade data with that obtained using the Least Trimmed
Squares (LTS) and reweighted LTS (LTSr) algorithms described by Verboven and Hubert (2005).
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Figure 4: Trade data: resuperimposed envelopes for steps 138, 148, 156 and 158. In this process
the first outlier is detected at n∗ = 158, so there are 157 observations available for estimation
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Figure 5: Trade data: left-hand panel, scaled residuals from LTS, right-hand panel scaled resid-
uals from reweighted LTS. Inner bands , pointwise 99% region, outer bands, sample-wise 99%
region. There is no indication of the structure evident in Figure 3

Because the FS algorithm is designed to have size α of declaring an outlier free sample to contain
at least one outlier, we use a Bonferroni correction for simultaneity when identifying the outliers
found by these methods. In LTSr the outliers identified by LTS are removed from the fit and the
parameters re-estimated from the remaining observations. We also use the Bonferroni correction
to identify the outliers in this intermediate step.

The left-hand panel of Figure 5 shows a plot of the scaled LTS residuals against observation
number. In interpreting these plots it is important that the observations are numbered consec-
utively for one importer and then the other. The structure of different variances, particularly
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evident in the left-hand panel, disappears when the observations are permuted.
The inner bands in the plot provide pointwise 99% tests for outliers. There are a large

number of outliers at this pointwise level whereas we might expect two if the data followed
a single regression model. However the outer, Bonferroni adjusted, bands indicate only three
outliers and so no suggestion of the two lines that are the structure of the data. The plot of the
scaled residuals from LTSr in the right-hand panel shows no evidence of any outliers at either
level.

The further analysis of this section illustrates that robust methods designed to fit a single
model whilst detecting outliers may not be effective in detecting departures from a single model
if two or more models are present. In the random start forward searches of S3 our diagnostic
procedure detected linear fits with 47 or 73 observations excluded. The statistically controlled
fitting of a single model using the FS, on the other hand, only revealed 23 observations as not
coming from one of the models. Although scatterplots like those in Figure 2 would reveal a pat-
tern of outliers from which the existence of two lines can be inferred, we need a procedure which,
like the random start FS, reveals the presence of alternative models. The second conclusion is
that use of very robust methods, such as LTS, designed to reveal up to 50% of outliers in the
data, can fail if the major model and that for the outliers are close together. Several different
fits to the data, combined with diagnostic plotting of residuals, provide a surer way of detecting
data from mixtures of regression models.
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Abstract. In the analysis of binary longitudinal data a frequent problem is the presence of
missing data since it is difficult to have complete records of all individuals. Another feature in
these studies is to take into account the autocorrelation structure present in successive obser-
vations, taken over time on each individual and associated with a certain response variable. In
this paper we discuss the performance of the marginal models implemented in the R package
bild when missing values are present in data provided that they are missing at random (MAR).
In those marginal models inference is based on likelihood approach and serial dependence is
regulated by a binary Markov chain mechanism. A simulation study is carried out and a real
data set is also used to illustrate that behaviour.

Keywords. binary longitudinal data, marginal model, exact likelihood, Markov chain, missing
data.

1 Introduction

Longitudinal binary data studies are a powerful design and they have become increasingly pop-
ular in a wide range of applications in clinical research. In these studies repeated observations of
a response variable are taken over time on each subject in one or more treatment groups. In such
cases the repeated measures of each vector of responses are likely to be correlated and the auto-
correlation structure for the repeated data plays a significant role in the estimation of regression
parameters. Although most longitudinal studies are designed to collect data on every subject in
the sample at each time of follow-up, many studies have missing data since it is difficult to have
complete records of all subjects for a wide variety of reasons. When longitudinal binary data are
incomplete, there are important implications for their analysis and several methods have been
proposed [1, 2, 7, 8]. A review of this topic is given by [6].

In the context of marginal model to binary longitudinal data, [3] proposed a methodology
based on likelihood approach and used a binary Markov chain model to accommodate serial



26 Incomplete longitudinal binary responses

dependence and odds-ratio to measure dependence between successive observations in the same
individual. This methodology has been implemented in the R package bild [4, 5] and allows
missing values on the response, provided they are missing at random (MAR) in the standard
terminology of [9].

The goal of this paper is to study the performance of that methodology for analysing incom-
plete binary longitudinal responses. A simulation study is presented where complete and missing
data are both considered. Data from the Muscatine Coronary Risk Factor [10] is analysed to
illustrate the objective of this paper. In Section 2 we give a summary of the approach used.
In Section 3 we report a small simulation study to examine the performances of the procedure.
Complete and incomplete data cases are considered. In Section 4 we present the results of ap-
plying the approach to the aforementioned real data set. Finally, in Section 5 we draw some
overall conclusions.

2 Models for binary data

Suppose that n independent individuals are observed at times t = 1, . . . , Ti, which need not be
the same for all n individual, and denote by yit ∈ {0, 1} the binary response value at time t
from individual i (i = 1, . . . , n), and by Yit its generating random variable whose mean value is
Pr(Yit = 1) = θit. Associated with each observation time and each subject, a set of p covariates
is available, denoted by xit and β as the p−vector of unknown parameters. We shall refer
collectively to the sequence (yi1, ..., yit) as the ith individual profile.

A logistic regression model is assumed for the marginal mean of Yit and the probability of
success is

logit θit = x>it β. (1)

For the first order Markov chain (MC1), the serial dependence is modeled using ψ1 =
OR(Yt, Yt−1) where

OR(Yt, Yt−1) =
Pr (Yt−1 = Yt = 1) Pr (Yt−1 = Yt = 0)

Pr (Yt−1 = 0, Yt = 1) Pr (Yt−1 = 1, Yt = 0)
=
p1/(1− p1)

p0/(1− p0)

where pj are the one-step transition probabilities given by

pj = Pr(Yt = 1|Yt−1 = j), j = 0, 1. (2)

For the second order Markov chain (MC2) the joint distribution of three successive compo-
nents of the process at time, (Yt−2, Yt−1, Yt), is considered and the constraints,

OR(Yt−1, Yt−2) = ψ1 = OR(Yt−1, Yt)

OR(Yt−2, Yt|Yt−1 = 0) = ψ2 = OR(Yt−2, Yt|Yt−1 = 1)

are imposed, with ψ1 and ψ2 two positive parameters. The two-steps transition probabilities are
given by

phj = Pr(Yt = 1|Yt−2 = h, Yt−1 = j), h, j = 0, 1, (3)

see [3] for a full account.

The serial dependence for MC2 models is regulated by λ = (λ1, λ2) = (logψ1, logψ2), which
are assumed to be constant across time and subjects. When, λ2 = 0, the Markov chain reduces
to MC1 models and the serial dependence is regulated by λ1.
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The estimation of parameters is based on the likelihood approach. The contribution from a
generic individual to the log-likelihood for the parameters (β, λ) is under MC1 model,

`i (β, λ) = y1logit (θ1) + log (1− θ1) +
Ti∑
t=2

[ytlogit(pj) + log(1− pj)] (4)

and under MC2 model,

`i(β, λ) =
î
y1logit(θ1) + log(1− θ1)

ó
+
î
y2logit(pj) + log(1− pj)

ó
+

Ti∑
t=3

ñ
ytlogit(phj) + log(1− phj)

ô
(5)

where the three blocks on the right-hand side represent the contribution to the log-likelihood
from y1, y2, and (y3, . . . , yT ), respectively, where phj is given by (3) and pj by (2).

For both models, MC1 and MC2, the overall log-likelihood functions are obtained as the
sum of the n logarithmic individual contributions given by (4) and (5), respectively. Numerical
maximisation of the log-likelihood is required and the derivatives of the functions are supplied
to improve the efficiency of the optimisation algorithms. Given the algebraic work required to
obtain explicit expressions of the gradient of the log-likelihood it is completely unfeasible to
develop analogous results for the Hessian matrix. Therefore, the observed information matrix
for (β, λ) must be computed via numerical differentiation of the first derivatives. For a full
account see [3].

Missing data

In this approach missing values are allowed on the response, provided they are MAR. If missing
data occur at the beginning or at the end of an individual profile, this poses no problems, since
this case is equivalent to an unbalanced design in the length profile Ti for that individual. Some
restrictions exist for the presence of missing data when they occur in the middle of the profile.
The precise description of the missingness patterns follows next, where pj in (2) will be denoted
here by pt:j and phj in (3) by pt:hj .

If MC1 model is considered and we have a missing value at time point t − 1 it is required
that there are observations at time points t−2 and t. Expression (4) is modified as follows: yt−1

is replaced by yt and pj is replaced by pt:j = Pr(Yt = 1|Yt−2 = j) = (1− pt−1:j) pt:0 + pt−1:j pt:1.

If MC2 model is considered and we have a missing value at time point t − 2, it is required
that there are observations at time points t− 4, t− 3, t− 1 and t. The modifications in (5) are:

1. If y2 is missing, and there are observations at the two adjacent time points (y3 and y4),
then (5) is modified as follows: y2 is replaced by y3; pj is replaced by Pr(Y3 = 1|Y1 = j) =
(1− p2:j) p3:0 + p2:j p3:1 using the one-step transition probabilities pt:j as used in (4); the
contribution from Y4 is obtained from Pr (Y4 = 1|Y1 = h, Y3 = j) = (1−p2:h)p4:0j+p2:hp4:1j .

2. If yt is observed and yt−1 is missing, the last term of type phj in (5) is replaced by
Pr (Yt = 1|Yt−3 = h, Yt−2 = j) = (1− pt−1:hj) pt:j0 + pt−1:hj pt:j1.

3. The more common case refers to a missing datum in the middle of the observation period.
Let us say that the missing value is at time point t− 2 and that there are observations at
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time points t, t− 1, t− 3, t− 4. The joint contribution from (yt−1, yt) is

Pr(Yt−1 = r, Yt = 1|Yt−4 = h, Yt−3 = j) =

= (1− pt−2:hj)
[
(1− pt−1:j0) + (2pt−1:j0 − 1)r

]
pt:0r

+ pt−2:hj

[
(1− pt−1:j1) + (2pt−1:j1 − 1)r

]
pt:1r .

This approach is implemented in the R package bild [4].

3 A simulation study

A simulation study was conducted when we had a serial dependence MC1 or MC2 with the aim
to examine the impact of intermittent missingness status in the estimation parameters in terms
of relative bias and mean square error.

In the simulation, we have considered the following model

Pr(Yit = 1|t) =
exp(β0 + β1t)

1 + exp(β0 + β1t)
(6)

where the fixed effect coefficients were set at β0 = −1 and β1 = 0.5. Each data set contains
I = 50 subjects of size T = 13, with t= -1.5, -1.25, -1, -0.75, -0.5, -0.25, 0, 0.25, 0.5, 0.75, 1,
1.25, 1.5.

On each run we have generated T binary correlated data under the ith subject following a
first order serial dependence with constant λ1 or a second order serial dependence with constants
(λ1, λ2). Under MC1 we considered for λ1 the values -2, -1 , 1 and 2. Under MC2 we have
considered for the pair (λ1, λ2) the combinations (-1,-1),(-1,1),(1,-1), (1,1).

In both situations an intermittent missing-data mechanism MAR was considered, taking
into account the missingness restrictions described in Section 2. In this mechanism it is assumed
that the binary response on the first occasion is always observed, Ri1 = 1, here Ri = 1 denote
a T × 1 vector of indicator variables for the ith subject, where Rit = 1 if Yit is observed, and
Rit = 0 if Yit is missing. The binary response for the ith subject at time t (Rit) is generated
with probability of success given by (1 − φ)1−yit−1 , where φ is the nonresponse parameter [2].
To each serial dependence the missing-data mechanism was applied with φ = 0, 0.1, 0.25, 0.5
(φ = 0 corresponding to complete data). The whole estimation procedure was repeated for
1000 runs and the sample mean of the estimates (Mean), the sample mean of percent relative
bias (Rbias%) and the sample mean square error (MSE) were computed. The estimates of the
parameters were obtained through the function bild in the R package bild [4].

The results of our simulation are displayed from Tables 1-2. Each table lists the following:
Mean, Rbias% and MSE over the 1000 simulations runs. From Figures 1-4 we present the
boxplots of Rbias% and MSE as a summary of those results.

Taking into account that our goal is to study the performance of the methodology with
intermittent missing data, the main conclusions of our simulation can be summarize as follows:

1. To the first group of data generated from a MC1 serial dependence (Table 1 and Figures 1
and 2) the three main conclusions are: (i) the MSE of both β0 and β1 is small for values
of φ until 0.25 but when φ equal 0.5 the MSE of β0 is greater than the MSE of β1; (ii)
the Rbias% of β0 is greater than the Rbias% of β1 to all situations considered; (iii) the
Rbias% of both β0 and β1 increase with larger values of φ.
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Figure 1: Rbias% of β̂0 and β̂1 for several λ1 values and MC1 model.
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Figure 2: MSE of β̂0 and β̂1 for several λ1 values and MC1 model.

2. To the second group of simulations generated from a MC2 serial dependence (Table 2 and
Figures 3 and 4) the two main conclusions are: (i) the MSE of both β0 and β1 is very
small for all values of φ; (ii) the Rbias% of β1 is greater than the Rbias% of β0.

3. When we compare the simulations for the two groups, the behaviour of Rbias% and MSE
is very similar for all parameters when we have complete data cases (φ = 0). When missing
data is present the impact of intermittent missingness is smaller, both in terms of Rbias%
and MSE, under the MC2 serial dependence and for all parameters.

Based on the previous conclusions we may say that the results of the simulation study suggest
that the methodology implemented in R package bild has a satisfactory degree of robustness to
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λ1 φ β̂0 β̂1 λ̂1

Mean −2 0.0 −0.975 0.510 −1.752
Rbias% −2.537 2.063 −12.404

MSE 0.006 0.007 0.147

Mean 0.1 −0.972 0.505 −1.754
Rbias% −2.838 1.123 −12.314

MSE 0.007 0.007 0.169

Mean 0.25 −0.944 0.492 −1.762
Rbias% −5.584 1.658 −11.895

MSE 0.011 0.010 0.183

Mean 0.5 −0.854 0.454 −1.778
Rbias% −14.616 −9.124 −11.125

MSE 0.038 0.022 0.365

Mean −1 0.0 −0.984 0.507 −0.923
Rbias% −1.561 1.378 −7.529

MSE 0.007 0.008 0.063

Mean 0.1 −0.979 0.498 −0.904
Rbias% −2.051 −0.361 −9.564

MSE 0.008 0.009 0.073

Mean 0.25 −0.947 0.490 −0.945
Rbias% −5.258 −2.026 −5.455

MSE 0.012 0.012 0.090

Mean 0.5 −0.826 0.438 −0.957
Rbias% −17.408 −12.366 −4.261

MSE 0.050 0.026 0.184

Mean 1 0.0 −1.029 0.492 0.910
Rbias% 2.887 −1.686 −8.960

MSE 0.013 0.014 0.050

Mean 0.1 −1.017 0.491 0.898
Rbias% 1.706 −1.790 −10.194

MSE 0.013 0.015 0.055

Mean 0.25 −0.960 0.470 0.878
Rbias% −3.974 −5.906 −12.157

MSE 0.016 0.017 0.074

Mean 0.5 −0.767 0.428 0.783
Rbias% −23.293 −14.472 −21.748

MSE 0.089 0.040 0.160

Mean 2 0.0 −1.070 0.479 1.831
Rbias% 6.952 −4.150 −8.444

MSE 0.021 0.018 0.078

Mean 0.1 −1.059 0.477 1.827
Rbias% 5.916 −4.530 −8.664

MSE 0.023 0.018 0.085

Mean 0.25 −0.980 0.462 1.797
Rbias% −1.988 −7.518 −10.139

MSE 0.022 0.025 0.104

Mean 0.5 −0.744 0.393 1.693
Rbias% −25.625 −21.335 −15.367

MSE 0.111 0.057 0.216

Table 1: Results of the simulation study for λ1 = −2,−1, 1 and 2.

intermittent missing data status.

4 An illustrative example

To illustrate the results we have used a subset of data from the Muscatine Coronary Risk Factor
Study, a longitudinal study of coronary risk factors in school children from Muscatine (Iowa,
USA) [10]. The dataset contains records on 1014 children who were 7-9 years old in 1977 and
were examined in 1977, 1979 and 1981. The binary response of interest is whether the child is
obese (1) or not (0). Since one of the objectives of the study was to determine the effects of sex
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Figure 3: Rbias% of β̂0 and β̂1 for several (λ1, λ2) values and the MC2 model.
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Figure 4: MSE of β̂0 and β̂1 for several (λ1, λ2) values and the MC2 model.

and age on risk of obesity a marginal model is appropriate. Many data records are incomplete,
since not all children have participated in all the surveys, creating, as [1] said, a ”genuine”
missing data problem. We have considered these data, available in the R package bild [4], as an
illustrative example to an easy comparison with findings of other authors [2, 1, 8] when there
are missing values.

For comparison with the results of [2] and [1] we have fitted to data the same three models
for the marginal probability of the event, namely:

Model I: logit(θit) = β0 + β1G+ β2A(L) + β3A(Q) + β4GA(L) + β5GA(Q)

Model II: logit(θit) = β0 + β1G+ β2A(L) + β3A(Q)
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(λ1, λ2) φ β̂0 β̂1 λ̂1 λ̂2

Mean (−1,−1) 0.0 −0.998 0.502 −1.022 −1.053
Rbias% −0.196 0.308 2.225 5.300

MSE 0.005 0.006 0.047 0.066

Mean 0.1 −1.003 0.498 −1.029 −1.038
Rbias% 0.337 −0.406 2.932 3.858

MSE 0.005 0.006 0.057 0.079

Mean 0.25 −1.004 0.503 −1.025 −1.035
Rbias% 0.362 0.587 2.517 3.530

MSE 0.006 0.008 0.073 0.095

Mean 0.5 −1.003 0.503 −1.024 −1.088
Rbias% 0.291 0.604 2.360 8.836

MSE 0.008 0.009 0.112 0.149

Mean (−1, 1) 0.0 −1.006 0.508 −1.034 0.970
Rbias% 0.569 1.559 3.397 −3.036

MSE 0.009 0.010 0.089 0.047

Mean 0.1 −1.001 0.502 −1.043 0.982
Rbias% 0.097 0.337 4.270 −1.787

MSE 0.010 0.009 0.108 0.055

Mean 0.25 −1.010 0.508 −1.044 0.998
Rbias% 1.005 1.604 4.399 −0.249

MSE 0.010 0.010 0.141 0.065

Mean 0.5 −1.007 0.502 −1.052 0.950
Rbias% 0.074 0.497 5.203 −4.970

MSE 0.011 0.011 0.166 0.093

Mean (1,−1) 0.0 −1.006 0.506 0.990 −1.044
Rbias% 0.625 1.124 −1.038 4.420

MSE 0.010 0.011 0.028 0.076

Mean 0.1 −1.008 0.502 0.981 −1.037
Rbias% 0.837 0.239 −1.870 3.727

MSE 0.009 0.012 0.035 0.085

Mean 0.25 −0.999 0.491 0.984 −1.053
Rbias% −0.059 −1.781 −1.638 5.316

MSE 0.010 0.012 0.046 0.098

Mean 0.5 −1.007 0.500 0.966 −1.035
Rbias% 0.761 −0.006 −3.442 3.545

MSE 0.011 0.011 0.072 0.126

Mean (1, 1) 0.0 −1.001 0.504 0.991 0.986
Rbias% 0.116 0.794 −0.865 −1.439

MSE 0.017 0.015 0.060 0.049

Mean 0.1 −1.005 0.499 0.972 0.958
Rbias% 0.536 −0.186 −2.796 −3.126

MSE 0.018 0.016 0.080 0.054

Mean 0.25 −1.004 0.506 0.966 0.958
Rbias% 0.441 1.212 −3.384 −4.197

MSE 0.019 0.017 0.096 0.071

Mean 0.5 −1.007 0.498 0.970 0.967
Rbias% 0.749 −0.466 −2.977 −3.332

MSE 0.020 0.017 0.134 0.092

Table 2: Results of the simulation study for several (λ1, λ2) values.

Model III: logit(θit) = β0 + β1A(L) + β2A(Q)

where G indicates gender (female=1, male=0) and A(L), A(Q) are orthogonal polynomial con-
trasts for linear and quadratic component of age effect, respectively. A fourth and simpler model
was also fitted to data:

Model IV: logit(θit) = β0 + β1A(L)

In all four models a serial dependence MC2 has been considered, instead of the MC1 serial
dependence used by [1]. The analysis was performed using the bild function in the R package
bild.

COMPSTAT 2014 Proceedings
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For all the models fitted to data, the estimated values of the parameters, as well as their
standard errors, t-ratio and corresponding p-values are given in Table 3. The estimates of the
regression parameters and the corresponding standard errors are in close agreement with those
of [2].

Model LogL Parameter Estimate SE t-ratio p− value

I −949.8621 β0 −1.346 0.097 −13.929 ' 0
β1 0.042 0.138 0.303 0.762
β2 0.126 0.066 1.918 0.055
β3 0.020 0.035 0.570 0.568
β4 0.175 0.095 1.852 0.064
β5 −0.092 0.049 −1.899 0.058
λ1 3.146 0.200 15.728 ' 0
λ2 1.900 0.329 5.770 ' 0

II −953.0435 β0 1.360 0.097 −14.057 ' 0
β1 0.069 0.137 0.507 0.612
β2 0.214 0.047 4.515 ' 0
β3 −0.027 0.024 −1.129 0.259
λ1 3.104 0.197 15.722 ' 0
λ2 1.867 0.324 5.756 ' 0

III −953.1726 β0 1.326 0.069 −19.291 ' 0
β1 0.214 0.047 4.511 ' 0
β2 −0.027 0.024 −1.112 0.266
λ1 3.105 0.197 15.729 ' 0
λ2 1.861 0.324 5.739 ' 0

IV −953.7947 β0 1.325 0.069 −19.297 ' 0
β1 0.209 0.047 4.483 ' 0
λ1 3.103 0.198 15.710 ' 0
λ2 1.863 0.323 5.760 ' 0

Table 3: Log-likelihood, Parameters estimates, Standard errors, t-ratio and p-value for models I, II, III and IV.

As [2] reported the results of this analysis suggest that there is a linear increase (on the
logit scale) in the rate of obesity over time, with no statistically discernible difference between
males and females. As effect the decrease in deviance between the models I and IV is ∆D =
2 × (953.7947 − 949.8621) = 7.865 on four degrees of freedom (p-value =0.09664) and thus the
model IV is not rejected at the level of significance 5%.

MC1 serial dependence was used by [1] which leads to the differences between his models
and ours. In this case we can ask which serial dependence is more appropriate. Despite of
the fact that the several summaries presented in Table 3 point out to a strong correlation of
second order, we have fitted to data two models with MC1 serial dependence. The first one
(Mode I1) with the marginal probability given by Model I and the second one (Mode IV1) with
the marginal probability given by Model IV. In the first case the decrease in deviance between
the models I and I1 is ∆D = 2 × (966.5612 − 949.8621) = 33.398 on one degree of freedom
(p-value ≈ 0). In the second case the decrease in deviance between the models IV and IV1 is
∆D = 2 × (970.3821 − 953.7947) = 33.175 on one degree of freedom (p-value ≈ 0). And, as
expected, in both situations the MC1 serial dependence is rejected at the level of significance
5%.

5 Conclusion

This paper is concerned with the impact of MAR data in binary longitudinal studies when
the marginal models described along Section 2 and implemented in the R package bild [4] are
considered. A simulation study was carried out and we conclude that the approach performs
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quite well to intermittent missing data status in both situations of serial dependence (MC1 and
MC2), as well as, when complete data sets are considered. Finally, an example using data from
Muscatine Coronary Risk Factor Study set was analyzed. This allows us to compare our results
with those obtained by [2]. Based on that comparison we can say that this methodology is a
suitable alternative to the one presented by those authors.
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Abstract. Classical methods for monitoring the average level of the process in quality control
procedures are based on the normality assumption. The construction of the well known She-
whartâs control charts is based on the sequence of parametric tests. The sample characteristics
are compared to the theoretical distribution or to the reference sample taken from the stable
process. To do this parametric tests are used. These tests could be used if the population is
normally distributed and observations are independent of each other. In the case of non-normal
distribution non-parametric tests (for example the Wilcoxon-Mann-Whitney test) can be used.
The paper presents a proposal of a modification of the L. Hao and D. Houser adaptive test for
comparing the locations of two distributions (HH test). The modification is based on the Hao L.
and Houser D. paper (see [2]). In the mentioned paper due to the values of the robust asymmetry
and shape characteristics, the test statistic is chosen. In the paper the method of continuous
modification of the test statistic is described. The properties of the proposed procedure are
analysed in the Monte Carlo study.

Keywords. adaptive test, quality control, process monitoring, non-normal process, permutation
tests

1 Introduction

Classical methods for monitoring the average level of the process in quality control procedures
are based on the normality assumption. The Shewhartâs control charts are based on the sequence
of parametric tests (see [9]). The main assumptions in these tests are that the population is
normally distributed and observations are independent of each other. In many real-world appli-
cations the data are often non-normally distributed. Instead of the parametric tests, the non-
parametric methods can be used. The two-phase of nonparametric control charts are presented
in [10] and applications of a powerful nonparametric test for heavy-tailed and/or highly-skewed
data are presented in [4]. The non-parametric tests often have less power than the parametric
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tests. To increase the power of the non-parametric tests, the adaptive procedures can be used.
Adaptive tests (see [11]) use the sample data to adjust the test procedure.

The paper presents a proposal of a modification of the L. Hao and D. Houser adaptive test
presented in the paper [2]. In the mentioned paper due to the values of the robust asymmetry
and shape parameters the form of the test statistic is chosen. In the paper the method of
continuous modification of the statistic is described. The properties of the proposed method are
analysed in the Monte Carlo study.

The main idea of the adaptive tests is to select the test statistic. The selection in the HH test
is based on the asymmetry and kurtosis from the combined samples. The proposed modification
is based on changing the weights in the statistic in dependence of the asymmetry and kurtosis
of the combined sample. Adaptive tests are very flexible and can be modified in various ways
also in contexts other than the location problem, see eg [7] which proposed a modification of an
adaptive test for scale which uses Hogg tailweight measure.

Let us consider two samples X1, X2, . . . , Xn (the reference sample) and Y1, Y2, . . . , Ym (the
sample taken from the monitored process). Let us assume that the samples were taken from
distributions F (x) and F (x+ θ) where θ is the shift of the location parameter. The hypothesis
that the samples were taken from the same distribution will be considered. Formally, the null
hypothesis can be written as follow

H0 : θ = 0

versus the alternative hypothesis

HA : θ = δ 6= 0

2 Adaptive tests

The adaptive procedure for comparing two distributions has been presented by Hogg et al. in
[3]. This procedure is based on calculating the asymmetry and kurtosis of combined samples.
For determining the asymmetry (Q3) and the kurtosis (Q4) characteristics following robust
estimators are used:

Q3 =
Ū0.05 − M̄0.50

M̄0.50 − L̄0.05
(1)

Q4 =
Ū0.05 − L̄0.05

Ū0.50 − L̄0.50
(2)

where Ū0.05, L̄0.05, Ū0.50 and M̄0.50 are the averages of the upper 5%, lower 5%, upper 50%
and middle 50% of data (order statistic of the combined sample).

L. Hao and D. Houser in [2] have presented the modification of the adaptive test procedure,
first proposed by Hogg et all in [3]. The test statistic used in this procedure has the following
form

S =
m∑
i=1

a(Ri) (3)

COMPSTAT 2014 Proceedings



Grzegorz Konczak 37

where 1 ≤ Ri ≤ N denotes the rank of the observation Yi (i = 1, 2, . . . ,m) in the combined
sample of n + m = N observations and the system of weights a(Ri) depends on the robust
measures of asymmetry and tailweight.

L. Hao and D. Houser in [2] consider three possible statistics. The selection of the statistic
depends on the type of the distribution. Three variants of the distributions have been considered:
the symmetric heavier-tailed distributions, the symmetric light-tailed distributions and the right-
skewed distributions. The details of these models can be described as follows:

• Symmetric Heavier-Tailed Model.

This model is selected when Q3 is less than 2.1 and Q4 is greater than 2.1. In this case

a(Ri) = Ri. (4)

Let us denote the statistic for this case by T1. The weights (4) lead to the Wilcoxon-Mann-
Whitney statistics. Formally, the test statistic can be written as follows

T1 =
m∑
i=1

Ri

• Right-Skewed Model.

This model is selected when Q3 is greater than 2.1. In this case bottom ranks begin near
the median and consequently are more informative about differences in medians. L. Hao
and D. Houser in [2] choose a modified rank test. This test uses only the bottom 50%
of the data. Let us denote the statistic for this case T2. The scoring function has the
following form

a(Ri) =


Ri − floor[25%(N + 1)]− 0.5 ifRi ≤ 25%(N + 1)
Ri − ceiling[75%(N + 1)]− 0.5 ifRi ≥ 75%(N + 1)
0 otherwise

(5)

where floor(x) rounds x down to the nearest integer and ceiling(x) rounds x up to the
nearest integer.

• Symmetric Light-Tailed Model.

This model is chosen when Q3 and Q4 are both less than or equal to 2.1. In this case the
modified rank test is used. The extreme ranks are more informative about location shifts
than the central ones. Only the data from the bottom 25% and top 25% of the combined
samples are used in calculating the statistic. Let us denote the statistic for this case by
T3. The scoring function has the form of:

a(Ri) =

®
Ri − floor[25%(N + 1)]− 1 ifRi ≤ (N + 1)/2
0 otherwise

(6)

The HH test leads to the use of the proper statistic (T1, T2 or T3) based on the Q3 and Q4

values from the combined samples. The idea of the test statistic selection is illustrated in Fig 1.
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Figure 1: Model selection scheme for the HH adaptive test.

3 Modification of the HH test

The main idea of the proposed modification (mHH) of the HH test is not to select the proper
test statistic but to change the weights of the combined statistics.

Let Q3 and Q4 be the robust asymmetry and the kurtosis statistics given by (1) and (2).
Then (q3, q4) is a point on the Q3/Q4 plane as in Fig. 1. Let di for i = 1, 2, 3 be the euclidean
distances of (q3, q4) to the border of the area of the use the statistic Ti in the HH test. Formally,
it can be written as follows:

d1 =


»

(q3 − 2.1)2 + (q4 − 2.1)2 q3 > 2.1 and q4 ≤ 2.1

q4 − 2.1 q3 ≤ 2.1 and q4 > 2.1
q3 − 2.1 q3 > 2.1 and q4 ≤ 2.1
0 otherwise

d2 =

®
2.1− q3 q3 < 2.1
0 otherwise
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d3 =


»

(q3 − 2.1)2 + (q4 − 2.1)2 q3 > 2.1 and q4 > 2.1

q4 − 2.1 q3 ≤ 2.1 and q4 > 2.1
q3 − 2.1 q3 > 2.1 and q4 ≤ 2.1
0 otherwise

Let us consider the test statistic

T = α1T1 + α2T2 + α3T3 (7)

where αi for i = 1, 2, 3 are weights given by αi = wi∑k
i=1

wi
and wi = exp−di .

The distribution of the T statistic is unknown. To test the hypothesis that the samples were
taken from the same distributions, a permutation test was used (see [11], [1]). The permutation
procedure maintains the level of the significance of the test provided that under H0 observations
are exchangeable.

4 Monte Carlo study

Data process generation

Generalized lambda distribution (GLD) is a very useful means to test and fit data to well known
distributions. This family of distribution can be used to generate random numbers from a
distribution with a specified mean, variance, skewness and kurtosis. It is interesting because
of the wide variety of distributional shapes it can take on (see [11]). Since the GLD is defined
by its quantile function, it can provide a simple and effective algorithm for generating random
variates. It can be used to generate random numbers with a specified mean, variance, skewness
and kurtosis.

The generalized lambda distribution family GLD is a four-parameter family. The param-
eters are denoted by λ1, λ2, λ3, λ4 and the distribution usually by GLD(λ1, λ2, λ3, λ4). The
distribution is most easily specified in terms of its percentile function

Q(y) = λ1 +
yλ3 − (1− y)λ4

λ2
(8)

where

λ1 - location parameter,

λ2 - scale parameter,

λ3 - asymmetry parameter and

λ4 - kurtosis parameter.

From (8) the probability density function can be written as follows

f(x) = f(Q(y)) =
λ2

λ3yλ3−1 − λ4(1− y)λ4−1
(9)

The generalized lambda distribution was used to generate data in the Monte Carlo study.
The packages gb, GLDEX, gld and gldist from http://www-r-project.org were used.
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Simulation procedure

In the Monte Carlo study the properties of the mHH test were compared to the properties of
the HH test and the t test. Due to the construction of the T test statistic (7) the important
area of the comparison is the one where q3 and q4 are close to 2.1 (see Fig. 1). The data in the
study were generated from generalized lambda distribution. Computer simulations included the
following steps

Step 1 Two samples are generated. The size of the first sample is n and the size of the second
sample is m (n = m = 25).

Step 2 For the combined sample, the values of q3 and q4 are determined.

Step 3 The HH test (the test statistic is selected on the basis of Q3 and Q4 values), the t test
and the proposed mHH test were performed.

Step 1 - 3 are repeated N = 50, 000 times. The probabilities of the rejection of H0 were
estimated for the considered tests. For mHH test Np = 1, 000 number of permutations
were considered.

See [8] for the assessment of the simulation error in estimating size and power of the tests
which has two sources: an inner one (which corresponds to the inner permutation loop for p-
values computation) and an outer one (which corresponds to the outer Monte Carlo loop for
size/power computation).

Parameters λ1, λ2, λ3 and λ4 were established in such a way that the values Q3 and Q4 were
close to 2.1 (see fig 1). To establish the values of the parameters λ1, λ2, λ3 and λ4 tables from
[12] were used. Parameters λ1, λ2, λ3, λ4 were as follows: λ1 = 0, λ2 = 1, λ3 = 0.95, λ4 = 2.25
(mean = -0.21, variance=0.18). There were analysed two variants of the shift δ. The first one
for the true H0 where δ = 0 and the second one for the false H0 where δ = 0.1.

Results

It is important for the comparison of the proposed mHH modification, that the HH and the t
tests are near the borders of the three areas in Fig. 1. Random values were generated from the
generalized lambda distribution.

For each sample, the values of q3 and q4 were calculated using formulas (3) and (4). Four
regions were defined:

R1: Q3 ∈ (1.6, 2.1] and Q4 ∈ (1.6, 2.1]
R2: Q3 ∈ (2.1, 2.6] and Q4 ∈ (1.6, 2.1]
R3: Q3 ∈ (2.1, 2.6]) and Q4 ∈ (2.1, 2.6]
R4: Q3 ∈ (1.6, 2.1] and Q4 ∈ (2.1, 2.6]
The analysed regions are presented in Fig. 2.
The results of testing the H0 hypothesis for the proposed mHH test are presented in Fig.

3. In this figure only the results for the first 500 samples are presented. White dots denote ”no
rejection H0” and black dots denote ”rejection H0”. Complete test results for the H0 hypothesis
for the HH test and the proposed modification are presented in Table 1.

The empirical size of the mHH test and the HH test are similar. Due to the non-normality
of the distribution the size of the t test could not be maintained (see Table 1), but in analysed
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Figure 2: Considered regions of computer simulations.

Region True H0 False H0

Ri Test t Test HH Test mHH Test t Test HH Test mHH

R1 0.0520 0.0527 0.0538 0.3491 0.2318 0.3367
R2 0.0481 0.0540 0.0538 0.3889 0.6087 0.5485
R3 0.0473 0.0511 0.0489 0.3636 0.5707 0.5212
R4 0.0530 0.0540 0.0527 0.3221 0.3473 0.3354

Table 1: Estimated probabilities of H0 rejection in specified regions.

Regions R1−R4 the size of this test is close to 0.05. The power of the HH test and the proposed
mHH test is usually grater than the power of the t test.

Additionally, the power of these tests was analysed in the Monte Carlo study for three
distributions. The symmetric distribution, skewed distribution and high kurtosis distribution
were considered as in [11]:

D1 - symmetric distribution - normal distribution N(10, 1)
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D2 - skewed distribution - GLD (mean=0, variance=1, skewness=1, kurtosis=4.2)

D3 - high kurtosis distribution - GLD (mean=0, variance=1, skewness=2, kurtosis=15.6)

The power study was performed for three equal group sizes n1 = n2 = 10, 15 and 20. The
shift δ = 0.0, 0.2 and 0.4 was considered. The power of the mHH test was compared to the
power of t test, Wilcoxon−Mann−Whitney (WMW) test and Kolmogorov−Smirnov (KS)
test. Zhang and Wu proposed omnibus test based on the likelihood ratio for location and shape
(see [13]). If the distributions of populations are different in location only this test is as powerful
as the old tests. The results of the size and the power Monte Carlo study are presented in Table
2.

The adaptive test mHH maintain its level of significance because it uses permutations
method. Test t maintain its significance level only in the symmetric distribution (D1) case.
The size of the Kolmogorov − Smirnov test doesn’t fit to the assumed significance level. It is
possible fairly compare the power of the considered tests only if they maintain their significance
levels. The power of the mHH test is similar to the power of t test in the symmetric distribution
case.
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Figure 3: Results of testing H0 - first 500 samples (left - true H0 and right - false H0).

5 Conclusions

The problem of comparing distributions based on two samples is often taken into consideration
in quality control procedures, for example if the sample is compared to the reference sample
taken from stable process. If the sample is taken from the normal population then the Shewhart
control charts could be used. These tools are based on the sequence of the parametric tests. For
the non-normal samples, non-parametric tests or adaptive tests could be used. The proposal of
the adaptive test is presented in the paper. This test is based on ranks. It is a modification
of L. Hao and D. Houser’s procedure. The proposed adaptive test (mHH) is based on the
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n1 = n2 = 10 n1 = n2 = 15 n1 = n2 = 20

Test δ = 0 δ = 0.2 δ = 0.4 δ = 0 δ = 0.2 δ = 0.4 δ = 0 δ = 0.2 δ = 0.4

D1 - symmetric distribution

mHH 0.0531 0.0739 0.1283 0.0497 0.0832 0.1847 0.0538 0.0963 0.2275
WMW 0.0445 0.0625 0.1188 0.0433 0.0753 0.1740 0.0504 0.0920 0.2190

t 0.0487 0.0694 0.1334 0.0490 0.0646 0.1902 0.0498 0.0939 0.2298
KS 0.0133 0.0179 0.0408 0.0247 0.0407 0.1016 0.0373 0.0607 0.1424

D2 - skewed distribution

mHH 0.0496 0.0671 0.1177 0.0544 0.0780 0.1548 0.0495 0.0827 0.1993
WMW 0.0439 0.0669 0.1393 0.0473 0.0841 0.2011 0.0480 0.1031 0.2692

t 0.0459 0.0676 0.1359 0.0479 0.0823 0.1906 0.0461 0.0918 0.2406
KS 0.0112 0.0207 0.0465 0.0288 0.0439 0.1184 0.0331 0.0678 0.1836

D3 - high kurtosis distribution

mHH 0.0520 0.0778 0.1484 0.0513 0.0862 0.2153 0.0498 0.1028 0.2654
WMW 0.0425 0.0738 0.1717 0.0443 0.0929 0.2662 0.0502 0.1176 0.3425

t 0.0404 0.0689 0.1556 0.0415 0.0828 0.2174 0.0461 0.0967 0.2674
KS 0.0127 0.227 0.0640 0.0245 0.0579 0.1812 0.0339 0.0809 0.2619

Table 2: Estimated probabilities of H0 rejection.

permutation method. The size and the power of the adaptive test were analysed in the Monte
Carlo study.

The Monte Carlo study has shown that the sizes of the tests in each analysed region in the
case of HH test and the proposed mHH test are similar. Due to the permutation analysis,
the proposed test maintains its significance level. The power of this test is close to the power
of the HH test. The power of t test in the two cases is less than the power of the HH test
and the mHH test. A direction of future research may be assessment of the scale problem (see
[6]) and the location and scale problem (see [5]) which often arise in quality control and process
monitoring.
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Abstract. In this article classical techniques of extreme value theory and two new statistical
tools are compared through Monte Carlo tecniques and on the daily log-returns of financial data
extensively studied. The data sets predate the current economic crisis and so it is possible to
evaluate retrospectively the quality of market risk estimates.

Keywords. Heavy tails, Exponential tails, Statistics of extremes, Value at risk, Tail index

1 Introduction

The extreme value theory (EVT) has two main approaches: Block maxima models and Threshold
exceedance models. The financial markets provide many data sets where the two approaches
may be compared estimating high quantile. The main objective of this paper is to compare
the estimator of extreme value index using parametric, semi-parametric and non-parametric
approach. Some semi-parametric models based on bias reduction techniques for heavy tails
trough the use of an adequate bias-corrected tail index estimator are considered. A new non-
parametric tool based on the residual coefficient of variation is also analyzed, see [2]. This paper
focuses on value-at-risk for log-returns arising in modeling extremes of four datasets in the field
of finance, widely documented and studied. Applying extreme value methods in finance requires
accurate estimators on extreme value index that can be around zero. New parametric models
can still being of high interest for the analysis of extreme events, if associated with appropriate
statistical inference methodologies, for instance, the full-tails gamma (FTG) distribution, see
[3].

2 Techniques for extreme values

The generalized extreme value distribution (GEV) is the family H(x; ξ, µ, φ) = H((x− µ)/φ; ξ)
where µ ∈ R and φ > 0 are the localization and scale parameter and H corresponds to the
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standard GEV defined by

H(x; ξ) =

®
exp(−(1 + ξx)−1/ξ), ξ 6= 0,
exp(−e−x), ξ = 0,

(1)

where 1 + ξx > 0.
The cumulative distribution function of the generalized Pareto distribution (GPD) is given

by
G(x; ξ, ψ) = 1− (1 + ξx/ψ)−1/ξ (2)

where ψ > 0 and ξ are scale and shape parameters. For ξ > 0 the range of x is x > 0 and
the GPD is just one of several forms of the usual Pareto family of distribution often called the
Pareto distribution. For ξ < 0 the range of x is 0 < x < ψ/|ξ|, then GPD has bounded support.
The limit case ξ = 0 corresponds to the exponential distribution (EXP). The opposite inverse
of the shape parameter ξ is the tail index.

The methodology for modelling extreme values uses the peaks over threshold (PoT) approach.
PoT is based on the theorem of Pickands-Balkema-DeHaan, see McNeil, et al. (2005) [9]. From
this result, PoT is used by many authors for modelling exceedances in several fields such as
finance and environmental science, see for instance Coles (2001) [4]. Several techniques have
been developed to search for the optimal threshold to link a GPD, such as Hill-plot or ME-
plot. This theoretical methodology shows some surprises in practical applications. For instance,
Dutta and Perry (2006) [6] observed, in an empirical analysis of operational risk, that even when
Pareto distribution fits correctly the data may result in unrealistic capital estimates (sometimes
more than 100% of the asset size).

In order to contribute to solve these problems it is necessary to use alternative models to
the GPD, but it requires certain properties that allow them to be treated as queuing models.
In this way, Castillo et al. (2012) [3] introduce the FTG distribution with probability density
function given by

f (x; ν, σ, θ) = θν (x+ σ)ν−1 exp (−θ (x+ σ)) /Γ (ν, σθ) (3)

where Γ (ν, ρ) is the upper incomplete gamma function, see Abramowitz y Stegun (1972) [1], the
range of x is (0,∞) and ν ∈ R, θ > 0, σ > 0. Remark that for σ fixed, if θ tends to zero, the
FTG distribution corresponds to Pareto distribution and then ν is the tail index. The reason
why FTG is more appropriate is because the financial data has heavy tails but they have some
finite moments, see Shyriaev (1999)[10]. The existence of at least three moments allows us to
develop new techniques for more satisfactory extreme values in practice. Furthermore, it is also
interesting to consider the exponential distribution as the most basic tails model.

The coefficient of variation (CV) can be used also as a measure of non normality. The most
popular measure of non normality nowadays is the kurtosis, defined for distributions with four
finite moments. The next Lemma shows that the kurtosis can be obtained with the coefficient
of variation.

Lemma 2.1. Given a symmetric random variate X with respect to zero, the excess kurtosis is

ku [X] + 3 =
E
[
X4
]

E [X2]2
= 1 + cv[X2]2,

therefore the kurtosis is a function of coefficient of variation of X2.
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The coefficient of variation of X will be used as a measure of non normality, because it is
defined using only the two first moments of the distribution. Hence, it is more stable and more
widely applicable than kurtosis.

Let X be a continuous non-negative random variable (r.v.) with distribution function F (x).
For any threshold, t > 0, the r.v. of the conditional distribution of threshold excedances X − t
given X > t, denoted by Xt = (X − t | X > t), is called the residual distribution of X over
t. The quantity M(t) = E(Xt) is called the residual mean and V (t) = var (Xt)the residual
variance. The residual coefficient of variation is given by

CV (t) ≡ CV (Xt) =
»
V (t)/M(t), (4)

like the usual CV, the function CV (t) is independent of scale. Gupta and Kirmani (2000)
[8] proved that the residual CV also characterizes the distribution. The residual CV for GPD,
provided ξ < 1/2, is a constant given by

CV 2 (t) = 1/(1− 2ξ) (5)

Hence, from Gupta and Kirmani (2000) [8] it follows that if CV (t) is constant then the distri-
bution of X is a GPD.

Castillo et al. (2014) [2], use these ideas to introduce a new graphical method. Given a
sample {xk} of size n of positive numbers, we denote by

¶
x(k)

©
the ordered sample, so that

x(1) ≤ x(2) ≤ · · · ≤ x(n). A CV-plot is a representation of the empirical CV of the conditional
excedance (4), given by

k → cv
Ä
x(k)

ä
. (6)

With this tool a non-parametric methodology can be used to estimate the tail index searching
the value of the coefficient of variation that minimizes the distance between its confidence interval
under hypothesis of constant tail index and the CV-plot. This non-parametric methodology
provides both tail index and optimal threshold for computing high quantiles with PoT. This
methodology combined with GPD as the model for the tail is denoted by CVm and some
examples are showed in Table 1. Finally, the last methodology here considered is denoted by
cHm and it consists in a semi-parametric method for high quantiles estimation based on the
parametric model from Pareto and with a non-parametric techniques of bias-corrected Hill-
estimator, see Gomes and Pestana (2007) [7], based on an adequate consistent estimator of the
second order parameters, see Degen and Embrechts (2008) [5].

3 Numerical studies

In this section the two new methodologies, FTG and CVm, are compared with standard ap-
proaches, GPD and GEV, and the methodology based on second order corrections of the Hill
estimator, cHm. First, the methods are compared using the daily log-returns of financial data
extensively studied. Secondly, the behaviour of the techniques are studied when the simulated
data are not really heavy tails, only semi-heavy. It can be observed that some methods presup-
pose heavy tails and do not consider that the tails can be exponential, what also happens in
financial data.
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Data analysis of log-returns

To compare the different techniques four sets of finance data are considered, collected over the
same period: from January 4,1999 through November 17,2005. Those sets of data were the
Euro-USA dollar (EUSD) daily exchange rates and the daily closing values of the Dow Jones
Industrial Average In (DJI), Microsoft Corp. (MSFT), and International Business Machines
Corp. (IBM) stocks.
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Figure 1: In the left, daily closing values of IBM data (dark line) and MSFT data (grey line).
In the right, daily closing values of DJI (dark line and left axis) and EUSD daily exchange rates
(grey line and rigth axis).

0 200 400 600 800

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

CV­plot DJI

Sample

R
es

id
ua

l C
oe

ffi
ci

en
t o

f v
ar

ia
tio

n

0 200 400 600 800

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

CV­plot EUSD

Sample

R
es

id
ua

l C
oe

ffi
ci

en
t o

f v
ar

ia
tio

n

Figure 2: CV-plot of the absolute value of negative tail of log-returns. In the left, DJI data, in
the right EUSD data. Dashed constant line corresponds to the residual coefficient of variation
of a GPD with shape parameter 0.25, dotdash line corresponds to the 95% confidence interval
of a exponential distribution and dotted line corresponds to the 95% confidence interval of an
uniform distribution.

The assumption that financial data have heavy tail can lead to conclusions far removed from
reality, in Figure 2 the CV-plot of EUSD shows that the shape parameter can be negative, since
a residual CV less than 1 correspond to a negative shape parameter, see equation (5). From
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Equation (5) it follows a residual CV is only possible with a negative shape parameter, so a
heavy tail is not the best option. It is also necessary to be careful with the splits, due to the
fact that a data can completely change the general behavior. Figure 3 shows the CV-plot of
the same data with the difference that one contains the split but no the other in the IBM and
MSFT cases. For example, the absolute value of the log-return the day that the split appears is
71% in the IBM case, in Figure 1 this value appears between 1999 and 2000.
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Figure 3: CV-plot of the absolute value of negative tail of log-returns. In the left IBM data with
(dashed line) and without split (black line), in right, MSFT data with (dashed line) and without
split (black line). Dashed constant line corresponds to the residual coefficient of variation of
a GPD with shape parameter 0.25, dotdash line corresponds to the 95% confidence interval
of a exponential distribution and dotted line corresponds to the 95% confidence interval of an
uniform distribution.

Table 1 shows a brief of the results of the study. The cases EXP , GPD, FTG correspond
to model the whole data as the corresponding parametric model and GEV to model the month
maximums. To consider the new methodology CVm and the alternative cHm. The MSFT data
do not appear in the table because it is very similar to IBM results. It can be observed some
differences between the results using different methods. This differences are more significative
when the split are included in the data. From applied point of view, more interesting results are
obtained using POT with this advanced methodologies to search optimal threshold and improved
parametric models for tails, for instance, the FTG.

Simulation study on the calculation of VaR

Monte Carlo simulations have been used to compare the previous methodologies for VaR 99,9%
and tail index estimation. In Tables 2 and 3 the mean square error (MSE) obtained for each
method is shown for 10,000 simulations performed for each of the sample sizes n=150, 250
and 500 of exponential distribution with scale 1. EXP, GPD and FTG denote the results of
considering parametric models, exponential GPD and FTG, respectively. cHm and CVm denote
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99,9% ξ 99,9% ξ
DJI EUSD

GEV 0,104 0,17 GEV 0,026 -0,23
EXP 0,059 0 EXP 0,035 0
GPD 0,055 0,00 GPD 0,033 0,00
FTG 0,050 0 FTG 0,026 0
CVm 0,040 0,04 CVm 0,016 -0,16
cHm 0,068 0,30 cHm 0.027 0,26

IBM IBMs
GEV 0,660 0,42 GEV 0,304 0,43
EXP 0,110 0 EXP 0,104 0
GPD 0,144 0,11 GPD 0,104 -0,00
FTG 0,147 0 FTG 0,126 0
CV 4,857 2,58 CV 0,103 0,14
cHm 0,181 0,39 cHm 0,161 0,36

Table 1: A high quantile and the shape value ξ corresponding to the opposite inverse of the tail
index for some simplified methodology and four sets of data: DJI, EUSD, IBM, and IBMs, the
last corresponds to IBM data without splits.

the two semi-parametric models considered. Naturally, the EXP model provides the best results
as well as the GPD because it contains the exponential and the FTG provides improved results
since it is a model between them. CVm provides better results than cHm, since the underling
distribution is not a heavy tail. Remark that, it is important to consider that the nature of
the data show the parametric and semiparametric methodologies can not be compared with this
simulation results.

n EXP GPD FTG cHm CVm

150 0.315 1.307 1.107 35.064 11.24
250 0.203 0.738 0.662 12.974 9.46
500 0.100 0.383 0.307 8.658 7.72

Table 2: MSE for the VaR 99.9% obtained for each method and for different sample sizes.

n EXP GPD FTG cHm CVm

150 0 0.006 0 0.153 0.011
250 0 0.003 0 0.134 0.008
500 0 0.001 0 0.117 0.003

Table 3: MSE for the tail index, ξ, obtained for each method and for different sample sizes.
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4 Conclusions

After analyzing the data sets of this study the following conclusions arise.

1. Given that EVT is very sensitive to outliers one must be very careful to analyze market
data. It is repeatedly observed that the maximum values are outliers due to splits of
corporations.

2. In practical applications since extrapolate for high quantiles is really difficult it is recom-
mended to consider the data from different points of view and not be limited to a single
technique.

3. The market data (once corrected for splits), is well fitted by models with semi-heavy tails
that has few finite moments, as certain authors claim, see Shyriaev (1999) [10].

4. When evaluating risks, it is better to study separately the positive and negative tails of
the distribution and not doing it together. Thus the coefficient of variation is a more
appropriate tool than the kurtosis to assess the weight of the tails.
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Abstract. The distribution of continuous real life variables is usually not normal and plant
phenotypes are no exception to the rule. These distributions often show heavy tails which
are sometimes asymmetric. In such scenarios, the classical approach whose likelihood-based
inference leans on the normality assumption may be inappropriate, having low statistical effi-
ciency. Moreover, association tests may also be underpowered. Robust statistical methods are
designed to accommodate for certain data deficiencies, allowing for reliable results under vari-
ous conditions. They are designed to be resistant to influent factors as outlying observations,
non-normality and other model misspecifications. Additionally, if the model verifies the classi-
cal assumptions, robust methods provide results close to the classical ones. Therefore, a new
methodology where robust statistical methods replace the classic ones to model, structure and
analyse genotype-by-environment interactions in the context of multi-location plant breeding
trials, is presented. Here interest lies in the development of a robust version of the additive main
effects and multiplicative interaction model whose performance is compared with its classical
version. This is achieved through Monte Carlo simulations where one particular contamination
scheme is considered.

Keywords. AMMI model, Robust statistics, Singular value decomposition, Statistical genetics

1 Introduction

Multi-environment trials (MET), which comprise experiments across multiple environments, are
important tools for testing both broad and narrow genotype adaptation. Here, when two different
genotypes show a differential response to a prototypic trait (e.g. yield) across environments, it
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is said that genotype-by-environment interaction (GEI) is present. Data from MET are often
summarized in two-way tables of means with genotypes in the rows and environments in the
columns.

The additive main effects and multiplicative interaction (AMMI) model [4] is one of the
most widely used tools for MET analysis. This tool works under a fixed-model framework and
is conducted in two stages. First, the main effects of the model are estimated using the additive
two-way analysis of variance (ANOVA) by least squares. Then, the singular value decomposition
(SVD) is applied to the interaction residuals to obtain the estimates for the multiplicative terms
of the AMMI model. The AMMI model in its standard form also implicitly assumes equal weights
for all entries of the two-way data set and that no outlier is present in the data. However, field
data such as data resulting from MET is prone to contamination and thus outlying observations
are often found. As a consequence, the results from the analysis may be biased leading to
possible misinterpretations which in turn may result in bad practical decisions. It is therefore
important to improve the performance of the AMMI model in the cases where contamination is
present in the data. For that reason we introduce in this work a robust AMMI model where the
linear fit is replaced by a robust fit (M-regression) and the use of the standard SVD by a robust
SVD approach. We underline that the choice of M-regression was based on the fact that in this
kind of analysis contamination is only seen at the response variable level and not also at the
explanatory variables level, in which case high breakdown and efficient MM-regression should
be considered.

The proposed robust AMMI model is also useful in other studies where data contamination is
inevitable, e.g., in QTL (quantitative trait loci) detection and QTL-by-environment interaction
(QEI) studies. Here, the robust AMMI model will be used to calculate more accurate predicted
values for GEI analysis. These predicted values can then be subject to a QTL analysis in a two
stage procedure, similar to the ones described in [5, 11].

We present a Monte Carlo Simulation study to assess the performance of the proposed robust
AMMI model, which is compared with the classical one under a particular contamination scheme.

2 Materials and methods

AMMI model

The AMMI model combines the features of ANOVA and SVD as follows: first the ANOVA
estimates the additive main effects; then the SVD applied to the residuals from the additive
ANOVA model, estimates the interaction with N ≤ min(I − 1, J − 1) interaction principal
components (IPC) axes. Here, I represents the number of genotypes (rows) and J the number
of environments (columns) considered in the study and described in the two-way data table.
Assuming for simplicity a completely randomized design for individual trials, the model can be
written as [4]:

yi,j,k = µ+ αi + βj +
N∑
n=1

λnγn,iδn,j + ρi,j + εi,j,k, (1)
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where: yi,j,k is the phenotypic trait (yield or some other quantitative trait of interest) of the
ith genotype in the jth environment for replicate k; µ is the grand mean; αi are the genotype
deviations from µ; βj are the environment deviations from µ; λn is the singular value of the
IPC analysis axis n; γn,i and δn,j are the ith and jth genotype and environment IPC scores
(i.e., the left and right singular vectors) for axis n, respectively; ρi,j is the residual containing all
multiplicative terms not included in the model; εi,j,k is the experimental error; N is the number
of principal components retained in the model.

Robust AMMI model

We consider the following matrix formulation of the AMMI model:

Y = 1I1
T
J µ+ αI1

T
J + 1Iβ

T
j + UDVT + ε, (2)

where Y is the (I × J) two-way data table of means, 1I1
T
J µ is a (I × J) matrix with the grand

mean µ in all positions, αI1
T
J is a (I × J) matrix of genotype main effects (equal rows), 1Iβ

T
j is

a (I × J) matrix of environmental main effects (equal columns).

The interaction part of the model Y∗ = Y − 1I1
T
J µ− αI1TJ − 1Iβ

T
j is approximated by the

product of matrices UDVT , with U an (I ×N) matrix whose columns contain the left singular
vectors of the interaction, D a (N × N) diagonal matrix containing the singular values of Y∗,
and V a (J ×N) matrix whose columns contain the right singular vectors of Y∗. The residual
term in equation (2), the (I × J) matrix ε, includes both the lack of fit term and the error term
of the model in equation 1.

We suggest that a robust AMMI model can be obtained in two stages as follows: (i) use the
robust regression based on the M-Huber estimator [8] to replace the ANOVA model; (ii) use a
robust SVD [6] to replace the standard SVD.

The robust methods described are available in the R software in packages MASS and pcaMethods
via functions rlm() and robustSVD(), respectively.

3 Simulation study

We use Monte Carlo simulations to study the impact that contaminated data has in the results
of the classical AMMI model and to assess the improvement that can be gained when using
the proposed robust methodology. We discuss only a particular contamination setting with a
fixed percentage of outliers to illustrate the advantage of the proposed methodology. Further
complete studies are being carried but will not be presented here.

In this particular case we simulate 1000 two-way data tables with 100 rows/genotypes and 8
columns/environments each, where the interaction is explained by two multiplicative terms (i.e,
two IPCs). The number of multiplicative terms was confirmed by the cross-validation procedure
proposed by [3] for principal component analysis and then generalized by [2, 1] for the AMMI
model. In each run of the simulation, the AMMI and robust AMMI models were used to analyse
these data. After the AMMI is applied to the data, the biplots are constructed and the singular
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values obtained. Having the good non-contaminated data, 5% of contamination is introduced
in the two-way original data table so as to be consistent with the known shift-outlier case
[10]: (i) 5% positions are randomly selected in the two-way table thus assigning contamination
positions in different environments for distinct genotypes; (ii) the 5% bad data is generated from
a N(µj+k, sigma2

j ) (pure shift outliers; k = 4σj units) where µj and σ2
j are taken as the sample

phenotypic mean and sample phenotypic variance according to the correspondent environment
j, j = 1, . . . , 8; and (iii) the bad data replaces the 5% of the good data from the two-way table
at the positions assigned in (i). Method comparison is achieved using the mean squared error
(MSE) [9]:

MSE(λ̂j) =
1

1000

1000∑
l=1

(
λ̂

(l)
j − λj

)2
, (3)

where λj , j = 1, 2, are the true singular values of the two-way data tables, and the λ̂
(l)
j , j = 1, 2,

are the estimated singular values for each of the 1000 replications, using the robust AMMI
model for the raw uncontaminated data, and both the AMMI and robust AMMI models for the
contaminated data.

4 Results and Discussion

Simulation study

Figure 1 shows the biplots obtained for the AMMI and robust AMMI models with two principal
components (AMMI2), with and without contamination, for one random simulation run. The
component loadings (for the environments) are similar for all four models. As for the scores of the
genotypes, a similar behaviour is seen for both models without contamination (top two plots of
Figure 1), as expected. However, when 5% contamination is considered, the display of genotypes
shows a completely different behaviour in the AMMI2 biplot (bottom left plot in Figure 1).
This shows that the AMMI model is not appropriated when the data is contaminated. When
comparing with the biplot for the robust AMMI model with 5% contaminated data (bottom right
plot in Figure 1), the scores for the genotypes show strong similarities with the biplots for the
data without contamination, showing the usefulness of the robust AMMI model for contaminated
data. With the use of the robust AMMI model, the impact of the outlier observations is reduced
and the position of the scores becomes similar to the “true” position given by the AMMI2 model
without contamination. Consequently, the use of this robust version of the AMMI model will
allow practitioners to make better strategic decisions.

The MSE obtained for the robust AMMI model applied to both the contaminated and
uncontaminated data, and the MSE obtained for the AMMI model applied to the contaminated
data, are presented in Table 1. As expected, the MSE between the AMMI model and the robust
AMMI model is small when considering the data without contamination. However, when we
consider the data with 5% contamination, the robust AMMI model provides a MSE 6.21 times
lower for the IPC1 and 4.61 times lower for the IPC2, when compared with the AMMI model.
This result confirms the usefulness of the robust AMMI model when dealing with contaminated
data.
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Figure 1: Biplots for: AMMI2 of data without contamination (top left); robust AMMI2 of data
without contamination (top right); AMMI2 of data with 5% contamination (bottom left); robust
AMMI2 of data with 5% contamination (bottom right).

To conclude, this preliminary simulation study outlined the fragility of the classical AMMI
model in the presence of contaminated data. Moreover, the use of the robust methodologies
proposed, not only provided results similar to the classical ones when there was no contamination
but also proved to provide better results when the data was in fact contaminated. It is therefore
important to study further the “robustification” of the AMMI model so as to account for what
is in practice data reality: data contamination. This need is more than justified for the wide
use of this technique in multi-environmental studies upon which many important decisions are
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Model IPC1 IPC2

Robust AMMI 26.00 34.03
AMMI (5% contaminated data) 1159.22 1268.81
Robust AMMI (5% contaminated data) 186.57 275.33

Table 1: Mean square errors for singular values of the the AMMI and robust AMMI models.

made.

Real data example

The real data set used for illustration is the Steptoe x Morex (SxM) barley mapping population
[7]. Figure 2 shows the biplots obtained for the AMMI and robust AMMI models with two
principal components. In the AMMI2 biplot for the classic model (left hand side of Figure 2)
the environment OR1 shows a dominant effect over the biplot being non-correlated with most
of other environments and presents an overlap in the direction of many of the loadings for
the environments. This makes this biplot difficult to analyse. When considering the robust
AMMI model (right hand side of Figure 2) the interpretation of the biplot seems easier, with
the environments more spread and with different angles between their component loadings and
without such dominant influence of the environment OR1. These results are consistent with
[5] where environment OR1 was considered to be an outlying environment. Moreover, the use
of the robust AMMI model made it possible for this particular environment to be included in
the analysis without distorting the final results, which was achieved by reducing its influence on
the final model. To conclude, this example application further reinforces the usefulness of the
proposed methodology.
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Figure 2: Biplots for: AMMI2 of SxM data (left); and robust AMMI2 of SxM data (right).
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Time series clustering based on
quantile autocovariances
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Abstract. Time series clustering is an active research topic with applications in many fields.
Unlike conventional clustering on static data, time series are inherently dynamic and hence the
similarity searching must be governed by the behavior of the series over their observation periods.
A dissimilarity aimed to compare quantile autocovariance functions is proposed to perform clus-
tering. Results from an extensive simulation study show that the proposed metric outperforms a
range of alternative dissimilarities reported in the literature. Estimation of the optimal number
of clusters is also discussed. A prediction-based resampling algorithm proposed by Dudoit and
Fridlyand [2] is adjusted to be applied in clustering based on quantile autocovariances. Several
criteria to select the number of clusters are examined in new simulations.

Keywords. Time series, Clustering, Quantile autocovariances, Clest.

1 Introduction

Time series clustering is a central problem in many application fields and it is nowadays an active
research area in a vast range of fields (finance and economics, medicine, engineering, pattern
recognition, among many others). Comprehensive surveys can be seen in Liao [10] and more
currently in Fu [5]. A crucial point is to determine the similarity notion between time series.
Unlike conventional clustering on static data objects, time series are inherently dynamic, with
underlying autocorrelation structures, and therefore the similarity searching must be governed
by the behavior of the series over their periods of observation. Many dissimilarity measures
have been proposed in the literature. The R package TSclust [15] presents a large set of well–
established peer–reviewed time series dissimilarity measures, including measures based on raw
data, extracted features, underlying parametric models, complexity levels, and forecast behav-
iors. We focus on the feature–based approach, where the raw data are replaced by a reduced
number of extracted features and then dissimilarity between these representations is assessed.
Some authors have considered measures based on comparing estimated simple or partial auto-
correlations and cepstral coefficients (see [1, 3, 14]). We propose to measure dissimilarity by
comparing quantile autocovariance functions [8]. For a given time series Xt, the quantile auto-
covariance function (QAF) consists of the cross-variances cov (I (Xt ≤ x) , I (Xt+r ≤ y)), where
I(·) denotes the indicator function. The quantile autocovariances examine the so-called serial



62 Quantile autocovariances for clustering

dependence structure, i.e. the joint distribution of (Xt, Xt+r), for all t and r, so accounting
for sophisticated serial features that simple autocovariances are unable to detect. To the best
of our knowledge, QAF has not been considered to perform clustering, even though it satisfies
suitable properties to carry out this task, such as light computational complexity and robust-
ness inherent to quantile methods. Unlike the usual autocovariance function, QAF is robust
to the non-existence of moments. This way, a QAF-based dissimilarity should take advantage
to discriminate between series generated from processes with different heavy-tailed marginal
distributions or presenting different conditional heteroscedasticity models. Many financial time
series (log-return series of stock indices, share prices, exchange rates, etc) are known to exhibit
this kind of properties. In such cases, usual feature-based dissimilarities are unable to capture
differences between dynamic behaviours. For instance, similar correlograms and flats spectra are
exhibited by both an ARCH(1) and a Gaussian white noise process. Theoretical properties of
the quantile autocovariances and the quantile spectral density have been established in [11, 8, 9].
In this work, the behavior in time series clustering of a QAF-based dissimilarity is examined on
different simulation scenarios and compared with other dissimilarities.

The problem of estimating the number of clustersK underlying the database is also addressed
by adjusting the prediction-based resampling algorithm (so–called Clest) proposed by Dudoit
and Fridlyand [2]. Clest is aimed to select the value of K providing the strongest evidence
against H0 : K = 1. For each value of K, Clest evaluates the amount of reproducibility, say
RK , of the K-cluster solution combining ideas from supervised and unsupervised learning, and
then examines whether the value of RK is significantly larger than the expected one under
the null hypothesis of no clusters. In the original procedure, the expected value for RK under
H0 is approximated resampling a multivariate uniform distribution. Nevertheless, this is not
reasonable when dependent data are considered. To overcome this drawback, the uniformity
assumption is marginally considered for each quantile autocovariance, i.e. the reference datasets
are generated from univariate uniform distributions. This modified version of Clest algorithm
was examined and compared with other alternative procedures in a new simulation study. All
the simulations and the analysis of real data have been carried out using the R language [18].

2 Clustering procedure

Consider a set of p time series S =
¶
XXX(1), . . . ,XXX(p)

©
, with XXX(j) = (X

(j)
1 , . . . , X

(j)
T ) being a T -

length partial realization from a real valued process {X(j)
t , t ∈ Z}. Our goal is to perform cluster

analysis on S to group the series into K homogeneous clusters. First, a dissimilarity measure
between two series is introduced in terms of sequences of estimated quantile covariances.

Given a strictly stationary time series {Xt}, the quantile covariance function is defined by

γr(q, q
′) = cov

{
I (Xt ≤ q) , I

(
Xt+r ≤ q′

)}
= P

(
Xt ≤ q,Xt+r ≤ q′

)− P (Xt ≤ q)P
(
Xt+r ≤ q′

)
,

with (q, q′) ∈ R2. Function γr(q, q
′) can be estimated from a T -length stretch (X1, . . . , XT ) by

γ̂r(q, q
′) =

1

T

T−r∑
t=1

Zt(q)Zt+r(q
′), (1)

where Zt is the centered variable Zt(q) = I (Xt ≤ q)− F̂T (q), with F̂T (q) = 1
T

∑T
i=1 I (Xi ≤ q).

Each series XXX(j) in S is characterized by an ordered set Γ(j) of quantile autocovariances
estimated according to (1). Specifically, for a prefixed range L of lags l1, . . . , lL and r quantiles
(qτ1 , . . . , qτr), with qτi = F−1(τi), Γ(j) is given by
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Γ(j) =
(
Γ

(j)
l1
, . . . ,Γ

(j)
lL

)
, (2)

with Γ
(j)
li

= (γ̂li (qτ1qτ1) , . . . , γ̂li (qτ1qτr) , γ̂li (qτ2qτ2) , . . . , γ̂li (qτ2qτr) , . . . , γ̂li (qτrqτr)), i = 1, . . . , L.
In practice, the quantiles qτi are unknown and must be estimated by the empirical quantiles

q̂τi . Then the dissimilarity between a pair of series XXX(i) and XXX(j) is defined as the squared
Euclidean distance between Γ(i) and Γ(j), and it is denoted by dQAF

Ä
XXX(i),XXX(j)

ä
. Computing

these distances for all pairs of series in S allows us to set a pairwise dissimilarity matrix, which is
taken as starting point to develop a conventional agglomerative hierarchical clustering algorithm.

3 Simulation study: Part I

A first set of simulations was conducted to assess the behaviour of dQAF in time series clustering.
Different processes were considered to examine robustness, and comparisons with other model-
free and model-based dissimilarities were carried out. In this abstract, results from two particular
classification setups are shown, namely classification of nonlinear models and classification of
different structures of conditional heteroscedasticity. The specific models are presented below.

• Scenario 1: Non-linear processes classification. The studied models are:

Model 1: TAR Xt = 0.5Xt−1I (Xt−1 ≤ 0)− 2Xt−1I (Xt−1 > 0) + εt
Model 2: EXPAR Xt =

(
0.3− 10exp

(
−X2

t−1
))
Xt−1 + εt

Model 3: MA Xt = −0.4εt−1 + εt
Model 4: NLMA Xt = −0.5εt−1 + 0.8ε2t−1 + εt

• Scenario 2: Conditional heteroscedastic processes classification. Consider Xt = µt + at,
with µt ∼ MA(1) and at = σtεt, εt ∼ IID(0, 1). Then, the following structures for the
varying conditional variance are considered:

Model 1: ARCH(1) σ2
t = 0.1 + 0.8a2t−1

Model 2: GARCH(0,1) σ2
t = 0.1 + σ2

t−1
Model 3: GJR–GARCH σ2

t = 0.1 + (0.25 + 0.3Nt−1)a2t−1 + 0.5σ2
t−1; Nt−1 = I(at−1 < 0)

Model 4: EGARCH ln(σ2
t ) = 0.1 + εt−1 + 0.3 [|εt−1| − E(|εt−1|)] + 0.4ln(σ2

t−1)

In all cases, the error process εt consisted of i.i.d. N (0, 1) variables. Five series of length
T = 200 were generated from each model over N = 100 trials. The considered dissimilarity
measures and proper references are briefly summarized below.
• Periodogram-based distances [1, 16]. Euclidean distance between periodograms (dP ), log–
periodogram (dLP ), normalized periodograms (dNP ) and log–normalized periodograms (dLNP ).
• Autocorrelation-based distances [1, 16]. Euclidean distance between simple (dACF ) and partial
(dPACF ) autocorrelations using a number of significant lags. Versions dACFG and dPACFG
including geometric weights decaying with the lag ωi = π(1 − π)i, with 0 < π < 1, were also
considered. In our study, ten lags and π = 0.5 were used.
• Model–based distances. AR distances proposed by Piccolo (dPIC) [17] and Maharaj (dM ) [12].
• Nonparametric dissimilarities in the frequency domain. A spectral dissimilarity measure based
on local linear fits of log-spectra using maximum likelihood (dWLK) [20, 16], and a dissimilarity
measure based on the integrated squared difference between estimated log-spectra (dISD) [16].
• The proposed metric dQAF . Results presented here were obtained with r = 3 empirical quantiles
given by (q̂0.1, q̂0.5, q̂0.9) and only one lag, that is L = 1, with l1 = 1.

Assuming that the clustering is governed by similarity between underlying models, the
“true” cluster partition is given by the four clusters involving the five series generated from
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the same model. The experimental 4-cluster solutions are compared with the true partition
using three agreement measures based on known “ground-truth”: the Gavrilov index [6], the
adjusted Rand index and the one-nearest-neighbour classifier evaluated by leave-one-out cross-
validation (loo1NN) [7]. In all cases, the closer to 1 is the index, the higher is the agreement
between the true and experimental partitions. The obtained indexes, averaged over 100 trials,
are shown in Table 1.

Scenario 1 Scenario 2

Measure Gavrilov Adj. Rand loo1NN Gavrilov Adj. Rand loo1NN

Periodograms
dP 0.402 0.081 0.429 0.441 0.113 0.497
dLP 0.713 0.501 0.694 0.689 0.441 0.653
dNP 0.488 0.145 0.366 0.468 0.151 0.428
dLNP 0.486 0.115 0.373 0.570 0.248 0.457

Autocorrelations
dACFG 0.592 0.310 0.554 0.604 0.313 0.599
dPACFG 0.667 0.397 0.613 0.641 0.358 0.589
dPACF 0.610 0.306 0.550 0.625 0.327 0.541

Model-based
dPIC 0.674 0.443 0.751 0.560 0.291 0.615
dM 0.680 0.453 0.746 0.632 0.374 0.653

Non-parametric
dWLK 0.914 0.821 0.920 0.733 0.530 0.764
dISD 0.916 0.826 0.919 0.740 0.541 0.765

Quantile autocov.
dQAF 0.961 0.917 0.980 0.908 0.800 0.919

Table 1: Clustering on nonlinear (Scenario 1) and heteroscedastic (Scenario 2) processes: cluster
evaluation indexes averaged through all the 4-cluster hierarchical solutions for several dissimi-
larity measures. Series length T = 200. Number of trials N = 100. Complete linkage procedure.

Results in Table 1 allows us to conclude that the quantile autocovariance dissimilarity dQAF
produced the best results in both scenarios. Except for the adjusted Rand index in Scenario 2,
dQAF always led to indexes above 0.9, and sometimes very close to 1 in Scenario 1. As expected,
metrics based on ARMA models (dPIC and dM ) were strongly affected by model misspecification
and produced poor results. The nonparametric dissimilarities work fairly well in Scenario 1, with
results above 0.9 and close to the best ones attained by dQAF . These measures take advantage
of being free of the linearity restriction, and hence their good performance. Nevertheless, their
behaviour substantially worsened by classifying heteroscedastic models. In fact, dQAF notice-
ably outperforms both dWLK and dISD in Scenario 2. In addition, the nonparametric measures
employed computing times significantly higher than dQAF , which is very important in time se-
ries clustering where huge databases with long series are often used. Distance dQAF obtained
excellent scores for loo1NN index and this is also remarkable because this criterion directly eval-
uates the efficacy of the dissimilarity measure regardless of the considered clustering algorithm.
The remaining metrics produced the poorest results, corresponding the worst classification to
the periodograms-based measures. In particular, the Euclidean distance between periodograms
(dP ) worked really bad. Simple ACF and PACF were not able to separate correctly the con-
sidered models such as quantiles autocovariances did. Additional simulations were carried out
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using different clustering algorithms and alternative scenarios. In all cases, dQAF led to very
good results, attaining competitive results even to cluster ARMA models.

4 Determining the number of clusters

A prediction–based resampling algorithm (called Clest) introduced by Dudoit and Fridlyand [2]
to estimate the optimal number of clusters K is here adjusted to: (i) use dQAF in the clustering
process involved by the algorithm, and (ii) overcome the dependence underlying the classifying
variables Γ(j) given in (2). Clest is aimed to select K̂, 2 ≤ K̂ ≤ M , with M ≤ p denoting the
maximum possible of clusters, that provides the strongest evidence against the null hypothesis
H0 : K = 1. The version of Clest including the proposed adjustments is outlined below.

Algorithm 4.1.
For each k, 2 ≤ k ≤M , perform steps 1-4 below.

Step 1 Repeat B times:

i. Randomly split the set of series S into two groups, a learning set Lb and a test set T b.
ii. Using the clustering procedure described in Section 2, based in dQAF , obtain partitions

P
Ä
·;Lb
ä

and P
Ä
·; T b

ä
of the sets Lb and T b, respectively.

iii. Classify each series of the test set T b into the closest cluster (according to dQAF ) of

P
Ä
·;Lb
ä
, thus obtaining the new partition C

Ä
·; T b

ä
.

iv. Evaluate an index of agreement sk,b between partitions C
Ä
·; T b

ä
and P

Ä
·; T b

ä
.

Step 2 Compute Rk = median (sk,1, . . . , sk,B).

Step 3 Generate B0 resamples of the quantile autocovariances matrix under H0 : K = 1.
As the columns of this matrix are dependent, the resamples of each column are separately
generated from an uniform distribution with support determined by the range of the column.
Then, Steps 1 and 2 are repeated for each resample obtaining Rk,1, . . . , Rk,B0.

Step 4 Compute R0
k = 1

B0

∑B0
b=1Rk,b, dk = Rk −R0

k, and pk = 1
B0

#{Rk,b ≥ Rk : 1 ≤ b ≤ B0}.
Define K− = {2 ≤ k ≤ M : pk ≤ pmax, dk ≥ dmin}, where pmax and dmin are preset

thresholds. If K− is empty, take K̂ = 1. Otherwise, take K̂ = argmax{k∈K−} dk.

5 Simulation Study: Part II

Second part of our experiments was conducted to examine the behaviour of Clest compared
with other methods for estimating the optimal number of clusters. Besides Scenarios 1 and 2,
where K = 4 clusters lie behind data, two new scenarios under H0 : K = 1 (“no clusters”)
are considered. Specifically, 50 realizations of length T = 100 were generated from each of the
following processes:

• Scenario 3: Xt =
Ä
0.3− 10 exp

Ä
−X2

t−1

ää
Xt−1 + εt, with εt iid N (0, 1).

• Scenario 4: Xt = µt + at, with µt ∼ MA(1) and at = σtεt, where σ2
t = 0.1 + 0.8a2

t−1 and
εt iid N (0, 1).

The parameters required by Clest were: M = 7; B = B0 = 25; size of learning set, 2/3p;
pmax = 0.05, dmin = 0.05 and the agreement between partitions in Step 1.iv was the index of
Fowlkes and Mallows. Besides Clest algorithm, five commonly used criteria were considered:
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maximization of the average silhouette width and of the indexes proposed by Calinski–Harabasz
and Krzanowski–Lai; minimization of the Hartigan index and the gap method proposed by
Tibshirani et al. [19]. A brief review of these indexes can be seen in, e.g., [19]. Figure 1
illustrates the behaviour of the tested methods based on N = 100 trials. Under the alternative
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Figure 1: Percentage of trials where the number of clusters was correctly estimated.

hypothesis (Scenarios 1 and 2), the Clest procedure produced very good results, being the winner
method in the nonlinear framework and clearly competitive together with the Krazanowski–Lai
and Hartigan indexes in the heteroscedastic setup. Good results were also obtained by the
gap method in Scenario 1, although this criterion performed poorly in Scenario 2. Graphs
for Scenarios 3 and 4 show that only Clest and gap were able to detect the lack of clustering
structure. In short, Clest algorithm has shown a good performance regardless of the considered
scenario and only the gap procedure seems to show similar robustness. Krazanowski–Lai and
Hartigan indexes worked well under alternative but clearly failed under the null. Silhouette and
Calinski–Harabasz indexes do not work in any scenario.

6 A real data example

For illustrative purposes, the proposed metric was used to cluster dailies’ returns of Euro ex-
changes rates against 28 international currencies (sample period: January 2009 -February 2014,
T = 1885). Series in study can be adequately modeled by GARCH models and our clustering
approach should work properly. This same example (with shorter observation period) was also
considered by [4] to illustrate the merits of their fuzzy clustering approaches based on GARCH
models. The dendrogram obtained with dQAF and the complete linkage is shown in Figure 2.

Three clusters seem to be determined. One of them groups 18 Euro exchange rates against
the major international currencies and those linked to the US dollar (US dollar -USD-, Canadian
dollar -CAD-, Great Britain pound -GBP-, among others). The other two clusters are formed
by 5 memberships. The cluster grouping {South African rand (ZAR), Russian rubel (RUB),
Argentine peso (ARS), South Korean won (KRW) and Hong Kong dollar (HKD)} is the most
heterogeneous by including Euro exchange rates against Asian, European, South American and
African currencies.

The Clest algorithm was also executed and K̂ = 3 was obtained, which is according to the
intuitive solution derived from the dendogram.

7 Concluding remarks

In time series clustering, the identification of proper models is not per se the objective. The
real challenge is to find out an effective dissimilarity measure to deal with different generating
processes and detect structural similarities to form representative clusters. This is a central
problem in many real applications and the main motivation behind this work. With this objective
in mind, a metric based on quantile autocovariance functions is proposed. These functions
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Figure 2: Complete linkage dendrogram based on dQAF for the returns of the exchange rates.

account for important dynamic features of time series and are well-defined for a broad class
of processes, including nonlinear and heteroscedastic processes. In particular, clustering of
heteroscedastic models is still a little explored topic (see works on fuzzy clustering by [13, 4]).
An extensive numerical study shows that the proposed dissimilarity produces excellent results in
clustering regardless the kind of processes subjected to cluster. In complex scenarios including
conditional heteroscedastic processes, our proposal clearly leads to the best results compared
with alternative metrics introduced in the literature. Furthermore, our metric also outperforms
metrics specifically designed to tackle nonlinear series, and, although not all results are presented
here, it was highly competitive to classify linear models. In short, the quantile-autocovariance-
based metric shows a very interesting robustness property with respect to the kind of processes
and presents an efficient implementation at a very low cost in terms of computing time.

Estimation of the optimal number of clusters is also addressed in the present work. An
adaptation of the Clest algorithm to cover the metric based on quantile autocovariances is
proposed and promising results are observed in a broad simulation study, where the modified
Clest is clearly the winner procedure compared with other classic alternatives.

Bibliography

[1] Caiado J., Crato N. and Peña D. (2006) A periodogram-based metric for time series classi-
fication Computational Statistics and Data Analysis, 50, 2668–2684.

[2] Dudoit S. and Fridlyand J. (2002) A prediction–based resampling method for estimating the
number of clusters in a dataset. Genome Biology, 3(7), 1–21.

[3] D’Urso P. and Maharaj E.A. (2009) Autocorrelation-based fuzzy clustering of time series.
Fuzzy Sets and System, 160, 3565–3589.

[4] D’Urso P., Cappelli C., Di Lallo D. and Massari R. (2013) Clustering of financial time
series. Physica A: Statistical Mechanics and its Applications, 392(9), 2114–2129.

@ COMPSTAT 2014



68 Quantile autocovariances for clustering

[5] Fu T-ch. (2011) A Review on time series data mining. Engineering Applications of Artificial
Intelligence, 24(1), 164–181.

[6] Gavrilov M., Anguelov D., Indyk P. and Motwani R. (2000) Mining the Stock Market:
Which measure is best? Proceedings of the 6th International Conference on Knowledge
Discovery and Data Mining, 487–496.

[7] Keogh E. and Kasetty S. (2003) On the need for time series data mining benchmarks: A
survey and empirical demonstration. Data Mining and Knowledge Discovery, 7(4), 349–371.

[8] Lee J. and Rao S.S. (2012) The quantile spectral density and comparison based tests for
nonlinear time series. (arXiv:1112.2759v2). ArXiv e-prints.

[9] Li T–H.(2014) Quantile periodograms. Journal of the American Statistical Association,
107(498), 765–776.

[10] Liao T.W. (2005) Clustering of time series data: A survey. Pattern Recognition, 38(11),
1857–1874.

[11] Linton O. and Whang Y-J. (2007) The quantilogram: With an application to evaluating
directional predictability. Journal of Econometrics, 1, 250–282.

[12] Maharaj E.A. (1996) A significance test for classifying ARMA models. Journal of Statistical
Computation and Simulation, 54, 305–331.

[13] Maharaj E.A., D’Urso P. and Galagedera, D.U.A. (2010) Wavelet-based Fuzzy Clustering
of Time Series. Journal of Classification, (27), 231–275.

[14] Maharaj E.A. and D’Urso P. (2011) Fuzzy clustering of time series in the frequency domain.
Information Sciences, 181(7), 1187–1211.

[15] Montero P. and Vilar J.A. (2014) TSclust: Time series clustering utilities. R package version
1.2.1 http://CRAN.R-project.org/package=TSclust.

[16] Pértega S. and Vilar J.A. (2010) Comparing several parametric and nonparametric ap-
proaches to time series clustering: A simulation study. J. of Classification, 27(3), 333-â362.
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A Graphical User Interface Platform
of the Stepwise Response Refinement
Screener for Screening Experiments

Frederick Kin Hing Phoa, Academia Sinica, fredphoa@stat.sinica.edu.tw

Abstract. Supersaturated designs (SSDs) are useful in investigating a large number of factors
with few experimental runs, particularly in screening experiments. The Stepwise Response
Refinement Screener (SRRS) method is a new analysis introduced to screen important effects
in the experiments using both a SSD and a general factorial design with the consideration of
interactions. The cross-platform package SRRS is developed in R and the interface is built usng
the Tck/Tk bindings provided by the tcltk package included with R. The users are required to
input the data and responses in the form of text files and the significant factors are suggested as
an output. In addition, users are allowed to specify the threshold values, the selection criterion
and whether the two-factor interactions are considered in the function setting panal.

Keywords. Supersaturated Design, Graphical User Interface, Screening Experiments, Model
Selection

1 Introduction

As science and technology have advanced, scientific researchers and industarial practioners are
capable of studying large-scale systems. Typically the initial stage of these systems contain
a large number of potentially important factors and interactions among these factors, but the
probing and studying of a large-scale system is commonly expensive. Under the condition of
factor sparsity, it might be useful to run experiments with fewer runs than there are factors to try
to identify a small number of factors that appear to have dominant effects, and a supersaturated
design (SSD) is suggested in such cases for run-size economy.

SSDs were first constructed in the discussion of the papers by [1] and [2]. [3] presented the
first SSDs, but no more works was published until the papers by [4] and [5]. A comprehensive
list of early works are referred in [6] and [7]. Traditionally, SSDs are employed primarily for
screening main effects, discarding the possibility of interactions. Even the analysis considers
main effects only, usual regression methods using all candidate factors cannot be used. Some
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refined anlaysis methods were developed since [4] and a brief list of these works are provided in
[8], [9], [10], [11], [12] and many others, and thus omitted here.

Recently, [8] introduced a new method, called the Stepwise Response Refinement Screener
(SRRS), for analyzing the results of experiments using supersaturated designs. The method
can further be extended in [13] to the experiments using a general factorial design, with the
consideration of interaction effects. The SRRS method is a two-step procedure: Factor Screening
and Model Searching. The first step aims at selecting a pool of potentially important effects
from all factors in the experiments and the second step aims at searching the best model, under
a given criterion, built among the selected effects in the first step.

Traditionally, Akaike information criterion (AIC) is used for model selection. For linear
models, AIC = n log(RSS/n) + 2p, where RSS =

∑n
i=1(yi− ŷi)2 is the residual sum of squares,

n is the number of runs, and p is the number of parameters in the model. It is known that
AIC tends to overfit the model when the sample size is small. [14] imposed a heavy penalty on
the model complexity and proposed a modified version of AIC for automatic variable selection
procedure of the Dantzig selector (DS) method, mAIC = n log(RSS/n) + 2p2. The mAIC
typically chooses a smaller model than AIC. This new criterion works well in both the DS
method in [14] and the SRRS method in [8, 13].

To the best of our knowledge, there is no R package oriented to the variable selection problem
in SSDs. Hence, we implement the SRRS method and introduce the package SRRS in this paper.
The scope of SRRS is to allow any person with knowledge on variable selection and/or the SRRS
method to start using SRRS for their everyday work without having to learn anything about
the R syntax. The cross-platform package SRRS is developed in R for statistical computing and
the graphical user interface (GUI) is built using the Tcl/Tk bindings provided by the tcltk

packages included in R [15, 16]. The user only needs to type in the function name and the
setting panal pops up in a window mode. After loading the data and selecting the required
settings, the analysis is performed via the RUN button and the outputs are directly exported
in the result panael when it is finished. The R package described in this paper is available from
the Comprehensive R Archive Network at “http://CRAN.R-project.org/package=SRRS”.

The remainder of this paper proceeds as follows: the methodology of SRRS is reviewed in
Section 2, the functions of SRRS is described in Section 3 and the examples on the analysis of real
data are presented in Section 4. Finally, some concluding remarks and future possible extensions
of the package are given in Section 5.

2 A review on Stepwise Response Refinement Screener
(SRRS)

The SRRS, proposed in [8], is used for analyzing the experiments using SSDs. Consider a linear
regression model y = Xβ + ε, where y is an n × 1 vector of observations, X is an n × k model
matrix, β is a k × 1 vector of unknown parameters, and ε is an n × 1 vector of random errors.
Assume that ε ∼ N(0, σ2In). In addition, X is assumed to be supersaturated, n < k. We let
m be the number of potentially important effects (PIEs) and Sinf be the influential set of PIEs
found in the process. It proceeds as follows.

Algorithm 2.1.
SRRS - Factor Screening

COMPSTAT 2014 Proceedings



Frederick Kin Hing Phoa 71

Step 1. Standardize data so that y0 has mean 0 and the columns of X have equal lengths.

Step 2. Compute the correlation ρ(Xi, y0) for all factors Xi, i = 1, . . . , k.

Step 3. Choose E0 such that |ρ(E0, y0)| = maxXi |ρ(Xi, y0)| and include E0 as the first PIE in
Sinf .

Step 4. Obtain the estimate βE0 by regressing y0 on E0.

Step 5. For the next m PIEs Ej, j = 1, . . . ,m, m < n− 2,

(a) compute the refined response yj = yj−1 − Ej−1βEj−1;

(b) compute the marginal correlation ρ(Xi, yj) for all Xi, i = 1, . . . , k;

(c) choose Tj such that |ρ(Tj , yj)| = maxXi |ρ(Xi, yj)|;
(d) obtain the estimate βTj by regressing yj on E0, . . . , Ej−1, Tj;

(e) if |βTj | ≥ γ and Tj has not been included in Sinf , put Ej = Tj and include it in Sinf ;

(f) repeat (a) to (e) up to mth step, where Ej = Em is not included in Sinf , m determined
by either m < n− 2 or the threshold condition |βTj | ≥ γ, or both.

SRRS - Model Searching

Step 6. Perform an all-subset search for all Ej, from models with one to m factors, where m
is minimum of n/3 and the number of Ej in Sinf .

Step 7. Compute the objective function for each model and choose the final model as the one
with optimal objective function; all Ej included in the final model are considered to be
significant to the response y0.

Demonstrated in [13], SRRS can also be used to analyze the experiments using a general
factorial design, with the consideration of interactions. Consider a nonregular FFDs with k1

main effects and n runs, where n < m. There are k2 = k1(k1 + 1)/2 interactions between
two different main effects. If all two-factor interactions are considered together with all main
effects, it is possible that k2 > m, then the design matrix is supersaturated. Traditionally, the
analysis of nonregular FFDs is based on two assumptions: the factor sparsity principle and the
effect heredity prinicple. The first assumption has been embedded in the SRRS method, but the
second assumption does not.

In order to implement the heredity principle into the SRRS method, some procedures are
slightly modified: (1) Step 2: Due to the heredity principle, two-factor interactions are never
be selected as the first PIE, so only the marginal correlations of all main effects are compared
for selecting the first PIE. (2) Step 5: During the search of the jth PIE, not all two-factor
interactions are considered in the comparison of marginal correlation. According to the heredity
principle, a two-factor interaction Xij is considered in Step 5(b) if and only if either Xi or Xj

or both parents main effects have been included in SInf in the previous searches. Therefore,
the modifications in Step 5 take away a subset of two-factor interactions that none of their
corresponding parent main effects have been PIEs. (3) Step 6: The reduced models built in
this step must follow the heredity principle in order to avoid the situation that some significant
two-factor interactions are included in the reduced model but none of their parent main effects
have been included.
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A detailed discussion on the main idea of each step in SRRS is out of the scope of this paper
and we omit it here. Readers who are interested in these details are referred to [8].

3 SRRS interface and function

As is typical plug-ins, the SRRS pacage can either be loaded directly or by the command
library("SRRS").

Data files preparation. In practical applications, the user needs to prepare for two data
files to run the program SRRS. The first file is a design matrix file that corresponds to the de-
sign matrix X in the SRRS method. Only main effect columns are required in this file because
two-factors interaction effects are considered as an option in the procedure. The second file is a
response file that corresponds to the response variable Y in the SRRS method. Only one column
of response values is needed. Both data files should be saved as text files, preferably with .txt

or .dat extensions. If either files contain headers, one should put them in the first row of the files.

SRRS input panal. To start the program, after loading the library, one only need to type
SRRS() in the command prompt window, and a GUI panal like Figure 1 will pop up as a separate
window. This panal is roughly divided into four parts from top to bottom. The first part is

Figure 1: An empty SRRS input panal.

the information about the SRRS method. The current version is 0.1. The first button labeled
“Update” brings the users to the official website of this program via a R command browseURL. It
provides a convenient link for the users to update their SRRS library when a new version is avail-
able. The second button labeled “About” provides some basic information about SRRS, including
the current version with date, authors’ names and affiliations (with maintainance personnel and
email) and some legal claims. In addition, the question-mark buttons on the right of the panal
provide short hints about the functions in the following three parts of the panals.

The second part of the panal aims at loading the data files into SRRS. Two buttons labeled
“Open File”open the directory window for the users to select their prepared files. The checkboxes
on the right of two “Open File” buttons are indicators if the files have headers or not. For
example, if a user prepares a design matrix file with header names located in the first row, then
the first checkbox should be clicked after loading the design matrix file in order to avoid program
crash. Notice that if one wrongly clicks the checkbox for a file without headers, the program
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will not crash but the analysis will be incorrect for the missing of the first row. However, if one
forgets to click the checkbox for a file with headers, the program will crash because all entries
of the matrix are not numeric anymore. In addition, if the design matrix file does not contain
a row of header names, the program will automatically assign the names for all columns in the
design matrix with the syntax “X1”, “X2”, etc.

The third part of the panal allows the users to enter some optimal parameters in SRRS. The
first textbox is for the number of main effects. By default, if a user enters 0 or any number
that is greater than the number of columns in the design matrix, the number of main effects is
automatically set to be the number of columns in the design matrix. For example, assume that
there are 8 columns in the design matrix, the users can provide optimal setting on the number
of main effects by entering any integers from 1 to 8. Entering 0 or any numbers greater than
8 will be equivalent to entering 8 in the textbox. Furthermore, entering a negative number is
equivalent to entering 0, and entering a number with decimal points is equivalent to entering
that number without decimal points (i.e., entering 4.5 is equivalent to entering 4).

The second textbox is for the specification of γ. It is a tuning parameter in the factor
screening procedure of the SRRS method, mainly for the termination of the screening when the
magnitude of the potential important effect is too small when compared to noise. By default, if
a user enter 0 in this checkbox, the suggestion of [8] is followed and γ will be automatically set
to be 1/10 of the magnitude of the first potenital important effect. Similar to the first checkbox,
entering a negative number is equivalent to entering 0. However, it is different from the first
checkbox that there is no upper limit to this checkbox, and a number with decimal point is
allowed. Details on how γ is set appropriately are referred to [8].

The fourth part of the panal relates to the selection conditions in SRRS. The checkbox pro-
vides an option to users to consider two-factor interaction effects in the analysis. If there are
two-factor interactions that have significant impact to the response but the analysis excludes
them, serious biases to the estimates of main effects may lead to inconclusive results. [20] has
an extensive discussion on this manner. If the user clicks this checkbox, SRRS will consider
the significance of two-factor interactions under heredity principle. The combobox provides an
option to users to choose which model selection criterion is used in the analysis. There are two
choices, mAIC and AIC criteria, in the current version. AIC is a standard measure in many
traditional analyses, but a problem of overfitting is observered when the sample size is small.
mAIC, first proposed in [14], is a new measure with heavier penalty on the model dimensions.

SRRS result panal. Once the data loading and parameter setting are finished, the user
clicks the “RUN” button to run the analysis via SRRS. A result panal will pop out after the
analysis is done and a sample result panal is provided in Figure 5. The panal always includes
five suggested models and their ranks are given in the first column. The second column provides
the important effects in these five models and the syntax needs some explanations. For example,
the second rank model in Figure 5 is “D + F + F : G”. This means that the main effects D, F
and the interaction effect FG are important and a model with these three effects are selected as
the second rank model. The “+” sign are used to separate effects and the “:” sign indicates the
interaction effect. The model is ranked via the user-selected criterion. In Figure 5, the model
rank is determined by the mAIC criterion, and the smaller the mAIC, the better the model. The
last row provides the threshold value γ used in the analysis. If the user enters γ as an optional
parameter in the input panal, the number will be the same in the result panal. If the user skip
the optional setting, the γ will be automatically determined in SRRS and reported here.
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4 Some illustrations on real-data examples

A classic supersaturated design example. In this example, we apply SRRS to a classic
supersaturated design example demonstrated by [4]. The original dataset has 24 factors but two
factors (13 and 16) are identical. As [17], [14] and [8], we delete factor 13 and rename factors
14-24 as 13-23. The design matrix and response files are found in the SRRS package named
Lin_Dx.txt and Lin_Yx.txt respectively.

Figure 2 is the input panal for this example. Since both data files do not have headers, we

Figure 2: The input panal for the classic supersaturated design example.

do not click the checkboxes in the data files part. We consider all columns as main effects, so we
enter “23” in the first textbox. Alternatively, we can leave the textbox unchanged (i.e., “0”) and
SRRS still recognizes the number of main effects as“23”. We do not specify the threshold γ and let
SRRS determine it automatically. Since the design matrix is supersaturated (number of factors
exceeds number of runs), there is not enough degree of freedom to estimate interaction effects
and we leave the corresponding checkbox unclicked. We choose mAIC as the model selection
criterion. Finally, we click “RUN” to analyze this dataset.

Figure 3 is the result panal for this example. The analysis via SRRS suggests that a model

Figure 3: The result panal for the classic supersaturated design example.

with factor 14 only has the minimum mAIC, and thus it is the best model among all models.
The same analysis result were reported in several literature, see [14] and [8]. Some additional
observations are highlighted in this result panal. First, the threshold γ is reported in the result
panal and it is 5.3214, which is 10% of the magnitude of the first potential important effect.
Second, since there is no headers in the design matrix, all factors are assigned with a generated
header, namely “X1”, . . . , “X23”. Finally, since we do not click the checkbox for two-factor
interactions, none of these models include interaction effects. Readers who are interested in its
mathematical analysis are referred to [8].
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A classic factorial design example with consideration of interaction effects. In this
example, we apply SRRS to the cast fatigue expneriment, a real data set consisting of seven two-
level factors. [18] demonstrated the difference in the analysis result of factorial experiment with
and without considering the interaction effects. The result is confirmed in later literature, see
[14]. The design matrix and response files are found in the SRRS package named cast_Dh.txt

and cast_Yh.txt respectively.
Figure 4 is the input panal for this example. Opposite to the previous example, both

Figure 4: The input panal for the cast fatigue example.

data files have their header names in the first row, so we click the checkboxes in the data files
part. Although the data matrix consists of 11 columns, which are the columns of a 12-run
Plackett-Burman design, we only use the first 7 columns in this example. Therefore, we specify
the number of main effects as “7” in the firs textbox. In addition, assume that there is a prior
information that the threshold is around 0.05, so we specify this value in the second textbox. We
consider the possibility that there may exist some significant two-factor interactions, so we click
the corresponding checkbox. We choose mAIC again as the model selection criterion. Finally,
we click “RUN” to analyze this dataset.

Figure 5 is the result panal for this example. The anlaysis via SRRS suggests that a model

Figure 5: The result panal for the cast fatigue example

with main effect F and interaction effect FG has the minimum mAIC, and thus it is the best
model among all models. The same analysis result were reported in several literature, see [18],
[14] and [13]. In this result panal, the threshold γ is exactly the same value as we entered in
the input panal. In addition, interaction effects are considered under heredity principle in the
model searching procedure, and some good models reported in the result table contain interac-
tion effects. Readers who are interested in its mathematical analysis are referred to [13].
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Another factorial design example with different analysis result. In this example, we
apply SRRS to the HPLC expneriment. [19] performed this experiment with 8 two-level factors
via a 12-run Plackett-Burman design, but they consider main effects only and ignore the impor-
tance of interactions. The experiment is reanalyzed in [20], which a better model is suggested
with a significant interaction effect. The design matrix and response files are found in the SRRS

package named HPLC_Dh.txt and HPLC_Yh.txt respectively.

Figures 6 and 7 are the input and result panals for this example. In the input panal, we

Figure 6: The input panal for the HPLC example.

Figure 7: The result panal for the HPLC example with mAIC criterion.

click the header checkboxes because both design matrix and response files contain headers. We
do not need to enter optional parameters because all columns in the design matrix are main
effects and we have no prior information on the threshold γ. We consider two-factor interaction
effects and choose mAIC as the model selection criterion. In the result panal, the analysis via
SRRS suggests that a model with main effects E, F and interaction effect EF has the minimum
mAIC, and thus it is the best model among all models. The same analysis result was reported
in [13].

However, the result is found to be different in [20], where the analysis is based on AIC
criterion. Figure 8 is the result panal that AIC is chosen as the model selection criterion in the
input panal, and all other settings remain unchanged. The analysis suggests the best model
that includes an additional main effect H. The same model is ranked third when mAIC is the
model selection criterion in Figure 7. The discrepency comes from the different penalty on the
additional dimension in the model. This example demonstrates that the result provided by SRRS

is a suggestion and it is necessary to perform a follow-up experiment for further confirmation.
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Figure 8: The result panal for the HPLC example with AIC criterion.

5 Conclusion and future development

In this paper we have presented the R package SRRS for analyzing the experiments using SSDs
and/or a factorial design with consideration of interactions. All features of the GUI in SRRS

have been demonstrated through several real-data examples in Section 4. The latest version of
SRRS can be downloaded at “http://www.stat.sinica.edu.tw/fredphoa”.

Further development in the SRRS method and its R package SRRS will focus on the following
directions.

1. The current version of SRRS allows users to consider the potentially important two-factors
interaction effects, but it is possible to have some higher-order interaction effects that
have significant impacts to the response. A future version of SRRS will allow the search of
potentially important higher-order interaction effects under the principle of effect heredity.

2. The current version of SRRS provides AIC and mAIC as two choices of model selection
criteria. There are many other criteria that are commonly used in the model selection,
like BIC, cAIC, Mallow’s Cp, etc. A future version of SRRS will provide additional choices
on model selection criteria. Furthermore, it is desired to allow users to specify their own
criterion as the objective function. In such case, the best possible way is to allow loading
the criterion as a text file and read it in R environment.

3. The current version of SRRS utilizes the all-subset search in the model searching part.
Although it is possibly the best method among all model searching methods, the complexity
of this method is relatively higher than many other methods in the literature. For example,
it is possible to substitute it via the DS method proposed in [14], which is known as an
efficient linear programming method. A future version of SRRS will include a new choice
on the search methods in the setting panal, which allows the users to select their preferred
model searching method.

Appendix: Computational details

All computations and graphics in this paper have been obtained using the R version 3.0.0. Several
utility pacages have been created to help in the analyzing process. For examples, package tcltk2
[21] creates the input and result panals and package gregmisc [22] enumerates the possible
combinations of columns from all available choices of main effects and/or interactions via its
command combinations.
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Unravel: A Method and a Program
to Analyze Contingency Tables,
Unveiling Confounders.

Helmut Vorkauf, Bern, retired, helmut@vorkauf.ch

Abstract. An information theoretic approach to analyze multidimensional contingency tables
to find the important relations between dependant and independent variables, uncovering con-
founding effects in a straightforward manner

Keywords. Multiple Associations, Multidimensional contingency tables, Confounding, Simp-
son’s paradox, Effect size.

1 Method

When planning a study of cause and effect, one primarily selects an effect Y and a probable
cause X, and then designs a study that lets one find out whether the presumed cause X actually
has a significant influence on the effect Y . One is always aware that other variables might also
have an effect on Y or X, therefore the study almost always includes measurements of further
variables Zi that might need to be controlled. In experimental designs one can control such
further variables that might also have an effect through direct control or randomization, but in
survey studies, observational by design, such a control becomes impossible.

In a paper [8] we introduced two measures of dependance based on information theory:

1. Gamma, the dependability γy or γx, is an unsymmetrical indicator of how reproducible
or non-random the outcome of Y is, how unequivocally Y is determined by the other
variables. This is a multivariate extension of Theil’s uncertainty coefficient [6].

2. Zeta, the diagonality1 or conciseness ζ, is a symmetrical coefficient of the closeness of
relations between variables. This coefficient determines how free of slackness a logical link
between variables is. It is defined for tables with any number of dimensions.

1We had coined the name terseness for this coefficient when searching for a proper translation for the German
Prägnanz and pregnancy seemed unfitting. Now the term diagonality seems more appropriate to us, indicating
the accumulation of cases along the diagonal of a table with categories appropriately ordered. Conciseness might
be an alternative term.
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Both γ and ζ are normalized to 1, independent of the base of the logarithm and, especially,
independent of the sample size N . That is why they are comparable for tables of different size
and dimensionality, a quality that the usual measures do not achieve, especially not χ2. This
comparability led us to choose them for an analysis of multivariate tables, where the many
sub-tables of different size and dimensionality of a high-dimensional table have to be compared.
An additional benefit stems from the clear quantitative meaning of the dependability2. These
qualities make the measures ideal instruments for quantifying strength of effect.

We should not be discouraged by the numerically small values we find working with depend-
abilities, we should not fall into the trap of interpreting them like e.g. correlation coefficients.
The following informal but useful thresholds may serve as guidelines:

0.10 is enormous,

0.01 is very considerable,

0.001 and below may be regarded as negligible.

Thus we introduce a method of analyzing the dependence of Y on X, given the multitude of
relations with and between the controlling variables Zi. Failure to recognize a disturbing effect
of such confounding relations may easily lead to erroneous conclusions concerning the primary
purpose of a study. Our approach, we hope, may help to direct ones attention to problems
that can occur in non-orthogonal designs when one or more of the control variables Z have
disturbing effects and turn out to be aptly named confounding, i.e., they start to make the
researcher confused.

2 Radelet’s Data on the Death Penalty in Florida

A simple (in the sense of a low dimensionality only) problem is Radelet’s study on Florida death
penalties influenced by the race of the defendant when controlling for the victim’s race (cited
from [1]) as shown in table 1.

If the victim was white, black defendants received a death penalty more often than white
defendants (22.9 % vs. 11.3 %), and this was also the case when the victim was black (2.8 %
vs. 0). Yet, when collapsing the table by ignoring the victim’s race (summing out the victim’s
race), in the total white defendants received the death penalty more often (11 % vs. 7.9 %).

The primary question is: “How strongly does the color of the defendant determine the
penalty?”, and we get two conflicting answers when we compare the total result with the result

2The clear quantitative meaning of the dependability γ shall be briefly demonstrated with artificial data:

a b c Total

A 20

120
B 40
C 35
D 25

E 30 20 10 60

Total 90 60 30

Row E with 60 (a third of all cases) was deliberately constructed to have the same distribution as the column
totals. For this third of cases one can say nothing more about the column than was known beforehand from
the column totals. In the other two thirds of the table the column is determined clearly without ambiguity.
Consequently the dependability γy is 2

3
. What coefficient to describe the contingency has this nice quantitative

interpretability?
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Race of ... Y=Penalty
Z=Victim X=Defendant Death No death Percent Death Penalty

White
White 53 414 11.3 ↓
Black 11 37 22.9

Black
White 0 16 0.0 ↓
Black 4 139 2.8

Total
White 53 430 11.0 ↑
Black 15 176 7.9

Table 1: Frequencies of Death Penalties in Florida.

within victim’s race. The puzzling reversal of trend in the collapsed table is known as Simpson’s
paradox. It is a phenomenon less known to statisticians trained in the analysis of experimental
designs where all variables are orthogonal to each other.

Such orthogonality is rare, however, in surveys where Y and Z may vary freely, and in this
case the free variation has led to an enormous linking of X and Z as shown in table 2. Black

X=Defendant
White Black

Z=Victim
White 467 48
Black 16 143

Table 2: Frequencies of Victims and Defendants, γDefendant = .4736.

defendants tend to have killed black victims and white defendants tend to have killed white
victims, and this non-orthogonality produces the baffling paradox.

A way to treat this annoying interdependence of X and Z is a technique (first introduced
by Preuss [7]) which he called uncoupling 3 ; the interdependence is eliminated by combining
the cross-tabulated values of X and Z into a composite variable: instead of analyzing the
effect of the 2 × 2 contingency table of X= race of defendant and Z= race of victim on Y=
penalty, Preuss analyzes the effect of the composite variable [victim+defendant] with four values,
namely [victim/defendant = W/W, W/B, B/W, B/B] on Y=penalty. This in effect removes
any dependence between X and Z.

Our measure of diagonality ζ, which is ζ = .257726 for the complete 2×2×2 table, is reduced
to just ζ = .014110 for the 2 × [2 × 2] table in which X and Z are uncoupled. The majority
(95%) of the diagonality of the complete 2×2×2 table thus vanishes when the relation between
X and Z is eliminated by uncoupling; this relation between X and Z has the enormous size of
ζ = .328238 (table 2).

We should revise our original question and ask: “How strongly is the sentence determined by
the composite of victim’s and defendant’s race?”. The dependability γsentence of predicting the
death sentence using the composite variable of the victim’s and the defendant’s race is .0505,

3Only now (March 2014), on re-reading Goodman and Kruskal[7], Preuss found that they had described the
same technique on p.761, without following it through, however.
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and this is the answer to the newly formulated question. We might go on to look at white
and black defendants only and find that γsentence is a rather small .0113 for white defendants
versus a strong .1612 for black defendants. The black defendant is the poor bugger, his sentence
is strongly influenced by the race of his victim. This finding is rarely mentioned in published
analyses.

It is our conviction that the summing out of the control variable Z=victim, in an effort to
produce a summary, amounts to an illegal act that produces Simpson’s paradox which leaves us
confounded. In this extreme case, where summing out produced Simpson’s paradox, you will
probably agree, but we would like to propose a general rule banning the summing out of control
variables, even when their effect seems marginal. The error involved in collapsing tables when
an effect is insignificant, routinely done in parsing log-linear models, is only gradually less severe
than when a very large X–Z–relationship produces Simpson’s paradox.

3 Byssinosis, a higher-dimensional example

Dustiness of Workplace
most dusty medium dusty least dusty

Years employed Smoking Gender Race No Yes p(Yes) No Yes p(Yes) No Yes p(Yes)

< 10 yrs

Yes
M

white 37 3 0.075 74 0 0.000 258 2 0.008
other 139 25 0.152 88 0 0.000 242 3 0.012

F
white 5 0 0.000 93 1 0.011 180 3 0.016
other 22 2 0.083 145 2 0.014 260 3 0.011

No
M

white 16 0 0.000 35 0 0.000 134 0 0.000
other 75 6 0.074 47 1 0.021 122 1 0.008

F
white 4 0 0.000 54 1 0.018 169 2 0.012
other 24 1 0.040 142 3 0.021 301 4 0.013

10− 20 yrs

Yes
M

white 21 8 0.276 50 1 0.020 187 1 0.005
other 30 8 0.211 5 0 0.000 33 0 0.000

F
white 0 0 ?? 33 1 0.029 94 2 0.021
other 0 0 ?? 4 0 0.000 3 0 0.000

No
M

white 8 2 0.200 16 1 0.059 58 0 0.000
other 9 1 0.100 0 0 ?? 7 0 0.000

F
white 0 0 ?? 30 0 0.000 90 1 0.011
other 0 0 ?? 4 0 0.000 4 0 0.000

> 20 yrs

Yes
M

white 77 31 0.287 141 1 0.007 495 12 0.024
other 31 10 0.244 1 0 0.000 45 0 0.000

F
white 1 0 0.000 91 3 0.032 176 3 0.017
other 1 0 0.000 0 0 ?? 2 0 0.000

No
M

white 47 5 0.096 39 0 0.000 182 3 0.016
other 15 3 0.167 1 0 0.000 23 0 0.000

F
white 2 0 0.000 187 3 0.016 340 2 0.006
other 0 0 ?? 2 0 0.000 3 0 0.000

Table 3: Frequencies of Byssinosis by Length of Employment, Smoking, Gender and Race.

Let us now turn to a complex data set with six variables [4] as shown in table 3. The
complete 3× 3× 2× 2× 2× 2 table is difficult to read. When one tries to find the main factors
leading to byssinosis, a lung disease caused by exposure to cotton dust, one has to take into
account some very strong interrelations between the possibly illness-inducing variables. Higgins
and Koch have devised a laborious χ2-based set of rules designed to find the important factors;
they concluded that dustiness of the workplace is the most important determinant of illness,
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gender of employee is next important, and smoking is in 3rd place. From the content of the
study, it seems curious that the length of employment and therefore the length of exposure to
dust came in 4th place only. Could it be that some disturbing X-Z-relation has suppressed the
Z-Y -relation between length of exposition and byssinosis?

Our analysis starts by looking at dependability γ of byssinosis which is γ = .2077, a very
strong reproducibility. Summing out of single variables results in varying degrees of loss of
dependability. This loss of dependability of byssinosis we interpret as the importance of the
variable summed out, it is its contribution to the dependability (table 4).

When summing out... Dependability γ % Loss by summing out

Dustiness of workplace .0639 71
Length of employment .1935 11
Smoking .2011 8
Gender .2046 6
Race .2089 4

Table 4: Dependability when summing out Variables.

May we say that as a first impression we like the ordering of variables better than the
ordering of Higgins and Koch? Exposure to dust, length of the exposure and smoking as the
major determinants of a lung disease seem plausible to us, gender in 2nd place does not.

Next we investigate the full cross-tabulation, uncoupling in turn 15 pairs, 20 triples, 15
quadruples and 6 quintuples of variables, looking for effects of uncoupling on the diagonality of
the full table. The diagonality ζ for the full table is .098369. The following partial table lists
only pairs and triples of variables uncoupled that produced larger losses (table 5).

Uncoupled variables Diagonality ζ % Loss due to uncoupling

Race Employment .049793 49
Dustiness Gender .084665 14
Smoking Gender .088207 10
Race Employment Dustiness .040804 59
Race Employment Gender .042130 57
Race Employment Smoking .046762 52
Race Employment Byssinosis .048688 51

Table 5: Diagonality when uncoupling Variables.

By far the strongest bivariate relation found in the data is the longer employment of white
employees, nonwhites have a much higher turnover, γEmployment = .1664 (table 6).

When uncoupling race and length of employment, this reduces ζ by 49 %. This reduction,
due to the strong association of race and employment, repeats in the triples with larger losses.

The disproportionality has the effect that the clear increase of byssinosis with length of
employment and thus exposure seen within race (table 7) is greatly reduced when race is summed
out; γByssinosis is reduced to .0069 when summing out race, while it is .0191 for whites and .0255
for others (table 6).
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Race
white other

Employment
< 10 years 1071 1658

10 to 19 years 604 108
20+ years 1841 137

Table 6: Frequencies Length of Employment by Race of Employee.

Race Employment Percentage of Byssinosis

White
< 10 1.12

10 to 19 2.81
20+ 3.42

Other
< 10 3.08

10 to 19 8.33
20+ 9.49

All Races
< 10 2.31

10 to 19 3.65
20+ 3.84

Table 7: Summing out Race.

Here, the collapsing of the table by summing out race was not yet an error that produced
a reversal of trend as in Simpson’s paradox, but it is an error that led Higgins and Koch to
underestimate the strong effect of length of exposure on developing a byssinosis. There is a
continuum of degree of error that summing out may produce, and Simpson’s paradox simply is
a more severe error. We might say that race and employment in the Higgins and Koch data
produced not an outright Simpson’s paradox, but an attenuated one.

This error of summing out will affect any of the statistical models we usually apply in the
analysis of data, as in the last resort they all use summaries of partially collapsed tables to
arrive at their estimates of main effects. Fortunately, collapsing of tables by summing out
minor variables is not needed; Preuss’ method of uncoupling can successfully replace it without
producing confounding results, as it does not discard data but merely rearranges them.

4 An Application to Two Meta-Analyses

A Chinese study on the effect of smoking on lung cancer by Liu [5], serves as the first example
(table 8).

The γ for predicting cancer for the whole table reaches a sizeable .0267. Ignoring smoking
by summing it out reduces γ to .0019 (a reduction by 93 %), so smoking is a very important
determinant for cancer, whereas summing out the studies reduces γ to .0236, a loss of only 11%.
Trying to gain oversight in this meta-analytic study seems not to be hampered by too much
variation among the eight local studies. Summing out the eight localities to arrive at a 2 × 2
table linking smoking to cancer seems justified with not too much error.
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Smokers Non Smokers
Cancer No Cancer Cancer No Cancer Study

126 100 35 61 Beijing
908 688 497 807 Shanghei
913 747 336 598 Shenyang
235 172 58 121 Nanjing
402 308 121 215 Harbin
182 156 72 98 Zhengzhou
60 99 11 43 Taiyuan
104 89 21 36 Nanchang

Table 8: Data of a Chinese Meta-Analysis of Smoking and Cancer.

Smokers Non Smokers
Cancer No Cancer Cancer No Cancer Study

83 72 3 14 01 D Muller 1939
90 227 3 43 02 D Schairer&Schoniger 1943
129 81 7 19 03 NL Wassink 1948
70 397 12 125 04 US Schrek 1950
412 299 32 131 05 US Mills&Porter 1950
597 666 8 114 06 US Wynder&Graham 1950
88 174 5 12 07 GB McConnel 1952

1350 1296 7 61 08 GB Doll&Hill 1952
60 106 3 27 09 US Wynder&Cornfield 1953
459 534 18 81 10 US Sadowsky 1953
724 246 4 54 11 SF Koulumies 1953
499 462 19 56 12 US Breslow 1954
451 1729 39 636 13 US Levin 1954
260 259 5 28 14 US Watson&Conte 1954

Table 9: Data of an International Meta-Analysis of Smoking and Cancer.

Dorn [2] compiled 14 international studies, published between 1939 and 1954, on the as-
sociation of smoking and lung cancer (table 9). Our analysis reveals a picture differing from
the Chinese data: γ for predicting cancer reaches an enormous .1189, and by summing out the
studies factor, γ is reduced to .0431, a dramatic loss of 64 %. The diagonality of the 2× 2× 14
table is ζ = .0319; if we take out the cancer × study relation by uncoupling we lose 50 % of this
diagonality, half of the conciseness is due to the great differences in cancer prevalence of the 14
studies. Thus, in this collection of data, it seems to make no sense to gain a 2×2 table of cancer
by smoking, which was the signal the study was aiming at. The signal is drowned in the noise
of the far too different studies.
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5 A program for the analysis

A program Unravel running under Windows is available that computes the separabilities with
each variable in turn regarded as the dependant variable when each single variable or pair or
higher dimensional tuples of variables is summed out. Likewise, the diagonalities are computed
with pairs and tuples of variables uncoupled. In short, all tuples of variables are analyzed like
in CFA, Lienert’s Analysis of Configuration Frequencies (in fact, the program started with a
CFA program I wrote decades ago). You may use the output for CFA interpretation, looking
for types and antitypes. The main program is written in Delphi Pascal and expects input in the
form of dBase tables. These can be either raw data of one case per row or contingency tables
with one row per cell. You might want to use Excel data and save them as dBase, or you can
enter dBase data directly with an additional routine written in FoxPro. A further addition, also
written in FoxPro, is only needed for getting error estimates by bootstrap sampling.
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Abstract. Preventive maintenance plays an important role in the reliability field. Fatal failures
with the corresponding damage associated can be avoided by considering preventive mainte-
nance. A complex warm standby system that evolves in discrete time is modeled in transient
regime. The system is composed of one online unit and the rest in warm standby. All units can
undergo repairable failures due to wear. Besides, the online unit is subject to external shocks,
which can produce a repairable failure. If any unit suffers a repairable failure, this one goes to
the repair facility for corrective repair. The corrective repair time depends on the type of failure
(online or warm standby unit). Preventive maintenance is introduced as response to random
inspections over the online unit. When one inspection occurs, two possible degradation levels
of the online unit can be observed: minor or major. In latter case preventive maintenance is
carried out. The system is modeled and some interesting measures such as reliability, avail-
ability and some conditional probability of failure or preventive maintenance are worked out in
transient regime. The modeling and the measures have been calculated in an algorithmic form
through matrix algebraic expressions. The results have been implemented computationally with
Matlab.

Keywords. Preventive maintenance, warm standby system, Phase type distribution, Matlab

1 Introduction

Redundancy and preventive maintenance are methods that are widely applied to improve relia-
bility and availability in system design. They are necessary in order to improve overall reliability,
prevent system failures and reduce costs. Classical texts on reliability have examined such tech-
niques. Recently, valuable contributions have been made to maintenance policies in the area
of reliability theory. Nakagawa (2005) [2] considered standard and advanced problems of main-
tenance policies for system reliability models, analysing topics such as repair, age, block and
periodic replacement and preventive maintenance. Preventive maintenance is of special interest
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when system degradation and non-repairable failures, due to wear and/or external shocks, are
present.

One of the main problems encountered when analyzing standby systems with three or more
units is that it may not be feasible to build the model and its associated measures. It is
desirable to model complex reliability systems in an algorithmic and well structured form. If
phase-type distributions are assumed for the embedded times in the system, then this objective
is reached. This class of distribution was introduced by Neuts (1981) [3] and has been applied
in fields such as queuing and reliability theory. Recently, PH distributions and block-structured
stochastic models are analysed in He (2014) [1]. This class of distributions has been considered
to model complex redundant systems ([5], [6]) and systems with preventive maintenance ([4])
in an algorithmic form. When PH distributions are considered in modeling reliability systems,
their construction and the measures associated with the system are achieved in an algorithmic
matrix form which simplifies the computational implementation.

The main objective of this paper is modelling and analysing, in an algorithmic form, the effect
of preventive maintenance introduced in a complex warm standby system, with an indeterminate
number of units, where the online unit can go through degradation levels. The online unit is
subject to internal failures and external shocks that produce failure. Any warm standby unit
can fail at any time with probability p. All failures are repairable and only one repairperson is
assumed in the repair facility. We assume that the events which produce the external shocks
occur statistically independently of the performance of the device, and that they may occur even
if the device is currently under repair. Two types of repair are considered: corrective repair,
which is carried out when repairable failures occur, and preventive maintenance. The preventive
maintenance is performed in response to random inspections. When an inspection takes place,
if any internal damage is observed, the device is sent for preventive maintenance, unless the
damage is trivial.

The paper is organized as follows. The system is described in Section 2 and it is modelled
through a vector Markov process in Section 3. The transient distribution is built in an algorith-
mic form in Section 4. Some interesting reliability measures, such as availability, reliability and
conditional probability of failures are developed in Section 5. A numerical example shows the
versatility of the model in Section 6. The results have been implemented computationally with
Matlab.

2 The warm standby system

We assume a warm standby system that evolves in discrete time. There are K units, the online
one and the rest disposed in warm standby. All units are subject to repairable failures, but
the online unit is also subject to external shocks, which can produce a repairable failure. Each
time that the online unit undergoes a repairable failure, this one goes to the repair facility for
corrective repairing and one warm standby, if any, unit occupies de online place. There is a
repairperson. The corrective repair time is different depending on the failure is from the online
unit or from a warm standby. The internal behavior of the online unit one can go through two
degradation levels: minor and major. While there is at least one operational unit, a random
inspection can occur. When it happens, the degradation level of the online unit is observed. If
this degradation level is major, the unit goes to the repair facility for preventive maintenance
only if there is at least one warm standby. In other case, the unit continues working. The
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following assumptions are considered.

Assumption 1. The internal operational time of the online unit is PH distributed with repre-
sentation (α, T ) with order n. The states are partitioned in two degradation levels: minor
and major. The minor degradation level is composed of the states 1, . . . , n1, and the major
is composed of the rest of the states.

Assumption 2. The accidental failure of the online unit is produced by external shocks. The
external shocks happen according to a PH renewal process where the time between two
consecutive shocks is PH distributed with representation (γ, L) with order t.

Assumption 3. The time between two consecutive inspections of the online unit is PH dis-
tributed with representation (η,M) with order ε.

Assumption 4. Each warm standby unit fails at any time with probability p.

Assumption 5. There are two different corrective repairs depending on the type of failure:
internal failure of the online unit and the failure of a warm standby unit. The corrective
repair distribution is PH in both cases with representations (β0, S0) with order z0 and
(β2, S2) with order z2 respectively.

Assumption 6. If one inspection is produced and the degradation level of the online unit is ma-
jor, then the unit goes to preventive maintenance if there is at least unit in warm standby.
The preventive maintenance distribution is also PH distributed with representation (β1, S1)
with order z1.

Assumption 7. Preventive maintenance and any type of failure of the online unit have prefer-
ence among the warm standby failures at same time for the repair facility.

State space

The system can pass through K + 1 macro-states. The macro-state space is given by S =
{S0, S1, . . . , SK} , where Sl contains the phases when there are l units in repair for l = 0, . . . ,K.
If we denote as θν = 0, 1, 2 to the kind of failure of the ν-th unit in the repair facility (0:
internal failure, 1: preventive maintenance, 2: warm standby failure), then the phases of these
macro-states are given by

S0 = {(i, j, s); 1 ≤ i ≤ n, 1 ≤ j ≤ t, 1 ≤ s ≤ ε},
Sl = {Eθ1,θ2,...,θl ; θν = 0, 1, 2, ν = 1, . . . , l},l = 1, . . . ,K, where
Eθ1,θ2,...,θl = {(i, j, s, r); 1 ≤ i ≤ n, 1 ≤ j ≤ t, 1 ≤ s ≤ ε, 1 ≤ r ≤ zθ1} , l = 1, . . . ,K − 1, and
Eθ1,θ2,...,θK = {(j, r); 1 ≤ j ≤ t, 1 ≤ r ≤ zθ1}.

The phases of the macro-states can be interpreted in the following way. For instance, the
macro-state Sl contains the phases when there are l units in the repair facility. The composition
of the repair queue is given by Eθ1,θ2,...,θl . It indicates that the unit that is being repaired is
type θ1, and the units in queue are types θ2, . . . , θl (in order). If l = 1, . . . ,K − 1, then this
macro-state, Eθ1,θ2,...,θl , contains the phases (i, j, s, r) where i indicates the state of the internal
operational time, j the state of the external shock time, s the state of the inspection time and
r the state of the repair time. Throughout the paper, given a matrix A, the column vector A0

is defined as A0 = e−Ae where e is a column vector of ones with appropriate order.
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3 The model

The system described above is modeled through a vector Markov process with state space S.
The transition probability matrix is given by

P =



B00 B01 B02 . . . B0,K−2 B0,K−1 B0,K

B10 B11 B12 . . . B1,K−2 B1,K−1 B1,K

0 B21 B22 . . . B2,K−2 B2,K−1 B2,K
...

. . .
. . .

. . .
...

...
...

0 0
. . . BK−2,K−3 BK−2,K−2 BK−2,K−1 BK−2,K

0 0 . . . 0 BK−1,K−2 BK−1,K−1 BK−1,K

0 0 0 . . . 0 BK,K−1 BK,K


,

where the block Bij contains the transition probabilities between the macro-states Si → Sj . For
instance, the matrix blocks from the macro-state S0 are shown.
B00

This block contains the transition probabilities from the macro-states S0 → S0. All units are
working and at next time all units continues working. It occurs because the internal operational
time, the external shock time and the inspection time change of state, and then they are not
taken place (T ⊗ L ⊗M). Also, one inspection can occur and it observes a minor degradation
level, the external shock time follows changing of state (U1T ⊗L⊗M0η). The auxiliary matrix
U1 is given by

U1(i, j) =

®
1 ; i = j ≤ n1

0 ; otherwise

Respect to the warm standby, none of them fails and it occurs with probability (1 − p)K−1.
Therefore,

B00 = (1− p)K−1T ⊗ L⊗M + U1T ⊗ L⊗M0η.

Block B01

This block contains the transition probabilities from the macro-states S0 → S1. All units
are operational and one failure or preventive maintenance occurs. This failure can be due to an
internal operational failure, to an external shock or to preventive maintenance of the online unit
after inspection; or one warm standby unit fails. This matrix can be partitioned depending on
the type of failure (0: failure of the online unit, 1: preventive maintenance, 2: failure of a warm
standby unit) as B01 = {B01(0), B01(1), B01(2)} ,

B01(0) = (1− p)K−1
î
T 0α⊗ (L+ L0γ)⊗ (M0η +M)

+ (e− T 0) ∗ α⊗ L0γ ⊗ (M0η +M)
ó
⊗ β0,

B01(1) = (1− p)K−1U2(e− T 0)α⊗ L⊗M0η ⊗ β1,

B01(2) = (K − 1)p(1− p)K−2
î
T ⊗ L⊗M + U1T ⊗ Lγ ⊗M0η

ó
⊗ β2,

being U2(i, j) =

®
1 ; i = j ≥ n1 + 1
0 ; otherwise.
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Blocks B0l for l = 2, . . . ,K
This block contains the transition probabilities from the macro-states S0 → Sl. All units are

operational and l failures (or one preventive maintenance)occur. These failures can be due to
an internal operational failure, to an external shock or to preventive maintenance of the online
unit after inspection and l − 1 warm standby fail; or l warm standby unit fails. This matrix
can be partitioned depending on the transitions between the macro-states S0 → Eθ1,θ2,...,θl in
alphabetic order. The blocks different to zero are the following ones.

B0l (0, 2, 2, . . . , 2) =

Ç
K − 1

l − 1

å
pl−1(1− p)K−l

î
T 0α⊗ (L+ L0γ)⊗ (M0η +M)

+ (e− T 0)α⊗ L0γ ⊗ (M0η +M)
ó
⊗ β0,

B0l (1, 2, 2, . . . , 2) =

Ç
K − 1

l − 1

å
pl−1(1− p)K−lU2(e− T 0)α⊗ L⊗M0η ⊗ β1,

B0l (2, 2, 2, . . . , 2) =

Ç
K − 1

l

å
pl(1− p)K−l−1

î
T ⊗ L⊗M + U1T ⊗ L⊗M0η

+ I{l=K−1}p
K−1U2Tα⊗ L⊗M0η

ó
⊗ β2,

where the function I is the indicator function. Finally,

B0K (0, 2, 2, . . . , 2) = pK−1
î
T 0 ⊗ (L+ L0γ)⊗ e+ (e− T 0)⊗ L0γ)⊗ e

ó
⊗ β0.

4 Transient distribution

The transient distribution is obtained from the transition probability matrix by considering the
matrix blocks. The probability of occupying the different phases at time ν is worked out by

blocks as P (ν) = P ν =
(
B

(ν)
ij

)
i,j=0,...,K

. The blocks have been expressed in a recursive form as

B
(1)
ij = Bij ,

B
(ν)
ij =

min{2+j,K}∑
k=0

B
(ν−1)
ik Bkj ; ν ≥ 2.

This recursive method can be developed obtaining that

B
(1)
ij = Bij ,

B
(ν)
ij =

min{2+j,K}∑
kν−1=0

min{2+kν−1,K}∑
kν−2=0

· · ·
min{2+k2,K}∑

k1=0

Bi,k1Bk1,k2 · · ·Bkν−2,kν−1Bkν−1,j .

The initial distribution is also expressed by considering the macro-states defined. Let ωl be
the initial probability vector of having l units in the repair facility. Then, the initial distribution
is ω = (ω0, ω1, . . . , ωK).
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Therefore, the probability that the system occupies the corresponding phases of the macro-
state l (l units broken) at time ν is

pνl =
K∑
i=0

ωiB
(ν)
il .

If the system is new initially then ω0 = α⊗ γ ⊗ η, ωl = 0 for l = 0, . . . ,K . In this case

pνl = ω0B
(ν)
0l .

5 Transient Reliability Measures

Several measures of interest associated to the system are shown in this section in an algorithmic
form.

Availability

The availability is the probability that at time ν the system is operational (at least one unit is
working). This probability is equal to

A(ν) = 1− p(ν)
K e = 1− ω0B

(ν)
0Ke.

Times up to a determinate macro-state

In this section the first visit time distribution for a determinate macro-state is calculated. We
define P−j and ω−j to the matrix P and the vector ω without the probabilities corresponding
to the phases of the macro-state j. The first visit time up to macro-state j distribution follows
a phase-type distribution with representation (ω−j , P−j).

The mean time up to first time that the system visits the macro-state j is given by

−ω−j (I − P )−1 e.

Therefore, if the reliability function is defined as the time up to first time that the system has
all units in the repair facility, it is given by

R(ν) = ω−K (I − P−K)−1 P ν−KP
0
−K .

Conditional Probability of Failure

Three different conditional probabilities of failure are defined in this section depending on the
types of failures and preventive maintenance.

a The system is in macro-state l and only h warm standby units fail

We assume that the device is working with l units in the repair facility at time ν − 1, and
h warm standby units fail at next time, h = 1, . . . ,K − l − 1. This probability is equal to

ψ2,l,h(ν) =

Ç
K − l − 1

h

å
ph(1− p)K−l−1−h

· p
(ν−1)
l

î
(e− T 0)⊗ (e− L0)⊗ (e−M0) + U1(e− T 0)⊗ (e− L0)⊗M0

ó
⊗ e.
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b The system is in macro-state l and the online undergoes an internal failure and h warm
standby units fail

We assume that the device is working with l units in the repair facility at time ν − 1, and
the online unit undergoes an internal failure and h warm standby units fail at next time,
h = 0, . . . ,K − l − 1. This probability is

ψin,l,h(ν) =

Ç
K − l − 1

h

å
ph(1− p)K−l−1−hp

(ν−1)
l

î
T 0 ⊗ (e− L0)⊗ e

ó
.

c The system is in macro-state l and the online undergoes an accidental failure and h warm
standby units fail

We assume that the device is working with l units in the repair facility at time ν − 1, and
the online unit undergoes an accidental failure and h warm standby units fail at next time,
h = 0, . . . ,K − l − 1. It is given by

ψacc,l,h(ν) =

Ç
K − l − 1

h

å
ph(1− p)K−l−1−hp

(ν−1)
l

î
(e− T 0)⊗ L0 ⊗ e

ó
.

d The system is in macro-state l and the online undergoes an internal or external accidental
failure and h warm standby units fail

ψ0,l,h(ν) = ψin,l,h(ν) + ψacc,l,h(ν) +

Ç
K − l − 1

h

å
ph(1− p)K−l−1−hp

(ν−1)
l

î
T 0 ⊗ L0 ⊗ e

ó
.

e The system is in macro-state l and the online undergoes a preventive maintenance and h
warm standby units fail

Finally, while the unit is working on macro-state l at time ν − 1, one inspection occurs by
observing major degradation level at next time, h warm standby units fail at same time.
The probability of occurrence is given by

ψ1,l,h(ν) =

Ç
K − l − 1

h

å
ph(1− p)K−l−1−hp

(ν−1)
l

î
U2(e− T 0)⊗ (e− L0)⊗M0 ⊗ e

ó
.

6 A numerical example

A numerical example shows the versatility of the model. The measures described throughout
the paper have been implemented computationally with Matlab and they have been applied
for analyzing the behavior of a system with and without preventive maintenance. Any warm
standby can fail with probability p = 0.001 and the embedded times in the model are PH
distributed. The Table 1 shows the corresponding representations. Some transient measures for
both systems, with and without preventive maintenance, are shown in Table 2.
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Internal operational time External shock time Inspection time

α = (1, 0, 0) γ = (1, 0) η = (1, 0)

T =

Ö
0.994 0.002 0.0025

0 0.999 0.0002
0 0 0.998

è
L =

Ç
0.95 0.03
0.98 0.01

å
M =

Ç
0.65 0.14
0.44 0.41

å
Corrective repair time Preventive maintenance time Warm standby repair time

β0 = (1, 0) β1 = (1, 0) β2 = (1, 0)

S0 =

Ç
0.5 0.45
0.8 0.15

å
S1 =

Ç
0.1 0.06
0.05 0.10

å
S2 =

Ç
0.6 0.2
0.3 0.65

å
Table 1: Embedded time distributions

ν CPCR MTCR OMT

PM No-PM PM No-PM PM No-PM

10 0.0212 0.0211 0.9532 0.9533 10.9975 10.9975
50 0.0207 0.0206 12.1341 12.1425 50.5504 50.5727
100 0.0203 0.0202 30.6766 30.7204 98.9240 99.0241
200 0.0202 0.0201 70.4531 70.6266 194.5930 194.8694
1000 0.0202 0.0201 335.7359 394.4028 958.1201 959.7753

Table 2: Conditional probability of corrective repair (CPCR), mean time working corrective
repair (MTCR) and operational mean time (OMT), up to a certain time ν
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Abstract. The L2- norm based linear regression or the least-squares estimation (LSE) models
often perform relatively well under conditions such as the model errors follow normal or ap-
proximately normal distributions, are free of large size outliers and satisfy the Gauss-Markov
assumptions. Under these conditions, LSE is optimal and provides the best linear unbiased es-
timators of the linear regression model parameters. However, there are often situations wherein
the LSE based linear regression may not meet one or others of these assumptions and hence fails
to be optimal. We have considered for some experimental data sets the L1, L2 and L∞-norm
estimation based linear models and noted that the LSE based models do not alwaays perform
best. We discuss results of the Lp-norm based estimations by describing types of data sets
varying in size and probability distributions, model fit, residual analyis and residual plots.

Keywords. Linear models, Least-squares estimation, Lp-norm estimation, Prediction, Fore-
casting.

1 Introduction

The least-squares estimation (LSE) technique, first published by Legendre in 1805, is used for
estimating the linear regression models. The linear regression models based on LSE technique
perform well provided the errors follow a normal or approximately normal distribution, do not
possess large size outliers and follow Gauss-Markov assumptions. Under these conditions, the
LSE is optimal and provides the best linear unbiased estimators of the model parameters.
A number of alternatives to the LSE which are more robust to departures from the usual
least squares assumptions have been studied [Gauss (1809,1820),Laplace (1812), Stigler (1990),
Farebrother (1999)]. In this paper, we have investigated the performance of the L1, L2 and
L∞ - linear regression models. We consider experimental data from the applications which are
of small to large size and follow different types of bivariate probability distributions. We have
evaluated fitted models using error based measures and residual analysis. Numerical calculations
are carried out using Matlab codes.
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2 The Lp -norm Linear Regression Models

Suppose that data be available on n cases, yi is the observed response and xi1, ..., xik are the
values of k independent variables of the i th case. The values of k independent variables are
treated as fixed constants, however, responses are subjected to variation. A general linear
regression model for a single response variable y given k independent variables is

y = Xβ + ε, (1)

where y is the vector of n response observations, X is the n x k matrix of values of k
independent variables, β is the vector of k+1 model parameters and ε is the vector of n residual
values. Residuals ε in the model are assumed to follow a multivariate normal distribution, i.e.,
ε˜N(0, σ2I). Similarly, y˜N(Xβ, σ2I).

Definition 2.1. The Lp-norm of the residual vector ε is

‖ ε ‖p=
®

(
∑n
i=1 | εi |p)1/p , for p ∈ [1,∞),

max | εi | , for p→∞. (2)

An estimator minimizing a Lp- norm of the residual vector is called an Lp- norm estimator.
Measuring the size of ε in (1) using the Lp- norm, we arrive at the Lp-regression problem.

In regression analysis, goal is to find β that attains the minimum Lp-norm for the difference
between y and Xβ. Thus, the Lp-regression problem is to determine β such that

min
β
‖ Xβ − y ‖p . (3)

2.1.L1-norm regression model

Setting p = 1 in (3), the L1-norm regression problem becomes min β ‖ Xβ − y ‖1, which can
be written as the linear programming (LP) problem

min
t,β

n∑
i=1

ti : −ti ≤ xTi β − yi ≤ ti, i = 1, 2, ..., n, (4)

where XT is the transpose of X. Methodology of estimating unknown parameters in L1-norm
regression model was first introduced by Boscovich (1757). He proposed to estimate parameters
according to the minimum of a function of the measurement errors. The proposed function
was the sum of absolute measurement errors. This method is known as the minimum absolute
deviations (MAD) or least absolute error (LAE) or minimum sum of absolute errors (MSAE) or
least first power or L1-norm estimator. The estimating method was computationally complicated
[Nyquist (1980)].

2.2.L2-norm (Least Square) regression model

Case p = 2 in (3) results in the L2-norm regression problem which is min β ‖ Xβ − y ‖2 . This
is equivalent to minimize

n∑
i=1

Ñ
yi −

k∑
j=1

xijβj

é2

(5)
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with respect to β. The explicit formula for estimation of β is β̂ = (XTX)−1XT y. This is the
formula for L2-norm regression and is commonly known as the least square estimation (LSE)
or least square regression estimators. It may be noted from the works of Legendre (1805) and
Gauss (1809) that they proposed to minimize the sum of the squares of the measurement errors
and, thereafter, the method of least square became the most popular estimating technique. The
main reason for LSE’s popularity is presumably due to easy computation and due to the fact
that when the residuals are independent and identically normally distributed, the least squares
estimators of a L2-norm regression model are also the best linear unbiased estimator as well as
equivalent to the maximum likelihood estimator, implying the inference to be easily performed
[Nyquist (1980)]. However, it has been noted that the least squares estimates are sensitive to
departures from the assumptions, for example, normally distributed errors.

2.3.L∞-norm regression model

the L∞-norm regression problem translates to min β ‖ Xβ− y ‖∞, which can be written as the
linear programming (LP) problem

min
t,β

t : −t ≤ xTi β − yi ≤ t, i = 1, 2, ..., n. (6)

This minimization problem is often referred to as the Chebyshev approximation. Laplace
(1818) and Edgeworth (1887) have shown that the Lp-norm estimator is preferable to the least
squares, when estimating a simple linear regression model with fat-tailed distributed residuals.
Nyquist [1980] has investigated the Lp-norm estimators of linear regression models. In particu-
lar, he discussed results on the existence, uniqueness and asymptotic distributions of Lp-norm
estimators and gave geometrical interpretations of Lp-norm estimation.

3 Numerical Applications

We first describe six bivariate data sets form the wide range of application areas [Abraham and
Ledolter(2005)]. We focus only on the comparisons of estimated model parameters using various
Lp-norms.

3.1.Descriptive Summaries of Data Sets

Data set A originates from a company which builds custom electronic instruments and computer
components. The firm wants to investigate the association between overhead cost and the total
direct labor hours. Data set A have a smaller number of degrees of freedom equals to 15 only.
In data set B, iron contents of crushed blast furnace slag is of interest. Two methods, one
chemical analysis in the laboratory which is time-consuming and expensive and other magnetic
test on-site which is cheaper, are available. We investigate the extent to which the chemical
tests of iron content can be predicted from a magnetic tests of iron contents. Measurements
on 53 consecutive slags are available resulting in large number of degrees of freedom. Data
set C is from a study on effects of environmental pollutants upon animals excluding man. An
industrial pollutant, Polychlorinated biphenyl (PCB) is thought to have harmful effects on the
thickness of egg shells. To investigate the relationship between the thickness of the egg shell
in millimeters and the amount of PCB in parts per million in Pelican eggs, data are collected
from 65 Anacapa pelican eggs. Data set D refers to the energy requirements in Mcal/day for
a sample of 64 grazing merino sheep together with their body weights in kg. Objective is to
fit a model that explains the energy requirements as a linear function of body weight. Data
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set E is from a research study on advances in oxygen equivalence equations for predicting the
properties of Titanium welds. Data on oxygen content in parts per million and strength in ksi
for 29 welds are recorded to study their relationship. Data set F is from a research study on
establishing a relationship between the erythrocyte adenosine triphosphate, ATP levels in the
youngest and oldest sons in the families. The ATP level determines the ability of blood to carry
energy to cells of the body. The data for the oldest and youngest sons are extracted from the
17 sampled families. ATP levels are expressed as micromoles per gram of hemoglobin and we
estimate regression line for predicting ATP level of youngest son from that of the oldest son.
It is noted that three data sets A,C and F follow approximately bivariate normal distributions,
however, remaining three data sets B, D and E do not represent bivariate normal populations.

3.2.Checking Model Adequacy

The principle of analysis of variance partitions the total response variance into two components:
the variance explained by the model and the variance that remained unexplained. For assessing
model adequacy, one commonly used measure calculated from estimated residuals is the well
known coefficient of determination R2 which is defined as the proportion of the total response
variance that is explained by the model:

R2 = 100×
ñ
1−

∑
ε2i∑

(yi − ȳ)2

ô
. (7)

We define a new measure denoted by ‖ R2 ‖1 based on estimated residuals for checking
model accuracy as

‖ R2 ‖1= 100×
ñ
1−

∑ |εi|∑ |yi − ȳ|
ô
. (8)

It may be noted that the numerator εi and denominator (yi−ȳ) terms of ‖ R2 ‖1 are L1-norm
while in case of R2 these are L2-norm. Either measure provides an overall measure of how well
the model fits. A higher value of ‖ R2 ‖1 or R2 indicates a better fit.

3.3.Estimated Model Parameters and Error Measures

Estimated L1, L2 and L∞-norm based linear regression model parameters along with model
adequacy measures ‖ R2 ‖1 and R2 defined in (7) and (8) are presented in Table 1. It may
be noted that for the data sets A, B and D, L2-norm based estimated model have the maximum
‖ R2 ‖1 and R2 values respectively as [39.38,62.62], [32.50, 53.72] and [34.72, 56.31]. Thus, for
three populations A, B and D, L2-norm based estimated models are expected to perform better
than the L1 and L∞-norm based linear regression models. Referring to the data sets C, E and F,
model accuracy measures ‖ R2 ‖1 and R2 do not lead to a consensus about the best estimated
model. For data set C, we note that the L1−norm results in the best model, however, L2 ≈ L1

using measure ‖ R2 ‖1 and L2−norm is the best model according to R2 criterion. In data sets E
and F, we notice that the L1−norm is the best model, however, L2 ≈ L1 using measure ‖ R2 ‖1
and L2−norm is the best model according to R2 criterion, however, L1 ≈ L2. Thus interestingly,
both estimated models L1- and L2-norm based linear regression models are good competitors
for the populations represented by data set E and F. It may further be noted that data set E
represents a non-normal population whereas data set F represents a normal population.

3.4.Residual Analysis

Residual analyses of the fitted linear models are presented in Table 2. Plots of residuals against
fitted values and residual lag plots are not included (because of space limitations) however
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Table 1: Lp -norm Based Linear Regression Models and Model Adequacy Measures.

indicative conclusions are discussed. The characteristics of a well-behaved residual versus fitted
values plots and residual lag plots, what they suggest about the appropriateness of the simple
linear regression model, are described. (i) Linear relationship: In all cases, residuals are more or
less spread randomly about the zero line. This suggests that the assumption that the relationship
is linear is reasonable. (ii)Error Variance: The residuals have no increasing or decreasing trend
and roughly form a horizontal band around the zero line. This suggests that the variances of
the residuals are constant. (iii) Independence of Residuals: The residual lag plot by plotting
residual (i) against lag residual (i-1 ) indicates the dependency of the residual terms. A random
pattern in a lag plot suggests that the residuals are independent. This assumption appears to
hold good for all models. (iv) Normality and Outlier Detection: The Shapiro-Wilk statistic
and probability values given in Table 2 indicate that residuals have normal distributions. Since
normality assumption holds, approximately 95 percent of the standardized residuals will fall
between -2 and +2. It is seen from Table 2 that it is true for all models. Also from residual vs.
fits plot, no one residual falls out from a random pattern of residuals. This suggests that there
are no outliers.

4 Concluding Remarks
The least squares estimation (LSE) although is simple and algebraically highly developed,
studies have shown that LSE based linear regression may not be the optimal model when one
or others of its assumptions fail. For bivariate populations representing small to large size and
normal and non-normal distributions, We have estimated L1, L2 (LSE) and L∞-norm based
linear regression models. Our findings are in agreement with those in some earlier studies. Our
study also raises questions on the distributional properties of the Lp-norm based linear regression
estimated models. The effects of deviating from the assumptions of LSE on the Lp-norm linear
regression models. The statistical inference issues, like interval estimation, hypothesis testing
and prediction bands etc., for the Lp-norm models. For given application data, how to determine
optimal choice of the Lp-norm.
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Table 2: Residual Analysis.
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Abstract. This article describes Storm, an environment for doing streaming data analysis.
Two examples of sequential data analysis — computation of a running summary statistic and
sequential updating of a posterior distribution — are implemented and their performance is
investigated.

Keywords. Storm, sequential inference, streaming data

1 Introduction

In sequential statistical inference, data arrive as a stream and inference is an iterative process
that updates as new data are available. Numerous examples and applications exist, starting with
the Kalman filter and its generalisations such as the dynamic state space model [4]. Approaches
to implement inference in this setting are the subject of much current work e.g. sequential
Monte Carlo [3]. The challenge is not only to work with data sources that require sophisticated
analyses, but also for scaleable inference algorithms that can cope with increased data dimension
and arrival rates.

Computational capabilities for the collection, management and analysis of large volumes of
data continue to increase at a fast rate. Most of the well known internet companies have devel-
oped storage and processing systems that adopt the MapReduce paradigm [2], where scaleability
is achieved by exploiting the availability of many processing units that can work in parallel on
independent tasks, and fault tolerance is achieved by managing these tasks so that they can
be re-assigned to a different processor if a fault is detected. MapReduce implementations of
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algorithms are now relatively easy to code with software libraries such as Hadoop [9]. These are
batch computations i.e. a single computation with a pre-defined set of data.

However, analysis of streaming data is becoming another important challenge, for which
Hadoop has not been designed; it treats a sequential analysis as a sequence of batch analyses.
This will typically involve writing data to memory after each batch and then reading it again
which can be very inefficient. To address this, environments such as Storm have been developed.
They aim to permit the programming of analyses of streams of data in a scaleable and reliable
manner that is analogous to MapReduce in many ways.

In the context of statistical analysis, it is natural then to ask what are the advantages of
using a streaming data environment such as Storm to implement sequential statistical inference
algorithms, and for which algorithms are these advantages greatest. In this paper, we describe
a programming environment called Storm [5]. This is one of several such environments for the
processing of streaming data in a distributed manner. It is applied to two examples: computa-
tion of running summary statistics and a grid-based approximation. The performance of these
algorithms is evaluated and discussed with respect to these examples.

2 What is Storm?

Storm is an example of an open source, distributed, fault tolerant framework for the processing
of streaming data. This is achieved via the concept of topologies, a directed acyclic graph which,
at an abstract level, represents both the computation to be performed and the flow of data
through the system. Each datum in the data stream is known as a tuple. Data are introduced
into the topology via spouts, processed by bolts and data flows between them according to
stream groupings. Simply, spouts are sources of data, bolts are functions in the code that have
input variables and produce an output, and the topology shows how the inputs and outputs
of each propagate through the computation according to the stream groupings. Parallelisation
is achieved by setting the number of replications (referred to as tasks) of each spout and bolt.
Storm manages the computational load across the available processors; see [1] for more details.

Storm was initially developed in 2011 by a company called BackType which had been founded
in 2008. BackType was acquired by Twitter in July 2011, and Twitter made Storm open-source
later in September 2011. In September 2013 Storm became an Apache incubation project; this
ensures that the code base of Storm will not be abandoned.

One interesting aspect of the way that Storm manages the data stream concerns guaranteeing
that every tuple that is input into the system, as well as any new tuples that are created from it
during the computation, has been fully processed. This guarantee is implemented by assigning
a unique message id to each tuple generated within a spout. Once it and any tuple generated
from it have been processed then the acknowledgement function ack() is called by the originating
spout. If that does not happen then a fail() function is called and the tuple is reprocessed. The
ack() function can be used for temporal synchronization of ordered data, i.e. the spout can send
the next data tuple when the previous tuple has been fully processed. However, such usage
induces a strong bottleneck in the system as the computation will then move at the rate of the
slowest bolt to process any part of a tuple in each temporal step.
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3 Performance Assessment

The performance of a streaming data processing algorithm can be evaluated in several ways, the
most common of which are:

Throughput: This is the average number of tuples processed per unit time.

Latency: This is the average time it takes for a tuple to be processed. Latency may also be
defined for parts of a computation, such as a bolt or combinations of bolts. A special case
is execute latency which is the time taken by the bolts in the topology to process a tuple,
ignoring communication time and other overheads in managing the computation.

Capacity: This is a measure of the proportion of time that Storm spends in processing tuples
with the bolts in the topology, defined as

Capacity =
Execute latency × No. of observations processed

Total computation time
.

A capacity of 1 usually indicates that bolts are overloaded and unable to process data as
quickly as it can be streamed.

These statistics play an important role in scaling the streaming system, and so Storm has a user
interface that allows one to monitor performance of each bolt, spout and processor being used.
A capacity near to 1 indicates a bottleneck of the current system which could be improved with
more computational bolts or cluster machines. Ideally, when scaling an algorithm to make use
of a larger number of processors, one should be able to increase throughput close to linearly with
the number of processors while both latency and capacity remain steady.

4 Example: Computing running summary statistics

In this first example, a stream of bivariate normal observations (x1, y1), (x2, y2), . . . is generated
and the goal is to output the running sample correlation:

rn =
n
∑n
i=1 xiyi −

∑n
i=1 xi

∑n
i=1 yi»

n
∑n
i=1 x

2
i − (

∑n
i=1 xi)

2
»
n
∑n
i=1 y

2
i − (

∑n
i=1 yi)

2
, n = 2, 3, . . . (1)

Figure 1 shows the topology. On the left, one or more spouts called bvn data simulate bivariate
normal observations. More than one spout may be needed if we are testing the performance
limits of the algorithm because the generation of the data requires more computation than the
computation of the correlation. The data are streamed in groups of size k, with each group
transmitted to only one summary bolt. This assignment of a group to a particular replication
of the summary bolt is done using one of Storm’s standard transmission options called shuffle
stream grouping, where the bolt is chosen at random.

The mth set of k observations Dm = {(xi, yi) | i = (m−1)k+1, . . . ,mk} is sent to a summary
bolt, which computes the five summary statistics

Sm =
mk∑

i=(m−1)k+1

(xi, yi, x
2
i , y

2
i , xiyi)
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Figure 1: The topology for computing the running correlation of a stream of bivariate observa-
tions.

needed to compute the correlation, and then transmits Sm to the collect bolt. The collect
bolt updates the running sum of the summary statistics and uses them to compute the sample
correlation. Defining M = {m |Sm transmitted to collect}, collect will compute and store the 5
summary statistics over all transmitted sets:

S =
∑
m∈M

Sm,

from which it can output the sample correlation, as defined in Equation 1, by

r(M) =
|M |kS5 − S1S2»

|M |kS3 − (S1)2
»
|M |kS4 − (S2)2

.

This example illustrates the issue of synchronisation. There is no guarantee that if M sets of
statistics Sm have arrived to the collect bolt then they are S1, . . . , SM . However as can be seen
above, the indices m of the sets that have been transmitted to collect can also be transmitted
if needed, so that at least one knows which data have been used in the computation of the
correlation.

This topology was implemented on a cluster of 6 machines with a total of 32 cores using
observation groups of size k = 50. Thus for every 50 observations generated, one correlation
value should be transmitted by collect. The throughput of observations and correlations for
different numbers of bvn data spouts and summary bolts was explored. It was observed that
peak throughput occurred when between 8 and 16 bvn data spouts were used per summary
bolt, and so the experiments kept to that ratio. With the ratio of bolts to spouts constant, in
principle the capacity of the algorithm to process observations is constant, and so changes in
performance are due to the overhead involved in managing different numbers of spouts and bolts.
The algorithm was allowed to run for several minutes to eliminate any initialization effects, and
then data were recorded for 6 minutes; throughput is reported as the average output per minute.
Figure 2 shows that, for this cluster, performance begins to deteriorate when more than about
250 spouts are replicated. Having more bolts does give better performance, but having twice as
many (runs with 8 spouts per bolt) does not give twice the throughput.
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Figure 2: Summary of experiments with different numbers of bvn data spouts with a fixed ratio
of spouts to summary bolts. Left: observation throughput as a function of the number of bvn
data spouts. Right: number of correlations emitted per observation generated as a function of
the number of bvn data spouts; the dashed line shows where 1 correlation is emitted for every
k = 50 data points e.g. all data points are being processed.

5 Example: Sequential posterior computation

A stream of observations x1, x2, . . . is to be fitted to a parametric probability model p(x | θ). It
is assumed that θ is of small enough dimension so that it is possible to compute the posterior
distribution of the parameters on a discrete grid of points Θ. The goal is to sequentially update
the posterior; when xn+1 arrives, the posterior is updated via the Bayes recursion:

p(θ |x1:n+1) ∝ p(θ |x1:n) p(xn+1 | θ),

where x1:n = {x1, . . . , xn}. The output is a stream of sets of posterior distribution values
p(θ |x1:n), θ ∈ Θ for n = 1, 2, . . ..

A parallel implementation of this computation is to partition Θ and assign the computation
of the unnormalized log posterior

l(θ) = log(p(θ)) +
n∑
i=1

log(p(xi | θ))

over each part of the partition to bolt replications, where p(θ) is a prior. Let M be the degree
of parallelization available for the computation and let Θ1, . . . ,ΘM be a partition of Θ; load
balancing considerations imply that the Θm should be of similar size.

Figure 3 shows the topology. There are M instances of the logpost bolt; each is assigned
a different subset of the grid Θm over which to store the unnormalized log posterior values
Pm = { l(θ)| θ ∈ Θm}. When a new observation xn+1 arrives, the transmit bolt transmits it to
all M instances of the logpost bolt; this is an all stream grouping, in contrast to the first example,
where data was transmitted to only one summary bolt. The replication that is responsible for
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logpost
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Figure 3: The topology for sequential posterior computation.

Θm computes log(p(xn+1 | θ)), θ ∈ Θm, and adds it to the corresponding element of Pm. After
every K observations have been processed by the logpost bolts, they transmit Pm to the collect
bolt that then exponentiates and normalises the values to derive the posterior density over the
grid.

An important distinction between this example and the previous one is that the logpost
bolts have state; they must store the current value of the log posterior. If a bolt dies then
that state is lost and can be recovered only by computing the log posterior from scratch on its
partition. Alternatively, the state could be stored and read from memory, but that again implies
an overhead to the computation.

We illustrate this idea for Gaussian data with unknown mean µ and precision τ , so that
θ = (µ, τ) and p(x | θ) = (τ/2π)0.5 exp(−0.5τ(x−µ)2). For this example we assume independent
non-informative Gaussian (zero mean, large variance) and gamma (scale and shape are 0.5) priors
on µ and τ .

This topology was implemented on a cluster of 5 identical machines, each with four 3.4
GHz cores. One million Gaussian observations were generated and stored to a file; the file was
streamed and processed using 4, 8, 12, 16 and 20 logpost bolts. The posterior density was
computed by the collect bolt every K = 50, 000 observations. This value of K was used because
of the large size of the output, given the rate at which data can be processed; with a smaller K
then the input-output time begins to dominates the processing time in the system. A small grid
of size 76 × 86 = 6, 536 and a larger one of 376 × 426 = 160, 176 points were used, with points
distributed as evenly as possible between the bolts. Further, this problem was implemented
in two ways, which we label as ack and nack: with ack, the transmit spout acknowledges that
each observation has been completely processed successfully. When a fail() is called, Storm will
automatically replay the tuple. With nack, no acknowledgement is made.

Figure 4 shows results from these experiments. The left plot shows the median data through-
put over 6 runs as a function of the number of logpost bolts for 3 cases: the small grid with
ack, the small grid with nack and the large grid with nack. As it involves more computation per
observation, the larger grid has a lower data throughput than the smaller grid, hence the data
throughput curves of two datasets are not comparable. Still, they are plot together in Figure
4a for convenience and for the progression of data throughput over number of bolts. There is
a considerable cost to using ack, which grows larger as the number of logpost bolts increases.
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Figure 4: Performance of the sequential computation of the posterior density of the mean and
precision of a Gaussian distribution as a function of the number of logpost bolts over 6 runs.
From left to right: median data throughput, median latency and median capacity.

Performance worsens considerably in one case from 20 to 24 bolts; the cluster has 20 cores, and
so managing 20 or 24 bolts means 2 or more bolts running on some cores and a computation
overhead results. The capacity plot shows that the larger grid is more efficient in that it spends
more time in computing log likelihoods (the dominant computation in the bolts) rather than
in communication. In the nack small grid case, the capacity is around 0.97 when there are 4
log-post bolts, meaning that each bolt is very busy. This high capacity implies a bottleneck in a
system but, unlike the throughput measurement, it does not measure how fast the system is. In
the nack-small-grid case, when the capacity value is from 0.85 to 1, the system throughput can
be improved significantly by adding more processsing power (bolts). In the nack large grid case,
the capacity is almost 1, which implies that a larger cluster would lead to a faster computation.
Finally, latencies are plotted for 3 cases, all with the small grid: execute latency for ack, execute
latency for nack and process latency for ack. The latency of the big grid is not drawn as it
follows the same pattern but on a different scale (from 1.4ms down to 0.4ms). It can be seen
that the execute latency is slightly longer than the process latency. As with throughput, there
is a considerable overhead in using ack that grows with the number of bolts, and performance
does not improve significantly with more than 16 bolts.

6 Concluding Remarks

In this paper we have introduced Storm and illustrated its use in 2 examples of sequential data
analysis. The topology of the second example, where a function is evaluated on all data at each
point in a discrete grid, is a common scenario. In Bayesian inference, it is often the compu-
tationally most demanding step of the integrated nested Laplace approximation [8]. Another
example where this topology could be used is the griddy Gibb’s sampler [7].

Sequential Monte Carlo methods, such as the particle filter, have a similar structure to
the second example but where the fixed grid is the set of particles. However they have an
important distinction in that the topology has a cycle; results of processing one datum, such as
particle weights, are needed to process the next. While Storm can implement such topologies,
it introduces potentially difficult issues of synchronization. This has spurred the development
of systems for iterative computation e.g. [6]. For sequential statistical methods like the particle
filter, an interesting question is which will be more effective.
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The examples demonstrate the typical properties of a parallel algorithm, with a trade off
between increasing parallelization and the overhead of managing a larger number of processors.
In terms of Storm and its alternatives for streaming computation, we see advantages in terms of
ease of coding, easy scaleability, reliability and the development of interfaces with higher level
languages such as R. It is faster than R, much better suited to streaming data applications than
OpenMP and OpenMPI and much easier to program than a GPU through CUDA.
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Abstract. In this paper is studied the performance of statistical methods used to analyze
longitudinal count data when the target of inference is the population. The goal of this study is to
give a statistical assessment of marginal approaches in terms of properties such as efficiency and
coverage probability, as well as, to give some guidelines for the choice of the statistical approach
to an applied researcher. Two approaches are considered: the generalized estimating equations
(GEE) and the maximum likelihood estimation with a serial dependence of Markovian type
(MML). A simulation study was carried out and the results indicate to a better performance of
the MML approach when the correlation among response variable for a given subject increases.

Keywords. count longitudinal data, marginal model, exact likelihood, generalized estimating
equations, Markov chain.

1 Introduction

Longitudinal count data are commonly encountered in both experimental and observational
studies across all disciplines. In these studies repeated measurements are made on the same
subject across occasions in one or more treatment groups. In order to make correct inferences, the
correlation among response variable for a given subject must be take into account. In the context
of marginal model, this is, when the target of inference is the population, several models have
been proposed. [6] proposed the generalized estimation equations (GEE) method. [9] proposed
an estimation equation method for regression analysis with a time series of counts analogous to
the one used by [6]. [5] used generalized estimating equations to model longitudinal count data
with overdispersion. [1] proposed an approach based on maximum likelihood estimation where
the serial dependence is assumed to be of Markovian type (MML).
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The goal of this paper is to give information to the practitioners about which of the two
procedures, GEE or MML, is more appropriate to use for their data at hand. To achieved that
goal a simulation study is carried out to compare the two aforementioned approaches in terms
of properties such as efficiency and coverage probability.

For GEE approach the estimates were obtained through the function geeglm in the R package
geepack [3]. The function cold in the R package cold [2] is used to obtain the MML estimates.

The paper is organized as follows: Section 2 gives a summary of the models used. Section 3
reports a small simulation study to assess the performance of the procedures. Section 4 concludes
the paper.

2 Parametric models

Consider count responses yit (t = 1, . . . , Ti) at time t from subject i (i = 1, . . . , n), a set of p
explanatory variables, xit, associated with each observation time and each subject, and Yit its
generating random variable which has a Poisson distribution with E(Yit) = θit. The Poisson
regression which links the covariates and the probability distribution of the response, is given
by

ln(θit) = x>itβ, (1)

where β is the p−vector of unknown parameters.

Maximum likelihood estimation

The approach based on maximum likelihood estimation proposed by [1] is implemented in the
R package cold and is summarized in this section. In this approach is made use of the idea of
self-decomposable probability distribution following [7] and the serial dependence is assumed to
be of Markovian type. To simplify notation, the subscript i is dropped temporarily.

Yt = ρ ◦ Yt−1 + εt, (t = 2, 3, ..., T ), (2)

where for any given t, E(Yt) = θt assuming that E(Y1) = θ1, εt is a Poisson random disturbance,
ρ ∈ (0, 1) and ρ ◦ Yt−1 [7] is defined by

ρ ◦ Yt−1 =

Yt−1∑
h=1

Zh, (3)

where Z1, Z2, ... is a sequence of independent Bernoulli variables with common probability of
success ρ, Pr(Zh = 1) = 1− Pr(Zh = 0) = ρ. See [4] for details.

The response variable Yt, as given in (2), is the sum of two independent random variables;
one of which has Poisson distribution with expected value equal to θ(1− ρ), and the other has
binomial distribution with probability of success equal to ρ. The m-step transition probabilities
are

Pr(Yt = j|Yt−m = i; θ) =

min(i,j)∑
k=0

Ç
i

k

å
ρmk(1− ρm)i−k

exp(−vt,m)vj−kt,m

(j − k)!
. (4)

The contribution from a generic individual to the likelihood for the parameters (β, ρ) is

Li(β, ρ) =
exp(−θ1)θy1

1

y1!

T∏
t=m+1

Pr(Yt = yt|Yt−m = yt−m; θ). (5)

COMPSTAT 2014 Proceedings
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The overall log-likelihood function is obtained as the sum of the n logarithmic individual con-
tributions of type (5).

Generalized estimating equations

The generalized estimating equations (GEE) presented in [6] are an extension of the quasi-
likelihood of [8] to the case when the second moment cannot be fully specified in terms of
expectation but rather additional correlation parameters must be estimated, what differs is the
way to choose the variance-covariance matrix. This approach is implemented in the R package
geepack and can be summarized as follows. Consider,

var(Yit) = φV (θit), (6)

where φ is a common scale parameter and V (θit) is a known variance function.

The GEE for β are

Uβ(β, α) =
n∑
i=1

D>i V
−1
i (Yi − θi) = 0,

where Di =
∂θi
∂β

, Yi = (Yi1, ..., YiTi)
>, θi the vector of the mean of Yi and Vi is now called a

“working” variance-covariance matrix. For the ith subject

Vi = φA
1/2
i Ri(α)A

1/2
i ,

where Ai is the diagonal matrix with entries V (θit) and Ri(α) = corr(Yi) is a Ti × Ti ”working”
correlation matrix.

3 A simulation study

A brief simulation study was carried out to study the performance of both methodologies. The
marginal Poisson model with a first order autocorrelation between two successive observations of
the same subject was considered. The model included a dichotomous treatment, a linear effect
time and an interaction between time and treatment and is given by

θit = exp(β0 + β1t+ β2xi + β3(t× xi)), (7)

where xi = 0 for half the population and 1 for the remainder. The regression coefficients were
set at β0 = 1, β1 = 0.5, β2 = 1.5 and β3 = 0.10.

To reflect the range of experimental data encountered in practice several designs were consid-
ered. The number of subjects was set to either small (n = 20) or large (n = 50). The length of
profile on each subject was short (T = 5) or long (T = 13). The correlation between successive
observations of the same subject was set at ρ = 0.25, 0.5 and 0.75 (low, moderate or high, respec-
tively). On each run were generated T correlated Poisson observations under the ith subject fol-
lowing the AR(1) model given by (2). The time points were set for T = 5 at t = −1,−0.5, 0, 0.5, 1,
and for T = 13 at t = −1.5,−1.25,−1,−0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5. The
whole estimation procedure was repeated for 1000 runs and the sample mean of estimate pa-
rameter (Mean), the sample mean of percent relative bias (Rbias%) and the sample mean square
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error (MSE) were computed, as well as, the coverage probabilities of nominal 95% confidence
intervals.

For each simulated dataset the estimated 95% confidence interval of each parameter in the
model was computed based on the sample normal approximation. To GEE approach the sand-
wich standard error was used. When the MML approach was considered the standard error was
based on the Fisher information matrix. The coverage probabilities of nominal 95% confidence
intervals were computed as the proportion of simulated intervals that cover the true parameter
used to generate the simulated data. The relative efficiency (RE) of MML estimators to GEE
estimators was computed, as usual, by the ratio of the respective MSE. RE>1 means MML
estimator is preferred.

The estimates of the parameters using the MML approach were obtained through the function
cold in the R package cold. When the GEE approach was considered the function geeglm in the
R package geepack was used.

The simulation results are given from Figures 1 to 3 and in Table 1. In Figures 1 and 2 are
display the graphics of the coverage probabilities of nominal 95% confidence intervals of β to
both approaches in all the situations considered. Figures 3 gives the relative efficiency of the
MML estimators to GEE estimators of β̂.

In Table 1 are displayed the simulation results to ρ parameters. To each approach the table
lists the following: Mean, Rbias% and MSE over the 1000 simulations runs and, in parentheses,
the coverage probabilities of nominal 95% confidence intervals.
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Figure 1: Coverage probabilities of nominal 95% confidence intervals for β to MML and GEE approaches when
T = 5.
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Figure 2: Coverage probabilities of nominal 95% confidence intervals for β to MML and GEE approaches when
T = 13.

ρ 0.25 0.5 0.75

T n MML GEE MML GEE MML GEE

Mean 5 20 0.225 0.182 0.481 0.393 0.744 0.620
(0.960) (0.809) (0.936) (0.758) (0.952) (0.751)

Rbias% −9.930 −27.217 −3.759 −21.409 −0.781 −17.348
MSE 0.017 0.020 0.012 0.026 0.004 0.028

Mean 50 0.241 0.205 0.490 0.415 0.747 0.639
(0.946) (0.872) (0.937) (0.731) (0.943) (0.597)

Rbias% −3.800 −18.089 −1.944 −17.056 −0.344 −14.756
MSE 0.006 0.008 0.004 0.014 0.002 0.017

Mean 13 20 0.238 0.213 0.491 0.439 0.747 0.674
(0.962) (0.856) (0.940) (0.770) (0.944) (0.713)

Rbias% −4.691 −14.948 −1.732 −12.286 −0.576 −10.187
MSE 0.004 0.006 0.003 0.010 0.001 0.012

Mean 50 0.245 0.224 0.498 0.457 0.748 0.690
(0.938) (0.881) (0.944) (0.787) (0.945) (0.685)

Rbias% −2.076 −10.220 −0.461 −8.568 −0.301 −8.042
MSE 0.002 0.003 0.001 0.004 0.0004 0.006

Table 1: Results of the simulation study for ρ. Coverage probabilities of nominal 95% confidence intervals given
in parentheses.

Taking into account the goal of the simulation study the main conclusions can be summarize
as follows.

(1) To all β parameters: (i) the coverage probabilities are closer to nominal for the MML
approach than for the GEE approach; (ii) the MML estimators are more efficient than the GEE
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Figure 3: Relative efficiency of β̂ for different correlations ρ and MML and GEE approaches.

estimators to higher values of ρ. This is so much better applied as the length of the profile of
each subject increases. (2) To the estimator of ρ and in all situations consider: (iii) the MML
approach gives lesser values of Rbias% and MSE than GEE approach. The coverage probabilities
are closer to nominal for MML approach than for the GEE approach.

4 Conclusion

This paper is concerned with the asses of performance of the MML approach implemented
in R package cold and GEE approach implemented in R package geepack for the analysis of
longitudinal count data in the context of marginal model. The results of the simulation study
point out that the MML approach seems to be preferable to GEE in all situations considered by
checking that its performance is so much better the higher the correlation between observations
of the same subject, regardless of the number of subjects involved in the study or the length of
their profile.
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Abstract. A mixture model of Gaussian copulas is proposed to cluster mixed data. This
approach allows to straightforwardly define simple multivariate intra-class dependency models
while preserving classical distributions for the one-dimensional margins of each component in
order to facilitate the model interpretation. Moreover, the intra-class dependencies are taken into
account by the Gaussian copulas which provide one robust correlation coefficient per couple of
variables and per class. This model generalizes different existing models defined for homogeneous
or mixed variables. The Bayesian inference is performed via a Metropolis-within-Gibbs sampler.
The model is illustrated by a real data set clustering.

Keywords. Clustering, Gaussian copula, Gibbs sampler, Mixed data, Mixture models.

1 Introduction

With the informatics advent, multivariate data sets become more complex. Particularly, they
often contain mixed data (variables of different kinds). Clustering provides an efficient solution
to extract the main information from the data by grouping the individuals into few characteristic
classes. It can be performed by probabilistic methods modelling the data generation whose the
most popular one uses finite mixture models of parametric components [12]. In such a case, a
class gathers together the individuals drawn by the same distribution. Obviously, the choice
of the component distributions depends on the kind of the variables at hand. However, few
distributions exist to model mixed data and their margin distributions are often complex [8].

The simplest way to cluster mixed variables consists in approaching the data distribution
with a finite mixture model assuming independence conditionally on the class membership of
each individual. This model, called locally independent model, obtains good results in many real
clustering problems [11, 6], especially when few individuals are described by several variables.
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Indeed, when its one-dimensional margins of each component follow classical distributions, this
model provides a meaningful summary of the data by its margin parameters. However, this
model leads to biases when its assumption of conditional independence is violated.

The aim of this paper is to present a model-based clustering for mixed data of any kinds of
variables admitting a cumulative distribution function. This model has a double objective: to
preserve classical distributions for all its margin distributions of each component and to model
the intra-class dependencies. This objective can naturally be achieved by the use of copulas [9]
since these objects allow to build a multivariate model by setting, on the one hand, the one-
dimensional margins, and, on the other hand, the dependency model between variables. More
precisely, the data distribution is approached by a full parametric mixture model of Gaussian
copulas whose the margin distributions of each component are classical and whose the Gaussian
copulas [7] model the intra-class dependencies. The new mixture model is meaningful since
each class is summarized by its proportion, by the parameters of each marginal distributions
and by the correlation matrix of the Gaussian copula providing one coefficient per couple of
variables measuring the intra-class dependency. In addition, a principal component analysis
(PCA) computed per class is a straightforward by-product of the model. Indeed, it is computed
on the correlation matrix of the class and it can be used to summarize the main intra-class
dependencies and to provide a scatter-plot of the individuals according to the class parameters.

This paper is organized as follows. Section 2 presents the mixture model of Gaussian copulas
for clustering, its links with the existing models and its contribution to the visualization of mixed
variables. Section 3 is devoted to the parameter estimation in a Bayesian framework. Section 4
illustrates the model by a real data set clustering. Section 5 concludes this work.

2 Mixture model of Gaussian copulas

Finite mixture model

Let the vector of e mixed variables x = (x1, . . . , xe) ∈ Rc×X , whose the first c elements are the
set of the continuous variables further denoted by xc, and whose the last d elements are the set
of the discrete variables (integer, ordinal or binary) further denoted by xd, with e = c+ d. Note
that if xj is an ordinal variable with mj modalities, then it uses a numeric coding {1, . . . ,mj}.
Data x are supposed to be drawn by the mixture model of g parametric distributions whose the
probability distribution function (pdf) is written as

p(x;θ) =
g∑

k=1

πkp(x;αk), (1)

where θ = (π,α) and where π = (π1, . . . , πg) groups the proportions of each class k denoted by
πk, and respects the following constraints 0 < πk ≤ 1 and

∑g
k=1 πk = 1, while α = (α1, . . . ,αg)

groups the parameters of each class k denoted by αk.

One-dimensional margins of the components

The margin distribution of xj , for the component k, belongs to the exponential family and has
p(xj ;βkj) for pdf and P (xj ;βkj) for cumulative distribution function (cdf). More precisely, the
margin distribution of each component is a Gaussian (if xj is continuous), Poisson (if xj is
integer) or multinomial (if xj is ordinal) distribution where βkj denotes the usual parameters.
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Dependency model of the components

The model assumes that each component k follows a Gaussian copula whose the correlation
matrix is Γk. We note Φe(.; Γk) the cdf of the e-variate centred Gaussian distribution with
correlation matrix Γk, and Φ−1

1 (.) the inverse cumulative distribution function of univariate
Gaussian variable N1(0, 1). Thus, the cdf of the component k is written as

P (x;αk) = Φe(Φ
−1
1 (u1

k), . . . ,Φ
−1
1 (uek); 0,Γk), (2)

where ujk = P (xj ;βkj), αk = (βk,Γk) and βk = (βk1, . . . ,βke).

Remark 2.1 (Standardized coefficient of correlation per class).
The Gaussian copula provides a robust coefficient of correlation per couple of variables. Indeed,
when both variables are continuous, it is equal to the upper bound of the coefficient of correlation
obtained by all the monotonic transformations of the variables [10]. Furthermore, when both
variables are discrete, it is equal to the polychoric coefficient of correlation [13].

Remark 2.2 (Two latent variables).
The mixture model of Gaussian copulas involves two latent variables: a categorical one using a
condense coding z ∈ {1, . . . , g} denoting the class membership and an e-variate Gaussian one
y = (y1, . . . , ye) ∈ Re. Indeed, if y|z = k ∼ Ne(0,Γk) and if xj = P−1(Φ1(yj);βkj), ∀j =
1 . . . , e, then the component k is a Gaussian copula whose the cdf is defined in (2). Thus, we
deduce the following generative model

• Class membership sampling: z ∼Mg(π1, . . . , πg)

• Gaussian copula sampling: y|z = k ∼ Ne(0,Γk)
• Observed data deterministic computation of x as such xj = P−1(Φ1(yj);βkj).

Probability distribution function of the components

We introduce the function Ψ(xc;αk) =
Ä
xj−µkj
σkj

; j = 1, . . . , c
ä

and the space of the antecedents

of xd in the class k, by Sk = Sc+1
k × . . . × Sek, where Sjk is the interval defined by Sjk =

]b	k (xj), b⊕k (xj)], for j = c + 1, . . . , e, whose the bounds are b	k (xj) = Φ−1
1 (P (xj − 1;βkj)) and

b⊕k (xj) = Φ−1
1 (P (xj ;βkj)). The pdf of the component k is written as

p(x;αk) = p(xc;αk)p(x
d|xc;αk) (3)

=
φc(Ψ(xc;αk); 0,Γkcc)∏c

j=1 σkj

ˆ
Sk
φd(u;µd

k ,Σ
d
k)du, (4)

where Γk =

ñ
Γkcc Γkcd

Γkdc Γkdd

ô
is decomposed into sub-matrices, for instance Γkcc is the sub-matrix

of the first c rows and columns of Γk, where µd
k = ΓkdcΓ−1

kccΨ(xc;αk) is the conditional mean
of yd and where Σd

k = Γkdd − ΓkdcΓ−1
kccΓkcd is its conditional covariance matrix.

Heteroscedastic and homoscedastic versions of the model

The trade off between the bias and the variance of the model may be improved by adding some
constraints on the parameter space. Thus, we propose an homoscedastic version of the mixture
model of Gaussian copulas by assuming the equality between the correlation matrices, so

Γ1 = . . . = Γg. (5)
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The heteroscedastic (resp. homoscedastic) mixture model of Gaussian copulas requires νHe

(respectively νHo) parameters where

νHe = (g − 1) + g

Ç
e(e+ 1)

2
+ d

å
and νHo = (g − 1) +

e(e− 1)

2
+ g(e+ d). (6)

Related models

The mixture model of Gaussian copulas allows to generalize many classical mixture models,
among them one can cite the four followers.

• Obviously, if the correlation matrices are diagonal (i.e. Γk = I, ∀k = 1, . . . , g), then the
mixture model of Gaussian copulas is equivalent to the locally independent mixture model.

• If all the variables are continuous (i.e. c = e and d = 0), then both versions of the
heteroscedastic and homoscedastic mixture models of Gaussian copulas are equivalent to
the heteroscedastic and homoscedastic multivariate Gaussian mixture models [1].

• The mixture model of Gaussian copulas is linked to the binned Gaussian mixture model.
For instance, it is equivalent, when data are ordinal, to the mixture model of [5]. In such
a case and under the true model assumption, this model is stable by fusion of modalities.

• When the variables are continuous and ordinal, the mixture model of Gaussian copulas
is a new parametrization of model proposed by Everitt [4] which directly estimates the
space Sk containing the antecedents of xd and not the margin parameters. The maximum
likelihood inference is performed via a simplex algorithm dramatically limiting the number
of ordinal variables. Note that our approach detailed in Section 3 avoids this drawback.

Data visualization per class: a by-product of Gaussian copulas

We can use the model parameters to perform a visualization of the individuals per class and
to bring out the main intra-class dependencies. Thus, for the class k, we firstly compute the
coordinates E[y|x, z = k;αk] and we secondly project them on the principal component analysis
space of the Gaussian copula of the component k, obtained by the spectral decomposition of Γk.
The individuals drawn by the component k follow a centred Gaussian distribution in the factorial
map (so they are close to the origin) while the other ones have an expectation different to zero
(so they are farther from the origin). Finally, the correlation circle summarizes the intra-class
correlations. The application given in Section 4 illustrates this phenomenon.

3 Bayesian inference

We observe a sample x = (x1, . . . ,xn) composed by n individuals xi ∈ Rc × X assumed to be
independently drawn by a mixture model of Gaussian copulas. We assume the independence
between the prior distributions and we select the classical conjugate prior distributions for each
parameters. The following Gibbs sampler allows to perform the inference, in a Bayesian frame-
work, since its stationary distribution is p(θ, z|x). Thus, it samples a sequel of parameters
according to the marginal posterior distribution p(θ|x). This algorithm relies on two instrumen-
tal variables: the class membership of the individuals of x denoted by z = (z1, . . . , zn) and the
Gaussian vector of the individuals denoted by y = (y1, . . . ,yn).
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Algorithm 3.1 (The Gibbs sampler).
Starting from an initial value θ(0), its iteration (r) is written as

z(r),y(r−1/2) ∼ z,y|x,θ(r−1) (7)

β
(r)
kj ,y

j(r)
[rk] ∼ βkj ,y

j
[rk]|x,y

↑j(r)
[rk] , z

(r),β
↑j(r)
k ,Γ

(r−1)
k (8)

π(r) ∼ π|z(r) (9)

Γ
(r)
k ∼ Γk|y(r), z(r), (10)

where y[rk] = y{i:z(r)
i =k}, y

↑j(r)
i = (y

1(r)
i , . . . , y

j−1(r)
i , y

j+1(r−1/2)
i , . . . , y

e(r−1/2)
i ) and β

↑j(r)
k =

(β
(r)
k1 , . . . ,β

(r)
kj−1,β

(r−1)
kj+1 , . . . ,β

(r−1)
ke ).

Remark 3.2 (Twice sampling of the Gaussian variable).
The Gaussian variable y is twice generated during one iteration of the Gibbs sampler but, obvi-
ously, its stationary distribution stays unchanged. This twice sampling is mandatory because of
the strong dependency between y and z, and between yj[rk] and βkj.

Remark 3.3 (On the Metropolis-within-Gibbs sampler).
If the samplings from (9) and (10) are classical, the two other ones are more complex. Indeed,
the sampling from (7) involves to compute the conditional probabilities of the class member-
ships, so to compute the integral defined in (4). If the number of discrete variables is large, this
computation is time consuming. However, the sampling from (7) can be efficiently performed
by one iteration of a Metropolis-Hastings algorithm having p(zi,yi|xi,θ(r−1)) as stationary dis-
tribution. Concerning the sampling according to (8), it is performed in two steps. Firstly,
the margin parameter is sampled by one iteration of a Metropolis-Hastings algorithm having

p(βkj |x,y↑j(r)[rk] , z
(r),β

↑j(r)
k ,Γk) as stationary distribution. Secondly, the latent Gaussian vector

is sampled from its full conditional distribution.

Remark 3.4 (Initialization of the algorithm).
The algorithm is initialized on the maximum likelihood estimate of the locally independent model.
Thus, it is initialized in a point close to the maximum of the posterior distribution if the variables
are not strongly intra-class correlated.

4 Application: clustering of Portuguese wines

The data The data set [3] contains 6497 variants of the Portuguese “Vinho Verde” wine (1599
red wines and 4898 white wines) described by eleven physiochemical continuous variables (fixed
acidity, volatile acidity, citric acidity, residual sugar, chlorides, free sulfur dioxide, total density
dioxide, density, pH, sulphates, alcohol) and one integer variable (quality of the wine evaluated
by experts). The kinds of the wines (red or white) are hidden and we cluster the data set by
excluding of the study one white wine (number 4381) since it is an outlier.

Model selection We estimate the three mixture models (locally independent one, the het-
eroscedastic and homoscedastic versions of the mixture model of Gaussian copulas) for different
numbers of classes. The estimate is obtained by taking the mean of the sampled parameters
computed after 1000 iterations. The model selection is performed by using two information
criteria (BIC criterion [14], ICL criterion [2]) computed on the maximum a posteriori estimate.
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We present the values of both used information criteria in Table 1 which distinctly select the
bi-component heteroscedastic mixture model of Gaussian copulas.

g 1 2 3 4 5 6

BIC loc. indpt. -63516 -61069 -61010 -55967 -60250 -57163
hetero. -44675 -34520 -39724 -44692 -44484 -48349
homo. -44675 -39372 -38289 -45209 -43217 -42417

ICL loc. indpt. -63516 -61229 -61365 -56310 -60726 -58138
hetero. -44675 -34688 -40176 -44933 -44758 -48959
homo. -44675 -39607 -38791 -45380 -43345 -42667

Table 1: Values of the BIC and ICL criteria for the three mixture models estimated.

Partition comparison Table 2 presents the values of the adjusted Rand index and the confu-
sion matrices in order to compare the relevance of the estimated partitions according to the true
one (wine color). These results confirm that the bi-component heteroscedastic Gaussian copula
mixture model is the best one among the competing models since its partition is the closest to
the true one.

white red

class 1 4359 9
class 2 538 1590

(a) Adj. Rand.: 0.68

white red

class 1 2441 12
class 2 1911 7
class 3 545 1580

(b) Adj. Rand.: 0.30

white red

class 1 2547 1561
class 2 2007 35
class 3 275 3
class 4 68 0

(c) Adj. Rand.: 0.00

Table 2: Adjusted Rand indices and confusion matrices related to: (a) the bi-component het-
eroscedastic Gaussian copula mixture; (b) the tri-component homoscedastic Gaussian copula
mixture; (c) the four-component locally independent mixture.

Visualization Figure 1 displays the individuals in a PCA map of both classes estimated by
the bi-component free mixture model of Gaussian copulas. According to these scatter-plots,
classes are well-separated.

Interpretation of the best model The following interpretation is based on the margin
parameters and on the intra-class correlation matrices summarized in Figure 2. The majority
class (π1 = 0.59) is principally composed by white wines. This class is characterized by lower
rates of acidity, pH, chlorides and sulphites than them of the minority class (π2 = 0.41) which
is principally composed by red wines. The majority class has larger values for both sulfur
dioxide measures and the alcoholic rate. Note than the wine quality of both classes is similar
(β1quality = 5.96 and β2quality = 5.58). The majority class is characterized by a strong correlation
between both sulfur measures opposite to a strong correlation between the density and acidity
measures. The minority class underlines that the wine quality is dependent with a larger alcoholic
rate and small values for the chlorides and acidity measures.
Conclusion On this data set, the mixture model of Gaussian copulas overcomes the locally
independent model (reduction of the number of classes, better values of the information criteria,
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Figure 1: Visualization of the partition by the bi-component heteroscedastic mixture model of
Gaussian copulas (Class 1 is drawn by black circles and Class 2 by red triangles).
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Figure 2: Summary of the bi-component heteroscedastic mixture model of Gaussian copula.
Class 1 is drawn in black and Class 2 in red. (fixed acidity: fxd., volatile acidity: vlt., citric
acidity: ctr., residual sugar: rsd., chlorides: chlr., free sulfur dioxide: fr., total density dioxide:
tt., density: dnst., pH, sulphates: slph., alcohol: alch., quality: qlty.).

estimated partition closest to the true one). Based on the individual scatter-plots in the model
PCA, the estimated classes are relevant since they are well-separated. Finally, the estimation
of the intra-class dependencies helps the interpretation since it underlines the link between the
wine quality of the minority class and its physiochemical properties.

5 Conclusion and future extensions

The proposed model uses the properties of copulas: independent choice of the margin distribu-
tions and of the dependency relations. Thus, the mixture model of Gaussian copulas allows to
fix classical margins belonging to the exponential family for the component margin distributions
and takes into account the intra-class dependencies. An approach based on a PCA per class
of the Gaussian latent variable allows to summarize the main intra-class dependencies and to
visualize the data by using the model parameters. The application points out that this model
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is sufficiently flexible to efficiently fit data and that it can reduces the biases of the locally inde-
pendent model (for instance the reduction of the number of classes). The number of parameters
increases with the number of classes and variables especially because of the correlation matrices
of the Gaussian copulas. To avoid this drawback, we propose an homoscedastic version of the
model assuming the equality between the correlation matrices. This model may better fit the
data than the heteroscedastic Gaussian mixture models.
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Abstract. Quality Control has lost impetus in the last decades toward managerial features that
evade the intricacies of Statistics, but these can, in the computer age, be made comfortable,
namely through the Internet. In Quality Control, acceptance sampling (AS) by variables (as
opposed to by attributes) often assumes, as we do here, that the quality characteristic is a
Gaussian variable, and has, as decision criterion on the lot, the comparison of the quality index
with the acceptance constant (Form 1). This criterion is simple and applies only to the case,
addressed here, of a single specification limit, but can be confronted with another (Form 2),
mathematically equivalent, to which attention is drawn in this paper. In this latter, the decision
is based on the comparison of the estimated ”lot percent defective” with its maximum, critical
value. Transforming the former criterion into the latter is done by the incomplete beta ratio
function, for the computing of which we prepared a computer program and an open webpage. So
nowadays either criterion becomes easy to be adopted by the decision maker, with the advantage
going to the latter, Form 2, which presents intuitive results.

Keywords. Quality Control, acceptance sampling, inspection by variables, Gaussian variable,
international standards, “Form 2”.

1 Fundamentals and scope

Quality is currently a general concern in every productive activity, but in the last few decades it
has lost impetus toward other managerial features that evade the rigorous facets and intricacies
of Statistics, as acutely observed, e.g., by Gunter in a blunt article ([8]). Otherwise, there is



128 Sampling inspection via estimation of the lot fraction defective

no motive why nowadays the harder, computation-based aspects of Quality should not be more
easily made available to the users, as we propose in this study, namely through the Internet.

From a statistical standpoint, Quality Control is usually divided in two broad categories,
acceptance sampling (AS), and statistical process control (SPC), the former to be applied in
the frontiers of the production system and the latter inside of the system. In this regard, an
argument used against AS is its uselessness due to the stable interest in SPC, together with the
cooperation with the suppliers, both of which indeed reduce the need for AS. Nevertheless, the
fact that AS proper continues to be necessary is attested, not just by the many classical studies,
e.g., [13], [15], but by the recent update (in 2013) of the successor to the original Mil-Std 414
([12]), the corresponding ISO standard ([10]).

Acceptance sampling decides on the quality of a lot from the observation of a random sample
taken from it, and deals with variables that can be discrete (control by attributes, counting
nonconformities) or continuous (control by variables). In this paper, we address the control by
variables of continuous, Gaussian variables with a single specification limit, as treated in the
applicable international standards for AS by variables ([2]).

The standards establish two mathematically equivalent decision criteria on the lot for a single
specification limit, the so-called “Form 1” and “Form 2”. In the former, a comparison is made
between the quality index, Q, and the acceptance constant, k, acceptance occurring iff Q ≥ k;
and in the latter (mandatory for double specification limits), a comparison is made between the
estimated lot percent defective (fraction nonconforming), $, and its maximum, M , acceptance
occurring iff $ ≤ M . The procedure in Form 1 is simple to apply, but can be confronted
with the richer information yielded by Form 2, to which attention is drawn in this paper. This
becomes computationally accessible, as will be seen, and is generally advantageous, namely, to
non-specialized decision makers.

2 Sampling plan

Underlying an AS procedure is a certain sampling plan, which gives, as is well known, the size
of the random sample to be drawn, n, and the critical value of the test statistic, k, leading to
the criterion to accept or reject the lot of given size, under inspection. In order to try to avoid
the rejection of “good” lots (Type I error), and the acceptance of “bad” lots (Type II error),
under Form 1, the calculation of n and k results from (e.g., [3], [6]) the resolution of the classical
system of inequalities

{
Pac($ = AQL) > 1− α
Pac($ = LTPD) < β,

(1)

where: Pac is the probability of acceptance (a function of n and k); AQL, “Acceptance Quality
Limit”, is the maximum fraction defective (nonconforming) that corresponds to the producer’s
risk, α; and LTPD, “Lot Tolerance Percent Defective”, is the maximum fraction defective that
corresponds to the consumer’s risk, β. Note that n has, of course, to be integer. (The nomen-
clature in Quality Control bears the tradition of informal terms, such as “percent” instead of
“fraction”, used since its inception in the early 20.th century, to make it easier for the laymen to
apply it.) The following parameters are stipulated according to the situation (example values):
AQL = 1.5%, α = 5%, LTPD = 12%, and β = 10%.
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Regarding Form 1, examplified here for the (arbitrarily chosen) lower specification limit, the
lot acceptance criterion is given by the following condition, in which X̄ and S are the sample
average and standard deviation, respectively.

QL =
X̄ − L
S

≥ k (2)

where QL is the quality index, i.e., Q (general) referred to the lower specification limit, L, and
k the acceptance constant. In this equation, the equals sign —which is meaningless in terms of
probability— is important because, upon application, the comparison is made with Q rounded
according to the significant figures in k. For the upper specification limit, the numerator is
changed to U − X̄, for practical convenience (so that a higher, positive, quality index always
means better quality).

In order to transform the quality index, Q (typically used to decide lot acceptance when
the quality characteristic is a Gaussian variable) into the estimated lot percent (proportion)
defective, $, the equation presented below is used, leading to Form 2. While, as mentioned, in
Form 1, the lot is accepted iff Q ≥ k, in Form 2 it is accepted iff $ ≤ M , with M a critical
value, defined below, Form 2 being more intuitive to the non-specialized decision makers.

Form 2, optional in the case of a single specification limit, whether lower, L, or upper, U
(as mentioned, mandatory for two limits), comes from the transformation ([14]) of both terms
of the comparison in Eq. 2 into an estimate of the lot fraction defective, $L, depending on n,
and its critical value, M , i.e., maximum acceptable fraction, compatible with AQL and n. The
transformation comes from the application to each side of Eq. 2 ([9], [14]) of

$ = F

Å
x,

n

2
− 1,

n

2
− 1

ã
(3)

where F represents the “incomplete beta ratio function”, i.e., the cumulative distribution func-
tion (’cdf’), with n > 2 (n = 2 making the two parameters 0 in Eq. 3), and with (equal)
parameters n

2 − 1, and x is

x = max(0,
1

2
− 1

2
Q

√
n

n− 1
) (4)

From Eqs. 2 and 3 will come the alternative criterion of acceptability, for a single specification
limit (in this case, the lower one),

$L ≤ML. (5)

When the two specification limits are present (not addressed in this article), the acceptance
criterion becomes the following three simultaneous conditions ([9]):

$L ≤ML

$U ≤MU

$L +$U ≤ max(ML,MU ) (6)

In the criterion in Eq. 5 or the set of conditions in Eq. 6 (besides having the third condi-
tion), the decision on the lot is intuitive, as comparisons are simply between percent (fraction)
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Figure 1: Excerpt from the table in [10] to transform Q (or k) into $ (or M).

defectives instead of values of Q and k, all the more dependent on n. These calculations are
shown below and made available on our website.

3 Computation

The transformation of values of the quality index, Q, into $ (and the corresponding critical
value of Q, the acceptance constant, k, into M) is made available in the standard through a
quite extensive table (ten pages), of which a small excerpt is shown in Figure 1.

For further verification of the computation done in our website, some values taken from the
complete table are shown in Table 1.

Q n = 5 n = 10 n = 35

1.50 3.80 5.87 6.50
1.65 1.28 3.95 4.72
1.75 0.19 2.93 3.72
1.80 0 2.49 3.35
2.00 0 1.17 2.02
2.50 0 0.04 0.45

Table 1: Values (%) from the table in [10] for verification.

In order to verify the values in Table 1, the computation of $ as a function of Q for a
given n can be done at our dedicated webpage ([7]), through a computer program of ours that
implements Eq. 3: the values are thoroughly confirmed.
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Notice that the values of M , critical values of $, are themselves the transformation of the
acceptance constants, k (given in the standard). These constants are, of course, critical values
of Q, the quality index, which, in the form Q

√
n, follows a noncentral t-distribution. This is not

addressed here, but can be computed in one of our webpages ([5]) by Monte Carlo simulation
and directly.

The “incomplete beta ratio function” (Eq. 3) is usually denoted by Ix(α, β), and is given by
the following expression,

Ix(α, β) =
Γ(α+ β)

Γ(α)Γ(β)

ˆ x

0
tα−1(1− t)β−1 dt (7)

where α and β are parameters. The integral in Eq. 7 must be computed numerically, but becomes
easy as it benefits from some peculiarities: (a) the Γ function, in this application, has an integer
or half-integer argument (as α = β = n

2 − 1), so its computing is straightforward (factorials or
multiples of

√
π); (b) the integrand is “well behaved”; and, (c) thus, a “simple Euler” or

Simpson’s rule integration can be used. As the computing of the function is necessary for many
(successive) values of x, a progressive form of the numerical integration is computationally
convenient, which (generally overlooked in the common literature) was done according to our
previous practice ([4]). This progressive form was precisely necessary to make Figure 2.

The webpage mentioned ([7]) is open to anyone wishing to do the transformation, showing
how acceptance sampling by variables Form 2 can be easily used.

Figure 2: Variation of $ with Q for n = 5, 10, 35 (respectively, right hand side curves upwards).

Conclusions

Quality Control (QC) has lost impetus towards many current managerial directions, which
try to avoid the intricacies of Statistics. The current availability of computing power, namely
through the Internet, makes QC accessible, even to non-specialists. Thus, of the two branches
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of statistical QC, acceptance sampling and statistical process control, the former can now be
more approachable.

The application of AS by variables to the typical Gaussian random variable, according to the
generally adopted international standards, was shown in its more intuitive and informative“Form
2”, where clear, simple percentages are made available to the decision maker. The underlying
computations were mentioned, and we prepared an open website available to anyone wishing
to transform a quality index, Q, into $, an estimate of the lot percent defective (fraction
nonconforming).
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Estimation of the weighted kappa
coefficient subject to case-control
design

José Antonio Roldan-Nofuentes, University of Granada, jaroldan@ugr.es

Abstract. Assessment of the accuracy of a binary diagnostic test subject to a case-control
sample is frequent in clinical practice. The estimation of the sensitivity and the specificity of
the likelihood ratios of the diagnostic test is easily carried out as it consists of the estimation
of binomial proportions and of ratios of binomial proportions respectively. Nevertheless, the
estimation of parameters that depend on the disease prevalence is more complex and requires,
from a frequentist perspective, knowledge of the disease prevalence. In this article, we study the
estimation of the weighted kappa coefficient of a binary diagnostic test subject to a case-control
sample. The weighted kappa coefficient is a parameter that depends on the sensitivity and the
specificity of the diagnostic test, on the disease prevalence and the relative importance between
the false negatives and the false positives. The estimation of this parameter requires knowledge
of a value of the disease prevalence. Two confidence intervals are proposed which are based on
the asymptotic normality of the estimator of the parameter: a Wald-type interval and another
one based on the logit transformation. Simulation experiments were carried out to study the
asymptotic coverage of these intervals. The results obtained were applied to a real example.

Keywords. Binary diagnostic test, Case-control design, Weighted kappa coefficient

1 Introduction

The most common parameters to assess the accuracy of a binary diagnostic test are the sensitivity
and specificity, the likelihood ratios and the positive and negative predictive values. Moreover,
when the losses of an erroneous classification with the diagnostic test are considered, the accuracy
of the diagnostic test is measured in terms of the weighted kappa coefficient [1, 2]. The weighted
kappa coefficient depends on the sensitivity (Se) and the specificity (Sp) of the diagnostic test, on
the disease prevalence (p) and the weighting index (c). The weighting index c is a measure of the
relative importance between the false negatives and the false positives. In a case-control design,
the estimation of the sensitivity (specificity) is made from the sample of diseased (non-diseased)
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individuals applying methods for binomial proportions. The positive and the negative likelihood
ratios are estimated from both samples applying methods to estimate the ratio of independent
binomial proportions. Nevertheless, the estimation of the positive and the negative predictive
value requires, from a frequentist perspective, knowledge of the disease prevalence [3]. Mercaldo
et al [3] studied the estimation of the predictive values of a binary diagnostic test subject to this
type of sampling. . In this article, we study the estimation of the weighted kappa coefficient
subject to case-control design, assuming that the disease prevalence is known. We have studied
two asymptotic confidence intervals for the weighted kappa coefficient: a Wald-type interval and
another interval based on the logit transformation. This study is organized as follows. In Section
2, we describe the weighted kappa coefficient. In Section 3, the two confidence intervals to be
studied are presented, simulation experiments are carried out to study the asymptotic coverage
of these intervals subject to case-control design and we describe a programme in R to solve this
problem of estimation. In Section 4, the results are applied to a real example, and in Section 5
the results obtained are discussed.

2 Weighted kappa coefficient

Let L be the loss that occurs when for a diseased individual the result of the diagnostic test is
negative, and let L’ be the loss that occurs when for a non-diseased individual the result of the
diagnostic test is positive. Loss L is associated with a false negative and loss L’ is associated
with a false positive. Losses L and L’ are equal to zero if all of the individuals are classified
correctly by the diagnostic test. For example, let us consider the diagnosis of breast cancer using
as a diagnostic test a mammogram. If the mammogram is positive for a woman who does not
have breast cancer, the woman will undergo a biopsy which will finally be negative. Loss L’ will
be determined from the economic costs of the diagnosis and also taking into account the risks,
stress, etc, caused for the woman. If the mammogram is negative for a woman who has breast
cancer, the woman may be diagnosed at a later stage, but the cancer may spread, reducing the
possibility of successful treatment. In this situation, the cancer may spread and the chances
of successful treatment will be reduced. Loss L will be determined from these considerations.
Therefore, these losses are not only measured in economic terms but also with reference to other
considerations, and for this reason in clinical practice it is not possible to determine the value of
such losses [1]. Let c = L/(L+ L′) be the weighting index, then the weighted kappa coefficient
is expressed as [1, 2]

κ(c) =
p(1− p)Y

p(1−Q)c+ (1− p)Q(1− c) , (1)

where Q = pSe + (1− p) (1− Sp) and Y = Se + Sp − 1 is the Youden index. The weighting
index is a measure of the relative loss between the false positives and the false negatives and
varies between 0 and 1. If L = 0 then c = 0 and the weighted kappa coefficient is

κ(0) =
Sp− (1−Q)

Q
. (2)

If L′ = 0 then c = 1 and the weighted kappa coefficient is

κ(1) =
Se−Q
1−Q . (3)

COMPSTAT 2014 Proceedings
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The coefficients κ(1) and κ(0) are the chance-corrected sensitivity and the chance-corrected
specificity respectively. If L = L′ then c = 0.5 and the weighted kappa coefficient (called the
Cohen kappa coefficient) is

κ(0.5) =
2κ(0)κ(1)

κ(0) + κ(1)
. (4)

The weighted kappa coefficient can be written as

κ(c) =
p(1−Q)cκ(1) + (1− p)Q(1− c)κ(0)

p(1−Q)c+ (1− p)Q(1− c) . (5)

In practice, losses L and L’ cannot be determined, and therefore the clinician usually allocates
values to the weighting index depending on their knowledge of the relative importance of false
positives and false negatives. Thus, for example, if the clinician decides that the false positives
are twice as important as the false negatives, then the clinician will allocates the value 1/3 to
the weighting index c. The values of the weighted kappa coefficient vary between -1 and 1. If
the value of the weighted kappa coefficient is lower than 0, then the results of the diagnostic
test must be interchanged and therefore the analysis must be limited to positive values of the
weighted kappa coefficient.

3 Estimation subject to case-control sampling

Let us consider a binary diagnostic test which is applied to two random samples, one of n1 dis-
eased individuals (case sample) and another one of n2 non-diseased individuals (control sample).
In Table 1 we can see the frequencies obtained when applying the diagnostic test to two samples.

Sample Positive Test Negative Test Total

Case s1 s0 n1

Control r1 r0 n2

Table 1: Observed frequencies.

The estimators of sensitivity and specificity of the diagnostic test are

Ŝe =
s1

n1
, (6)

and

Ŝp =
r0

n2
. (7)

Assuming that the disease prevalence p is known, the estimator of the weighted kappa coefficient
is [4]

κ̂(c) =
p(1− p)Ŷ

p(1− Q̂)c+ (1− p)Q̂(1− c)
, (8)
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where Ŷ = Ŝe+ Ŝp−1 and Q̂ = pŜe+(1−p)(1− Ŝp). Applying the delta method, the estimated
variance of κ̂(c) is

V̂ ar (κ̂(c)) = 1

[c{1−Ŝp+p(Ŷ−1)}−(1−p){1−Ŝp+pŶ }]4×ñ
(1−p)2p2{(1−p)(1−Ŝp)+c(Ŝp−(1−p))}2

Ŝe(1−Ŝe)
n1

+

(1−p)2p2{c(p−Ŝe)+Ŝe(1−p)}2
Ŝp(1−Ŝp)

n2

ô
We now propose two confidence intervals (CIs) for the weighted kappa coefficient of a binary

diagnostic test subject to case-control sampling.

Wald-type confidence interval

Based on the asymptotic normality of the weighted kappa coefficient, the Wald-type CI is

κ̂(c)± z1−α/2 ×
»
V̂ ar(κ̂(c)), (9)

where z1−α/2 is the 100(1− α/2)th percentile of the normal standard distribution.

Logit confidence interval

In Statistics, it is common for a parameter not to be studied directly but instead one of its trans-
formations is studied. Thus, for example, for a binomial proportion we can obtain a confidence
interval based on the logit transformation [5]. Since the values of the weighted kappa coefficient
are limited to values between 0 and 1 (as is explained in Section 2), a logit transformation can
be used to obtain a confidence interval for this parameter. Based on the asymptotic normality
of κ̂(c) , its logit transformation, logit(κ̂(c)) , has a normal distribution with mean logit(κ(c)).
Then the 100(1− z1−α/2)% confidence interval for the logit is

logit(κ̂(c))± z1−α/2 ×
»
V̂ ar(logit(κ̂(c))), (10)

and applying the delta method, the estimator of the variance of logit(κ̂(c)) is

V̂ ar (logit (κ̂(c))) = 1

[Ŷ {(1−p)(1−c)Ŝp−cp(1−Ŝe)−(1−p)(1−c)}]2×ñ
{(1−p)(1−c)+(c−(1−p))Ŝp}2

Ŝe(1−Ŝe)
n1

+
{(c−(1−p))Ŝe−cp}2

Ŝp(1−Ŝp)
n2

ô
.

Finally, the logit CI for the weighted kappa coefficient is

exp[logit(κ̂(c))± z1−α/2

»
V̂ ar(logit(κ̂(c)))]

1 + exp[logit(κ̂(c))± z1−α/2

»
V̂ ar(logit(κ̂(c)))]

, (11)

Simulation experiments were carried out to study the asymptotic coverage of these two CIs.
In order to do so, 10000 binomial samples were generated, both of case samples and control
samples, with different sample sizes and from the different values of sensitivity and specificity.
As prevalence, different values were taken (p = 0.10, 0.25, 0.50) and as the weighting index
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the values c = 0.1, 0.5, 0.9 were taken. . In Table 2, the results are shown for Se = 0.90 ,
Sp = 0.80 and p = 0.10, and in Table 3 the results are shown for Se = 0.70 , Sp = 0.90 and
p = 0.25. The simulation experiments showed that the CI logit has a better average coverage
and average width than the Wald CI. The coverage of the logit interval fluctuates around the
coverage of 95%, whereas that of the Wald interval is usually lower than 95%. A programme
in R has been written, called “ewkcccs” (Estimation of the Weighted Kappa Coefficient subject
to a Case Control Study), in order to solve this problem of estimation. The programme is
available at the following website: “http://www.ugr.es/~bioest/software.htm#Potros”. The
programme runs with the command“ewkcccs(s1,s0,r1,r0,cindex,p)”when the confidence intervals
are calculated to 95% of confidence, and where si and ri are the frequencies observed, cindex
is the value of the weighting index (0 ≤ cindex ≤ 1) and p is the disease prevalence; and the
programme runs with the command “ewkcccs(s1,s0,r1,r0,cindex,p,conflevel)” when the intervals
are calculated to 100conflevel%.

n1 n2 c Coverage Wald CI Length Wald CI Coverage Logit CI Length Logit CI

50 50 0.1 0.937 0.301 0.956 0.293
50 50 0.5 0.931 0.339 0.955 0.327
50 50 0.9 0.934 0.274 0.953 0.269
50 100 0.1 0.938 0.211 0.950 0.209
50 100 0.5 0.944 0.245 0.952 0.241
50 100 0.9 0.940 0.226 0.952 0.223
100 50 0.1 0.940 0.299 0.956 0.291
100 50 0.5 0.940 0.333 0.956 0.322
100 50 0.9 0.941 0.248 0.954 0.244
100 100 0.1 0.942 0.209 0.950 0.207
100 100 0.5 0.945 0.239 0.952 0.234
100 100 0.9 0.948 0.194 0.954 0.193

Table 2: Results of the simulation experiments (I).

4 Example

The results were applied to the study made by Li et al [6] on the diagnosis of Alzheimers disease
using as a diagnostic test the genotype ApoE.e4. In order to do so, the authors applied the
diagnostic test to a sample of 418 individuals with Alzheimers disease (the test was positive for
240 of them), and they also applied the diagnostic test to a sample of 375 individuals who did not
have Alzheimers disease (the test was negative for 288 of them). Assuming that the prevalence
of Alzheimers disease is 50% [3], in Table 4 we can see the estimations of the weighted kappa
coefficient and the CIs for different values of the weighting index. When the weighting index is
higher than 0.5, the beyond chance agreement between the diagnostic test and the disease takes
a mediocre value (at 95% confidence). When the weighting index is lower than 0.5, beyond
chance agreement between the diagnostic test and the disease takes a mediocre to moderate
value (at 95% confidence) depending on the value assigned to the c index.
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n1 n2 c Coverage Wald CI Length Wald CI Coverage Logit CI Length Logit CI

50 50 0.1 0.922 0.427 0.957 0.407
50 50 0.5 0.942 0.327 0.959 0.317
50 50 0.9 0.935 0.301 0.957 0.293
50 100 0.1 0.930 0.320 0.951 0.310
50 100 0.5 0.937 0.273 0.954 0.267
50 100 0.9 0.939 0.291 0.953 0.283
100 50 0.1 0.920 0.418 0.950 0.399
100 50 0.5 0.935 0.294 0.951 0.286
100 50 0.9 0.947 0.227 0.957 0.223
100 100 0.1 0.932 0.308 0.953 0.299
100 100 0.5 0.939 0.234 0.950 0.230
100 100 0.9 0.940 0.213 0.949 0.210

Table 3: Results of the simulation experiments (II).

c κ̂(c) 95% Wald CI 95% Logit CI

0.1 0.41 0.33-0.48 0.33-0.48
0.2 0.39 0.31-0.46 0.32-0.46
0.3 0.37 0.30-0.44 0.31-0.44
0.4 0.36 0.29-0.42 0.29-0.42
0.5 0.34 0.28-0.41 0.28-0.41
0.6 0.33 0.27-0.39 0.27-0.39
0.7 0.32 0.26-0.38 0.26-0.38
0.8 0.31 0.25-0.37 0.25-0.37
0.9 0.30 0.24-0.35 0.24-0.36

Table 4: Results from the study of Li et al.

5 Conclusions

The estimation of the parameters of a diagnostic test that depend on the disease prevalence is
conditioned by the type of sampling. When case-control sampling is used, it is necessary to know
the value of the disease prevalence, since this cannot be estimated from the study itself. In this
article, we have studied two approximate confidence intervals for the weighted kappa coefficient
of a diagnostic test subject to this type of sampling, and it is obtained that the logit interval
performs better than the Wald type interval in terms of coverage and width.
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The jackknife estimate of variance
for transition probabilities in the
non-Markov illness-death model
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Abstract. Multi-state models are often used to represent the individuals’ progress along a cer-
tain disease. The estimation of transition probabilities is an important goal in such a setting. The
progressive illness-death model is an important multi-state model which has many applications
in medical research. Non-parametric estimators of transition probabilities for the non-Markov
illness-death model were recently introduced as an alternative to the Aalen-Johansen estimator,
which may be inconsistent when the Markov assumption is violated. In this work, the problem
of estimating the variance of these transition probabilities is discussed. The jackknife approach
is considered to this end. A consistency result is established, and the finite-sample performance
of the jackknife estimator is investigated through simulations. A real medical dataset is included
for illustration purposes.

Keywords. Censored data, Illness-death model, Jackknife estimator, Kaplan-Meier.

1 Introduction

Multi-state models are models for stochastic processes which represent the states possibly visited
by an individual along time, and the allowed transitions among them. They often involve as-
sumptions on the joint distribution of the successive transition times, the influence of covariates
on transition intensities, and so on. Multi-state models have become a key tool for data anal-
ysis and inferences in medical research; existing reviews include Commenges (1999), Hougaard
(1999), Andersen and Keiding (2002), or Meira-Machado et al. (2009). One important target in
applications is the estimation of transition probabilities. Nonparametric estimation of transition
probabilities in a general multi-state model goes back to Aalen and Johansen (1978). The Aalen-
Johansen estimator is consistent for Markov models; however, in practice, Markov assumption
may be violated, and the Aalen-Johansen estimator may show a systematic bias ([3], [8]).

Meira-Machado et al. (2006) introduced an alternative estimator of the transition matrix
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for the progressive illness-death model, which does not require the Markov condition. The
progressive illness-death model (or disability model, cfr. Hougaard, 2000) is a very specific
multi-state model, but with many practical applications. It involves three states: ’Healthy’
(state 1), ’Diseased’ (state 2), and ’Dead’ (state 3), and three possible transitions among them:
1→ 2, 2→ 3, and 1→ 3. In this model, states 1 and 2 are transient, while state 3 is absorbing;
note also that ’recovery’ (i.e. transition 2 → 1) is not allowed. Let Z denote the sojourn time
in state 1, and let T denote the absorption time (time to reach state 3 from state 1); thus, the
relevant transition probabilities are, with s < t,

p11(s, t) = P (Z > t|Z > s),

p12(s, t) = P (Z ≤ t < T |Z > s),

and
p22(s, t) = P (T > t|Z ≤ s < T ).

If (Z, T ) are observable, obvious non-Markov estimators for these curves are given by sampling
proportions. The presence of censored trajectories demands however for a more sophisticated
structure; Meira-Machado et al. (2006)’s estimators involve the computation of two Kaplan-
Meier curves: the one pertaining to Z, and that corresponding to T . These estimators are
consistent (regardless the Markov condition) provided that the potential censoring time C is
independent of the process (i.e. of the pair (Z, T )), and that the support of C contains that of
T . See [3] for related estimators and comparative results.

To be specific, and to introduce the main ideas and novelties of this work as soon as possible,
we focus on the transition probability p22(s, t). Let (‹Zi, ‹Ti, δi,∆i), 1 ≤ i ≤ n, be a random
sample of

Ä‹Z, ‹T , δ,∆ä, where
Ä‹Z, ‹Tä are the (possibly) censored versions of (Z, T ), and (δ,∆)

are the corresponding censoring indicators. Let Ŝ(t) be the Kaplan-Meier estimator of S(t) =
P (T > t) (computed from the

Ä‹Ti,∆i

ä
’s) and let Wni be the jump of Ŝ(t) at t = ‹Ti, that is,

Wni =
∆i

(n− i+ 1)

∏i−1
j=1[

n− j
n− j + 1

]∆j , where we assume that the sample is ordered with respect

to the variable ‹T (in the uncensored case these weights simply reduce to Wni = 1/n, 1 ≤ i ≤ n)
Meira-Machado et al. (2006) introduced as a suitable estimator for p22(s, t) the empirical

p̂22(s, t) =

∑n
i=1WniI(‹Zi ≤ s, t < ‹Ti)∑n
i=1WniI(‹Zi ≤ s < ‹Ti) =

∑n
i=1Wniϕs,t(‹Zi, ‹Ti)∑n
i=1Wniϕs,s(‹Zi, ‹Ti) ,

where ϕs,t(u, v) = I(u ≤ s, t < v). This estimator is a quotient of two multivariate Kaplan-
Meier integrals, in the sense of Stute (1993). As such, available asymptotics for multivariate
Kaplan-Meier integrals ([11], [12]) apply. This results in the consistency and the asymptotic
normality of p̂22(s, t) under a number of conditions; in particular, by using the delta method,
the asymptotic variance of p̂22(s, t) is given by

AV ar(p̂22(s, t)) =
σ2

n

where

σ2 ≡ σ2(s, t) = σ11
1

S(ϕs,s)2
+ σ22

S(ϕs,t)
2

S(ϕs,s)4
− 2σ12

S(ϕs,t)

S(ϕs,s)3
, (1)
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S(ϕ) = E [ϕ(Z, T )], and σij ≡ σij(s, t) stands for the limit covariance between two Kaplan-

Meier integrals Sn(ϕi) and Sn(ϕj) of the general form Sn(ϕ) =
∑n
i=1Wniϕ(‹Zi, ‹Ti); here we put

ϕ1 = ϕs,t and ϕ2 = ϕs,s.

In practice, estimation of the limit variance σ2 is required for (e.g.) the computation of
confidence limits for p22(s, t). In (1), the quantities S(ϕs,t) and S(ϕs,s) may be replaced by
the corresponding Kaplan-Meier integrals, Sn(ϕs,t) and Sn(ϕs,s) respectively. Regarding the
estimation of the σij , Azarang et al. (2013) established the consistency of the jackknife approach
(cfr. Shao and Tu, 1995) in the general setting of censored data with multiple covariates, thus
extending previous results in Stute (1996b) for the univariate setting; here, by considering Z

as a ’covariate’ of the absorption time T , their result applies. More specifically, let S
(k)
n (ϕ),

1 ≤ k ≤ n, be the pseudovalues of Sn(ϕ); S
(k)
n (ϕ) is computed like Sn(ϕ) but deleting the k-th

datum (‹Zk, ‹Tk, δk,∆k) from the initial sample. The jackknife estimate of covariance between
Sn(ϕi) and Sn(ϕj), 1 ≤ i, j ≤ 2, is defined as

n‘Covij = (n− 1)
n∑
k=1

(S(k)
n (ϕi)− S(•)

n (ϕi))(S
(k)
n (ϕj)− S(•)

n (ϕj))

where S
(•)
n (ϕ) denotes the average of the S

(k)
n (ϕ)’s. In the definition of n‘Covij , when the largest

datum ‹T(n) is uncensored but the second largest ‹T(n−1) is censored, we artificially set ‹T(n) to be
censored; see [4] for discussion. Introduce the estimator

σ̂2 = n‘Cov11
1

Sn(ϕs,s)2
+ n‘Cov22

Sn(ϕs,t)
2

Sn(ϕs,s)4
− 2n‘Cov12

Sn(ϕs,t)

Sn(ϕs,s)3
.

Put γ0(t) = exp
¶´ t−

0 (1−H)−1dH0
©

where H(t) = P (‹T ≤ t) and H0(t) = P (‹T ≤ t,∆ = 0).
We have the following result.

Theorem 1.1. Under condition

E[− log(1−
√
H(‹T ))γ0(‹T )2∆] <∞

we have with probability one σ̂2 → σ2 as n→∞.

Proof. The result is a consequence of the SLLN for multivariate Kaplan-Meier integrals in Stute
(1993) and the Theorem in Azarang et al. (2013), up to noting that both ϕs,t and ϕs,s are
bounded functions.

Remark. The condition in Theorem 1.1 above ensures that the censoring effects do not
dominate at the right tail of the distribution of T . In the particular case in which both T and
C are exponentially distributed, the condition holds provided that the expected proportion of
censored data is below 0.5.

Theorem 1.1 above suggests to approximate the variance of p̂22(s, t) by σ̂2/n when n is large.
The finite-sample accuracy of this approximation is explored through simulations in Section 2,
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while in Section 3 we illustrate the jackknife method with real medical data. Since the bootstrap
is a popular method to approximate the variance of a given statistic, we include it in our study for
comparison purposes. Note however that, for the best of our knowledge, the consistency of the
bootstrap variance has not been formally established for the setting considered in this paper.
The jackknife method may be used to introduce estimators for the other relevant transition
probabilities in Meira-Machado et al. (2006) too. Since p11(s, t) only involves the marginal
distribution of Z, the consistency of the jackknife approach for this transition probability will
immediately follow from existing results for (univariate) Kaplan-Meier integrals (Stute, 1996b).
The theory for p12(s, t) is not so easily obtained, since the estimator pertaining to this transition
probability depends on two different Kaplan-Meier curves (the ones corresponding to Z and T );
new technical results are required in this case.

2 Simulation study

In this section we investigate the performance of the jackknife estimate of variance for p̂22(s, t)
and we compare the jackknife and bootstrap methods through simulations.

To simulate the data in the illness-death model, the procedure is as follows:

Step 1 V1 ∼ U(0, 1) , V2 ∼ U(0, 1) are independently generated

Step 2 U1 = V1 , U2 = C−1(V2|U1); where C−1(y|x) = −1

θ
log[1 +

y(e−θ − 1)

y + (1− y)e−θx
]

Step 3 Z = −log(U1) , T23 = −log(U2)

Step 4 ρ ∼ Ber(p) is generated independently of Z

Step 5 T = Z + ρT23

This corresponds to Frank’s copula model for the dependence between the (exponentially dis-
tributed) sojourn times in state 1 and 2, Z and T23 respectively, for those individuals visiting
the latter state (ρ = 1). We take θ = 12 which implies a positive association between Z and
T23 (Kendall’s Tau is 0.71). Also, an independent exponential censoring time C is generated,
according to Exp(0.59), Exp(0.20), Exp(0.10) models, which correspond to 50%, 26%, and 15%
of censoring respectively. The simulated models are non-Markov due to the dependence between
Z and T23. In each simulation M = 1000 samples are generated, and sample sizes 50, 150, and
250 are considered. The proportion of individuals going through state 2 is p = 0.7. The true
variance of p̂22(s, t), denoted by σ2

MC , is approximated using Monte Carlo simulation.

In Tables 1-3 we report the mean values of the jackknife variance estimator (σ̂2
J = σ̂2/n)

and the bootstrap variance estimator (σ̂2
B) along the M = 1000 simulations, for the cases

(s, t) = (0.2231, 1.6094), (s, t) = (0.5108, 0.9163), and (s, t) = (0.9163, 1.6094), which correspond
to the 0.2, 0.4, 0.6 and 0.8 quantiles of the Exp(1) model. The bootstrap variance estimator is
defined as the variance of the bootstrap values of p̂22(s, t) along B = 999 bootstrap resamples;
the simple bootstrap which resamples each datum (with replacement) with probability 1/n is
used to this end. In Tables 1-3 we also give n times the bias (n.Bias), n times the standard
deviation (n.SD), and n2 times the mean square error (n2.MSE) of σ̂2

J and σ̂2
B. These three
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n=50 n=150 n=250
CP : 50% 26% 15% 50% 26% 15% 50% 26% 15%

σ2
MC 0.00010 0.00118 0.00027 0.00015 0.00010 0.00008 0.00010 0.00005 0.00004
σ̂2
B 0.00006 0.00012 0.00021 0.00010 0.00009 0.00008 0.00007 0.00005 0.00004
σ̂2
J 0.00255 0.00184 0.00028 0.00010 0.00008 0.00007 0.00008 0.00005 0.00004
n.BiasB -0.00219 -0.05297 -0.00316 -0.00703 -0.00179 -0.00078 -0.00695 -0.00059 -0.00000
n.BiasJ 0.12249 0.03298 0.00038 -0.00665 -0.00276 -0.00142 -0.00633 -0.00105 -0.00066
n.SDB 0.08515 0.13864 0.20454 0.28335 0.21932 0.14351 0.34126 0.13420 0.11000
n.SDJ 3.92920 2.40963 0.20442 0.28988 0.20198 0.13556 0.34612 0.12847 0.10266
n2.MSEB 0.00726 0.02203 0.04185 0.08033 0.04810 0.02059 0.11650 0.01801 0.01210
n2.MSEJ 15.45364 5.80739 0.04179 0.08407 0.04080 0.01838 0.11984 0.01651 0.01054

Table 1: Results of the simulation study for the case (s, t) = (0.2231, 1.6094).

n=50 n=150 n=250
CP : 50% 26% 15% 50% 26% 15% 50% 26% 15%
σ2
MC 0.07466 0.04755 0.04353 0.02078 0.01351 0.01179 0.00739 0.00696 0.00655
σ2
B 0.04070 0.03755 0.03636 0.01999 0.01372 0.01237 0.00794 0.00710 0.00737
σ2
J 0.24713 0.10072 0.03062 0.01849 0.01292 0.01171 0.00772 0.00690 0.00715
n.BiasB -1.69802 -0.50028 -0.35847 -0.11912 0.03185 0.08692 0.13788 0.03702 0.20532
n.BiasJ 8.62323 2.65831 -0.64543 -0.34432 -0.08818 -0.01229 0.08315 -0.01452 0.14974
n.SDB 2.13836 1.64609 1.4795 1.65376 0.86834 0.72824 0.56648 0.47532 0.49615
n.SDJ 41.5393 14.34684 1.21307 1.40787 0.75497 0.64130 0.53077 0.44442 0.45989
n2.MSEB 7.45586 2.95990 2.31742 2.74911 0.75504 0.53788 0.33991 0.22730 0.28832
n2.MSEJ 1799.873 212.8985 1.88812 2.10065 0.57775 0.41142 0.28863 0.19772 0.23392

Table 2: Results of the simulation study for the case (s, t) = (0.5108, 0.9163)

n=50 n=150 n=250
CP : 50% 26% 15% 50% 26% 15% 50% 26% 15%
σ2
MC 0.07065 0.03485 0.03179 0.02440 0.01131 0.00975 0.01426 0.00723 0.00552
σ2
B 0.03890 0.03266 0.03000 0.02171 0.01134 0.00958 0.01334 0.00674 0.00567
σ2
J 0.24833 0.08349 0.02613 0.02055 0.01086 0.00923 0.01300 0.00658 0.00555
n.BiasB -1.58723 -0.10980 -0.08947 -0.40312 0.00456 -0.02520 -0.23041 -0.12358 0.03545
n.BiasJ 8.88433 2.43169 -0.28254 -0.57685 -0.06648 -0.07827 -0.31419 -0.16370 0.00647
n.SDB 2.30719 1.35810 1.12683 2.22722 0.66445 0.52867 1.48568 0.45833 0.36264
n.SDJ 44.78929 16.01074 0.92105 1.99408 0.59817 0.47153 1.46354 0.43768 0.34248
n2.MSEB 7.84240 1.85649 1.27775 5.12303 0.44152 0.28013 2.26034 0.22534 0.13276
n2.MSEJ 2085.012 262.2567 0.92815 4.30911 0.36223 0.22847 2.24066 0.21836 0.11733

Table 3: Results of the simulation study for the case (s, t) = (0.9163, 1.6094).

quantities should converge to zero for an increasing sample size, provided that the estimators
are consistent (see Theorem 1.1 above for the jackknife).

We see in Tables 1-3 that the bias, the SD, and the MSE of the jackknife estimator decreases
as the sample size increases, revealing its consistency. The only exception is the case with 50%
of censoring in Table 2, where both the SD and the MSE increases when moving from n = 150 to
n = 250. The same holds true for the bootstrap estimator. Larger sample sizes could be needed
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to replicate the convergence result in Theorem 1.1. Bias is of a smaller order of magnitude
compared to SD. On the other hand, the error in estimation increases with the censoring degree,
as expected. The estimator based on the jackknife performs better than that based on the
bootstrap in most of the cases; however, when the sampling information is very scarce (n = 50,
moderate to large censoring degree), the bootstrap may report more accurate results. Regarding
the influence of the particular (s, t) values, the results suggest that large values of variance are
less accurately estimated (something expected). Other scenarios have been simulated and the
results and full discussion will be reported elsewhere.

3 Colon cancer data

Figure 1: Estimated transition probabilities of p22(s, t) for s = 1549 (black line) with 95%
jackknife confidence bands (red lines) and bootstrap confidence bands (blue lines). Colon cancer
data.

For illustration, we apply the jackknife method to data from a large clinical trial on Dukeâs
stage III patients, affected by colon cancer (Moertel et al., 1990). This data set is freely available
as a part of the R survival package. These data come from one of the first successful trials of
adjuvant chemotherapy for colon cancer. In this study, from the total of 929 patients that
underwent a curative surgery for colorectal cancer, 423 patients remained alive at the end of
the follow-up; 468 patients developed recurrence and among them 414 died; and 38 patients
died without recurrence. Here, recurrence is considered as state 2. Using the progressive illness-
death model, there are three states: ’Alive and disease-free’, ’Alive with recurrence’, and ’Dead’.
Figures 1, 2, and 3 depict the estimator p̂22(s, t) proposed by Meira-Machado et al. (2006)
for s = 1549 days along t, with 95% pointwise confidence limits obtained by the jackknife and
bootstrap methods, for the whole colon cancer data, levamisole treatment group, and levamisole
plus 5-FU treatment group respectively. From the figures we conclude that both the jackknife and
bootstrap methods report similar results, and that the jackknife confidence intervals are often
slightly narrower than those of the bootstrap (particularly true for levamisole and levamisole
plus 5-FU treatment groups).
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Figure 2: Estimated transition probabilities of p22(s, t) for s = 1549 (black line) with 95%
jackknife confidence bands (red lines) and bootstrap confidence bands (blue lines). Levamisole
treatment group, colon cancer data.

Figure 3: Estimated transition probabilities of p22(s, t) for s = 1549 (black line) with 95%
jackknife confidence bands (red lines) and bootstrap confidence bands (blue lines). Levamisole
plus 5-FU treatment group, colon cancer data.
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Abstract. The aim is to classify a set of functional data according to a categorical variable
with more than two categories. To this end, functional linear discriminant analysis (LDA) is
considered to classify the curves. Two ways to achieve functional linear discriminant analysis
based on different penalized estimation of the PLS components are proposed. Both are based
on a two-step algorithm: first the data set is projected into a reduced number of functional PLS
components, and after that LDA is carried out on the original response variable. In order to
show the good performance of these penalized functional classification approaches, they have
been compared with the non-penalized version in an application to classify spectral data.

Keywords. Functional data analysis, Linear discriminant analysis, Partial least squares regres-
sion, P-splines, NIR spectra.

1 Overview

The aim of this work is to classify a set of functional data according to a categorical variable
with more than two categories. In fact, we are interest on functional data which are affected
by some noise or contamination. Therefore, in order to get a good classification of the samples
curves and an accurate interpretability, reduction dimension techniques and regularization must
be considered. In that sense, LDA is a consolidate technique for classification widely used in
chemometric studies. A solution to the high dimension problem is to decompose and project
the sample curves onto a small number of orthogonal components given by principal component
analysis (PCA) or PLS regression. PCA was applied to classify NIR spectral data of vegetable
oils in [16]. In [12], PLS analysis was applied as a discriminant as well as a quantitative tool in
the analysis of edible fats and oils by Fourier transform near-infrared (FT-NIR) spectroscopy.
Once the dimension is reduced, multivariate classification techniques such as LDA, quadratic
discriminant analysis (QDA) and non-linear regression {0, 1} were applied in [10].

But sometimes functional data are not smooth and therefore some penalty or regularization
is needed. In fact, a new method called regularized discriminant analysis (RDA) which is a pe-
nalized alternative to the classical maximum likelihood estimates for the covariance matrices was
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developed in [8]. Another regularized classification method consisting of discriminant analysis
with shrunken covariances (DASCO) was proposed in [7], providing superior performance that
the old favorites. An alternative to these penalized methods is the penalized LDA proposed by
Hastie and Tibshirani [9]. A general overview of regularized techniques in discriminant analysis,
for continuous and discrete response variables, can be seen in [13]. In that context, our contribu-
tions are two different functional versions for penalized discriminant analysis based on penalized
functional PLS regression. The first one introduce a P-spline penalty in the initial estimation
of the sample curves. After that, functional LDA on the smoothed sample curves is carried out.
The second one introduce the penalty directly in the definition of the norm involved in the PLS
algorithm.

In order to show the good performance of the proposed penalized methods, they are compared
with functional LDA on non-penalized PLS components in an application to classify spectral
data.

2 Functional LDA based on functional PLS regression

In this work we are focus on LDA when the predictor X = {X(t) : t ∈ T} is functional
(continuous and second order stochastic process whose sample paths take values in the Hilbert
space of squared integrable functions L2([0, T ])) and the response is a categorical variable Y with

K categories. The aim of functional LDA is to find linear combinations Φ(X) =
´ T

0 X(t)β(t)dt
so that the between class variance is maximized with respect to the total variance

maxβ
V (E[Φ(X)|Y ])

V (Φ(X))
.

Due to the infinite dimension of the functional predictor, the estimation of β(t) by LDA is an
ill-posed problem. In order to reduce the dimension of the data and to estimate the discriminant
coefficient functions, functional LDA based on PLS regression on functional data was proposed
in [14] taking into account the equivalence between LDA and canonical correlation analysis. In
[6] PLS regression was used in functional data classification problems.

By considering the basis representation of the functional data, a B-spline approach for func-
tional PLS regression was proposed in [1]. These functional approaches were applied to estimate
the quality of cookies from the resistance of dough during the kneading process. The case of
functional LDA for irregularly sampled curves was studied in [11]. Following the ideas developed
in these works, in order to improve the estimation and the classification ability of functional LDA
different penalized versions of functional LDA are proposed in this paper.

Denoting by {Yi ∈ (0, 1) : i = 1, ...,K−1} the dummy variables associated to the categorical
response Y , the functional LDA-PLS model consists of performing the classical LDA of Y on a
reduced set of PLS components obtained from the PLS regression of the vector (Y1, . . . , YK−1)
on the functional predictor X.

Penalized functional PLS

Non penalized PLS components t =
´
T X (t)w (t) dt are estimated by solving the following

maximization problem

maxw,cCov
2

(ˆ
T
X (t)w (t) dt,

K−1∑
i=1

ciYi

)
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restricted to ‖w‖ = ‖c‖ = 1, with ‖‖ representing the usual norms in the spaces L2[0, T ] and
RK−1 where the component weights belong to, respectively. By considering a basis representation
of the functional predictor given by

X (t) =
p∑
j=1

αjφj (t) ,

it can be concluded that FPLS is equivalent to an ordinary PLS on the vector of variables
(Ψ1/2)′α, where Ψ1/2 is the squared root of the matrix of inner products between basis functions
and α is the vector of basis coefficients of the functional predictor X [1].

When we are working with noisy functional data some penalization is required to get a
smooth estimation of the partial PLS weight functions. In that sense, two different penalized
functional PLS regressions are considered.

In order to smooth the estimation of the functional linear model, two different PCR and
PLSR approaches for functional data were proposed in [15]. The main difference between our
penalized PLS versions and the mentioned above, is that these penalized estimation approaches
did not consider the functional form of the sample paths and they are based on multivariate
linear regression of the response in terms of the matrix of discrete-time observations of the
sample curves.

The first version consists of introducing a P-spline penalty [5] in the initial smoothing of the
sample curves by considering their basis representation (see [2] for more details). This type of
penalty was used in [3] for functional LDA and functional logit regression when the response
variable has only two categories {0, 1}. The other version introduces a P-spline penalty in the
definition of the norm in the functional space given by ‖w‖2 + λPENd(w), with λ being the
smoothing parameter and PENd(w) a d-order discrete penalty. This penalized version of PLS

is equivalent to an ordinary PLS on the vector of variables L−1Ψα, where L = (Ψ + λPd)
1/2

with Pd =
Ä
4d
äT 4d and 4d being the matrix of d-order differences between adjacent basis

coefficients.
As stated before, once the functional PLS regression is computed, classical LDA is carried

out on a reduced set of PLS components. For penalized methods, both the smoothing parameter
and the optimal number of PLS components are jointly estimated by a 10-fold-cross-validation
algorithm.

3 Results

The aim is to classify mayonnaise sauce spectra according to a categorical response variable that
represents the type of oil from which the samples of mayonnaise were made. Exactly we have
162 NIR spectra observed in 351 equally spaced wavelengths in the 1100-2500nm area based on
six types of vegetable oils (soybean oil, sunflower oil, canola oil, olive oil, corn oil and grapeseed
oil). The sample paths have been displayed in Figure 1.

In Table 1 the miss-classification rates (MCR) for the compared methods are shown. The
good performance of the penalized versions is proved, being LDA on functional PLS regression
penalizing the norm which provides the lowest miss-classification rate. From the results on
the mayonnaise spectra we can conclude that the penalized functional classification approaches
considered in this paper significantly improves the classification with respect to the non-penalized
approach.
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Figure 1: 162 NIR spectra observed in 351 equally spaced wavelengths in the 1100-2500nm.

LDA-FPLS LDA-Pspl FPLS LDA-Penalized-Norm FPLS

MCR 14% 10% 5%

Table 1: Miss-classification rates (MCR) for LDA on a set of PLS components obtained by
non-penalized functional PLS (LDA-FPLS), functional PLS on P-splines (LDA-Pspl FPLS) and
functional PLS penalizing the norm (LDA-Penalized-Norm FPLS).
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Abstract. We develop a new minimum description length criterion for index tracking, which
deals with two main issues affecting portfolio weights: estimation errors and model misspecifica-
tion. The criterion minimizes the uncertainty related to data distribution and model parameters
by means of a generalized q-entropy measure, and performs model selection and estimation in a
single step, by assuming a prior distribution on portfolio weights. The new approach results in
sparse and robust portfolios in presence of outliers and high correlation, by penalizing observa-
tions and parameters that highly diverge from the assumed data model and prior distribution.
The Monte Carlo simulations and the empirical study on financial data confirm the properties
and the advantages of the proposed approach compared to state-of-art methods.

Keywords. q-entropy, penalized least squares, sparsity, index tracking

1 Introduction

Since Markowitz [1], an optimal portfolio in asset allocation is determined by first considering
the risk/return performance of each asset, in terms of mean and variance, and then selecting the
portfolio with the best trade-off. Portfolio weights result then to be very sensitive to changes in
parameter estimates, especially in presence of model misspecification and high dimensionality
of the problem. Thus, estimation bias may heavily affect the optimization process resulting in
suboptimal and unsatisfactory performance ([2], [3], [4]). Typically, asset returns are highly
correlated with a leptokurtic distribution, which is largely contaminated by outliers [5]. If these
statistical regularities are not properly considered, the misspecification of the data model may
result in imprecise parameter estimates. To deal with these issues, several methods have been
proposed in the financial literature, i.e. robust estimation methods, minimum divergence models
and penalized least squares. We formulate a new criterion for portfolio selection that is able to
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deal with both estimation errors and model misspecification, and develop a general algorithm
to obtain robust and sparse portfolios, i.e. with a low number of active positions.

In particular, we propose a description length criterion that codes the uncertainty about the
data and the model parameters through a q-entropy, a generalized information measure [6] that
accounts for the divergence from the assumed data model and the target prior distribution. It
enhances the robustness of the portfolio to model misspecifications by assigning a lower weight
to observations and parameter estimates that are not consistent with the assumed models. The
whole criterion performs model selection and estimation in a single step and depends on the
choice of two tuning parameters, q and λ. The former manages the trade-off between accuracy
and stability of parameter estimates [7], while the latter controls the penalization of portfolio
weights.

Section 2 introduces the description length criterion. Section 3 describes the re-weighting
algorithm for portfolio selection and the special cases in which data are assumed to follow a
Normal or a t-Student distribution, while the prior distribution on the parameters is a Laplace
function. Section 4 presents the simulation study comparing the performance of our method to
the main state-of-art benchmark. Section 5 illustrates the behaviour of our portfolio selection
method in an index tracking framework with real-world financial data. Section 6 concludes.

2 Description Length Criterion

Let a financial portfolio return be defined as Y = βTX, where X is a p-dimensional random
vector of asset returns with unknown multivariate distribution and β is the vector of asset
weights. Given observations xi, i = 1, . . . , n, let µ and σ2 be the portfolio expected return and
variance. Then, the true probability density function of the standardized portfolio return g(z),
can be modelled through the function f , which may be for example the standard Normal or
the t-Student distribution. Given a mean target value µ = µ∗, we can then compute portfolio
weights β̂q,λ, by minimizing the following description length criterion:“Dq,λ(β, σ) = −

n∑
i=1

Lq

®
f

Ç
xTi β − µ∗

σ

å´
−

p∑
j=1

Lq {π(βj ;λ)} , (1)

for fixed tuning constants λ ≥ 0 and q ≤ 1. In (1), Lq(·) is the generalized q-logarithm

Lq(u) =

®
(u1−q − 1)/(1− q), q 6= 1,

log(u), q = 1,
(2)

and π(βj ;λ) is a symmetric distribution for βj with zero mean and variance depending on λ.
In the general framework, no restrictions are placed on the vector of portfolio weights β. We
notice that when q → 1, criterion (1) is equal to maximum a posteriori (MAP) estimation of
β, where π(βj ;λ) represent a prior probability density function on βj . The penalty function
π(βj ;λ) controls the model selection and sparsity by shrinking to zero the weights of the assets
that do not contribute to obtain a mean target value µ∗. From now on, π() is assumed to
be a Laplace function and then Lq(π) results in a non-convex function. In (1), the first term
represents the information provided by the data xi given a model, while the second term encodes
the information about the model itself, given by the prior distributions π(βj ;λ). Minimizing
this criterion results in the most efficient description of the data, including the description of
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the model itself [8]. Differentiating function (1) with respect to parameters (β, σ)T , we get the
following estimating equations:

0 = ∇D̂q,λ(β, σ) =
n∑
i=1

wq(xi,β, σ)∇ log f(σ−1(xTi β − µ∗)) +
p∑
j=1

vq(βj , λ)∇ log π(βj ;λ), (3)

where

wq(xi,β, σ) = f(σ−1(xTi β − µ∗))1−q, vq(βj , λ) = π(βj ;λ)1−q (4)

are the vectors of weights applied to the observations and the parameters, respectively. The
weights wq downweight observations xi that diverge from the assumed data model f , while vq
downweights the |β̂j | that diverge from the assumed prior distribution π. For example, when
q < 1, the linear combinations xTi β that are far away from the target mean µ∗ are assigned a
small wq. If q → 1, f(z) is the normal density function and π(β;λ) is the Laplace function,
we recover the popular Lasso method [9], in which wi = vj = 1. However, as shown by [10],
since the weights in Lasso do not affect the optimization process, we may obtain unstable and
inaccurate results in presence of large coefficients. Our approach proposes a remedy to such
problem.

3 Re-weighting algorithms

The following section describes the weighting algorithm we introduce to estimate optimal port-
folios in the general case in which data are assumed to follow a generic ditribution f , and then
focus on the specific cases in which f is a Normal or a t-Student distribution. The aim of the
optimization process is to obtain the parameter estimates β̂q,λ by minimizing criterion (1). Since
the Lq terms are typically non-convex in β, we divide the whole process in several convex opti-
mization steps. In particular, if we fix q, the vectors of weights wq and vq become wi, i = 1, . . . , n
and vj , j = 1, . . . , p, and the criterion results in a penalized likelihood problem that we can solve

with an iteratively re-weighted scheme: given the weights wi and vj , we estimate β̂q,λ by solving
equation (3) and then update the weights using the new parameter estimates. We call this
process a doubly re-weighted (2RE) algorithm as the re-weighting is applied to both data and
penalty scores.

Algorithm 3.1.
Given the tuning constants q ≤ 1, λ ≥ 0, and a target portfolio return µ∗, the algorithm consists
of the following steps:

Step 0 At Iteration s = 0, compute the parameter estimates β̂
(s)

and σ̂(s).

Step 1 Set s = s+ 1, and update the vector of weights as“w(s)
i = f((xiβ̂

(s−1) − µ∗)/σ̂(s−1))1−q, v̂
(s)
j = π(β̂

(s−1)
j ;λ)1−q. (5)

Step 2 Compute the parameter estimates β̃ and σ̃ by minimizing

n∑
i=1

“wi log f((xTi β − µ∗)/σ) +
p∑
j=1

v̂j log π(βj ;λ). (6)
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Step 3 Update β̂
(s)

and σ̂(s) by solving f(xTi β̃ − µ∗)/σ̃)q for β and σ.

Step 4 Repeat Steps 1 and 2 until a stopping criterion is satisfied.

In Step 3, a re-scaling operation re-centers the estimates to correct the bias arising from the
weights wq(xi,β, σ), as suggested by [7].

The parameter λ controls the penalty term on the β coefficiants and regulates the sparsity of
the portfolio. The literature suggests to choose such tuning parameters by information criteria
like the AIC and BIC. As [11], given a certain level of q, we select the optimal values of λ
by minimizing the robust Bayesian Information Criterion defined as below, where k ≤ p is the
number of active positions:

BICq = −2
n∑
i=1

Lq

{
f

(
xTi β̂q,λ − µ∗

σ̂q,λ

)}
+ log(n)k. (7)

Normal portfolios

If we assume that data follow a p-variate normal distribution and π(βj ;λ) is a Laplace function,
then Y ∼ N(µ, σ2). In this case, the 2RE algorithm can be adapted as follows.

Algorithm 3.2.
Given q ≤ 1, λ ≥ 0, and a target return µ∗:

Step 0 At Iteration s = 0, initialize w
(s)
i , v

(s)
j and σ(s).

Step 1 Set s = s+ 1, and obtain β̂
(s)

by solving

β̂
(s)

= argmin
β


n∑
i=1

“w(s−1)
i

1

2

Ç
µ∗ − xTi β

σ̂(s−1)

å2

+ λ
p∑
j=1

v̂
(s−1)
j |βj |

 , (8)

Step 2 Update the vectors of weights as

“w(s−1)
i =

 1√
2πσ̂2(s−1)

exp

−
Å
µ∗ − xTi β̂

(s−1)
ã2

2σ̂2(s−1)




1−q

, v̂
(s−1)
j =

ï
λ

2
exp

{
−λ|β̂(s−1)

j |
}ò1−q

. (9)

Step 3 When the portfolio variance is a fixed target σ∗2, we set σ̂2(s) = σ∗2, for all s ≥ 0;
otherwise

σ̂2(s) =

∑n
i=1 “w(s−1)

i

Å
µ∗ − xTi β̂

(s−1)
ã2

q
∑n
i=1 “w(s−1)

i

. (10)

Step 4 Repeat Steps 1 to 3 until a stopping criterion is satisfied.

The optimization function in (8) is a weighted L1-penalized least squares problem that we
solve by applying the gradient projection algorithm developed by [12]. Other algorithms, like

coordinate wise and quadratic optimization ([9]), could be used to efficiently estimate β̂
(s)

.
However, as the gradient projection is faster and updates parameters and solutions by using the
optimal values of the previous iteration as warm-start points ([13]), we rely on it for solving the
penalized least squares problem.
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t-porfolios

If we assume the portfolio Y to be a non standardized t-Student distribution with mean µ,
variance σ and number of degrees of freedom ν > 1 (i.e. Y ∼ fν(µ, σ)), then Step 2 of the 2RE

algorithm computes {β̂(s)
, σ̂(s)} as

argmin
β,σ

−
Å
ν + 1

2

ã n∑
i=1

“w(s−1)
i log

®
1 +

(xiβ
T − µ∗)2

νσ2

´
+ λ

p∑
j=1

v̂
(s−1)
j |βj |

 , (11)

where σ > 0. While the penalty weights v̂j are updated as in (9), the data weights “wi are
obtained as “w(s−1)

i =

ï
fν

Å
xTi β̂

(s−1)
;µ, σ̂(s−1)

ãò1−q
, i = 1, . . . , n. (12)

When data are assumed to follow the nonstandardized t-Student distribution and λ→ 0, equa-
tion (11) results in biased estimates for β and σ. Thus, according to Proposition 1 in [7], we solve
this issue by adjusting the degrees of freedom parameter: we use νq = qν + (q− 1) instead of ν.
Also, the optimization function (11) represents a non-convex problem, which results in imprecise
estimates if solved directly. Therefore, by writing a t-Student observation as a scale mixture
of normals Yi ∼ N(µ, σ2Z−1

i ), where Zi follows a Gamma distribution Zi ∼ Ga(ν/2, ν/2), we
derive an EM algorithm, which efficiently estimates the optimal solutions as follows.

Algorithm 3.3.

For any s > 0, we set the initial weights ẑi = 1/n, i = 1, . . . , n and estimate β̂
(s)

and σ̂(s)

through the expectation-maximization steps:

M-Step Estimate β and σ as

β′ = argmin
β


n∑
i=1

“w(s−1)
i ẑ

(s−1)
i

1

2

Ç
xTi β − µ
σ̂(s−1)

å2

+ λ
p∑
j=1

v̂
(s−1)
j |βj |

 , (13)

σ′
2

=

∑n
i=1 “w(s−1)

i ẑ
(s−1)
i

Ä
xTi β̂ − µ

ä2
∑n
i=1 “w(s−1)

i ẑ
(s−1)
i

× ν

(ν + 1)q − 1
. (14)

E-Step Update the mixing constants ẑi, such that

ẑi =
(νq + 1)σ′2

νqσ′
2 + “w(s−1)

i (xTi β
′ − µ)2

, i = 1, . . . , n, (15)

4 Simulation study

In the following simulation study, we evaluate and compare the behaviour of the 2RE algorithm,
for both normal (GDL N) and t-Student portfolios (GDL t), with respect to the Lasso penaliza-
tion model. In particular, we want to test the robustness of the proposed methods in presence of
outliers and correlated assets X. We simulate data from a multivariate t-Student distribution
with ν degrees of freedom: tp(µ,Σ, ν), where µj = 1, if j ≤ k, and µj = 0, if j > k, and
the covariance matrix has diagonal elements Σjj = 1, j = 1, . . . , p, and off-diagonal elements
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Σjk = ρ, 0 ≤ ρ < 1 j 6= k. We construct four settings by considering four different levels of
correlation between assets, ρ = 0.2, 0.4, 0.6, 0.8. For each setting, we generate B = 50 samples
with n = 500, p = 50, k = 10.

We evaluate the average performance of the B portfolios in terms of sparsity, model selection
performance and risk/return characteristics with respect to a specifc target µ∗ = k. In particular,
we compute (i) the number of active positions as k̂ =

∑p
j=1 I(|β̂j | > τ), where τ = 0.005 is a

threshold value, below which the estimated weights are set equal to zero; (ii) the F-measure
to assess whether the portolios select the ”correct” assets, which in our model are the ones
in the first k positions; (iii) the Monte Carlo mean squared error to compare the risk/return
performance to the specified target:

÷MSE =
1

B

B∑
b=1

Ö
µT β̂b − µ?√
β̂
T

b Σβ̂b

è2

, F-measure = 2
|supp(β∗)| ∩ |supp(β̂)|
|supp(β∗)|+ |supp(β̂)|

, (16)

where, given a vector β, the support is equal to supp(β) = {j : |βj | ≥ τ}, and β∗ represents the
vector of weights whose first k positions are equal to 1.

For each setting, we set q = 0.9 and select from a grid of values the λ associated to the
model with the lowest BIC. We then compare the average portfolio performances with the ones
obtained using Lasso. As specified in Section 3, we handle the optimization problem by using the
DC-programming as proposed by [13]. As the EM algorithm is very sensitive to the initialization
of β, we initialize the Lasso and the GDL N algorithms with the OLS β estimates, while the
GDL t approach uses instead the optimal estimates obtained by the GDL N. Finally, the initial
vectors of weights wi and vj are set equal to wi = 1/n and vj = 1/p.

Figure 1 shows from left to right the boxplots of the average number of active positions k̂
estimated by the GDL methods and Lasso (a), and the relative F-measure (b) and MSE (c)
obtained in 50 simulations for different values of correlation ρ = 0.2, 0.4, 0.6, 0.8 on the x-axis.
We can compare the performance of the three methods in terms of sparsity and selection ability,
and analyse their robustness in presence of correlated data.
First of all, we notice that the GDL criteria estimate much sparser portfolios than Lasso for
each value of ρ. The number of active positions is very close to the optimal value of 10 and it is
not influenced by the level of correlation between assets (Panel (a)). The stability of the GDL
criteria represents a clear advantage when comparing with Lasso, whose performance becomes
worse when ρ increases: on average it selects approximately 17 assets when ρ = 0.2 and 27
assets when ρ = 0.8, against the 8 and 11 assets selected by the GDL t with ρ equal to 0.2
and 0.8, respectively. In terms of F-measure, the GDL approaches obtain better performance
than Lasso as closer to 1, showing very good model selection properties. However, for all the
methods, the average value of F-measure highly depends on the level of ρ (Panel (b)): when
data exhibit low correlation, Lasso obtains a value of 0.74 while GDL N and GDL t are closer
to the maximum of 1, that represents the case in which we select the correct vector of assets β∗;
when data are highly correlated, Lasso presents a value of 0.52, while the GDL methods obtain
approximately 0.6. The GDL N and GDL t algorithms show similar results in terms of sparsity
and F-measure since they both select the same active positions and their estimated weights
differ only in magnitude. Finally, we analyse the overall performance of the three methods with
respect to the return target µ∗ by comparing their MSE. Though the two GDL criteria slightly
differ in their results, they both outperform the Lasso, whose performance get much worse when
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data show high correlation (i.e. with ρ = 0.8 the MSE is twice the value obtained with ρ = 0.2).
As expected, given that the true model is a t-Student one, the GDL t obtains the lowest MSE in
all settings, indicating very good performance. However, this advantage might also result from
the initialization of the vector of β as the optimal solution of the GDL N algorithm.
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Figure 1: Average number of estimated active positions k̂, F-measure and Mean Squared Error
for different levels of correlation ρ in 50 simulations, using GDL for Normal and t-Student, and
Lasso methods.

Further simulations considering different set-ups support the main reported findings. Results
are available upon request. This study points out the main advantages of the proposed approach
with respect to a well-known benchmark: (i) the sparsity of the selected portfolios obtained by
penalizing and weighting the vector of asset weights β; (ii) the high robustness of the estimates in
presence of correlation between assets, which is ensured by weighting the observations according
to their divergence from an assumed distribution.

5 Sparse and Robust Index Tracking

In this section, we test our approach in an index tracking framework, where we try to reproduce
the performance obtained by a certain index by selecting a vector of active weights only for some
of its components, in order to limit transaction and managing costs. The optimization problem
can be described as a regression problem, where the dependent variable y represents the vector
of index returns and X is the return matrix of its components.

Using a penalized technique may help to obtain good out-of-sample performance with respect
to the index by optimally selecting a small number of components. In order to evaluate the
behaviour of the proposed GDL criteria, we focus on three financial indexes by using n = 1401
daily return observations of the Fama & French 100, the S&P 200 and the S&P 500, with
different number of constituents p, equal to 100, 200 and 500, respectively. For each index, we
compare the performance of three strategies: the GDL for Normal and t-Student portfolios, and
the Lasso.

We estimate the optimal portfolios using a rolling window sample of 250 observations, and
compute the excess return of the first out-of-sample observation with respect to the index. For
the GDL criteria, we set q = 0.9 and select the λ in each window as described in Section 3. First,
we evaluate the risk/return performance of the optimal portfolios through the Information Ratio
(IR), which is computed dividing the excess return by the tracking error volatility (TEV). Then,
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we check sparsity by means of the number of estimated active positions k̂ and finally, we test
the tracking ability computing the correlation with respect to the index.

Strategy ER (%) TEV (%) IR k̄ TO Cor

PANEL A: F&F 100

GDL N 0.338 0.624 0.542 37.749 0.068 0.999
GDL t 0.170 0.492 0.346 32.241 0.066 0.999
Lasso 1.030 2.117 0.486 65.939 0.017 0.990

PANEL B: S&P 200

GDL N 0.319 4.500 0.071 36.950 0.399 0.963
GDL t -2.421 4.897 -0.494 28.431 0.520 0.933
Lasso 4.760 7.267 0.655 66.532 0.037 0.950

PANEL C: S&P 500

GDL N 2.906 6.966 0.417 44.564 0.605 0.932
GDL t 1.192 9.018 0.132 27.770 0.811 0.872
Lasso 2.986 10.315 0.289 66.407 0.053 0.926

Table 1: Out-of-sample statistics of each tracking portfolio: strategy (column 1), annualized
excess return ER (column 2), tracking error volatility TEV (column 3), Information Ratio IR
(column 4), average number of active components k̄ (column 5), turnover TO (column 6), cor-
relation w.r.t. index Cor (column 7).

Table 1 shows the out-of-sample statistics of each tracking strategy. In terms of IR (Column
4), the GDL N has the best performance for F&F 100 and S&P 500, while the Lasso outperforms
the other strategies in the second dataset, S&P 200. However, the GDL criteria always obtain
a lower out-of-sample TEV (Column 3), which is a characteristic already underlined in the
simulation study, where the GDL showed smaller MSE than Lasso. This result is even more
important if we consider that the GDL strategies select very sparse solutions for each dataset
(Column 5). While the Lasso always uses approximately 66 positions, the GDL strategies select
35% of the available assets for the first index, less than 25% for the second index and less than
10% for the third index. In terms of tracking ability, the GDL N portfolios achieve values of
Cor near 1 and outperform the Lasso by closer tracking the indexes, especially in small dataset,
where the TEV is lower.

6 Conclusion

In this paper we propose a generalized description length criterion to obtain sparse and ro-
bust portfolios in presence of estimation errors and model misspecification. By relying on a
q-entropy measure, the approach minimizes the uncertainty about the distributions of data and
model parameters by assigning a lower weight to observations and parameters that diverge from
the assumed models. After deriving the general estimation algorithm, we specify two interesting
cases, in which data are assumed to follow a Normal or a t-Student distribution, and develop the
corresponding algorithms, GDL N and GDL t. The simulation study supports the theoretical
properties of the GDL criterion and shows that it achieves better performance in terms of spar-
sity, stability and robustness of the estimates with respect to the well-known Lasso benchmark,
especially when data exhibit high correlation. The empirical results presented for the index
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tracking framework show that the GDL criterion is able to obtain good out-of- sample estimates
and reproduce the performance of an index by using only a small number of its components in
order to limit transaction and managing costs.
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Abstract. We applied data mining techniques to explore survival in a sample of 6’203 adults
(age range 42-93 years), living in the Manchester and Newcastle-upon-Tyne (UK.) areas. We
were particularly interested in the relations between cognitive performance and mortality pre-
diction. Participants were assessed up to four times over 20 years on several psychological and
health-related variables and were also administered an extensive battery of cognitive tasks. We
applied linear mixed models to estimate level of cognitive decline and change (mostly decline)
therein for each individual. We then utilized Cox proportional-hazards modeling to predict
time to death based on levels of and changes in cognitive performance, and on demographic
and social predictors. Next, to gain further insight into the survival process, we used recently
developed induction trees and ensemble methods. These models allow studying complex and
asymmetric interactions and non-additive functions of model predictors. Particularly relevant to
our theoretical purposes, the random forest approach allowed us to identify a set of demographic
and cognitive variables that strongly influenced survival. We conclude that induction trees and
ensemble methods are a useful extension to more classical models in that they are not limited
by common modeling assumptions and can reveal complex patterns of relation.

Keywords. longitudinal data mining, survival analysis

1 Introduction

The prediction of selected outcomes is of central importance to scientific inquiry, and statistical
modeling is essential to this endeavor. When the outcome is a specific event, such as death, and
the investigative aim is to predict the amount of time preceding this event, the preferred approach
is generally survival analysis [1]. In survival analysis, the dependent variable is indicative of the
occurrence of the event of interest, contingent upon the amount of time elapsed before the
event. A survival model can also accommodate data from observations for which the event has
not occurred (i.e., right-censored data).



168 Longitudinal exploratory survival analysis

In survival analysis the specification of predictors is not limited to their main (direct) effects.
Interaction (indirect) effects, generated via multiplications of predictors, can also be tested. Such
interactions are additive, in that they add to (or subtract from) the main effect the amount of
influence contingent upon levels of one or more additional predictors. There are four limitations
of this conceptualization of interactions. First, such interactions are typically specified by the
analyst a priori, and this excludes the exploration of all indirect effects of a predictor. Second,
statistical reliability requires the interactions to be defined over the entire data space. However,
in practice the data are often too sparse to include all instantiations of an interaction. Third,
although testing higher-order interactions is possible, for instance by multiplying more than two
variables, the interpretation of such interactions is often arduous. Therefore, analysts typically
limit their analyses to include two-way interactions. Fourth, the statistical complexity inherent
to nonlinear interactions often prohibits researchers from examining them.

One approach to address these shortcomings, and thereby gain further insight from classical
survival regression models, is to employ Induction Trees (ITs; also called Classification and
Regression Trees, [2]), a family of data mining techniques that originated from the machine
learning literature. ITs have gained much interest in genetics, epidemiology, and medicine,
where oftentimes the analyst faces the so-called “small n, big p” problem, in which data from
a large number of variables is obtained from relatively small samples of observations. For an
excellent introduction to ITs and extensions thereof, see [19].

Here, we will use survival trees to explore demographic, social, and cognitive performance
variables as predictive of survival in a large sample of British adults who were tested repeatedly
across a span of 20 years. Although our application of ITs does not fall within the “small
n, big p” situation, we apply survival trees to extend our knowledge about the survival process
gained from classical survival models. In particular, we explore complex, asymmetric interactions
among predictors, as well as non-additive functions of the predictors. Finally, we apply recently
developed ensemble methods, to examine the robustness of the survival tree results.

2 Sample and Measures

Sample

The data come from the University of Manchester Longitudinal Study [17], a large-scale 20-
year longitudinal examination of cognitive performance in a large sample of cognitively healthy
adult individuals, who initially ranged in age from 42 to 96 years. The original researchers
tracked changes in a large number of variables related to participants’ demographics, cognitive
functioning, social functioning, health, etc. Overall, the sample includes 6203 volunteering
participants. The majority (70.6%) were female, and overall 45.5% came from the Greater
Manchester (UK.) area, while the remaining 54.5% from the Newcastle-upon-Tyne (UK.) area.
Participants did not suffer from major visual or auditory handicaps and could wear corrective
aids during assessments. The Registrar General’s Scale of Occupational Categories [14] was
used to classify participants according to six levels of socio-economic status: professional (4.7%),
intermediate (31.6%), non-manual (26.8%), manual skilled (21. 6%), partly skilled (7.4%), and
unskilled (0.8%) - for 7.1% this information was unknown.

The most recent mortality update by the researchers at the University of Manchester took
place in August 2012. At that point, 1906 of the initial participants were still alive, 4085 were
deceased, and information were not available for the remaining 212 individuals.
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Cognitive assessment

Two cognitive batteries were administered to participants. Both batteries contained tasks as-
sessing perceptual speed (the speed at which simple, abstract information is processed), fluid
intelligence (basic cognitive abilities such as reasoning, independent of prior learning and acquisi-
tion), crystallized intelligence (higher-order abilities to use cultural, educational, and vocational
knowledge and experience to learn new information), and memory (verbal and visual types).
Table 1 outlines these tasks, classified according to the cognitive domain assessed, and accom-
panied by the abbreviations, to which we refer hereafter. Participants were tested in groups
of 5-20 by two trained experimenters in well-lit, comfortable and quiet rooms. At each testing
occasion, tasks were administered across two sessions of about 90 minutes each. Further detail
is available in [17] and [7].

Domain Task Abbreviation

Perceptual speed Visual search vs
Perceptual speed Alphabet coding task act
Perceptual speed Semantic reasoning sr
Fluid intelligence Heim intelligence test 1 aha
Fluid intelligence Heim intelligence test 2 ahb
Fluid intelligence Cattell’s culture fair test cft
Crystallized intelligence Raven Mill Hill vocabulary A mha
Crystallized intelligence Raven Mill Hill vocabulary B mhb
Crystallized intelligence Wechsler’s Adult Intelligence Scale - vocabulary waisv
Verbal memory Verbal free recall vfr
Verbal memory Cumulative verbal recall cvr
Verbal memory Immediate verbal free recall ivfr
Verbal memory Propositions about people pap
Verbal memory Memory objects mo
Visual memory Picture recognition pr
Visual memory Shape + spatial locations shspl

Table 1: Cognitive tasks assessed in the University of Manchester Longitudinal Study.

We performed all analyses in the open source and freely available R language and environ-
ment. In a series of preliminary analyses we applied linear mixed-effects models to analyze
cognitive performance as a function of age. This is typical in developmental psychology, where
an age-appropriate description of phenomena is of major theoretical interest. This analytical ap-
proach allowed us describing both the sample average trajectory (fixed effects) of each cognitive
task and the individuals deviations (random effects) from the sample average trajectory. The
analyses thus characterized individuals with respect to their overall average performance and
also their rate of linear change (typically decline) in performance across the repeated measures
(i.e., as individuals aged). From those analyses we estimated each participant’s intercept and
linear slope score, to be used here as markers of cognitive performance to predict survival. The
association between cognitive decline and mortality is a theme of long-lasting interest in the
psychological literature (for a recent review see [6, 7]). Note that for two tasks (mhb and waisv)
there were no reliable interindividual differences in change, hence no estimate of linear slope
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could be obtained. The usual assumptions of linear mixed-effects models (normality of random
effects and of residuals, homoskedasticity of residuals; [15]) were not violated (clearly the large
sample size was advantageous for estimation).

3 Survival analysis

Next, we estimated survival using the well-known Cox proportional-hazards model [4]. Given
that we had no a-priori hypothesis concerning interactions between predictor variables, we only
tested their main effects. In a first model we included participants’ (a) initial age upon entry into
the study, (b) sex, (c) city of origin, (d) socio-economic status, and (e) cognitive performance,
in terms of intercept and linear slope scores for each cognitive variable. We used the package
survival (version 2.37-7) of the R (version 3.1.0) language and environment [16].

When we checked the proportional-hazards assumption of this first model, it was clear that
the hazards were non-proportional for initial age, sex, and city. We thus specified a second sur-
vival model that included interactions of survival time with age, sex, and city. The proportional-
hazards assumption of this second model was met for all predictors (except, as expected, for the
interactions with time). Furthermore, there were no particularly influential observations, nor
evidence of nonlinearity (for a full description of model diagnostics see [5]).

Table 2 shows the parameter estimate of each predictor of the second survival model. For
space reasons, we only include predictors whose parameter estimate appears, according to the
z-test, to be different from zero.

Predictor estimate exp(est.) lower 95% upper 95% z-value p-value(> |z|)
AgeFirst Aprox 1.654e+00 5.227e+00 4.771e+00 5.726e+00 35.534 < 2e-16
AgeFirstLast -1.972e-02 9.805e-01 9.794e-01 9.815e-01 -36.773 < 2e-16
Female -2.005e+00 1.346e-01 2.794e-02 6.485e-01 -2.500 0.012427
FemaleAgeLast 2.255e-02 1.023e+00 1.004e+00 1.042e+00 2.386 0.017040
Newcastle 3.901e+00 4.944e+01 9.020e+00 2.710e+02 4.494 7.00e-06
NewcastleAgeLast -4.897e-02 9.522e-01 9.333e-01 9.715e-01 -4.792 1.65e-06
LinearSlope.aha 8.161e-01 2.262e+00 1.191e+00 4.295e+00 2.494 0.012631
LinearSlope.ahb -6.256e-01 5.349e-01 3.119e-01 9.175e-01 -2.273 0.023046
Intercept.mha 5.197e-02 1.053e+00 1.020e+00 1.088e+00 3.145 0.001659
LinearSlope.mha -3.258e+00 3.846e-02 2.290e-03 6.459e-01 -2.264 0.023593
Intercept.mhb -2.207e-02 9.782e-01 9.587e-01 9.980e-01 -2.154 0.031256
Intercept.vfr 3.340e-02 1.034e+00 1.005e+00 1.063e+00 2.338 0.019398
Intercept.cvr -2.250e-02 9.778e-01 9.595e-01 9.963e-01 -2.346 0.018955
LinearSlope.cvr 1.117e+00 3.057e+00 1.602e+00 5.833e+00 3.389 0.000702
LinearSlope.cft -1.757e-01 8.389e-01 7.617e-01 9.239e-01 -3.567 0.000361
Intercept.shspl -7.982e-02 9.233e-01 8.555e-01 9.965e-01 -2.050 0.040316

Table 2: Results from a survival analysis (only significant estimates are shown). These estimated
effects correspond to the“hazard”of death as an outcome (i.e., the log-odds change in probability
of death, with smaller values indicative of relatively longer projected life span).

As expected, initial age influences the hazard of death (for each additional year, the hazard
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increases by over 400%). This effect, however, diminishes with age (by about 2% per year).
Females have a hazard of dying that is 87% that of males. This proportion, however, diminishes
by 2% per year. The hazard of death of residents of Newcastle-upon-Tyne is nearly 5000% that
of Mancunians, and this disadvantage diminishes by 4% each year. Finally, performance on
several cognitive variables, both in the intercept and in the linear slope, is related to survival.

Although the diagnostics of this model were satisfying and no estimation issues appeared,
the very high estimates of a age and city may indicate the fragility of this solution. This may
be due, in part, to a bad specification with respect to interactions among predictors [19]. We
thus turn to induction trees and ensemble methods to verify these doubts.

4 Survival tree

To test for complex, asymmetric interactions we computed a survival tree on the same data, using
the package party (version 1.0-13)[9]. This package computes survival trees based on accelerated
failure time models, rather than Cox proportional-hazards model, mainly because of four specific
issues: (a) to handle both censored and uncensored data within the same model; (b) to remove
restrictive model assumptions (in particular that hazards may not be proportional but rather
accelerate linearly or nonlinearly with time); (c) to deal with problems of high dimensionality
(when a large number of predictors is tested); and (d) to accommodate selection and evaluation
of models with strict statistical criteria (for more details see [10]).

A survival tree classifies observations into groups based on the proximity of their survival
information, contingent upon the predictors of the model. For each predictor, the cutoff value
that maximally discriminates the survival information into two groups is found. This procedure
is dictated by well-defined statistical criteria such as entropy measures (e.g., Gini Index, Shannon
Entropy). A predictor may intervene multiple times in the overall tree, and may thus interact
with other predictors that also produce a separation into two groups.

The resulting survival tree is shown graphically in Figure 1. In the end, 19 groups are
distinguished based on their survival information. These are arranged from left to right in
ascending survival order. As can be seen, these groups are defined based on complex interactions
among several predictors. For instance, the group with the lowest survival is composed of 59
individuals younger than 67 years, males, with a linear slope score of cft lower than or equal
to -3.265, and a linear slope score of sr lower than or equal to -0.427. The group with the
highest survival is composed of 18 individuals older than 85 years (the package also displays this
information in a text output, not shown for space reasons). This analysis shows that relatively
older individuals at the start of the study were less likely to die at an earlier age than more
youthful participants (a manifest selectivity effect).

Sex appears three times as an important discriminant variable, in interaction with initial
age and with several cognitive predictors. Five cognitive variables also appear as discriminant,
mainly with respect to their change information (linear slope rather than intercept). This indeed
confirms that individuals with accelerated rates of cognitive decline have lower probabilities of
survival into old age than those with shallower rates of cognitive loss.
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Figure 1: Results from a survival tree

5 Random survival forest

A wary data analyst will quickly worry about overfitting when applying a survival tree. That
is, the tree may classify observations not only with respect to their survival information (i.e.,
signal), but also as a function of sampling randomness present in the data (i.e., noise) [3, 19].
Breiman [3] therefore proposed a systematic, repetitive tree procedure called random forests to
avoid problems of overfitting.

Random forests have two highly desirable properties. First, they bootstrap subsamples to
compute separate trees, thereby checking the robustness of results. Second, random forests check
the robustness of the predictors in discriminating observations with respect to the outcome.
Indeed, in a random forest, at each branch of the tree a randomly chosen predictor from a
limited number of predictors is chosen to discriminate observations. This guarantees that the
final results are not only valid across a large number of subsamples, but also that they point to
a consistent set of important (discriminant) predictors.

In a typical forest a large number of trees is computed (generally the default value is 1’000).
Each tree is derived from a portion of the complete data (usually two thirds of the total ob-
servations), and the validity of the structure implied by the tree is then checked against the
data not used in its generation (called out-of-bag observations). By combining this information
across all trees of a forest, it is possible to estimate the relative influence, or importance, of
each predictor in relation to the survival outcome. This procedure is robust to overfitting and
outperforms many other classifiers, such as discriminant analysis, support vector machines, and
neural networks [3, 13].

To compute random survival forests and obtain variables’ importance measures we used the
randomForestSRC package (version 1.4.0) [11, 12]. Results of a random forest are summarized
over a high number of trees, each computed on different bootstrapped observations and based on
a different subset of predictors. As such, these results cannot be simply displayed graphically.
It is, however, possible to estimate two pieces of information: the overall error rate (based
on the prediction of the out-of-bag observations) and a relative importance measure for each
predictor. These can conveniently be displayed, as in Figure 2. We see that the error rate of
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the forest (estimated at 34.75%) is minimized after about 900 trees, which indicates that 1’000
trees are sufficient to obtain a stable solution. Moreover, we see that by far initial age is the
most important variable, followed by several markers of cognitive change.

In a follow-up analysis we recomputed a random survival forest but excluded initial age. We
observed that the most important cognitive predictors remained unchanged. Also, to check the
robustness of the initial survival forest, we computed a number of additional analyses, in which
we systematically altered the number of variables randomly sampled from all predictors at each
branch. As suggested by Breiman (see [13]), we estimated forests, which used either twice the
default or half the default number of predictors for each branch. In all cases, the error rate was
subject to minor changes (less than 1%) and the relative importance of the predictors remained
virtually the same. Moreover, 1’000 trees always resulted in stable estimates of error rate and
variable importance.
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Figure 2: Results from a survival tree

6 Conclusions

In this application, we wanted to explore the robustness of the results of a Cox proportional-
hazards model, despite the fact that the model’s diagnostics were reassuring (indicating that
the assumptions were probably met). Moreover, we wanted to avoid overfitting the model to
our data. The statistical approach illustrated here allowed us obtaining further evidence in
favor of the psychological hypothesis stating that individuals with steeper cognitive decline are
more likely to die at an earlier age than individuals with age-resistant trajectories of cognitive
performance. Furthermore, this predictive effect appears pervasive across multiple cognitive
domains, rather than specific to a given domain.

Modern computational means allow implementing easily random survival forests even on
basic, inexpensive portable computers. This statistical procedure, which relies heavily on re-
sampling techniques, can thus be used to complement classical “one-shot” predictive analyses or
even replace them when adequate. Finally, the R language and environment allows implementing
induction trees and random forests on a wide variety of operating systems. Examples and tuto-
rials are available on the internet and will certainly become more numerous in the near future.
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For all these reasons we think that induction trees and random forests, and, more generally,
ensemble methods are a readily available opportunity that should not be ignored by modern
data analysts.
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Abstract. Markowitz portfolios often result in an unsatisfying out-of-sample performance, due
to the presence of estimation errors in inputs parameters, and in extreme and unstable asset
weights, especially when the number of securities is large. Recently, it has been shown that
imposing a penalty on the 1-norm of the asset weights vector not only regularizes the problem,
thereby improving the out-of-sample performance, but also allows to automatically select a
subset of assets to invest in. Here, we propose a new, simple type of penalty that explicitly
considers financial information and consider several alternative non-convex penalties, that allow
to improve on the 1-norm penalization approach. Empirical results on U.S.-stock market data
support the validity of the proposed penalized least squares methods in selecting portfolios with
superior out-of-sample performance with respect to several state-of-art benchmarks.

Keywords. Penalized Least Squares, Regularization, LASSO, Non-convex penalties, Minimum
Variance Portfolios

1 Introduction

The Markowitz mean-variance portfolio model [1] is the cornerstone of modern portfolio the-
ory. Given a set of assets with expected return vector µ and covariance matrix Σ, Markowitz’s
model aims to find the optimal asset weight vector that minimizes the portfolio variance, sub-
ject to the constraint that the portfolio exhibits a desired portfolio return. Since µ and Σ are
unknown, some estimates µ̂ and “Σ must be obtained from a finite sample of data to compute
the optimal asset allocation vector. As financial literature has largely shown, using sample es-
timates can hardly provide reliable out-of-sample asset allocations in practical implementations
[2],[3],[4],[5],[6]. [7], [8], [2], and [9] already provided strong empirical evidence that estimates of
the expected portfolio return and variance are very unreliable. Here, we focus on the minimum-
variance portfolio (MVP), which relies solely on the covariance structure and neglects the es-
timation of expected returns altogether [10],[11],[12],[13],[14],[15],[16]. Somewhat surprisingly,
MVPs are usually found to perform better out-of-sample than portfolios that consider asset
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means [17, 11, 6], because the (co)variances can be estimated more accurately than the means.
A superior performance also prevails when performance measures consider both portfolio means
and variances. Nevertheless, MVPs still suffer considerably from estimation errors [10],[11],[12].

One stream of research has recently focused on shrinking asset allocation weights by using
penalized least squares methods. Among the first contributors, [18] and [19] use `1-penalization
to obtain stable and sparse (i.e. with few active weights) portfolios, which is an adaptation of
the Least Absolute Shrinkage and Selection Operator (LASSO) by [20]. The LASSO relies on
imposing a constraint on the `1-norm the regression coefficients β ∈ RK , where `1 = |β1| +
... + |βK |. Recently, [14] provide both theoretical and empirical evidence supporting the use of
`1-penalization to identify sparse and stable portfolios by limiting the gross exposure, showing
that this causes no accumulation of estimation errors, the result of which is an outperformance
compared to standard Markowitz portfolios. Further examples of penalised methods applied in
the Markowitz framework are [21, 22, 23], and [15].

Despite the appeal of using `1-penalization in portfolio optimization to estimate (numerically
stable) asset weights and select the portfolio constituents in a single step by solving a convex
optimization problem, [24] show that the `1-penalty, as a linear function of absolute coefficients,
tends to produce biased estimates for large (absolute) coefficients. As a remedy, they suggest
using penalties that are singular at the origin, just like the `1-penalty, in order to promote
sparsity, but non-convex, in order to countervail bias. Ideally, a good penalty function should
result in an estimator with three properties: unbiasedness, sparsity, and continuity. Then, new
non-convex penalties such as the so-called Smoothly Clipped Absolute Deviation (SCAD) , the
Zhang-penalty, the Log-penalty and the `q-penalties with 0 < q < 1 were introduced (e.g. see
[25] for a comparison). The seemingly nice properties of non-convex penalties come at the
cost of posing a difficult optimization challenge, which, however, can nowadays be solved quite
efficiently by using a dual-convex appraoch, as suggested by [25]. An alternative to non-convex
approaches, which can still retain the oracle property, has been suggested by [26]. His approach
is now known as the adaptive LASSO and has proven to be able to prevent bias while preserving
convexity of the optimization problem, and thus clearly alleviates the optimization challenge as
compared to the non-convex approaches.

This work contributes to the literature on portfolio regularization by proposing a new, simple
type of convex penalty, which is inspired by the adaptive LASSO and explicitly considers financial
information to optimally determine the portfolio composition. Moreover, we are the first to apply
non-convex penalties in the Markowitz framework to identify sparse and stable portfolios with
desiderable out-of-sample properties, when dealing with a large number of assets.

2 Penalized Approaches for Minimum Variance Portfolios

Given a set of K assets and a penalty function ρ(·), the regularized minimum-variance problem
can be stated as:

w∗ = argmin
w∈RK

®
w′Σw + λ

K∑
i=1

ρ(wi)

´
(1)

subject to 1′Kw = 1 , (2)

where w∗ is the optimal (and potentially sparse) (K×1)-vector of asset weights, 1K is a (K×1)-
vector of ones and λ is the regularization parameter that controls the intensity of the penalty and
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thereby the sparsity of the optimal portfolio. The optimization problem (1) can be re-written
as a penalized least square problem.

Assuming we estimate Σ by “Σ and we set λ=0, the solution to problem (1)-(2) is the MVP,
where the optimized portfolio weights vector w∗ is (over)fitted to the correlation structure in“Σ, thereby assuming absence of estimation error and unlimited trust in the precision of the
estimate “Σ, which is obviously very naive. On the contrary, whenever λ> 0, the penalty term∑K
i=1 ρ(wi) will allow to control for the estimation error by selecting only few active weights.

The larger λ, the smaller the number of active weights and the total amount of shorting. The
optimal solution w∗ is thus determined by a trade-off between the estimated portfolio risk and
the corresponding penalty term, whose magnitude is controlled by λ.

In this work, we focus on penalty functions ρ(·) that are singular at the origin and thus allow
a shrinkage of the components in w to exactly zero. Hence, the corresponding approaches not
only stabilize the problem to improve the out-of-sample performance, but simultaneously also
conduct the asset selection step. Table 1 reports the definition of the six penalties functions we
consider.

The Least Absolute Shrinkage and Selection Operator (LASSO) has already received consid-
erable attention in the portfolio optimization context and therefore we choose it as a benchmark
to test the validity of the newly proposed approaches. Due to the budget constraint, the mini-
mum value that ||w||1 can be shrunk to is one. This is possible only when the portfolio weights
are shrunk towards zero until they are all non-negative, identifying the so-called no-shortsale
portfolio. Increasing values of λ cause the construction of portfolios with less shorting, or more
precisely, with a shrunken `1-norm of the portfolio weight vector. This prevents the estimation
errors contained in “Σ from entering unhindered in the portfolio weight vector. Note that while
the intensity of shrinkage is controlled by the value of λ, the decision as to which assets to shrink
and to which relative extent is determined by the estimated correlation structure.

The weighted Lasso approach, henceforth w8Las, was proposed in its statistical formulation
by [26] to countervail the difficulties of the LASSO that are related to potentially biased esti-
mates of large true coefficients [24]. The idea is to replace the equal penalty that is applied to all
coefficients (here portfolio weights) with a penalization-scheme that can vary among the K port-
folio weights. This can be achieved by introducing a weight ωi for each of the absolute portfolio
weights |wi|. In general, the intuition is to over- or underweight some assets in comparison to
the LASSO in order to improve performance. Specifically, this intuition depends on the method
used to determine the ωi, for which no “blueprint” exists in a portfolio optimization context. We
suggest determining the (individual) regularization weights λi by considering specific financial
time series properties that are ignored when many, e.g. T =250, historical observations are used
to estimate one (constant) covariance matrix. In particular, we focus on comparing short-term
and log-term estimates of the volatilities to extract some signals, such that if the short term
volatility is below the long-term volatility estimate, a smaller penalty λi is applied and, con-
sequently, a larger portfolio weight in comparison to the LASSO. Due to space limitations, we
refer to [27] for a detailed description of the implementation of the w8Las penalty.

While LASSO and w8Las are convex penalties, as Figure 1 shows, the remaining four penal-
ties (i.e. SCAD, Zhang, Log and `q with 0 < q < 1) are non-convex and allow to deal with
the potentially biased LASSO estimates of large absolute coefficients. The economic intuition
behind the non-convex penalties is as follows: if the true correlation of assets is high, shorting
can reduce the risk, since it accounts for true similarities of the assets instead of being the result
of overfitting. Analogously, large portfolio weights tend to be appropriate if the true correlations
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Table 1: Penalties

penalty λρ(wi) domains

LASSO = λ|wi| all

w8Las = λωi|wi| all

SCAD =


λ|wi|
−|wi|2+2aλ|wi|−λ2

2(a−1)
(a+1)λ2

2

|wi| ≤ λ
λ < |wi| ≤ aλ

aλ < |wi|

Zhang =

ß
λ|wi|
λη

|wi| < η
η ≤ |wi|

Lq = λ|wi|q , 0<q<1 all

Log =
λln(|wi|+φ)
−λln(φ)

all
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Figure 1: The six (non-)convex penalty functions under consideration in this work.
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Table 2: U.S. stock market datasets for the period 23.08.02 to 27.03.08

dataset source obs K r̄ σ̂ Ŝ K̂

S&P200: largest firms (w.r.t. ME) Datastream 1401 200 6.57 14.79 0.0487 5.32
S&P500: largest firms (w.r.t. ME) Datastream 1401 500 6.57 14.77 0.0410 5.13
S&P1036: largest firms (w.r.t. ME) Datastream 1401 1036 6.39 14.88 0.0380 4.99

Table 2 reports the datasets under consideration, the source of the data, the number of assets (K), and the number
of observations (obs) in each dataset. For the S&P datasets, value weighted indices are computed whose return

distributions are characterized by the mean p.a. r̄, the standard deviation p.a. (σ̂), the skewness (Ŝ), and the

kurtosis (“K) given in the last four columns. The S&P indices are market value weighted. The weighting schemes
are updated daily and applied the following day.

are small. Now, if a correlation structure is “strong enough” to grow absolute portfolio weights
– against the counteracting penalty – large enough, it is considered reliable and should therefore
enter the portfolio to a greater extend. The main differences between them, as pointed out by
Figure 1 is on the intensity on penalizing the different asset weights. The `q- and the Log-penalty
provide a particularly strong incentive to avoid small and presumably dispensable positions in
favor of selecting a small subset of presumably indispensable assets. This tendency to construct
very sparse and less diversified portfolios coincides with the suggestion of [28] to use the `q-norm
as a diversity measure for portfolios.

3 Empirical Analysis

Data and Experimental Set-Up

We consider daily observations of five different datasets shown in Table 2 that represent the U.S.
stock market at different levels of aggregation. Datasets are characterized by a different number
of constituents, which include the 200, 500, and 1036 largest individual firms (with respect to
the market value on March 27, 2008) of the S&P 1500, which we label as large datasets. We
refer to [27] for results also on the 48 industry portfolios and the 98 firm portfolios provided by
Kenneth French, which could be considered as small dataset.

We backtest the out-of-sample performance of the proposed methods with a moving time
window procedure, where τ = 250 in-sample observations (corresponding to one year of market
data) are used to form a portfolio. The optimized portfolio allocations are then kept unchanged
for the subsequent 21 trading days (corresponding to one month of market data) and the out-
of-sample returns are recorded. After holding the portfolios unchanged for one month, the time
window is moved forward, so that the formerly out-of-sample days become part of the in-sample
window and the oldest observations drop out. The updated in-sample window is then used to
form a new portfolio, according to which the funds are reallocated. The T = 1401 observations
allow for the construction of Γ=54 portfolios with the corresponding out-of-sample returns.

Table 3 shows the different measures we use to evaluate the out-of-sample performance and
the composition of the portfolios, where F−1

r (p) is the value of the inverse cumulated empirical
distribution function of the daily out-of-sample returns at point p.

For comparative evaluations, we also implement the following standard benchmarks: (i)
the shortsale-unconstrained MVP, denoted MVPssu, the shortsale-constrained MVP, denoted
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Table 3: Portfolio evaluation measures

Measures based on the out-of-sample portfolio returns

Portfolio variance (s2) Sharpe ratio (SR) 95% Value-at-Risk (VaR)
1

T−τ−1

∑T
t=τ+1

(rt − r̄)2 r̄√
s2

|F−1
r (0.05)|

Measures based on the portfolio composition

No. active positions (No. act.) Shorting (Short) Turnover (TO)

1
Γ

∑Γ
γ=1
|{i | wi,γ 6= 0 ∀ i}| 1

Γ

∑
j={i | wi,γ<0 ∀ i}−wj,γ

1
Γ−1

∑Γ
γ=2

∑K
i=1

∣∣∣wi,γ − wi,γ−1

∣∣∣

MVPssc, the market value weighted portfolio, denoted mvw, and the equally weighted portfolio,
denoted 1oK.

To determine the optimal minimum variance portfolio, we choose to focus on three types of
frequently used covariance matrix estimators: (i) the sample estimator, (ii) a three-factor model
estimator [10] and (iii) the Ledoit-Wolf estimator [12]. However, we report in the following
results related to the three-factor model and refer the reader to [27] for a complete empirical
analysis.

Determining the Regularization Parameter

Prior to optimizing problem formulation (1)-(2) for any of the six penalization approaches, a
value of the regularization parameter λ must be chosen. Since the optimal values λ∗ for the
various penalties are unknown, we try for each approach a set of 30 ascending values starting
from zero. The largest element in each set is chosen such that the resulting portfolios exhibit
only few active positions and a high out-of-sample portfolio variance. In this manner, it is most
likely that the intervals spanned by zero and the largest regularization parameters cover λ∗.

Each of the 30 regularization parameters corresponds to one specific (optimized) portfolio,
which demands a decision about in which one to eventually invest. This difficult decision is the
reason we split the empirical experiments into two setups: (i) we keep track of all 30 portfolios
that correspond to the entire spectrum of 30 regularization parameters over all periods; (ii)
we invest in only one portfolio by applying ten-fold cross-validation to choose a suited value
of λ prior to the investment decision in each period. While procedure (ii) is more realistic
from an investment perspective,4 procedure (i) provides valuable insights into the potential
benefit of regularization and how different values of λ affect the portfolio performance. However,
due to space limitations, we refer the reader to [27] for results related to the entire spectrum
of regularization parameters and we focus in the next section on results related to the cross-
validation procedure.

4The cross-validation procedure is as follows: 21 observations are randomly picked from the in-sample data,
portfolios are optimized on the remaining 229 observations for all 30 regularization parameters, and the portfolio
variance is computed using the 21 picked observations. This is done ten times and the λ is chosen that corresponds
to smallest average portfolio variance.
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Table 4: Three-factor model covariance matrix (cross-validation experiment)

MVPssu MVPssc mvw 1oK∗∗ Lasso∗ w8Las∗ Log∗∗ `q
∗∗ Zhang∗ SCAD∗∗

Panel A: S&P 200 individual firms

s2 · 105 3.007∗∗∗ 3.162∗∗∗ 6.023∗∗∗ 6.524∗∗∗ 2.843∗∗∗ 2.808∗∗∗ 3.017∗∗∗ 3.009∗∗∗ 2.777∗∗∗ 2.942∗∗∗

VaR·102 0.885∗∗∗ 0.898∗∗∗ 1.312∗∗∗ 1.348∗∗∗ 0.828∗∗∗ 0.824∗∗∗ 0.893∗∗∗ 0.916∗∗∗ 0.843∗∗∗ 0.881∗∗∗

SR 0.054∗∗∗ 0.062∗∗∗ 0.018∗∗∗ 0.050∗∗∗ 0.049∗∗∗ 0.050∗∗∗ 0.054∗∗∗ 0.048∗∗∗ 0.049∗∗∗ 0.054∗∗∗

No. act. 200.0∗∗∗ 54.9∗∗∗ 200.0∗∗∗ 200.0∗∗∗ 82.6∗∗∗ 91.1∗∗∗ 66.1∗∗∗ 65.6∗∗∗ 93.9∗∗∗ 64.8∗∗∗

Short 0.75∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.26∗∗∗ 0.29∗∗∗ 0.38∗∗∗ 0.38∗∗∗ 0.32∗∗∗ 0.39∗∗∗

TO 0.57∗∗∗ 0.52∗∗∗ 0.04∗∗∗ 0.00∗∗∗ 0.59∗∗∗ 0.68∗∗∗ 0.96∗∗∗ 0.98∗∗∗ 0.73∗∗∗ 0.90∗∗∗

Panel B: S&P 500 individual firms

s2 · 105 2.883∗∗∗ 3.796∗∗∗ 6.081∗∗∗ 6.799∗∗∗ 2.529∗∗∗ 2.495∗∗∗ 2.617∗∗∗ 2.601∗∗∗ 2.538∗∗∗ 2.643∗∗∗

VaR·102 0.923∗∗∗ 1.071∗∗∗ 1.335∗∗∗ 1.385∗∗∗ 0.834∗∗∗ 0.835∗∗∗ 0.794∗∗∗ 0.814∗∗∗ 0.847∗∗∗ 0.842∗∗∗

SR 0.031∗∗∗ 0.042∗∗∗ 0.018∗∗∗ 0.045∗∗∗ 0.043∗∗∗ 0.043∗∗∗ 0.043∗∗∗ 0.049∗∗∗ 0.042∗∗∗ 0.036∗∗∗

No. act. 500.0∗∗∗ 278.6∗∗∗ 500.0∗∗∗ 500.0∗∗∗ 131.9∗∗∗ 147.6∗∗∗ 102.8∗∗∗ 108.1∗∗∗ 151.6∗∗∗ 101.0∗∗∗

Short 0.83∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.20∗∗∗ 0.24∗∗∗ 0.33∗∗∗ 0.35∗∗∗ 0.24∗∗∗ 0.33∗∗∗

TO 0.61∗∗∗ 0.22∗∗∗ 0.04∗∗∗ 0.00∗∗∗ 0.69∗∗∗ 0.75∗∗∗ 1.11∗∗∗ 1.04∗∗∗ 0.80∗∗∗ 1.09∗∗∗

Panel C: S&P 1036 individual firms

s2 · 105 2.649∗∗∗ 4.593∗∗∗ 6.254∗∗∗ 9.001∗∗∗ 2.382∗∗∗ 2.379∗∗∗ 2.343∗∗∗ 2.356∗∗∗ 2.485∗∗∗ 2.369∗∗∗

VaR·102 0.833∗∗∗ 1.166∗∗∗ 1.352∗∗∗ 1.566∗∗∗ 0.802∗∗∗ 0.792∗∗∗ 0.775∗∗∗ 0.789∗∗∗ 0.819∗∗∗ 0.754∗∗∗

SR 0.031∗∗∗ 0.031∗∗∗ 0.016∗∗∗ 0.028∗∗∗ 0.054∗∗∗ 0.050∗∗∗ 0.041∗∗∗ 0.045∗∗∗ 0.050∗∗∗ 0.044∗∗∗

No. act. 1036.0∗ 572.4∗ 1036.0∗ 1036.0∗ 276.7∗ 308.3∗ 179.6∗ 153.8∗ 298.7∗ 161.3∗

Short 0.84∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.26∗∗∗ 0.30∗∗∗ 0.33∗∗∗ 0.31∗∗∗ 0.28∗∗∗ 0.31∗∗∗

TO 0.65∗∗∗ 0.22∗∗∗ 0.04∗∗∗ 0.00∗∗∗ 0.84∗∗∗ 0.89∗∗∗ 1.30∗∗∗ 1.13∗∗∗ 0.87∗∗∗ 1.26∗∗∗

Table 4 shows results of the four benchmarks and the six regularization approaches for the three large datasets
and the three-factor model covariance matrix.

Empirical Results

Table 4 shows that the cross-validation approach works well for the considered large datasets.
The out-of-sample variances of the penalized approaches are always lower than the constraned
minimum variance approach (MVPssc) and the equally weighted (mvw) and often also than the
unconstrained minimum variance portfolio (MVPssu). This shows that the possibility of having
a stronger shrinkage in some periods but not in others is beneficial. The only exception is for
the S&P 200 dataset in Panel A, where the Log- and the `q-regularized portfolios exhibit even
higher risks than the MVPssu. However, this fits the picture that the non-convex approaches
perform the better the larger the number of constituents compared to the number of observations,
which corresponds to a window size of 250. The w8Las reaches the smallest variance for both
S&P200 and S&P500, while the Log-penalty outperforms for S&P1036. In terms of Sharpe
Ratio, the equally weighted portfolio is a tough benchmark, especially for S&P500, where only
the `q-penalty allows to reach a slightly larger value by using just an average subset of 108.1
active components. Lasso, w8Las and Zhang penalty reach the largest Sharpe Ratios values for
S&P1036, while still investing in an average number of assets much larger than the Log, `q and
SCAD penalties. Clearly, as the non-convex penalties lead often to sparser solutions than other
methods, they end up paying a price in terms of turnover rates and identify optimal portfolios
with larger shorting amounts, while the extreme risks, as captured by VaR and ES, are still
often smaller than the MVPssu, MVPssc and Mvw portfolios.
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4 Conclusions

Introducing a penalty in the Markowitz minimum variance framework can allow to determine
optimal portfolios that better control for estimation error and have superior out-of-sample per-
formances than the unconstrained approach and the equally weighted benchmark. In particular,
we propose a new type of a (convex) penalty whose construction allows for easy processing of
all kinds of signals to optimized portfolios, may they be gained from (time series) econometrics,
fundamental or technical analysis, or expert knowledge. Moreover, we consider four non-convex
penalty functions that have not yet been examined in a portfolio optimization context. It turned
out that these approaches perform very well when dealing with very large datasets, where they
not only outperformed standard benchmarks but also the (convex) “state-of-the-art” LASSO
approach. The success of these approaches stems from their ability to maintain relevant as-
sets in the portfolio with large absolute weights, while only the weights of the remaining assets
are shrunk. This allows for a better exploitation of the higher potential to diversify portfolio
risk in larger datasets. Further research aims to further develop the underlying signal extraction
that could be operationalized in the w8Las approach and investigate alternative cross-validation
criteria, which likely will allow for a further improvement of the results.
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Abstract. In the last two decades the literature has been focusing on the development of
dynamic models for predicting conditional covariance matrices from daily returns and, more
recently, on the generation of co-volatility forecasts by means of dynamic models directly fitted
to realized measures. Despite the number of contributions on this topic some open issue still arise.
First, are dynamic models based on realized measures able to produce more accurate forecasts
than standard MGARCH models based on daily returns? Second, which is the impact of the
choice of the volatility proxies on forecasting accuracy? Is it possible to improve the forecasts
accuracy by combining forecasts from MGARCH and models for realized measures? Finally, can
combining information observed at different frequencies help to improve over the performance
of single models? In order to gain some insight about these research questions, in this paper we
perform an extensive forecast comparison of different multivariate volatility models considering
both MGARCH models and dynamic models for realized covariance measures. Furthermore,
we investigate the possibility of increasing predictive accuracy by combining forecasts generated
from these two classes of models, using different combination schemes and mixing forecasts based
on information sets observed at different frequencies.

Keywords. Forecast combination, multivariate GARCH, realized covariance, model confidence
set.

1 Introduction

The literature on multivariate volatility prediction from vector time series of daily returns is
relatively recent, originating at the end of the 80s with the paper by Bollerslev et al. (1988)
proposing the VECH model. The general version of their model is very flexible but, even for
moderately large dimensions, it is characterized by a large number of parameters. The subse-
quent research on multivariate generalizations of the standard GARCH model (MGARCH) has
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focused on two main issues. First, the need for more parsimonious specifications allowing the
analysis of large dimensional datasets without paying a too high price in terms of model’s flexi-
bility. Second, substantial efforts have been dedicated to the derivation of parameter constraints
inducing well defined, positive definite and stable, sequences of estimated covariance matrices.
A comprehensive review of the literature on MGARCH models can be found in Bauwens et al.
(2006).
More recently, the increasing availability of high-frequency data on financial transactions has
stimulated a new stream of research proposing to use dynamic models, directly fitted to time
series of realized covariance matrices, in order to predict future conditional variances and co-
variances. Bauwens et al. (2012) provide a review of these contributions. The predictive
performances of these two sets of approaches have been recently empirically compared by Boudt
et al. (2014) considering an application to Value at Risk (VaR) estimation. Their results pro-
vide evidence in favour of the hypothesis that dynamic models for realized covariance measures,
henceforth RC models, can be more accurate than standard MGARCH models in predicting
conditional variance and covariance matrices.
One of the main drawbacks of the approach based on RC models is related to the choice of the
discretization frequency used for computing the realized covariance estimator and, more gener-
ally, to the choice of the realized estimator used for approximating the volatility matrix. This
issue has been recently addressed in the paper by Varneskov and Voev (2013) who also find that
substantial accuracy gains can be obtained moving from a plain approach based on simple daily
returns to the use of high-frequency information.
Our aim in this paper is, first, to compare the predictive performances of MGARCH models
and RC models estimated at different frequencies. Second, and more important, we are inter-
ested in assessing the profitability, in terms of forecasting accuracy, of a forecast combination
scheme merging forecasts from models estimated at different frequencies. Our approach extends
the algorithm discussed by De Pooter at al. (2010) to the prediction of conditional covariance
matrices. We compute the combined predictor averaging the forecasts generated by the models
included in the time-varying set of optimal models which is identified applying the Model Confi-
dence Set (MCS) approach of Hansen and Lunde (2011) over a rolling window. The results show
that the combined predictor can improve over each of the single models separately considered.
The paper is structured as follows. Section 2 describes the MGARCH and RC models used for
our analysis while the forecast combination strategy is illustrated in Section 3. The results of
an empirical application to a portfolio of U.S. stocks are presented in Section 4 while section 5
concludes.

2 Candidate Models

Forecast combinations require the take up of two important decisions related to which forecasts
should be included in the analysis and to the approach that should be adopted for determiming
the weights assigned to the included models. The first task is, therefore, related to what is often
called the design of the model universe. The models that have been considered in this paper can
be classified into two groups. The first group includes MGARCH models that do not exploit
intra-daily information and are fitted to time series of daily returns. Namely, we consider two
different variants of the Dynamic Conditional Correlation (DCC) model of Engle (2002) and a
scalar version of the BEKK model proposed by Engle and Kroner (1995), the RiskMetrics (RM)
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model (J.P.Morgan, 1996) and a Moving Covariance (MC) estimator. Differently, the models
included into the second group are directly fitted to time series of realized covariance matrices.
In particular, these include the Conditionally Autoregressive Wishart, CAW, model proposed
by Golosnoy et al. (2012) and realized versions of the RM and MC estimators.

MGARCH models

The DCC model, in the original formulation of Engle (2002), is defined as:

Ht = DtRtDt

Dt = diag(ht) hi,t =
»
Hii,t

Hii,t = a0,i + a1,ir
2
i,t−1 + b1,iHii,t−1

Rt = (diag(Qt))
−1/2Qt(diag(Qt))

−1/2

Qt = (1− α− β)Q̄+ α(εt−1ε
′
t−1) + βQt−1

where εt = D−1
t rt is the (n × 1) vector process of standardized residuals and Q̄ = Ŝ =

(1/T )
∑T
t=1 εtε

′
t is the sample covariance matrix of εt. Aielli (2013) points out that, for con-

sistent targeting, Q̄ should be (asymptotically) equal to E(Qt) which is not the case in the
Engle’s formulation. This motivates his corrected DCC (cDCC) model that differs from the
basic DCC in the specification of the dynamic updating equation for Qt that is defined as

Qt = (1− α− β)Ψ + α(ηt−1η
′
t−1) + βQt−1

where

ηt = diag(Qt)
1/2εt

and

Ψ = E(ηtη
′
t).

One point to note is that Ψ depends on the correlation parameters (α, β)′. So, at the estimation
stage, the log-likelihood function must be simultaneously maximized with respect to (α, β)′ and
Ψ. This makes the estimation unfeasible for vast dimensional models. To deal with applications
to large datasets, Aielli (2013) proposes to use a generalized profile Quasi Log-Likelihood esti-
mator. Simulation results show that parameter estimates for both the DCC and cDCC models
can be severely biased in large dimensional systems. To reduce this bias, Engle et al. (2008)
propose to use a Gaussian Composite Quasi Maximum Likelihood (CQML) estimator. Their
simulation results show that the CQML estimator outperforms the standard Gaussian QML in
large dimensional systems.
An alternative approach to bias reduction in the estimation of DCC models in large dimensions is
proposed by Hafner and Reznikova (2012) who derive an alternative formulation of the standard
DCC model in which the targeting matrix Q̄ is obtained by shrinkage estimators

Q̄ = δM + (1− δ)Ŝ

where Ŝ is the sample covariance matrix of standardized residuals εt, M is the targeting matrix
and δ denotes the shrinkage intensity. M can be chosen in different ways. If we set M = In, an
identity matrix of order n, and δ = δIµ, where µ = trace(Ŝ)/n is the Frobenius inner product,
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the resulting estimator is called a shrinkage to identity estimator. Alternatively, we will get a
shrinkage to equicorrelation estimator if we set δ = δE and M = E, a (n× n) matrix such that

Eij = ρ̄
»
ŜiiŜjj with

ρ̄ =
1

2n(n− 1)

n−1∑
i=1

n∑
j=i+1

ρij

where ρij = Ŝij/
»
ŜiiŜjj . Finally, Hafner and Reznikova (2012) suggest a single-index factor

models in order to estimate the shrinkage targets. From a Monte Carlo simulation study it arises
that i) for problems of small to medium dimension, the shrinkage to equicorrelation estimator
outperforms the QML and CQML estimators of the standard DCC model ii) for large dimensional
problems, the most accurate estimator is that based on Gaussian CQML.

Finally, we consider the Dynamic Equicorrelation (DECO) model proposed by Engle and
Kelly (2008) as an alternative to the standard DCC model for the estimation of the conditional
covariance matrices of large dimensional portfolios. The DECO model differs from the standard
DCC in the specification of the conditional correlation matrix Rt which is defined as

Rt = (1− ρt)In + ρtJn

where Jn is a (n × n) matrix of ones and ρt is the dynamic equicorrelation coefficient given by
the average of the off-diagonal elements of the DCC conditional correlation matrix

ρ̄ =
1

2n(n− 1)

n−1∑
i=1

n∑
j=i+1

Qt,ij√
Qt,iiQt,jj

.

Estimates of correlation parameters can be easily obtained by maximizing a Gaussian QML
function.

As a simple alternative to DCC estimators, we consider a scalar BEKK model. In the BEKK
model proposed by Engle and Kroner (1995), assuming homogeneous dynamics, the dynamic
equation for the conditional covariance matrix is given by:

Ht = (1− α2 − β2)H̄ + α2rt−1r
′
t−1)β2Ht−1

where H̄ = (1/T )
∑T
t=1 rtr

′
t. Estimates of α and β can be obtained by Gaussian QML. As for

the DCC model, Engle et al. (2008), however, show that these estimates are severely biased in
large dimensional models. By Monte Carlo simulations they also show that this bias does not
affect CQML estimators of the parameters of BEKK models.
The RM estimator can be derived as a special case of an integrated scalar BEKK model in which
β2 = 1− α2 = 0.94. Finally, the h-days MC estimator is a simple tool used by practitioners for
obtaining a quick and preliminary estimated of the conditional covariance matrix of returns and
can be defined as:

Ht =
1

h

h∑
i=1

rt−ir
′
t−i for i > m.

Dynamic RC models

Let us denote by Σt, t = 1, . . . , T a time series of realized covariance matrices. CAW models
(Golosnoy et al., 2012) are based on the assumption that, conditional on past information It−1,

COMPSTAT 2014 Proceedings



Alessandra Amendola and Giuseppe Storti 191

the matrix Σt follows a n-dimensional central Wishart distribution:

Σt|It−1 ∼Wn(ν,Ht/ν), (1)

where ν > n−1 is the degrees of freedom parameter, Ht/ν is a n×n symmetric positive definite
scale matrix. It follows that

E(Σt|It−1) = Ht

where Ht can be interpreted as the latent conditional covariance matrix of returns. The dynamic
updating equation for Ht is specified using a BEKK formulation with covariance targeting:

Ht = (1− α2 − β2)Σ̄ + α2Σt−1 + β2Ht−1 (2)

where α2 + β2 < 1 and Σ̄ = 1/T
∑T
t=1 Σt. QML estimates of the parameters in (2) can be

obtained by maximization of a Wishart QL function. Furthermore, Bauwens and Storti (2013)
have derived an alternative CQML estimator that allows for computationally efficient estimation
of the model parameters in large dimensional problems.

In addition, we consider the Realized RiskMetrics (RRM) estimator

Ht = 0.06Σt−1 + 0.94Ht−1 (3)

and a Realized Moving Covariance (RMC) estimator given by:

Ht =
1

h

h∑
i=1

Σt−i.

3 The forecast combination approach

Assume that rt, t = 1, ..., T is a time series of returns generated by the model

rt = Stzt t=1,...,T

where zt
iid∼ (0, In) and St is any (n×n) positive definite (p.d.) matrix such that St = S(It−1, θ).

From the above specification it follows that Ht = StS
′
t is the conditional covariance matrix of

returns given past information It−1. The shape of the dynamic process generating St, which is
the shape of S(.), is unknown.

Also assume that k candidate models for the prediction of Ht are available and denote by H
(j)
t

the forecasts, symmetric and p.d., of the covariance matrix of rt, conditional on It−1, generated
by the j-th candidate model. In general a combined predictor based on the available k candidate
models is defined as

H̃t = C(H
(1)
t , . . . ,H

(k)
t ;wt)

where C(.) is an appropriately chosen combination function and wt is a vector of combination
parameters. Different combination functions C(.) can in principle be used and there is no a
priori valid procedure for selecting the optimal function. Among all the possible choices of C(.),
the most common is the linear combination function

H̃t = wt,1H
(1)
t + . . .+ wt,kH

(k)
t wt,j ≥ 0 (4)

@ COMPSTAT 2014



192 Combining information at different frequencies in MVP

MMM ABT AA AAPL
ALL MO AXP AIG

AMGN T BAC BK

Table 1: Symbols identifying the 12 NYSE stocks included in the analyzed portfolio.

where wt coincides with the vector of combination weights. The assumption of non-negative
weights is required in order to guarantee the positive definiteness of H̃t.
The approach we pursue in this paper is based on the use of a linear combination function where
the weights are determined by the MCS approach. In practice, the combined predictor is defined
as a simple average of the candidate models included in the MCS while a weight equal to 0 is
assigned to all the other models excluded from the MCS.

Namely, our approach is based on a fixed-rolling window forecasting scheme. Let us denote
by Tin the in-sample size for estimating the model parameters, our forecasting procedure is based
on the following steps

1. Estimate all the candidate models over the window including observations from 1 to Tin

2. Conditional on the estimated parameters, generate static 1-step ahead forecasts of the
conditional covariance matrix for the following m observations

3. Re-estimate the candidate models over the window including observations from m + 1 to
Tin +m

4. Iterate 2 and 3 until the end of the series.

At each re-estimation we then compute the MCS including the best performing models according
to some adequately chosen loss function. The combined predictor H̃t is then computed as the
equally weighted average of the models included in the MCS 5. It follows that our forecasting
strategy allows the structure of the combined predictor to vary over time.

4 Empirical results

In this section we present the results of an application to a portfolio of 12 NYSE stocks (table
1).

Our raw data are composed of price quotations observed every minute, from 9.30 a.m. to
4.00 p.m., from May 12, 1997 to July 18, 2008 6 for a total of 2780 observations. The raw
returns have then been aggregated over intervals of 5, 10, 15 and 30 minutes, respectively, in
order to compute the associated time series of daily realized covariance matrices. Our choice of
using open-to-close returns follows the approach of Andersen et al. (2010) who argue that the
overnight return can be interpreted as a deterministically occurring jump. Hence the open-to-
close return can be considered as the daily return adjusted for the overnight jump.

5In order to initialize the computation of the MCS, in the first estimation rounds, in-sample estimates of the
conditional covariance matrices are used. These are then gradually replaced by out-of-sample forecasts.

6The data are available online at www.tickdata.com.
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Our aim is i) comparing the performances of the members of our set of candidate models in
generating one-step-ahead predictions of the conditional covariance matrix of daily returns ii)
evaluating the ability of forecast combinations to improve the performance of the single candi-
date models.
The cDCC and BEKK models have been estimated by means of a Gaussian QML estimator as
well as a CQML estimator based on the whole set of feasible bivariate sub-systems. Similarly,
the CAW model has also been estimated by both QML and CQML estimators. In this way our
combined predictor allows to account for model as well as estimation uncertainty. The length
of the moving window for the calculation of the MC and RMC estimator has been set equal to
m = 100.
The RC based predictors have been computed for each of the above considered intradaily sam-
pling frequencies. This gives an overall number of 24 candidate predictors to be used for forecast
combination. The accuracy of each of these models in predicting the conditional covariance ma-
trix is assessed using a loss function based on the Frobenius norm

L
(δ)
F = Tr[(Σ

(δ)
t −H

(j)
t )′(Σ

(δ)
t −H

(j)
t )]

where Σ(δ) is the realized covariance matrix computed from δ-minutes intradaily returns, with
δ = 5, 10, 15, 30 minutes. So the rolling MCS is performed four times, one for each value of δ,

yielding four different combined predictors H
(δ)
t .

Figure 1 reports, for each re-estimation step, the size of the MCS comparing it with h̄j

h̄j =
1

Tin

Tinj∑
t=Tin(j−1)+1

(
1

12

12∑
i=1

h2
t,i

)

which is the average volatility of the assets included in our portfolio over the j-th estimation
window. The plot shows that the size of the MCS is related to the average volatility level. This
is particularly evident in the last part of the sample, approximately corresponding to the long
low volatility period immediately preceding the financial crisis started in summer 2008. The
composition of the MCS, under the four different volatility proxies considered, is summarized
by the plots in figure 2. The analysis of these plots reveals that the composition of the MCS is
not particularly sensitive to the intra-daily sampling frequency for δ > 5 minutes.

Finally, in order to compare the predictive accuracy of the candidate models we have re-
computed the MCS on the whole out-of-sample forecasting period (from observation 501 to
observation 2780). The set of candidate predictors is now composed of 28 predictors, obtained
from the merging of the initial set of 24 candidate models with the 4 combined predictors
computed by the rolling-window MCS. In all cases it turns out that the estimated whole-period

MCS includes only one predictor given by the combined predictorH
(30)
t . This result suggests that

combining predictions generated from different models, possibly using information at different
frequencies, can improve over the forecasting performance of single, misspecified, forecasting
models.

5 Concluding remarks

In this paper we have compared the predictive accuracy of MGARCH and RC models estimated
at different frequencies. Furthermore, we have investigated the possibility of improving the
forecast accuracy of single misspecified models by using forecast combination techniques.

@ COMPSTAT 2014



194 Combining information at different frequencies in MVP

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

 

 
avg. vol. 5 min.
avg. vol. 10 min.
avg. vol. 15 min.
avg. vol. 30 min.
mcs size 5 min.
mcs size 10 min.
mcs size 15 min.
mcs size 30 min.

Figure 1: Size of the MCS computed over 40 re-estimations versus the average volatility level
over the same period (h̄).

The empirical results of our analysis suggest that it is not possible to identify a clearly winning
approach between MGARCH and RC models. This is evident looking at the composition of the
MCS which is not stable over time but is characterized by the alternance of models from the two
different groups. These results appear to be quite robust to the choice of the sampling frequency
of the RC matrix used for assessing the forecast accuracy.

The main finding achieved within the paper is that combining forecasts from models esti-
mated at different frequencies can allow to improve over the predictive ability of single models.
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Figure 2: Composition of the MCS computed over 40 re-estimations under 4 different RC mea-
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Abstract. A drawback of the sparse principal component analysis (PCA) procedures using
penalty functions is that the number of zeros in the matrix of component loadings as a whole
cannot be specified in advance. We thus propose a new sparse PCA procedure in which the
least squares PCA loss function is minimized subject to a pre-specified number of zeros in the
loading matrix. The procedure is called unpenalized sparse matrix PCA (USMPCA), as it does
not use a penalty function and obtains component loadings matrix-wise, i.e., simultaneously
rather than sequentially. The key point of USMPCA is to use the fact that the PCA loss
function can be decomposed into sum of two terms, one of them irrelevant to loadings, and
another one being a function easily minimized under the considered cardinality constraint. This
decomposition makes it possible to construct an efficient alternate least squares algorithm for
USMPCA. Another useful feature is that the PC score matrix is column-orthonormal, which
helps to define naturally the percentage of explained variance by the sparse PCs. USMPCA is
illustrated with real data examples.

Keywords. Sparse component loadings, loss function decomposition, constrained matrix com-
plexity.

1 Introduction

For an n−observations × p−variables column-centered data matrix X, principal component
analysis (PCA) can be formulated as minimizing

f(F,A) = ‖X − FA>‖2 (1)

over an n×m PC score matrix F and a p×m component loading matrix A, with ‖ ‖2 indicating
the squared Frobenius norm and the number of components m ≤ min(n, p). The resulting
solution is interpreted by noting the loadings in A which quantify the relationships between
the p variables and m components. It is desired for A to be sparse, i.e., to have a number of
zero elements, since a sparse matrix is easily interpreted by focusing only on the variables and
components linked with nonzero elements. However, such sparse A cannot be obtained by the
standard PCA. For this reason, a number of modified PCA procedures have been proposed in
the last decade, which produce sparse solutions [8]. Such procedures are called sparse PCA.
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Almost all existing sparse PCA procedures are using penalized approaches: they are formu-
lated by combining a PCA objective function with penalty functions that penalize A to have
nonzero elements. Such examples are SCoTLASS [3], SPCA [10], and sPCA-rSVD [11], where
the relative importance of penalty functions is controlled by tuning parameters. That is, they
control the number of nonzero elements, which is called cardinality. Though a number of other
penalized procedures have been developed for improving the preceding ones [4, 14, 8], they are
formulated by the same format.

A common drawback of the penalized sparse PCA is that the appropriate value of the tuning
parameter which corresponds to the desired cardinality is not obvious. Thus, the penalized sparse
PCA is not convenient for users who wish to have a loading matrix with a specified number of zero
elements. The procedures studied in [1] and [5] avoid such a difficulty. Their authors presented
efficient heuristic algorithms called ”greedy” search to find component loadings sequentially with
direct cardinality constraint. In this paper, we also propose a directly constrained cardinality
procedure without using a penalty function. However, our proposed procedure differs from the
”greedy”search approaches in that all component are extracted simultaneously (not sequentially),
i.e., F and A are obtained matrix-wise (not column-wise). We, thus, refer to our proposed
procedure as unpenalized sparse matrix PCA (USMPCA). Moreover, the resulting PC scores are
uncorrelated, which helps to define naturally the percentage of explained variance as described
in Section 4.

2 Unpenalized Sparse Matrix PCA

In USMPCA, the PCA loss function (1) is minimized subject to the column-orthnormality
condition for n−1/2F and the constraint on card(A) which denotes the cardinality of A. That
is, USMPCA is formulated as

min
F,A

f(F,A) = ‖X − FA>‖2 , subject to
1

n
F>F = Im and card(A) = c (2)

with Im denoting the m×m identity matrix and c being a specified integer.

The key point of USMPCA is to use the fact that the orthonormality 1
nF
>F = Im allows

the loss function (1) to be decomposed as

‖X − FA>‖2 = ‖X − FB> + FB> − FA>‖2 = ‖X − FB>‖2 + n‖B −A‖2 , (3)

with B being the cross-product matrix of p−variables ×m−components:

B =
1

n
X>F . (4)

The decomposition (3), which is derived from (X − FB>)(FB> − FA>) being the zero
matrix, shows that a simple function ‖B − A‖2 is only relevant to A, which allows us to easily
attain the cardinality constrained minimization of (1) as found in the next section.

3 Algorithm

The USMPCA problem (2) can be solved by alternately performing the two steps:
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A-step minimizing (1) over A subject to card(A) = c with F being kept fixed;

F-step minimizing (1) over F subject to 1
nF
>F = Im with A kept fixed.

First, let us consider the A-step, which is equivalent to minimizing g(A) = ‖B − A‖2 under
card(A) = c, since of (3). Using A = (aij) and B = (bij), we can rewrite g(A) as

g(A) = ‖B −A‖2 =
∑

(i,j)∈O
b2ij +

∑
(i,j)∈O⊥

(aij − bij)2 ≥
∑

(i,j)∈O
b2ij . (5)

Here, O denotes the set of the q = pm− c indexes (i, j)’s indicating the locations of the loadings
aij to be zero, while the complement set O⊥ contains the c (i, j)’s of nonzero aij . The inequality
in (5) shows that g(A) attains its lower limit

∑
(i,j)∈O b

2
ij when the non-zero loadings aij with

(i, j) ∈ O⊥ are taken equal to the corresponding bij . Moreover, the limit
∑

(i,j)∈O b
2
ij is minimal,

when O contains the indexes for the q smallest b2ij among all squared elements of B. Thus, g(A)
is minimized for A = (aij) being

aij =

®
0 if b2ij ≤ b2[q]
bij otherwise

, (6)

with b2[q] the qth smallest value among all b2ij .
Next, let us consider the minimization in F-step. It is attained for

F =
√
nKL> = XALΛ−1L>, (7)

where K and L are given by the singular value decomposition (SVD) of XA defined as

1√
n
XA = KΛL> (8)

with K>K = L>L = Ip and Λ a diagonal matrix. However, it is shown in the next paragraph
that the update of F by (7) can be skipped.

Using 1
nF
>F = Im and (2), the loss function (1) can be expanded as

f(F,A) = trX>X + trAF>FA> − 2trX>FA = ntrS + ntrA>A− 2ntrB>A , (9)

with S = 1
nX
>X. Noting that (9) is a function of B and the use of (7) in (2) leads to

B =
1

n
X>XALΛ−1L> = SALΛ−1L> , (10)

we can find that (1) or (9) is minimized for B given by (10) and this B is also used for (6): F
may not be obtained in F-step. Moreover, the original data matrix X may not be available and
only the sample covariance matrix S suffices for minimizing (1), since LΛ−1L> in (10) can be
obtained through the eigenvalue decomposition (EVD)

A>SA = LΛ2L> , (11)

following from (8): X is found to vanish in (9), (10), and (11).
It should be noted that the A resulting in (6) satisfies trA>A = trB>A. We can use it in

(9) to find that the value of loss function (1) after the update (6) is expressed as

f(A) = ntrS − ntrA>A = ntrS × fN (A) . (12)

Here, fN (A) = 1− trA>A/trS is normalized so as to take a value within [0, 1], thus convenient
for checking convergence. Thus, the USMPCA algorithm can be formed as follows:
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1. Initialize A.

2. Perform EVD (11) to obtain B with (10).

3. Obtain A with (6).

4. Finish if fN (A) ≤ ε ; otherwise go back to 2.

Here, fN (A) denotes the change in fN (A) from the previous round. In this paper, ε = 0.17 and
the algorithm is repeated fifty times with random initialization. Among the resulting solutions,
we select the one with the lowest fN (A) value as the optimal solution, in order to avoid local
minimizers. After those procedures, F can be obtained using (7).

4 Percentages of Explained Variances

The loss function value (12) allows us to define the goodness of the resulting A as

PEV = 100trA>A/trS , (13)

with trA>A = 1
n‖FA>‖2 following from 1

nF
>F = Im. The statistic (13) can be called total

percentage of explained variance (PEV), since trS in (13) is the total variance of the variables,
while trA>A = 1

n‖FA>‖2 is the total variance of FA>, since (7) shows that F is column-centered
as X is so.

The total PEV (13) can be decomposed as the sum of

PEV(j) = 100a>j aj/trS , (14)

over j = 1, ...,m. It serves as the PEV index for each component. On the other hand, the PEV
for each variable is derived from the fact that (12) can be rewritten as n

∑p
i=1(sii − ‖ãi‖2) =

n
∑p
i=1 sii(1−‖ãi‖2/sii) ≥ 0, with ã>i the ith row of A and sii the variance of variable i. It gives

the percentage of ‖ãi‖2 = 1
n‖F ã>i ‖2 to sii,

PEV[i] = 100‖ãi‖2/sii . (15)

In the same forms as (13), (14), and (15), PEV indices are defined for the standard PCA,
which is formulated as minimizing (1) with 1

nF
>F = Im and A>A being a diagonal matrix. The

same forms of definitions facilitate the comparison of solutions between USMPCA and PCA
in goodness-of-fit. Since PCA is the best rank m approximation of X, the value of the total
PEV (13) for USMPCS cannot exceed the one for PCA. However, if the former value is not
substantially less than the latter, the USMPCS solution can be considered to be acceptable. It
should be noted that USMPCS can be superior to PCA in (14) and (15), as illustrated in Section
6.1.

5 Nonzero Loadings as Covariances

The matrix B defined in (2) contains the covariances of p variables to m components, since
X and F are column-centered. By taking this fact into account in (6), the nonzero loadings
in A are found to equal the corresponding covariances in B: nonzero aij equals the covariance
between variable i and component j. It implies that the nonzero loadings equal the correlation
coefficients of variables to components, when the columns of X have unit variances or S is a
correlation matrix, since of 1

nF
>F = Im.
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6 Two Examples

The first example is the Pitprop data set [2] given as the correlation matrix obtained from a
180× 13 data matrix. We set m = 6 following the previous studies to perform USMPCA. The
solution subject to card(A) = pm/2 = 39 is shown left in Table 1 with blank indicating zero
loadings. There, the total PEV 86.7 is found to be almost equivalent to the PEV 87.0 for PCA:
USMPCA approximated the data as well as PCA with a half of loadings vanishing in the former
solution. We further performed USMPCA with decreasing card(A) one by one, to find that the
PEV for the solution with card(A) = 17 nearly exceeded 80, a benchmark percentage not being
very lower than 87.0 for PCA. That solution is shown right in Table 1. Bold font is used for the
PEV for variables and components which exceed the corresponding ones for PCA. One notes
that the USMPCA components with j = 4, 5, 6 explain more variance than the PCA ones.

Vars USMPCA: card(A) = 39 USMPCA: card(A) = 17 PCA
1 2 3 4 5 6 PEV 1 2 3 4 5 6 PEV PEV

topdiam .86 .40 90.4 .89 79.2 90.9
length .90 .33 92.0 .91 82.9 92.5
moist .98 -.10 97.5 .96 92.4 97.8
testsg .90 -.40 97.5 .94 88.6 97.5
ovensg -.17 -.93 88.7 .81 65.0 86.8
ringtop .32 .19 .59 -.55 0.29 87.1 .37 .79 76.6 86.4
ringbut .61 .61 -.41 -.14 93.1 .67 .62 83.4 92.7
bowmax .54 .15 -0.60 67.8 .61 .51 63.4 68.4
bowdist .75 .15 -0.20 62.9 .80 63.5 64.0
whoris .66 .33 -0.38 -.42 86.8 .75 .44 75.1 87.2
clear .15 .97 96.9 -.98 95.3 95.9
knots -.11 .25 .25 0.80 77.5 -.92 85.5 80.4
diaknot .15 .00 -.87 .10 0.31 88.6 -.96 91.6 90.7
PEV 25.8 17.1 12.5 12.0 10.5 8.8 86.7 29.1 13.9 12.8 8.8 8.6 7.0 80.2 87.0
PEVPCA 32.5 18.3 14.5 8.5 7.0 6.3 87.0 32.5 18.3 14.5 8.5 7.0 6.3 87.0

Table 1: USMPCA solutions for Pitprop data with PCA’s PEV in the final row and column.

The variables are well clustered with every variable loading only one or two components. It
makes sense to compare the USMPCA solutions with the classic (subjective) interpretation of
the Pitprop component loadings [2], which is summarized in Table 2. The adopted notations
mean that the first component is determined by topdiam, length, ringbut, bowmax, bowdist
and whoris, the second – by moist and testsg, and etc. The ringbut value for component four in
[2, Table 4, p.229] seems incorrect, by inspecting the corresponding eigenvalue. The corrected
”classic” interpretation is given in [8], where ringbut is dropped off the fourth component.

Clearly, the USMPCA solution with card(A) = 17 suggests identical interpretation of the first
three components as the one given in [2, p.230]. The fourth component is, indeed, a contrast, but
between clear and whoris. The fifth component is also a contrast between knots and bowmax,
and the sixth component is a direct measure of diaknot (the average diameter of the knots in
inches).

The second example concerns the gene expression data matrix of n = 17 time points by
p = 384 genes presented by [9] and available at http://faculty.washington.edu/kayee/pca.
The 384 genes are categorized into five phases of cell cycles, with each phase containing 67,
135, 75, 52, and 55 genes, respectively. It suggests m = 5, but this choice yielded one trivial
component in preliminary trials. We thus reduced m to 4. For card(A), we first used the
integer nearest to the one-third of pm, then increase card(A) one by one to find that the total
PEV of the solution with card(A) = 538 ∼= 0.35pm nearly exceeds a benchmark 70, which is not
considerably lower than the PEV 81.2 for PCA with m = 4. The resulting A with card(A) = 538
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Vars 1 2 3 4 5 6
topdiam x
length x
moist x
testsg x x
ovensg x x
ringtop x x
ringbut x x
bowmax x
bowdist x
whoris x
clear x
knots x
diaknot x

Table 2: Classic interpretation of the Pitprop component loadings [2, p.229-30].

are presented block-wise in Figure 1. There, the blocks correspond to the five phases, with the
block for the second one divided into two, and positive/negative nonzero loadings represented as
filled squares/triangles, respectively. The solution is considered to be reasonable, as each phase
has a unique feature of loadings: [a] Phases 1, 2, and 4 are characterized by positive loadings
for Components 1, 2, and 3, respectively; [b] Phases 5 are characterized by positive loadings for
Component 4 and negative ones for 2; [c] Phases 3 consists of the genes positively loaded by
Component 2 or 3 and by both.

Figure 1: USMPCA solution for gene expression data with blank indicating zero
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7 Final Remarks

In this paper, we proposed the penalty-free sparse PCA procedure USMSPCA and presented its
alternate least squares algorithm. An advantage of USMPCA over the penalized sparse PCA is
that the cardinality of loadings can be set to a specified integer in advance. For that integer we
can use the one conceived easily such as a half or the one-third of the number of loadings, which
can be flexibly changed for finding a better solution, as illustrated in the examples. There, it was
also illustrated that a solution obtained can be validated by comparing the PEV value with the
corresponding one for the standard PCA. The reasonableness of this PEV comparison follows
from that the PEV indices for USMPCA are defined in the same manner as in PCA.
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Abstract. In model averaging a weighted estimator is constructed based on a set of models,
extending model selection where a single estimator is constructed from one selected model found
via an information criterion. Several studies discuss the weight choice for linear models only
and almost all studies assign weights to models by using optimization routines, specifically
quadratic programming and nonlinear optimization. None of these studies worried about the
unicity of the estimated weights, while in fact, with those methods the chosen weight is often
non-unique, resulting in difficulties with interpretations of weighted averages. Our contribution
is threefold: (1) We minimize an estimator for the mean squared error in a local misspecification
framework from which unique weights can be assigned to a set of ‘linearly independent design
matrix’ models. (2) The weight choice applies to a broad range of models including generalized
linear models. (3) In linear models the computational complexity of averaging may be reduced
since weighted predictions from nested and singleton models are equal. In a simulation study
in Poisson regression the performance of our method of averaging is compared with other such
methods. The simulation results show that the proposed method performs well.

Keywords. Model averaging, Likelihood, Mean squared error, Choice of weights, Smoothed
AIC, Smoothed BIC.

1 Introduction

Model averaging is an alternative to model selection in which a new estimator of a population
quantity is constructed based on a weighted average of estimators in each candidate model.
Most of the model averaging literature considers the least squares framework, [4] proposed the
Mallows criterion for model averaging which was extended by [9] for non nested models. Unlike
most of the theoretical results for least squares model averaging with the homoscedasticity
assumption, [5] challenged this assumption and defined a jackknife model averaging estimator
with heteroskedastic errors and they proved the optimality of their estimator. [8] proposed a new
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model averaging estimator in the local asymptotic framework for linear regression and derived
the asymptotic distribution of a plug-in averaging estimator.

We consider the choice of weights for model averaging in likelihood regression models. Several
models are available for the estimation of a population parameter µ. Various models, including
parts, or all, of the covariates might be considered, each one coming with its own estimator of
µ, say, µ̂S for a model indexed by S. So, the model averaging estimator is

µ̂w =
M∑
j=1

wjµ̂Sj . (1)

Using the likelihood framework, which has so far received scant attention, [6] studied the prop-
erties of the averaging estimator when random weights are used to construct a compromised
estimator; [7] went one step further and used an estimator for the mean squared error (MSE)
of a non-random weighted estimator which they minimized in a special class of random data
dependent weights. Their method is also applicable for least squares estimations. Logistic re-
gression was considered by [10] who minimized a plug-in estimator of the asymptotic squared
error to define weights for ordered logit models.

In this paper we consider averaged estimators obtained by general maximum likelihood es-
timation, with an application to Poisson regression. The studied choice of the weights is by
minimizing an estimated mean squared error of µ̂w under local misspecification. Our main con-
tributions are (i) to define a method for averaging estimators in a general likelihood framework,
(ii) to find a set of models for which we can assign unique weights for each model in that set
and (iii) our proposed method is computationally attractive. Unlike other methods, we do not
need quadratic programming for minimizing risk ([4, 5, 8]) nor heavy nonlinear optimization
routines ([7]). We derive the theoretical formula for the weights in a general case. Also, (iv)
we show the equality of prediction values for our method in models with linearly independent
design matrices in linear regression. Hence singleton models (with only a single covariate in each
model) perform as well as any other linearly independent design matrix models. This result is
promising for high dimensional data. Moreover, our weights are not restricted to lie in the unit
simplex set but the sum of weights should be equal to one which is a necessary assumption for
consistency of the averaging estimator ([6]).

2 Notation and setting

In a regression setting, take Y1, . . . , Yn independent with density function fn(y;x) = f(y;x, θ0, γ0+
δ/
√
n), where in a variable selection context, the p-vector θ is included in every model and com-

ponents of the q-vector γ may or may not be relevant (e.g. these are coefficients corresponding
to irrelevant covariates). The true values of (θ, γ) are (θ0, γ0 + δ/

√
n) under the local misspec-

ification setting, and (θ0, γ0) under a narrow model when only θ is included in the model and
γ = γ0 a known value (e.g. zero).

We here phrase some further notation for the regression setting. In the case of i.i.d. data,
the covariate vector x is not present and the averages reduce to a single term. Define the vector
of first derivatives of the log-likelihoodÇ

U(y;x)
V (y;x)

å
=

Ç
∂ log f(y;x, θ0, γ0)/∂θ
∂ log f(y;x, θ0, γ0)/∂γ

å
,
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and let the information matrix

J(x) = Var

Ç
U(Y ;x)
V (Y ;x)

å
and Jn =

1

n

n∑
i=1

J(xi),

be partitioned according to the lengths of θ and γ as

J(x) =

Ç
J00(x) J01(x)
J10(x) J11(x)

å
, Jn =

Ç
Jn,00 Jn,01

Jn,10 Jn,11

å
, J−1

n =

Ç
J00
n J01

n

J10
n J11

n

å
.

In a regression context, the information matrix Jn (and submatrices thereof) are all averages
over the different observations, assumed to converge to a matrix J when n → ∞. Submatrices
of the limit matrices J and its inverse J−1 are defined as above, though without the subscript
n.

Let S be a subset of {1, . . . , q}, indicating a submodel of the full model. We wish to estimate
a population quantity µ = µ(θ, γ) (a focus parameter), for which we assume that its derivatives
with respect to θ and γ exist in a neighborhood of (θ0, γ0). This case is more general than
averaging the regression coefficients, we may also average predictions of the form xtβ in this
way.

Maximum likelihood estimators are used for estimation in each submodel. We then know
that in each submodel estimators are normally distributed in the limit ([6])

√
n(µ̂S − µtrue) d→ ΛS = Λ0 + ωt(δ −GSD). (2)

Here, ω = J10J
−1
00 ∂µ/∂θ − ∂µ/∂γ, Λ0 ∼ N(0, τ2

0 ) with τ2
0 = (∂µ/∂θ)tJ−1

00 ∂µ/∂θ, D ∼ Nq(δ,Q)
with Q = J11 and GS = Q0

SQ
−1 = πtSQSπSQ

−1 with QS = (πSQ
−1πtS)−1 and πS is a |S| × q

projection matrix selecting the rows with an index belonging to S.
Note that the matrices Q0

S are ‘partial’ inverses of Q−1. The ‘0’ superscript denotes by
definition the following construction. First select of Q−1 those rows and columns with indices
in S, then invert that matrix. Next, place this in a full q × q matrix in the rows and columns
indicated by S and set all other entries equal to zero. In particular, when S = {1, . . . , q} (full
model), Q0

S = Q. Some possibilities of sets of models to average over are all possible subsets
(M = 2q), nested models (M = q + 1) and singleton models (M = q + 1).

3 The mean squared error expression

In this section, we state the mean squared error (MSE) of the averaged estimator and its asymp-
totic distribution. From (2), it immediately follows that the MSE of a single submodel estimator
is converging to

MSE(µ̂S , δ) = τ2
0 + ωtQ0

Sω + ωt(Iq −GS)δδt(Iq −GS)tω.

For the weighted estimator (1), with M a finite number of models, not depending on the sample
size, and with a non-random set of weights w1, . . . , wM that sums to 1, it follows that (see [6])

√
n(µ̂w − µtrue) d→

M∑
j=1

wjΛSj =
M∑
j=1

wj{Λ0 + ωt(δ −GSjD)},
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from which follows that MSE(µ̂w) = τ2
0 + R(δ) with the same τ2

0 as before (since the weights
sum to 1) and

R(δ) = ωt
{

(Iq −
M∑
j=1

wjQ
0
SjQ

−1)δδt(Iq −
M∑
j=1

wjQ
0
SjQ

−1)t + (
M∑
j=1

wjQ
0
Sj )Q

−1(
M∑
j=1

wjQ
0
Sj )

t
}
ω, (3)

or equivalently R(δ) = wtFw where the (j, k)th entry of F is given by (j, k = 1, . . . ,M)

Fjk = ωt
{Ä
Iq −Q0

SjQ
−1
ät
δδt
Ä
Iq −Q0

Sk
Q−1

ä
+
Ä
Q0
SjQ

−1Q0
Sk

ä}
ω. (4)

Hence, the theoretically optimal weights that minimize the MSE are

wmse = argmin
w∈H

wtFw. (5)

where H =
¶

(w1, . . . , wM ) :
∑M
j=1wj = 1

©
.

Some properties of the plug-in estimator

Calculating the weights in (5) requires to estimate all quantities in (3) or (4). Almost all
unknown parameters in (4) can be estimated consistently except the δ. The unbiased estimator
for δ which is δ̂ =

√
n(γ̂full − γ0)→d D ∼ Nq(δ,Q) may be used in estimation of the MSE. By

plugging in estimators, it follows that (j, k = 1, . . . ,M)“Fjk = ω̂t(Iq − “Q0
Sj
“Q−1)tδ̂δ̂t(Iq − “Q0

Sk
“Q−1)ω̂ + ω̂t(“Q0

Sj
“Q−1“Q0

Sk
)ω̂. (6)

For interpretation purposes, it is important to know whether the obtained weights are unique
or not. In [1] we obtain and prove the following useful results. Property 1 presents sufficient
conditions for the unicity of the weights.

Property 1 If Q is positive definite, ω is not equal to 0M and the matrices Q0
Sj

(j =

1, . . . ,M) are linearly independent, then the M×M matrix ‹Q with (j, k)th element ωtQ0
Sj
Q−1Q0

Sk
ω

is positive definite.
Considering equation (6), the first term is always positive semi-definite and under the con-

ditions of Property 1 it is positive-definite which results in a positive-definite matrix F . So, by
solving (5) “wm̂se = argmin

w∈H
wt“Fw =

1tM
“F−1

1tM
“F−11M

, (7)

where 1M denotes a vector of ones with length M .
The main conclusion of Property 1 is that the number of models for having unique weights

cannot exceed q+1 where q is the number of potential covariates, plus one for the narrow model.
Several sets of models with at most q+ 1 independent design matrices can be considered such as
nested models and singleton models. The main challenging part of using nested models is the
order of the regressors, whereas singleton models are independent of regressor orders, see also
the simulation study.

It should be noted that our method can also consider any set of models like all possible
models, but the weights are not longer unique. In these cases, our method is similar to other
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proposed model averaging methods in linear regression, e.g., [5], [8] and [10] where they used
quadratic programming. There are some other methods like [7] in which they used nonlinear
constrained optimization method to define the weights in a specific class of weights. In their
method, the weights may not be unique even not when considering only q+ 1 models. The main
problem of non unique weights is that the prediction values are not unique, so with the same
method one can get different predictions for population parameter.

It can be shown that the matrix F in (6) converges in distribution to F ∗ for which the (j, k)th
element (j, k = 1, . . . ,M) is equal to

F ∗j,k = ωt
Ä
Iq −Q0

SjQ
−1
ä
DDt

Ä
Iq −Q0

Sk
Q−1

ät
ω + ωt

Ä
Q0
SjQ

−1Q0
Sk

ä
ω,

with D ∼ N(δ,Q).
While the explicit form of the weights in (7) is useful for direct computation, it hints at a

complicated limiting distribution. Using that “F →d F
∗, we get a limiting distribution of “wmse

in terms of F ∗ too, see [1].
Property 2 Assume that “F and F ∗ are invertible. Let “wm̂se = argminw∈Hw

t“Fw and
w∗ = argminw∈Hw

tF ∗w. Then “wm̂se →d w
∗. Also, by using the joint convergence in distribution

of all
√
n(µ̂Sj −µtrue) and “w to corresponding ΛSj and w∗, the model averaging estimator has a

limiting distribution

√
n(µ̂ŵ”mse − µtrue) d→

M∑
j=1

w∗jΛSj .

Note that by the randomness of the weights w∗ the limiting distribution is not normal. For
deterministic weights, the limiting distribution is normal.

The third result, see [1], states that in linear regression the prediction values for the mean of
the response vector (E(Y ) = Xβ) for averaging over nested models and over singleton models
with our method are equal.

Property 3 If p ≥ 1 and q ≥ 2, then the prediction values in linear models for nested
model averaging and singleton model averaging are equal when MSE optimal weights (“wm̂se) for
weighted prediction are used.
This has promising consequences for models with a large number of covariates where an all
subsets model averaging would be time consuming, while singleton models are much easier to
fit.

4 Simulation Study for Poisson Regression

We now investigate the finite sample performance of the proposed plug-in estimator of the
MSE (PMSE) via a Monte Carlo simulation in nested and singleton models. Our goal for this
simulation is twofold: (i) compare the MSE estimator model averaging scheme with other model
averaging schemes, (ii) examine the effect of the number of non-zero coefficients for the auxiliary
regressors.

Four estimators are considered to be compared with our estimator: AIC and BIC post-model
selection methods and model averaging estimators corresponding to their smoothed estimator,
SAIC and SBIC, with the weights for the mth model

wsaicm =
exp
Ä
−1

2AICm
ä

∑q+1
j=1 exp

Ä
−1

2AICj
ä , wsbicm =

exp
Ä
−1

2BICm
ä

∑q+1
j=1 exp

Ä
−1

2BICj
ä .
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The response values Yi have a Poisson distribution with mean µi = exp(xtiδ) with the fol-
lowing specifications: p = 0 (i.e. no core regressors), q = 8 with (x1i, . . . , x8i) ∼ Np+q(0,Ω) in
which Ωij = 1 for i = j and Ωij = ρ for i 6= j. The value of ρ varies in the set {0, 0.25, 0.5, 0.75}.
The value of γ0 is set to zero and δ values are considered according to the following scenarios:

scenario 1A: δ1 = (−1,−4, 3,−4, 0.6, 4, 0, 5)

scenario 2A: δ2 = (−1,−4, 3,−4, 0, 0, 0, 0)

For nested models, the order in which the variables enter the model is important. There are
two other scenarios, scenarios 1B and 2B. In the construction of the weighted estimator in
scenarios 1B and 2B we use the same random samples as above, but construct the design
matrix for these scenarios (and take the implied order for constructing nested models) as X =
(x5, x6, x7, x8, x1, x2, x3, x4) and the δ values corresponding each regressor stay the same. The
sample sizes are varying in the set {100, 500, 1100}. All Monte Carlo simulations are based on
2000 replications. We generate n + 1 observations in which the last observation is used as test
data set. The focus parameter is the mean of the response value for the test data set. Each
method is assessed based on the median of the squared prediction error for the test data sets
over 2000 replications which can be written as

MSPE = median{(µ̂ŵ,i − µi)2 : i = 1, . . . , 2000}

where for each test data set with values x,

µ̂ŵ = exp {
M∑
j=1

“wjxtδ̂j}.
Table 1 presents the results for the simulations. For singleton models, the AIC and BIC values

are identical (the penalty does not have an effect in singleton models), hence, we show the results
for AIC, SAIC and the PMSE methods. As Table 1 shows, the order of the regressors for nested
models is important and within the same data set, the results are varying from one order of
regressors to another order and determining an in some sense ‘optimal’ order of regressors is
challenging. So, it is not that informative to interpret the results for nested averaging in general
when the regressors are not naturally ordered. In contrast, singleton models are independent
of regressor order and the PMSE method performs the best for singleton averaging. Moreover,
PMSE singleton averaging for scenarios 1A, 1B and 2B in almost all situations performs better
than all other methods in singleton and nested averaging. Another interesting property of
singleton averaging by PMSE is that it performs quite independently of correlation between
regressors. Other things being equal, changing the ρ reduces the MSPE for other methods in
singleton models, while PMSE works equally well for all considered values of ρ. For example,
for n = 500 in scenario 2A, increasing the ρ from 0 to 0.75 cause a reduction in the MSPE from
0.023 to 0.006 for the SAIC method, whereas in our method the MSPE is always around 0.005.
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nested singleton
ρ n Scen. AIC BIC SAIC SBIC PMSE AIC SAIC PMSE

0

100
1A 0.019 0.019 0.019 0.019 0.030 0.283 0.257 0.019
1B 0.018 0.019 0.019 0.019 0.031
2A 0.011 0.009 0.012 0.010 0.025 0.108 0.091 0.019
2B 0.020 0.023 0.022 0.025 0.029

500
1A 0.005 0.006 0.005 0.006 0.006 0.052 0.049 0.005
1B 0.005 0.006 0.006 0.006 0.006
2A 0.003 0.002 0.003 0.003 0.006 0.026 0.023 0.005
2B 0.005 0.011 0.006 0.011 0.006

1100
1A 0.003 0.003 0.003 0.003 0.003 0.025 0.023 0.002
1B 0.003 0.003 0.003 0.003 0.003
2A 0.001 0.001 0.002 0.001 0.003 0.012 0.011 0.003
2B 0.003 0.007 0.003 0.006 0.003

0.25

100
1A 0.019 0.020 0.019 0.020 0.027 0.198 0.190 0.017
1B 0.019 0.021 0.020 0.023 0.028
2A 0.011 0.010 0.012 0.010 0.024 0.073 0.067 0.020
2B 0.022 0.028 0.023 0.028 0.028

500
1A 0.005 0.006 0.005 0.006 0.006 0.043 0.041 0.005
1B 0.005 0.006 0.005 0.007 0.005
2A 0.003 0.003 0.003 0.003 0.005 0.020 0.018 0.005
2B 0.005 0.012 0.005 0.012 0.005

1100
1A 0.003 0.003 0.003 0.004 0.003 0.019 0.019 0.003
1B 0.003 0.004 0.003 0.004 0.003
2A 0.001 0.002 0.001 0.002 0.002 0.009 0.008 0.002
2B 0.003 0.008 0.003 0.008 0.003

0.5

100
1A 0.025 0.031 0.027 0.033 0.030 0.140 0.132 0.023
1B 0.026 0.035 0.028 0.035 0.031
2A 0.014 0.015 0.015 0.016 0.029 0.067 0.056 0.026
2B 0.028 0.045 0.030 0.045 0.031

500
1A 0.005 0.009 0.006 0.009 0.005 0.030 0.028 0.005
1B 0.005 0.013 0.006 0.011 0.006
2A 0.003 0.004 0.003 0.004 0.005 0.013 0.011 0.005
2B 0.006 0.018 0.006 0.016 0.005

1100
1A 0.002 0.007 0.003 0.006 0.002 0.013 0.012 0.002
1B 0.003 0.009 0.003 0.008 0.003
2A 0.002 0.003 0.002 0.003 0.003 0.006 0.005 0.003
2B 0.003 0.011 0.003 0.010 0.003

0.75

100
1A 0.028 0.056 0.028 0.046 0.026 0.071 0.070 0.021
1B 0.028 0.061 0.028 0.052 0.026
2A 0.014 0.021 0.014 0.018 0.025 0.035 0.027 0.023
2B 0.030 0.059 0.028 0.047 0.028

500
1A 0.006 0.019 0.007 0.017 0.006 0.016 0.015 0.005
1B 0.007 0.019 0.007 0.016 0.006
2A 0.004 0.007 0.003 0.006 0.005 0.007 0.006 0.005
2B 0.007 0.015 0.007 0.014 0.005

1100
1A 0.003 0.009 0.003 0.008 0.003 0.007 0.006 0.003
1B 0.003 0.009 0.003 0.008 0.003
2A 0.002 0.004 0.002 0.003 0.003 0.003 0.003 0.003
2B 0.003 0.008 0.004 0.007 0.003

Table 1: MSPE of nested and singleton models based on AIC, BIC, SAIC, SBIC and PMSE.
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Yann Guédon, CIRAD, UMR AGAP and Inria, Virtual Plants, F-34095 Montpellier, France,
guedon@cirad.fr

Abstract. A family of graphical hidden Markov models that generalizes hidden Markov chain
(HMC) and tree (HMT) models is introduced. It is shown that global uncertainty on the
state process can be decomposed as a sum of conditional entropies that are interpreted as local
contributions to global uncertainty. An efficient algorithm is derived to compute conditional
entropy profiles in the case of HMC and HMT models. The relevance of these profiles and
their complementarity with other state restoration algorithms for interpretation and diagnosis
of hidden states is highlighted. It is also shown that classical smoothing profiles (posterior
marginal probabilities of the states at each time, given the observations) cannot be related to
global state uncertainty in the general case.

Keywords. Hidden Markov models, State inference, Conditional entropy.

1 Introduction

Hidden Markov models (HMMs) have been used frequently in sequence analysis for modeling
various types of latent structures, such as homogeneous zones or noisy patterns (Ephraim &
Mehrav, 2002). They have been extended from sequences to more general structures, particularly
tree structures. In HMMs, inference for model parameters can be distinguished from inference
for the state process given parameters. This work focuses on state process inference.

State inference is particularly relevant in numerous applications where the unobserved states
have a meaningful interpretation. In such cases, the state sequence has to be restored. The
restored states may be used, typically, in prediction, in segmentation or in denoising (Ephraim
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& Mehrav, 2002). Such use of the state sequence relies on the assumption that uncertainty on
the state process given observations should be reasonably low. Not only is state restoration
essential for model interpretation, it is generally used for model diagnostic and validation as
well, for example by visualising some functions of the states – typically, to compare histograms
with conditional densities given the states. The use of restored states in the above-mentioned
contexts makes assessment of state sequence uncertainty a critical step of the analysis.

Global quantification of such uncertainty has been addressed by Hernando et al. (2005).
However, this is insufficient for detailed state interpretation: knowledge of the distribution of
that global uncertainty along the structure is also of primary importance. Quantification of local
state uncertainty given observed sequence X = x for a known HMC model has been adressed by
either enumeration of state sequences, or by state profiles, which are state sequences summarised
in a K × T array, T being the sequence length and K the number of states (Guédon, 2007).

We here address quantification of state uncertainty in an HMM with observed process X =
(Xv)v∈V indexed by a fixed Directed Acyclic Graph (DAG) G with vertex set V and edge set E .
This family of HMMs is referred to as graphical hidden Markov models (GHMMs). This family
contains hidden Markov chain (HMC) and tree (HMT) models. Let S = (Sv)v∈V denote the
associated hidden state process, Sv taking values in the set {0, . . . ,K − 1}. Let x be a possible
realization ofX. Let pa(v) denote the parent of vertex v and for any subset U of V, let XU (resp.
xU ) denote the family of random variables (Xu)u∈U (resp. observations (xu)u∈U ). It is assumed
that: S satisfies the Markovian factorization property associated with DAG G, where the vertex
set V is assimilated to the family of random variables (Sv)v∈V (Lauritzen, 1996); the distribution
of S is parametrized by the transition probabilities pspa(v),k = P (Sv = k|Spa(v) = spa(v)) and
for the source vertices (vertices with no parent) u in G, by the initial probabilities (P (Su = k))k;
given S, the random variables (Xv)v are independent and Xu is independent from (Sv)v 6=u.

Usually, profiles of smoothed probabilities (P (Sv = k|X = x))v∈V with k = 0, . . . ,K − 1
have been used for quantifying state uncertainty. This approach suffers from two main short-
comings: as will be shown later, perception of state uncertainty associated with those profiles
leads to overestimating global uncertainty of S given X = x. Moreover, visualization of those
multidimensional profiles is made difficult by the graphical nature of arbitrary DAGs G, provided
that K > 2. In our approach, entropy H is considered as the canonical measure of uncertainty.
Thus, H(S|X = x) quantifies state process uncertainty given observations. This entropy can
be decomposed into a sum of entropies. Every term of that sum is associated with one vertex
in V. Hence, these entropies can be interpreted as local contributions to global uncertainty.
Since these profiles are unidimensional, they can be drawn whatever the graphical structure G.

In what follows, this decomposition is made explicit. Then efficient algorithms are given in
the HMC and HMT model cases to compute the elements of the decomposition. It is shown using
synthetic and real-case data that the obtained local entropy profiles are relevant for state uncer-
tainty diagnosis and state interpretation. These algorithms are complementary with approaches
that enumerate the L most likely state restorations (so-called generalized Viterbi algorithm),
and with approaches that compute profiles of alternative states to the most likely state pro-
cess value. This so-called Viterbi forward–backward algorithm formally solves the optimization
problem

(arg) max
(su)u6=v

P ((Sv = sv)u6=v, Sv = k|X = x).

It is also shown that usual smoothed probability profiles are not relevant for quantifying global
state uncertainty, due to their inherent marginalization property.
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2 Conditional entropy profiles

Let X be a GHMM as defined in Section 1. It is assumed that the associated hidden state
process S satisfies the factorization associated with the Markov property on G :

∀s, P (S = s) =
∏
v∈V

P (Sv = sv|Spa(v) = spa(v)), (1)

where P (Sv = sv|Spa(v) = spa(v)) refers to P (Ss = ss) if pa(v) = ∅.
The decomposition of entropy H(S|X = x) comes from the conditional distribution of S

given X = x also satisfying the factorization property of G:

P (S = s|X = x) =
∏
v

P (Sv = sv|Spa(v) = spa(v),X = x),

with the same convention as before if pa(v) = ∅.

Proof. This property is proved by induction on the vertices of G (as would be proved factorization
(1)). The random variables (S,X) satisfy the Markov property on DAG G′ which edge set E ′
is defined as a ∈ E ′ ⇔ {[a = (Su, Sv) and (u ∈ pa(v))] or a = (Su, Xu)}. Let u in G be a sink
vertex (vertex without children): then Su is separated from (Sv)v 6=u,v /∈pa(u) by Spa(u) in the
moral graph of G′. Thus, the following factorization holds:

P (S = s|X = x) = P (Su = su|Spa(u) = spa(u),X = x)P ((Sv)v 6=u = (sv)v 6=u|X = x).

The additive decomposition of entropy is obtained by applying the chain rule (Cover &
Thomas, 2006, chap. 2)

H(S|X = x) =
∑
v

H(Sv|Spa(v),X = x), (2)

with the same convention as before if pa(v) = ∅. As a consequence, the global state process
uncertainty is decomposed as a sum of conditional entropies (H(Sv|Spa(v),X = x))v∈V , which
define an entropy profile. Hence, each term of the sum is interpreted as a local uncertainty that
contributes additively to global uncertainty.

In contrast, marginal entropies (H(Sv|X = x))v∈V quantify uncertainty associated with
smoothed probabilities ξv(k) = P (Sv = k|X = x) for v ∈ V and 0 ≤ k < K. These marginal
entropies are upper bounds of the conditional entropies (Cover & Thomas (2006), chap. 2).
Hence,

H(S|X = x) ≤
∑
v

H(Sv|X = x).

As a consequence, smoothed probability profiles do not represent uncertainty on the value of S.

The particular case of HMC models is considered. Here G is a linear graph with T vertices,
and for any t < T , X0 = x0, . . . , Xt = xt is denoted by Xt

0 = xt0. Here (2) can be rewritten as

H(S|X = x) = H(S0|X = x) +
T−1∑
t=1

H(St|St−1,X = x),
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with

H(St|St−1,X = x) = −
∑
i,j

P (St = j, St−1 = i|X = x) logP (St = j|St−1 = i,X = x).

This results from definition H(St|St−1,X = x) = E[− logP (St|St−1,X = x)], where expec-
tation is under P (St, St−1|X = x). The usual forward recursion computes αt(j) = P (St =
j|Xt

0 = xt0) and γt(j) = P (St = j|Xt−1
0 = xt−1

0 ) for each time t and each state j and com-
bine them in the backward recursion to yield the smoothed probabilities ξt(j) = P (St = j|
X = x). Thus, computation of the conditional entropy profile H(St|St−1,X = x) with
0 < t ≤ T − 1 can be integrated in the backward recursion by computing P (St = j|
St−1 = i,X = x) = ξt(j)pijαt−1(i)/{γt(j)ξt−1(i)} where pij = P (St = j|St−1 = i) is the
transition probability. This approach can be seen as an alternative to the algorithm of Her-
nando et al. (2005). It allows the computation of H(S|X = x) with the same complexity in
O(TK2), but the advantage of our approach is to provide the conditional entropy profile.

In the case of HMTs indexed by tree G = T the smoothed probabilities ξv(k) = P (Sv = k|
X = x) are computed for v ∈ T by an upward–downward algorithm. A numerically stable
iterative algorithm was proposed by Durand et al. (2004). It relies on an upward recursion,
initialized at the leaf vertices of T . The computed quantities are βv(k) = P (Sv = k|X̄v = x̄v)
and βpa(v),v(k) = P (X̄v = x̄v|Spa(v) = k)/P (X̄v = x̄v) for each vertex v and each state j,
where X̄v denotes the subtree rooted in v. These quantities are computed as a function of
βu and βpa(u),u for the children u of v. The algorithm complexity is in O(K2) per iteration.
The smoothed probabilities are computed using a downward recursion initialized at the root
vertex of T . In this recursion, the ξv(k) are computed as a function of ξpa(v), βv and βpa(v),v.
The complexity is in O(K2) per iteration as well. Similarly to the HMC case, adding the
computation of

H(Sv|Spa(v),X = x) = −
∑
i,j

P (Sv = j, Spa(v) = i|X = x) logP (Sv = j|Spa(v) = i,X = x)

to the downward recursion, with P (Sv = j|Spa(v) = i,X = x) = βv(j)pij/{P (Sv = j)βpa(v),v(i)}
and pij = P (Sv = j|Spa(v) = i), allows for extracting conditional entropy profiles, while keeping
the complexity per iteration of the algorithm in O(K2).

3 Applications

Synthetic examples

A two-state HMC family is considered. Its transition probability matrix is parametrized by
ε = P (St = 1|St−1 = 0) = P (St = 0|St−1 = 1), ε ∈ [0, 0.5]. The initial state distribution π is
P (S0 = 0) = P (S0 = 1) = 0.5. The observation process takes values in {0, 1, 2} and the emission
distributions (conditional probabilities of observations given the states) are P (Xt = 0|St = 0) =
1− p; P (Xt = 1|St = 0) = p; P (Xt = 1|St = 1) = p; P (Xt = 2|St = 1) = 1− p where p ∈ [0, 1]
is an additional parameter.

In a first experiment, p is fixed at 0.5 and the considered observed sequence is xt = 1 for
t = 0, . . . , T − 1. The smoothed probabilities are ξt(0) = ξt(1) = 0.5 for t = 0, . . . , T − 1. Thus,
for any value of ε, marginal entropy is log 2 and the sum of these entropies over t is T log 2. In
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contrast, global entropy of the hidden state sequence is a strictly increasing function of ε. Its
minimum log 2 is reached for ε = 0, whereas its maximum T log 2 is reached for ε = 0.5.

Marginal and conditional entropy profiles are represented in Figure 1 a). For ε = 0, the
conditional entropy profile is interpreted as follows: global uncertainty is log 2, which corre-
sponds to uncertainty concerning the first state only. Given this first state, every subsequent
state is deterministic and does not contribute to global uncertainty. The marginal entropy pro-
file highlights equiprobability of both states at each time t given the observations. The same
statement would hold under an independent mixture assumption for (Xt)t≥0. Marginal entropy
results from uncertainty concerning state St due to observing Xt = xt, but also to propagation
of uncertainty from past states. As a consequence, marginal entropy cannot be interpreted in
terms of local contributions to global uncertainty. In contrast, conditioning by the past state in
entropy withdraws the effect of uncertainty propagation.

In a second experiment, the effect of p and ε on global state entropy is assessed by simulating
100 sequences of length T = 300 for each p ∈ [0, 1] and each ε ∈ [0, 0.5] on a regular grid with
40 × 40 points. The mean global entropy over the 100 sequences is represented in Figure 1 b).
As expected, entropy increases with the emission distribution overlapping (p → 1) and as the
rows of the transition probability matrix tend to π (ε → 0.5), so that maximal entropy T log 2
is obtained in the independence case ε = 0.5 with full overlapping p = 1.0.

a) b)

Figure 1: a) Marginal and conditional entropy profiles for a 2-state HMC model with transition
probabilities ε = 0.0, ε = 0.05 and ε = 0.15. b) Mean global state entropy for simulated
sequences as a function of transition probability ε and emission probability p.

Analysis of the structure of Aleppo pines

The aim of this study was to build a model of the architectural development of Aleppo pines.
The dataset contained seven branches of Aleppo pines, issued from different individuals. They
were described at the scale of annual shoots v (segment of stem established within a year). Each
branch was assimilated with a (mathematical) tree. Each tree vertex v (shoot) was characterized
through one observed 5-dimensional vector Xv composed of the: number of growth cycles (from
1 to 3), presence of male sexual organs (binary variable), presence of female sexual organs
(binary variable), length in cm, number of branches per tier. The parameters were estimated
by maximum likelihood using the EM algorithm. The number of states was chosen by the
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ICL-BIC criterion (see Section 4), leading to selection of a 6-state HMT model. The Markov
tree is initialized in state 0 with probability one. A summary of the state transitions and an
interpretation of the hidden states are provided in Figure 2.

As a first step, profiles of conditional entropies were represented using a colormap (mapping
between entropy values and color intensities) – see Figure 3 a). This step highlighted location of
the vertices with least ambiguous states along the branch main axes, and location of the vertices
with most ambiguous states at the peripheral parts of branches. Then, state profiles were drawn
along paths extending from the root vertex to leaf vertices. These paths were chosen so as to
contain vertices with high conditional entropies. On the one hand, a detailed analysis of state
uncertainty along the paths were obtained by Viterbi upward–downward profiles. This provided
local alternative state values to the most likely tree states given by the Viterbi algorithm.
On the other hand, the generalized Viterbi algorithm was used to characterize how clusters
of neighbor vertices had simultaneous state changes in alternative state configurations. These
results highlighted that the paths with most ambiguous states were composed of successions of
unbranched, sterile shoots with one single growth cycle.

Figure 2: 6-state HMT model: transition diagram and symbolic representation of the state sig-
natures (conditional mean values of the variables given the states, depicted by typical shoots).
The separation between growth cycle is represented by a horizontal red segment, which intensity
is proportional to the probability of occurrence of a second growth cycle. Dotted arrows cor-
respond to transitions with associated probability < 0.1. Mean shoot lengths given each state
are proportional to segment lengths, except for state 0 (which mean length is slightly more than
twice the mean length for state 1).

The application of this methodology is illustrated below on a path containing successive
monocyclic, sterile shoots. This path belongs to the fourth individual (for whichH(S|X = x) =
47.5). It is composed by 5 vertices, referred to as {0, . . . , 4}. Shoots 0 and 1 are long and highly
branched, and thus are in state 0 with probability ≈ 1 (also, shoot 0 is bicyclic). Shoots 2
to 4 are monocyclic and sterile. Shoots 2 and 3 bear one branch, and can be in states 1 or 2
essentially. Shoot 4 is unbranched and from the Viterbi profiles in Figure 3c), it can be in states
2, 3 or 5. This is summarized by the conditional entropy profile in Figure 3b).

This conditional entropy profile can be further interpreted, in relation with mutual infor-
mation I(Su;Spa(u)|X = x). On the one hand, I(S1;S2|X = x) = 0. This results from state
S1 being known. Thus, conditioning by S1 does not provide further information on its children
state S2. On the other hand, I(S3;S4|X = x) = 0.2. Uncertainty associated with the posterior
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distribution of S4 is high, since H(S4|X = x) = 0.67. However, knowledge of its parent state
S3 would reduce the uncertainty on S4: if S3 = 1 then S4 = 5; if S3 = 2 then S4 = 2 (or less
likely, S4 = 3) and if S3 = 3 then S4 = 5 (or less likely, S4 = 2).

Using an extension of (2) to subgraphs of T , the contribution of the vertices of the considered
path P to global state tree entropy can be computed as

∑
u∈P H(Su|Spa(u),X = x) and is equal

to 1.41 in the above example (that is, 0.28 per vertex on average). The global state tree entropy
for this individual is 0.24 per vertex, against 0.20 per vertex in the whole dataset. This is
explained by the lack of information brought by the observed variables (several successive sterile
monocyclic shoots, which can be in states 1, 2, 3 or 5).

The contribution of P to the global state tree entropy corresponds to the sum of the heights
of every point of the profile of conditional entropies in Figure 3b).

Note that the representation of state uncertainty using profiles of posterior state probabilities
induces a perception of global uncertainty on the states along P equivalent to that provided by
marginal entropy profile in Figure 3b). The mean marginal state entropy for this individual is
0.37 per vertex, which strongly overestimates the global state tree entropy per vertex (0.24).

4 Concluding remarks

In this work, conditional entropy profiles are proposed to assess both local and global state
uncertainty in GHMMs. As shown in the examples, these profiles allow deeper understanding
of the local roles of the model parameters, the neighbouring states and the observed data,
concerning state uncertainty. These profiles are a valuable tool to analyse alternative state
restorations, which may involve zones of connected vertices. Such situations are characterised
by high mutual information between connected vertices. Moreover, the examples highlight that
the posterior state probability profiles introduce confusion between (i) local state uncertainty due
to overlap of emission distributions for different states and (ii) mere propagation of uncertainty
from past to future states. Contrary to conditional entropy profiles, they suggest strong local
contributions to global state uncertainty in zones where such uncertainty is in fact far more
limited.

In the perspective of model selection, entropy may also be useful. If irrelevant states or
variables are added to GHMMs, global state entropy is expected to increase. This explains
why several model selection criteria based on a compromise between log-likelihood and state
entropy were proposed. Among these is the Normalised Entropy Criterion introduced by Celeux
& Soromenho (1996) in independent mixture models, and ICL-BIC introduced by McLachlan &
Peel (2000, chap. 6). Their generalization to GHMMs is rather straightforward. By favouring
models with small state entropy and high log-likelihood, these criteria aim at selecting models
such as the uncertainty of the state values is low, whilst achieving good fit to the data.
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Abstract. Mixture models have been widely used in marketing research and epidemiology
to capture heterogeneity in endogenous latent variables among individuals. However, when
collinearity between endogenous latent variables at the component level is present, some component-
specific path coefficients will be zero. In this paper, a systematic computational algorithm is
developed to identify parameters that need to be constrained to be zero and to address other
issues including the initialization procedure, the provision of standard errors of estimates, and
the method to determine the number of components. The proposed algorithm is illustrated
using simulated data and a real data set concerning emotional behaviour of preschool children.
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gorithm

1 Introduction

Regression models involving latent variables (or constructs) are very common in the marketing
research and epidemiology [2, 3]. With this approach, simultaneous regression equations are
adopted to model the relationships between multiple dependent (endogenous) latent variables
and independent (exogenous) latent variables. Let ηj and ξj denote the vectors of endogenous
and exogenous latent variables for the jth individual (j = 1, . . . , n), respectively. The “inner”
model is specified in terms of q simultaneous regression equations as

Bηj + Γξj = ζj , (1)

where B is a q × q matrix with q being the number of endogenous latent variables, Γ is a
q × p matrix where p is the number of exogenous latent variables, and ζj is a random vector
of residuals. The matrices B and Γ represent the (path) coefficients relating to the endogenous
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and exogenous latent variables, respectively, in the inner model. The relationships between the
latent variables and the manifest variables, either reflective indicators or formative measures,
are specified in the “outer” model [3]. Estimation of model parameters and values for latent
variables can be proceed with two different approaches. The structural equation modelling
(SEM) approach attempts to reproduce the covariance matrix of the observed measures, while
the partial least squares (PLS) approach focuses on maximizing the variance of the endogenous
variables explained by the exogenous variables.

In many real problems, the presence of heterogeneity among individuals in terms of different
path coefficients is prevalence. Such kind of heterogeneity is due to different individual perception
of latent variables and can be captured in the regression modelling via a finite mixture model
approach [3, 10]. With the PLS approach to regression models with latent variables, it is assumed
that the endogenous latent variables ηj (j = 1, . . . , n) come from a mixture of a finite number,
say g of multivariate normal distributions in some unknown proportions π1, . . . , πg that sum to
one:

f(ηj ; Ψ) =
g∑
i=1

πiφ(ηj ;µij ,Σi) (j = 1, . . . , n), (2)

where µij = (I −Bi)ηj −Γiξj is the mean vector of the ith component, where I is an identity
matrix, and Σi = diag(σ2

i ) is a diagonal matrix constructed from the vector σ2
i , which represents

the variance of the random residuals ζij (i = 1, . . . , g). In (2), Ψ is the vector of all the unknown
parameters containing π1, . . . , πg−1 and the free parameters in Bi, Γi, and Σi for i = 1, . . . , g.
From (1), the conditional multivariate normal density is given by

φ(ηj ;µij ,Σi) =
|Bi|»

(2π)q|Σi|
exp{−1

2(Biηj + Γiξj)
TΣ−1

i (Biηj + Γiξj)}, (3)

where the superscript T denotes vector transpose.
While mixtures of multivariate normal distributions are generically identifiable (that is, the

model is unique up to a permutation of the component labels; see [4, 7]), mixtures of regression
models with latent variables arisen from (1) and (2) are not identifiable unless some elements of
matrices Bi and Γi (i = 1, . . . , g) are constrained to zero [3]. In practice, the links between the
latent variables represented by simultaneous regression equations in the inner model are usually
hypothetical models pre-specified based on a researcher’s own experience. When collinearity
between endogenous latent variables at the component level is present, some component-specific
path coefficients will be zero. However, the setting up of such parameter constraints at present is
somewhat arbitrary. There are also issues of initialization procedure, provision of standard errors
of parameter estimates for statistical inference, and determination of the number of components
g in the mixture model [7]. In this paper, we tackle these issues by developing a systematic
computational algorithm for the implementation of mixtures of regression models with latent
variables and sparse coefficient parameters as presented in (1) and (2).

The rest of the paper is organized as follows: Section 2 describes the expectation-maximization
(EM) algorithm for the iterative computation of maximum likelihood (ML) estimates of the mix-
ture model and the procedure to identify sparse coefficient parameters. Also, we show how to
initialize the algorithm, to obtain standard errors using a bootstrap resampling approach, and
to determine the value of g. In Section 3, we present simulation studies to illustrate the appli-
cability of the proposed algorithm in terms of the accuracy of the final model derived and the
corresponding estimate biases. We show in Section 4 the application of the proposed method to
a real data set. Section 5 ends the paper with further discussion.
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2 Algorithm for fitting mixture of sparse regression models

The proposed algorithm applies directly to the scores of endogenous and exogenous latent vari-
ables, ηj and ξj , calculated using an iterative scheme of standard PLS on the observed manifest
variables with specification based on the constraints ofB and Γ for all individuals (j = 1, . . . , n);
see [3, 10]. The “aggregate” predictors of B and Γ estimated in the PLS procedure may also be
used to guide the initial estimates for Bi and Γi (i = 1, . . . , g) in the mixture model.

Maximum likelihood estimation and parameter constraint

The fitting of the mixture model (2) to latent variables ηj and ξj (j = 1, . . . , n) obtained by

PLS can be implemented using ML. An estimate Ψ̂ is obtained by solving the log likelihood
equation iteratively via the EM algorithm [8]. An appealing property of the EM algorithm
is that the likelihood is not decreased after each iteration. Within the EM framework, each
individual is conceptualized to have arisen from one of the g components of the mixture model
and the unobservable component-indicator vector zj is treated as missing data. Precisely, the
ith element zij of zj is taken to be one or zero according as the jth individual does or does not
come from the ith component (i = 1, . . . , g; j = 1, . . . , n). On the (k+ 1)th iteration of the EM
algorithm, the E-step computes the so-called Q-function, which is the conditional expectation
of the complete-data log likelihood using the current fit for Ψ:

Q(Ψ; Ψ(k)) =
g∑
i=1

n∑
j=1

τ
(k)
ij {log πi + log φ(ηj ;µij ,Σi)}, (4)

where we simply have to calculate

τ
(k)
ij =

π
(k)
i φ(ηj ;µ

(k)
ij ,Σ

(k)
i )∑g

h=1 π
(k)
h φ(ηj ;µ

(k)
hj ,Σ

(k)
h )

(i = 1, . . . , g; j = 1, . . . , n), (5)

which is the posterior probability that the jth individual belongs to the ith component of the
mixture; see [7].

The M-step updates the estimate of Ψ by the new value Ψ(k+1) of Ψ that maximizes the
Q-function with respect to Ψ. It can be seen from (4) that the maximization with respect to
the mixing proportions and coefficient parameters can be obtained separately as follows:

π
(k+1)
i =

n∑
j=1

τ
(k)
ij /n Σ

(k+1)
i =

∑n
j=1 τ

(k)
ij (B

(k)
i ηj + Γ

(k)
i ξj)

T (B
(k)
i ηj + Γ

(k)
i ξj)∑n

j=1 τ
(k)
ij

B
(k+1)
i =

n∑
j=1

τ
(k)
ij Γ

(k)
i ξjη

T
j

 n∑
j=1

τ
(k)
ij ηjη

T
j

−1

Γ
(k+1)
i =

n∑
j=1

τ
(k)
ij B

(k)
i ηjξ

T
j

 n∑
j=1

τ
(k)
ij ξjξ

T
j

−1

(6)

In addition to the parameter constraints specified under the hypothetical model in (1) under
(2), extra constraints at the component level may be required in the formulation of the final
mixture model when collinearity between some endogenous variables is present. In this paper, we
propose the following systematic scheme to determine which additional component-parameters
in Bi (i = 1, . . . , g) need to be constrained to be zero:

@ COMPSTAT 2014



226 Mixture of sparse regression models

1. Perform model estimation without any additional constraints;

2. Monitor the log likelihood values at each iteration and the parameter estimates of Bi (i =
1, . . . , g);

3. Determine if the algorithm converges or not (failure to convergence is indicated by either
singularity of Bi or decrease of log likelihood values due to estimate in Bi, say bilm, being
very close to zero, such as being less than 0.000001 in absolute value7);

4. Constrain the parameter bilm, if convergence fails to achieve in (3), to be zero and then
rerun the model estimation;

5. Repeat (2) and (4) to constrain one parameter at a time8 until convergence of model
estimation is achieved.

Initialization, computation of standard errors, and model selection

With applications where the log likelihood equation has multiple local maxima, the EM algorithm
should be implemented from a wide choice of initial parameter values in an attempt to search
for all local maxima [7, 8]. The proposed algorithm provides three options to initialize the EM
algorithm, where the user can either (a) specify initial estimates of the unknown parameters
(such as those guided by estimates obtained by the standard PLS); (b) use random groupings of
the data to get initial estimates of the unknown parameters; or (c) run the EM algorithm from
different random starts as in (b) and use the set of parameter estimates corresponding to the
largest likelihood value as initial values for obtaining the final model.

With the proposed algorithm, the standard errors of the estimates of Ψ are obtained using
the bootstrap resampling method with replacement, where the number of bootstrap replications
is taken to be 100 [7].

In the absence of any prior information as to the number of components present in the data,
we can monitor the increase in log likelihood function as the value of g increases in order to
determine an appropriate value of g. At any stage, the choice of g = g0 versus g = g0 + 1 can
be made by using some information-based criterion, such as the Bayesian Information Criterion
(BIC) [9] or by a bootstrap resampling approach to assess the null distribution (and hence the
p-value) of the likelihood ratio test statistic [7]; see also [5] and [6]. There is also the integrated
classification likelihood (ICL) criterion [1]. Other criteria for the determination of g, including
the Akaike Information Criterion (AIC), the consistent AIC (CAIC), and the entropy measure
(EN), have been considered specifically within the marketing research [3, 10]. Comparison of
these methods in the general context of mixture models has been reported [7].

3 Simulation experiments

In this section, we study the performance of the proposed computational algorithm for fitting
mixtures of sparse regression models. We consider a marketing research setting with p = 5
exogenous and q = 7 endogenous variables. Let ξ = (ξ1, . . . , ξ5)T and η = (η1, . . . , η7)T be the
scores of exogenous and endogenous variables, respectively, with the subscript j that indicates
the jth individual dropped, the 7 simultaneous regression equations that define the path model
are given by

7 Other thresholds close to zero may be used and the choice should not affect the results.
8 If constraints in multiple parameters are needed, sensitivity analysis may be used to determine the order.
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η1 = γ11ξ1 + ζ1; η5 = γ54ξ4 + ζ5;

η2 = γ22ξ2 + ζ2; η6 = γ65ξ5 + ζ6;

η3 = b32η2 + ζ3; η7 = b74η4 + b75η5 + b76η6 + ζ7,

η4 = b41η1 + b43η3 + γ43ξ3 + ζ4; (7)

which imply that the specifications for Bi and Γi (i = 1, . . . , g) are:

Bi =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 -bi32 1 0 0 0 0

-bi41 0 -bi43 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 -bi74 -bi75 -bi76 1


and Γi =



-γi11 0 0 0 0
0 -γi22 0 0 0
0 0 0 0 0
0 0 -γi43 0 0
0 0 0 -γi54 0
0 0 0 0 -γi65

0 0 0 0 0


(8)

In the simulation experiments, it is assumed that there are g = 3 groups of individuals and
the total number of individuals is n = 1000. Each vector of the exogenous latent variable scores
ξj (j = 1, . . . , 1000) was generated independently from a multivariate normal distribution with
mean vector and covariance matrix as

Mean =

â
-0.063
-0.131
-0.012
0.080

-0.013

ì
and Cov. =


1.14 0.66 0.72 0.45 0.57
0.66 1.19 0.53 0.29 0.43
0.72 0.53 1.01 0.48 0.58
0.45 0.29 0.48 0.99 0.47
0.57 0.43 0.58 0.47 1.01

 . (9)

The parameter values for Ψ with reference to (8) are given in Table 1; these parameter values are
based on a fitted mixture model we have obtained on a real data set. Realizations of component
membership were generated in which an individual has a probability of πi to belong to the
ith component (i = 1, 2, 3). Given the component membership, realizations of ηj were then
generated from the corresponding component density φ(ηj |µij ,Σi) as in (2) under (7).

To illustrate the proposed scheme presented in Section 2 for the constraint of additional
component-parameters in Bi (i = 1, 2, 3), we consider collinearity between the seventh η7 and
the forth η4 endogenous latent variables in (7) for the first component. This implies that both
parameters b175 and b176 are zero, with a very small σ2

17; see Table 1. Using a data set of n = 1000
scores generated as above, we first consider a mixture model without any additional constraints
on parameters in Bi (see Equation (8)). The algorithm fails to converge as the estimate of b175

has a value smaller than 0.000001. We then consider a model with an additional constraint of
b175 = 0. The algorithm again fails to converge as the estimate of b176 has a value smaller than
0.000001. We thus constrain b176 = 0 as well. This final model with two additional constraints
(b175 = 0 and b176 = 0) converges.

Ten independent simulation experiments were conducted to assess the generalization perfor-
mance of the proposed algorithm for fitting mixtures of sparse regression models. Such evaluation
is based on the accuracy of the final model derived, the misclassification rate, and the bias of
estimates. In all ten experiments, the algorithm identifies the correct final model with two addi-
tional constraints in b175 and b176 (the rate of correctly identifying sparse coefficients is 100%).
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Parameter i = 1 i = 2 i = 3 Parameter i = 1 i = 2 i = 3

πi 0.42 0.46 0.12 γi54 0.63 0.50 0.17
bi32 0.97 0.64 0.67 γi65 1.02 0.94 -0.80
bi41 0.60 0.14 0.27 σ2

i1 0.07 0.64 0.39
bi43 0.32 0.40 0.32 σ2

i2 0.09 0.89 0.68
bi74 0.87 0.20 0.49 σ2

i3 0.07 0.60 0.44
bi75 0.00 0.27 0.11 σ2

i4 0.02 0.47 0.35
bi76 0.00 0.24 0.21 σ2

i5 0.58 0.82 0.82
γi11 0.91 0.67 0.74 σ2

i6 0.01 0.01 0.73
γi22 1.16 0.49 0.29 σ2

i7 1E-6 0.86 0.87
γi43 0.03 0.39 0.22

Table 1: Parameter values for a 3-component mixture model (Simulation experiments).

Parameter i = 1 i = 2 i = 3 Parameter i = 1 i = 2 i = 3

πi -0.001 0.010 -0.009 γi54 -0.003 0.008 -0.017
bi32 0.001 0.018 -0.043 γi65 0.001 0.001 -0.048
bi41 -0.002 0.003 0.003 σ2

i1 -0.001 0.006 0.031
bi43 -0.004 0.002 0.010 σ2

i2 0.003 -0.005 0.022
bi74 -0.001 -0.008 0.045 σ2

i3 0.002 -0.003 -0.018
bi75 — -0.011 0.016 σ2

i4 0.001 -0.005 -0.011
bi76 — 0.001 0.040 σ2

i5 0.006 -0.001 -0.033
γi11 0.001 -0.006 0.003 σ2

i6 0.001 0.001 0.009
γi22 0.002 0.011 0.008 σ2

i7 0.000 -0.006 0.067
γi43 0.001 -0.004 -0.011

Table 2: Average bias of estimates for a 3-component mixture model (Simulation experiments).

The average misclassification rate is 0.0137. The average bias of estimates are presented in Table
2. It can be seen that no appreciable bias is observed in the estimation of Ψ.

4 Real example: Emotional behaviour of preschool children

This real example is based on the Early Head Start Research and Evaluation (EHSRE) project
conducted from 1996 to 2001. The data set is available from the Inter-University Consortium for
Political and Social Research (ICPSR) at http://www.icpsr.umich.edu. It contains data about
2977 children under 3 years who were randomized to receive designed Early Head Start (EHS)
services or to seek their own early childhood care in their community; see, for example, [12].

In the current study, we considered n = 1498 individuals with complete observations in
eight manifest variables and focus on the conceptual model described in [12] for hypothesized
relationships among maternal mental health, parenting stress, parent-child routines, and child
emotional development. The endogenous and exogenous latent variables of the hypothetical
model are presented in Figure 1. In the inner model, there are p = 1 exogenous (maternal
mental health) and q = 3 endogenous (parenting stress, parent-child routine and child emotional
development) latent variables. The 3 simultaneous regression equations that define the path
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model are given by

η1 = γ11ξ1 + ζ1; η3 = b31η1 + b32η2 + ζ3.

η2 = b21η1 + ζ2; (10)

The standard PLS analysis is implemented using the “plspm” package in R [11] to obtain
the scores for the 4 latent variables corresponding to the path model presented in Figure 1. The
proposed algorithm is then used to fit mixtures of regression models to the scores of the latent
variables with g = 1 to g = 5. No additional parameter constraints are necessary. Using the BIC,
we identified two groups of individuals. The larger group (i = 1, n1 = 1434) of individuals have
all links in the hypothetical inner model significant; see Table 3 for the estimates of the path
coefficients. Comparing to the majority, the smaller group (n2 = 64) of individuals have smaller
impact from maternal mental health on parenting stress (γ211), and from parenting stress and
parent-child routine on child emotional development (b231 and b232). A post-hoc analysis finds
that these two groups are significantly different in RACE (p-value = 0.001; see Table 3), but not
in the program allocated, child gender, child overweight indicator, and maternal age at birth.

Figure 1: Hypothetical inner model relating maternal mental health, parenting stress, parent-
child routines, and child emotional development

Group bi21 bi31 bi32 γi11 Race = Hispanic

i = 1 -0.178 (0.032) -0.194 (0.033) 0.142 (0.028) 0.423 (0.021) 312/1357∗ (23.0%)
i = 2 -0.159 (0.039) -0.074 (0.035) 0.071 (0.062) 0.237 (0.105) 26/61∗ (42.6%)

Table 3: Estimates (standard errors) of path coefficients for a 2-component mixture model and
proportion of Hispanic children (∗ Missing data exist in both groups).

5 Discussion

We have developed a computational algorithm for fitting mixtures of regression models with
latent variables and sparse coefficient parameters. The algorithm adopts a systematic scheme
to determine which additional component-parameters in the matrices of path coefficients Bi

need to be constrained to be zero. Simulated and real data sets have been used to illustrate
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the applicability of the proposed algorithm. The method can be readily adopted for component
distributions that are not multivariate normal.
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Abstract. In the present framework, a tensor is understood as a multi-way array of complex
numbers indexed by three (or more) indices. The decomposition of such tensors into a sum
of decomposable (i.e. rank-1) terms is called “Polyadic Decomposition” (PD), and qualified as
“canonical” (CPD) if it is unique up to trivial indeterminacies. The idea is to use the CPD to
identify the location of radiating sources in the far-field from several sensor subarrays, deduced
from each other by a translation in space. The main difficulty of this problem is that noise is
present, so that the measurement tensor must be fitted by a low-rank approximate, and that
the infimum of the distance between the two is not always reached.

Our contribution is three-fold. We first propose to minimize the latter distance under a
constraint ensuring the existence of the minimum. Next, we compute the Cramér-Rao bounds
related to the localization problem, in which nuisance parameters are involved (namely the trans-
lations between subarrays). Then we demonstrate that the CPD-based localization algorithm
performs better than ESPRIT when more than 2 subarrays are used, performances being the
same for 2 subarrays. Some inaccuracies found in the literature are also pointed out.

Keywords. multi-way array ; localization ; antenna array processing ; tensor decomposition ;
low-rank approximation ; complex Cramer-Rao bounds

1 Introduction

The goal is to estimate the Directions of Arrival (DoA) ofR narrow-band radiating sources, which
impinge on an array of sensors, formed of L identical subarrays of K sensors each. Subarrays do
not need to be disjoint, but must be distinct. The hypotheses are [1, 2, 3]: (H1) sources are in
the far-field, so that waves are plane; (H2) taking one subarray as reference, every subarray is
deduced from the reference one by an unknown translation in space, defined by some vector δ`

of R3, 1 < ` ≤ L, δ1
def
= 0; (H3) measurements are recorded on each sensor k of each subarray `

and for various time samples m, 1 ≤ m ≤M . In hypothesis (H2), the fact that translations are
not exactly known is legitimate, if subarrays are arranged far away from each other, or when
their location is changing with time [4]. With these hypotheses, the observation model below
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can be assumed [2, 3, 4]:

Z(k, `,m) =
R∑
r=1

Akr B`r Cmr +N(k, `,m) (1)

where N(k, `,m) is a measurement/background noise that will be assumed normally distributed.
In addition, (H4) parameters {Akr, 1 ≤ k ≤ K, 1 ≤ r ≤ R} are complex numbers of unit
modulus, and B1r = 1 = A1r, ∀r. In the present framework, we shall consider subarrays that
are formed of equispaced sensors, so that the following can also be assumed (H5):

∃ψr : Akr = exp(π(k − 1) cosψr) (2)

where ψr is the so-called Direction of Arrival (DoA) of the rth source as illustrated in Figure 1,
and  =

√
−1. Space is lacking to explain the physical context, but further details can be found

in [1, 2, 3, 4]. The literature is abundant about DoA estimation, but most approaches have
been based on second-order moments; see e.g. [5] and references therein. On the other hand,
the use of space diversity via more than two subarrays is much more recent, and is due to [2].
The key originality therein is that the approach is not based on moments but proceeds by direct
parameter estimation from the data.

A key ingredient in this problem is the use of complex random variables, which turn out to
be very useful because the formalism is much simpler when working in baseband with complex
envelopes of transmitted signals. Among the useful ingredients, we have at disposal matrix
differentiation [6], Kronecker and tensor calculus [7, 8], complex differentiation and the derivation
of complex Cramér-Rao bounds (see Section 3).

Notation. R and C designate the real and complex fields, respectively. Bold lower case letters,
e.g. z, always denote column vectors, whereas arrays with 2 indices or more are denoted by bold
uppercase symbols, e.g. V or Z. Array entries are scalar numbers and are denoted in plain
font, e.g. zi, Vij or Zk`m. The gradient of a p-dimensional function f(x) with respect to a
n-dimensional variable x is the p× n matrix [∂f/∂x]ij = ∂fi/∂xj .

2 Tensor formalism and constrained optimization

In this framework, what is meant by tensor is just a multi-way array of coordinates; this is not
restrictive as long as the coordinate system is fixed [8]. The noiseless part of (1) is a sum of
decomposable tensors, whose coordinates are of the form Dk`m = ak b` cm. Any tensor can be
decomposed into a sum of decomposable tensors, and the minimal number of terms necessary
to obtain an exact decomposition is called tensor rank. Hence nonzero decomposable tensors
have a rank equal to 1. Because of the presence of noise, the best rank-R tensor approximate of
Z needs to be found, for instance in the sense of the Frobenius norm, which is consistent with
the log-likelihood (11) in the presence of additive Gaussian noise. However, as pointed out in
[3, 8, 4] and references therein, the infimum of

Υ(A,B,C)
def
= ‖Z−

R∑
r=1

ar ⊗⊗⊗br ⊗⊗⊗ cr‖2

may not be reached. Here, ar, br, cr denote the columns of matrices A, B, C defined in (1),
respectively, and ⊗⊗⊗ is the tensor outer product.
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It has been proved in [3] that a sufficient condition ensuring existence of the best rank-R
approximation is that

µAµBµC <
1

R− 1
(3)

where µA = sup
k 6=`
|aH
k a`|, µB = sup

k 6=`
|bH
kb`|, µC = sup

k 6=`
|cHk c`|.

Therefore, the following differentiable constraint, proposed in [4], can be imposed:

Cρ def
= 1−R+ µ(A, ρ)−1µ(B, ρ)−1µ(C, ρ)−1 > 0, µ(A, ρ)

def
=

Ñ∑
p<q

|aH
p aq|2ρ

é1/2ρ

(4)

In fact, the inequality between Lp norms

||x||∞ = max
k
{xk} ≤ ||x||p def

= (
∑
k

xpk)
1/p, ∀xk ∈ R+, p ≥ 1,

guarantees that constraint (4) implies condition (3). In practice, the following penalized objective
function has been minimized in subsequent computer simulations:

Υ(A,B,C) + η exp(−γ Cρ(x)) (5)

with ρ = 13, 10−6 ≤ η ≤ 1, γ = 5.

3 Complex Cramér-Rao bounds

When parameters are complex, expressions of Cramér-Rao bounds (CRB) depend on the defini-
tion of the complex derivative. Since a real function is never holomorphic (unless it is constant)
[9], this definition is necessary; this has been overlooked in [10]. Originally, the derivative of a
real function h(θ) ∈ Rp with respect to a complex variable θ ∈ Cn, θ = α+ β, α,β ∈ Rn, has
been defined as the p× n matrix [9]:

∂h

∂θ
def
=

∂h

∂α
+ 

∂h

∂β

Even if the numerical results are independent of the definition assumed for theoretical calcula-
tions, we shall subsequently assume the definition proposed in [11], for consistency with [12]:

∂h

∂θ
def
=

1

2

∂h

∂α
− 

2

∂h

∂β
(6)

With this definition, one has for instance that ∂α/∂θ = 1
2I, and ∂β/∂θ = − 

2I. This is a key
difference with [9], where we had instead: ∂α/∂θ = I, and ∂β/∂θ = I. Assume that parameter
θ is wished to be estimated from an observation z, of probability distribution L(z;θ), and denote
s(z;θ) the score function. Then we have for any function h(θ) ∈ Rp:

E{h(z)s(z;θ)T} =
∂

∂θ
E{h(z)}, with s(z;θ)T

def
=

∂

∂θ
logL(z;θ) (7)
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This is a direct consequence of the fact that E{s} = 0, valid if derivation with respect to θ
and integration with respect to <(z) and =(z) can be permuted. Now let t(z) be an unbiased
estimator of θ. Then, following [9], one can prove that E{t sT} = E{(t − θ) sT} = I and
E{t sH} = 0. Finally, by expanding the covariance matrix of the random vector (t−θ)−F−1s∗,
one readily obtains that:

V ≥ F−1, with V
def
= E{(t− θ)(t− θ)H} and F

def
= E{s∗ sT} (8)

Note that the definition of the Fisher information matrix is the complex conjugate of that of
[9], because of a different definition of the complex derivation (and hence a different definition
of the complex score function).

4 Cramér-Rao bounds of the localization problem

In the presence of R sources, the observations can be stored in a three-way array unfolded in
vector form:

z =
R∑
r=1

ar � br � cr + n, z ∈ CKLM (9)

where � denotes the Kronecker product, and the additive noise n is assumed to follow a
circularly-symmetric complex normal distribution. Let

θ = [ψ1, . . . , ψR︸ ︷︷ ︸
ψ

, b̄T
1 , . . . , b̄

T
R, c

T
1 , . . . , c

T
R︸ ︷︷ ︸

ξ

, b̄H
1 , . . . , c

H
R︸ ︷︷ ︸

ξ∗

] (10)

denote the unknown parameter vector, where b̄r
def
= [B2,r, . . . , BL,r]

T. It is useful to include both

ξ and ξ∗, in case the distribution of the estimate ξ̂ is not circularly-symmetric, i.e. E{ξ̂ ξ̂T} 6= 0.
The aim here is to derive the CRB of the parameters in θ. The CRB for factor matrices have
been computed in [12]. However, it should be emphasized that, unlike [12], no assumption is
needed on the elements of matrix C to derive the CRB. In fact, assuming that the first row of A
and B is fixed to [1, . . . , 1]1×R is sufficient. The latter assumption is satisfied in the considered
array configuration (hypothesis: H4). The log-likelihood then takes the form:

logL(z,θ) = −KLM log(σ2π)− 1

σ2
(z− µ(θ))H(z− µ(θ)) (11)

where µ(θ) is the noise free part of z. The CRB for unbiased estimation of the complex pa-
rameters θ is equal to the inverse of the Fisher information matrix F, defined in equation (8).
Then, a straightforward calculation yields:

sT =
1

σ2

ï
nT∂µ

∗

∂θ
+ nH∂µ

∂θ

ò
(12)

where n = z − µ. By substituting the score function s by its expression, and since E
¶
nnH

©
=

σ2IKLM and E
¶
nnT

©
= 0, the Fisher information matrix can be written as:

F =
1

σ2

ñÅ
∂µ∗

∂θ

ãH Å∂µ∗
∂θ

ã
+

Å
∂µ

∂θ

ãH Å∂µ
∂θ

ãô
(13)
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Since parameters in ψ are real and those in ξ are complex, a first writing of the derivatives
in (13) is:

∂µ

∂θ
=

ï
∂µ

∂ψ
,

∂µ

∂ξ
, 0

ò
and

∂µ∗

∂θ
=

ñÅ
∂µ

∂ψ

ã∗
, 0 ,

Å
∂µ

∂ξ

ã∗ô
(14)

Therefore, the Fisher information matrix becomes:

F =
1

σ2


2 Re {G11} G12 G∗12

GH
12 G22 0

GT
12 0 G∗22

 (15)

where Gij =

Å
∂µ

∂θi

ãH Ç
∂µ

∂θj

å
, (i, j) ∈ {1, 2} × {1, 2}, θ1 = ψ and θ2 = ξ. (16)

In view of (15), it is clear that the introduction of ξ∗ in the parameter vector was not necessary.
With a non circular complex gaussian noise, this would not have been the case. To complete the
calculation of F, it remains to give partial derivative expressions of µ with respect to ψ and ξ.

Derivatives of µ with respect to ψ

Using the chain rule we have

∂µ

∂ψf
=

(
∂µ

∂ aT
f

)(
∂aT

f

∂ψf

)
(17)

and [∂µ/∂aT
f ] can be computed using complex derivative formulas. Then, we obtain:

∂µ

∂aT
f

= IK � bf � cf ∈ CKLM×K , 1 ≤ f ≤ R. (18)

To calculate [∂aT
f /∂ψf ], we use the expressions of the considered sensor array configuration,

namely equation (2), which yields:

∂aT
f

∂ψf
= −π sinψf (af � vK) (19)

where vK = [0, 1, . . . ,K − 1]T . By substituting (18) and (19) in (17), we get

∂µ

∂ψf
= −π sinψf (IK � bf � cf ) (af � vK)

def
= φψ

f
(20)

and
∂µ

∂ψ
= [φψ1

, . . . ,φψR ] ∈ CKLM×R (21)
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Derivatives of µ with respect to ξ

Taking partial derivatives of µ with respect to b̄T
f and cTf , we obtain:

∂µ(θ)

∂b̄T
f

= (af � ILM )(IL � cf )JL
def
= φb̄f

∈ CKLM×(L−1) (22)

∂µ(θ)

∂cTf
= af � bf � IM

def
= φcf

∈ CKLM×M (23)

where JL = [0(L−1),1 IL−1]T ∈ CL×(L−1) is a selection matrix. To sum up,

∂µ

∂ξ
= [φb̄1

, . . . ,φb̄R
,φc1

, . . . ,φcR ] ∈ CKLM×R(L+M−1) (24)

DoA Cramér-Rao bound

The CRB related to DoAs only is obtained as the first leading R × R block in matrix F−1,
where F is defined in (15). Doing this assumes that translations δ` are nuisance parameters, i.e.
unknown but not of interest. This realistic context has been overlooked in the literature.

5 Computer results

To evaluate the efficiency of the proposed method, we compare its performances to two other
algorithms, ESPRIT and MUSIC [13, 14]. The performance criterion is the total mean square
error (total MSE) of the DoA: 1

RN

∑R
r=1

∑N
n=1(ψ̂r,n − ψr)2 where ψ̂r,n is the estimated DoA at

the n-th Monte-Carlo trial and N is the number of trials. The deterministic CRB computed
in the previous section is reported as a benchmark. The considered scenario on which the
proposed algorithm is tested can be of interest in numerous applications, where translations δ`
are unknown. Note that the CRB of the DoA where locations of all sensors are known can be
found in [13, 14]. The three examples we study in this section are reported in the table below:

Subarrays Translations DoA

Example 1 L = 2 δ2 = [0, 25λ, 0]T 40◦, 64◦, 83◦

Example 2 L = 3 δ2 = [0, 25λ, 0]T, δ3 = [0, 37.5λ, 5λ]T 40◦, 64◦, 83◦

Example 3 L = 3 δ2 = [0, 25λ, 0]T, δ3 = [0, 37.5λ, 5λ]T 7◦, 64◦, 83◦

where λ = ω/2πς is the wavelength and ς the wave celerity. In all examples, each subarray is
an ULA array of 4-element with half-wavelength spacing (see Figure 1), and the narrowband
source signals have the same power.

In all experiments, M = 200 time samples are used, and 200 Monte-Carlo simulations are
run for each SNR level. Figures 2, 3 and 4 report the MSE of the DoA obtained in examples 1,
2 and 3, respectively.

Example 1. This experiment shows that: (i) the proposed CP algorithm exhibits the same
performances as ESPRIT, which makes sense, (ii) MUSIC performs the best, but exploits more
information, namely the exact knowledge of sensor locations, whereas this information is actually
not available in the present scenario. Hence MUSIC performances just serve as a reference.
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Example 2. This experiment shows that the proposed algorithm yields better results
than EPSRIT. The reason is that ESPRIT uses at most two subarrays, whereas the proposed
algorithm uses all of them. Again, MUSIC is reported just as a reference benchmark.

y

z

δ2

δ3

Reference

subarray

?
source

ψ

Figure 1: One source (R = 1) radiating on
a sensor array with L = 3 subarrays.
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Figure 2: Total DoA error versus SNR, with
L = 2 subarrays, ψ = [40◦, 65◦, 83◦].

Example 3. This experiment shows the same results as in example 2, except for an increase
in MSE at low SNR, which is due to the direction of arrival ψ = 7◦. Actually, for an ULA,
the source localization accuracy degrades as the DoA come closer to the end-fire, so that the
so-called threshold region (which always exists at low SNR) becomes visible.

0 10 20 30 40 50
10

−10

10
−8

10
−6

10
−4

10
−2

SNR(dB)

T
o

ta
l 
M

S
E

 f
o

r ψ

 

 

CP (3 subarrays)

ESPRIT

MUSIC

CRB

Figure 3: Total DoA error versus SNR, with
L = 3 subarrays, ψ = [40◦, 65◦, 83◦].
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Figure 4: Total DoA error versus SNR, with
L = 3 subarrays, ψ = [7◦, 65◦, 83◦].

6 Conclusion

The source localization problem is taken as an illustration of the interest in resorting to CP
tensor decomposition. We took the opportunity of this illustration to emphasize the usefulness
of complex formalism when computing the CRB. Our contributions include the computation of
CRB of DoAs when space translations are unknown (section 4), and an original algorithm to
compute the CP decomposition under a constraint ensuring the existence of the best low-rank
approximate (section 2).
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Some inaccuracies on this subject may be found in the literature: (i) in [10], functions of
the complex variable are assumed holomorphic, whereas real functions never are; (ii) in [12],
CRB are derived, but without assuming that factor matrix A is parameterized by angles of
arrival; moreover, additional constraints have been added therein to fix permutation ambiguities,
whereas they are not necessary; (iii) in [14], CRB are computed for the ESPRIT technique, but
translations are assumed known whereas they are actually unknown nuisance parameters; if they
are known, ESPRIT cannot perform better than MUSIC.
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Abstract. estimated response probabilities are used to compute a two-phase estimator of
the population total. Simulations are performed in order to compare the proposed estimators
with other estimators currently used. The advantages in terms of bias and variance of the
proposed approaches are confirmed through these simulations. We consider a setup in which
nonignorable nonresponse is present in the survey. In such a case, the unit response probabilities
depend on the variable of interest. When the variable of interest follows a mixture distribution
(a typical example of such a variable is income), it is possible to highlight latent homogeneous
response groups based on the variable of interest and auxiliary information. Two approaches
are discussed. In both approaches, response probabilities are estimated through logistic regres-
sion. The estimated response probabilities are then used to compute a two-phase estimator of
the population total. Simulations are performed in order to compare the performance of the
proposed estimators with that of other estimators currently used. The advantages in terms of
reduction of nonresponse bias and variance of the proposed approaches are confirmed through
these simulations.

Keywords. Survey sampling, Unit response probability, Two-phase estimation

1 Introduction

Reweighting procedures are commonly used to compensate for unit nonresponse in surveys.
The main idea is to increase the sampling weights of each respondent in order to compensate
for the nonrespondents. One refers to such procedures as nonresponse weighting adjustment
(NWA) methods. Nonresponse can be viewed as a second phase of the survey. Theory of
two-phase sampling hence suggests a two-phase estimator which extends the usual Horvitz-
Thompson estimator by multiplying the sampling weights of the respondents by the inverse
of their response probabilities. As the response probabilities are unknown, a preliminary step
consists of estimating them. The sampling weights of the respondents are then multiplied by
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the inverse of their estimated response probabilities and a two-phase estimator adjusted for
nonresponse is obtained. In the literature, several approaches have been used to estimate the
response probabilities, as for example response homogeneity groups, calibration, or parametric
modelling as in [2] and [7]. Auxiliary information available at the sample or population level
plays a central role in the estimation process. It can simultaneously decrease variance and
nonresponse bias of estimators if it is adequately used in the response probabilities estimation.
The reader may refer to [11] for an overview of NWA methods.

Nonignorable nonresponse refers to a nonresponse mechanism which depends on the variable
of interest itself (see [9] for a formal definition). It is particularly difficult to handle as the process
that leads to nonresponse is defined through characteristics of interest which are partially or
completely missing. Sophisticated techniques must therefore be used to control for nonresponse
bias and variance in this framework. The problem of nonignorable nonresponse in surveys has
already been addressed as for instance in [6], [10], [1], and [4].

We propose two NWA procedures for handling nonignorable nonresponse, when the variable
of interest follows a mixture distribution with different components. The goal is to reduce
nonresponse bias and variance of estimators. Latent homogeneous response groups based on
both auxiliary information and the variable of interest are highlighted for respondents and
are imputed using auxiliary information for nonrespondents. In the presented procedures, the
response probabilities are modelled through logistic regression including information about the
groups (observed or imputed). The estimated response probabilities are then used in a two-phase
estimator for the total of the variable of interest. The inclusion of information about the groups
in the estimation of the response probabilities allows to control simultaneously nonresponse bias
and variance of the two-phase estimator.

A typical example of application where the proposed methods can be used is a survey whose
variable of interest is the income. Indeed, it is customary and sensible to suppose that the
willingness to answer questions related to income depends on the income itself. On the other
hand, income data typically shows heterogeneity and mixture distributions represent a powerful
tool to model such data (see [5]). It follows that a natural assumption is the existence of
homogeneous response groups depending on the underling income mixture groups and auxiliary
information.

The paper is organized as follows. Section 2 introduces the framework and notation. Sec-
tion 3 discusses the response probabilities estimation for nonignorable nonresponse using logistic
regression. The proposed procedures are presented in Section 4. Next, in Section 5, the per-
formance of the proposed procedures is tested and compared to that of other NWA procedures
through a simulation study. Finally, Section 6 closes the paper with brief concluding remarks.

2 Framework

Consider a finite population U of size N , indexed by i from 1 to N . Let xi = (xi1, xi2, . . . , xiq)
>

be a vector of q auxiliary variables attached to unit i and suppose that the parameter of interest
is the population total Y =

∑
i∈U yi, for some continuous or categorical variable of interest y. In

a first phase, a sample s of size n is selected from the population U using a sampling design p (s).
Let πi =

∑
s;s3i p (s) denote the first-order inclusion probability of unit i and suppose thereafter

that πi > 0 for all i ∈ U . The vector of auxiliary variables xi is assumed to be available for
each population unit i ∈ U or at least for each sampled unit i ∈ s. In the presence of unit
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nonresponse, some selected units do not respond to the survey. This results in two subsets
which form a partition of s: the survey respondents (the set r) and the survey nonrespondents
(the set r). The value yi of the variable of interest is then observed for each respondent i ∈ r but
is missing for each nonrespondent i ∈ r. For i ∈ s, let Ri be the response indicator of yi which
takes value 1 if unit i is a respondent (i.e. if i ∈ r) and 0 if unit i is a nonrespondent (i.e. if i ∈ r).
Let pi be the response propensity of unit i, that is pi = Pr (i ∈ r|s; i ∈ s). It is supposed that
units respond independently from each other. The response indicator Ri is therefore generated
from a Bernoulli random variable with parameter pi. Moreover, it is thereafter assumed that
pi > 0 for all i ∈ U . In the ideal case of complete response, the Horvitz-Thompson estimator“Yπ =

∑
i∈s

1

πi
yi, (1)

is a design unbiased estimator for Y . In the presence of nonresponse, however, this latter is
intractable as the values yi of the variable of interest are missing for nonrespondents i ∈ r.
Nonresponse can be viewed as a second phase of the survey. A subsample r of s is indeed
selected according to a Poisson sampling design q (r|s) =

∏
i∈r pi

∏
i∈r (1− pi). Theory of two-

phase sampling proposes, in this case, the double expansion estimator “Yπ,p =
∑
i∈r

1
πi

1
pi
yi, which

extends the estimator in Expression (1). This estimator would be unbiased for Y if the response
probabilities pi were known. Unfortunately, this is never the case. A preliminary step therefore
consists of estimating the response probabilities. Those are then replaced by the estimated
response probabilities p̂i in the previous estimator and the two-phase estimator adjusted for
nonresponse “Yπ,p̂ =

∑
i∈r

1

πi

1

p̂i
yi, (2)

is obtained. If the response probabilities are parametrically modeled, then it is shown in [7]
that estimator “Yπ,p̂ is more efficient than estimator “Yπ,p when maximum likelihood is used to
estimate the parameters. In Section 3, the question of the response probabilities estimation for
nonignorable nonresponse is discussed.

3 Estimating response probabilities

Under nonignorable nonresponse, a solution to estimate the response probabilities consists of
modelling them with logistic regression in which the variable of interest plays the role of a
covariate. Hence, the following two models can be considered:

pi = IE (Ri|yi) =
1

1 + exp [− (β0 + β1yi)]
, (3)

pi = IE (Ri|yi,xi) =
1

1 + exp
î
−
Ä
β0 + β1yi + x>i α

äó , (4)

where β0, β1, and α are parameters. In the presence of nonresponse, however, these parameters
can not be estimated as the values yi of the variable of interest are missing for the nonrespondents.

A solution is proposed in [2] and is presented below. It consists of considering only the
auxiliary variables as covariates. This results in the following model

pi = IE (Ri|xi) =
1

1 + exp
î
−
Ä
β0 + x>i α

äó , (5)
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where β0 and α are parameters. As the values xi of the auxiliary variables are known for
each sampled unit i ∈ s, the parameters can now be estimated considering (Ri,xi) for i ∈ s.
Consider β̂0 and “α the maximum likelihood estimates of parameters β0 and α, and estimate
the response probabilities by replacing the parameters by their estimates in Expression (5), that
is p̂i = 1/

¶
1 + exp

î
−
Ä
β̂0 + x>i “αäó© . If the auxiliary variables are good predictors for the

variable of interest or for the response probabilities, then this procedure provides protection
against nonresponse bias (see [2]).

4 Latent homogeneous response groups

We assume that the variable of interest y follows a mixture distribution with t components
yi ∼

∑t
`=1 λ`f`(yi|xi, θ`), λ` ≥ 0,

∑t
`=1 λ` = 1, where λ` is the prior probability of component `

(yi is drawn from a mixture of densities of underlying groups or clusters or subpopulations in
unknown proportions λ1, . . . , λt) and θ` is the specific parameter vector for the density function
f` in the `th component. If f` is a univariate normal density and θ` = (µ`, σ

2
` )
′, one describes

a mixture of standard linear regression models, also called latent class regression or cluster-wise
regression (see [3]). Other f` densities can also be used.

A typical example of such a variable y is income. Models based on mixed distributions better
explain the income heterogeneity in different subpopulations. When nonresponse treatment is
added, latent homogeneous response groups can be highlighted based on these subpopulations.
These response groups depend on the variable of interest and the auxiliary information. An
important gain in terms of reduction of nonresponse bias and variance can be derived from
including information about these groups in the estimation of the response probabilities. In
the presence of nonresponse, however, these groups are not fully observed as the values yi of
the variable of interest are unknown for nonrespondents. In the current section, a procedure
to reconstruct these latent homogeneous response groups is presented. Then, two solutions to
include them in the response probabilities estimation are proposed.

As stated above, homogeneous response groups are observed for respondents only. A proce-
dure to reconstruct the group membership of the nonrespondents is provided here. The main
idea is to impute the missing groups by nearest neighbor imputation. Suppose that k homoge-
neous groups are observed for the respondents. Moreover, let ci ∈ {1, 2, . . . , k} be the observed
group membership value of respondent i ∈ r and consider c∗i ∈ {1, 2, . . . , k} the reconstructed
membership group value of a unit i ∈ s. As the membership group value is observed for each
respondent, we set c∗i = ci for i ∈ r. For a nonrespondent, however, the membership group value
is unobserved and that one is reconstructed by nearest neighbor imputation using auxiliary infor-
mation. Hence, for i ∈ r, consider c∗i = cj(i) where j(i) satisfies d(xi,xj(i)) = minj∈r d(xi,xj) for
some distance measure d(·, ·). Therefore, observed group membership values are combined with
imputed group membership values. This leads to a reconstructed group membership variable
whose values c∗i are available for every sampled unit i ∈ s.

Two different models can be constructed. In the first one, the reconstructed group mem-
bership variable (observed or imputed) is added as a categorical covariate. This results in the
following model

pi = IE (Ri|xi, c∗i ) =
1

1 + exp
î
−
Ä
β0 + x>i β1 + β2c∗i + x>i β3c

∗
i

äó , (6)
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where β0, β1, β2, and β3 are parameters. The maximum likelihood estimation is then applied
to fit this model considering (Ri,xi, c

∗
i ) for i ∈ s. This leads to estimates β̂0, β̂1, β̂2, β̂3,

and “pi = 1/
¶

1 + exp
î
−
Ä
β̂0 + x>i β̂1 + β̂2c

∗
i + x>i β̂3c

∗
i

äó©
. If the auxiliary variables are good

predictors of the variable of interest or good predictors of the response probabilities and moreover
if the reconstructed groups are homogeneous with respect to the variable of interest or with
respect to the response probabilities, then this procedure provides additional protection against
nonresponse bias and variance compared to Model (5).

In the second proposed procedure, the missing values of the variable of interest are im-
puted in each reconstructed group. The response probabilities are estimated using logistic
regression and the variable of interest (observed or imputed); see also [8]. Hence, let y∗i
denote a reconstructed value of the variable of interest of a unit i ∈ s. For a respondent
i ∈ r, this value corresponds to the observed value of the variable of interest, that is y∗i = yi.
Then, for the nonrespondents, the missing yi’s are reconstructed by using regression imputa-
tion independently in each reconstructed group. Hence, for each nonrespondent i ∈ r we set

y∗i =
(∑

j∈r|c∗j=c∗i
1
πj

xjx
>
j

)−1 Ä∑
`∈r|c∗

`
=c∗i

1
π`

x`y`
ä

xi. Therefore, observed values of the variable

of interest are combined with imputed values. This leads to a reconstructed variable of interest
whose values y∗i are available for every sampled unit i ∈ s. This variable then plays the role
of covariate in the logistic regression used to estimate the response probabilities. Hence, the
parameters δ0 and δ1 of the logistic regression model

pi = IE (Ri|y∗i ) =
1

1 + exp [− (δ0 + δ1y∗i )]
, (7)

are estimated by maximum likelihood considering (Ri, y
∗
i ) for i ∈ s. This leads to estimates

δ̂0, δ̂1, and p̂i = 1/
¶

1 + exp
î
−
Ä
δ̂0 + δ̂1y

∗
i

äó©
. If the auxiliary variables are good predictors of

the variable of interest within the reconstructed groups but not necessarily within the whole
population, then this procedure provides additional protection against nonresponse bias and
variance compared to Model (5). Even though y∗i is essentially a linear combination of the outer
product of the auxiliary variables and the (imputed) latent groups, Model (7) is different from
the model including xi and c∗i as covariates as in Expression (6), because it uses the original yi
for the respondents and performs closer to the assumed response model.

5 Simulations

A simulation study was conducted to evaluate the performance of the procedures proposed
in Section 4. Two different settings were considered. In each setting, a population of size
N = 1000 divided into two groups of equal size, a variable of interest y generated from a
mixture distribution, and an auxiliary variable x were considered. A census was considered in
both cases, which implies that we set U = s and πi = 1 for each i ∈ s. Ten thousand simulations
were conducted.

For each setting, the simulations were conducted as follows. First, for each unit i, the
response probabilities were obtained from the logistic function pi = 1/ {1 + exp [− (β0 + β1yi)]},
where β0 and β1 were fixed to obtain a mean response rate close to 65%. Then, 10000 response
sets were created by generating 10000 response indicator vectors R. Each component Ri, i ∈ U
of R was generated from a Bernoulli distribution with parameter pi. For each response set
generated, the population total for the variable of interest was estimated through the two-phase
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estimator adjusted for nonresponse of Expression (2) by considering different choices for the
estimated response probabilities p̂i as follows:

1. “Yp̂(x): estimator proposed in [2], i.e. response probabilities estimated through logistic
regression with the auxiliary variables as covariates as in Model (5),

2. “Yp̂(x,c∗): first proposed procedure, i.e. response probabilities estimated through logistic
regression with the auxiliary variables and the reconstructed membership groups variable
as covariates as in Model (6),

3. “Yp̂(y∗): second proposed procedure, i.e. response probabilities estimated through logis-
tic regression with the values of the variable of interest (observed or imputed through
regression imputation in the reconstructed groups) as covariates as in Model (7),

4. “Yp̂(ynn): response probabilities estimated through logistic regression with the vector of
observed and imputed by nearest neighbor values of the variable of interest ynn as covariate.
The coefficients of ynn are thus defined as ynni = yi if i ∈ r and ynni = yj(i) where
|xi − xj(i)| = minj∈r |xi − xj | if i ∈ r,

5. “Yp: true response probabilities considered in the two-phase estimator.

The following comparison measures were considered for these five estimators, here generically
denoted by “Y :

• The Monte Carlo relative bias: RB = B/Y , where B = IEsim(“Y ) − Y , IEsim(“Y ) =∑M
i=1
“Yi/M , “Yi is the estimate of “Y obtained at the i-th simulation, and M is the number

of simulations,

• The Monte Carlo variance: VAR = 1
M−1

∑M
i=1

î“Yi − IEsim Ä“Y äó2,

• The Monte Carlo mean square error: MSE = B2 + VAR.

Details and results from the two considered settings are presented below.

Setting 1: A single auxiliary variable x = (xi)
N
i=1 was considered. Its coefficients were

generated by independent draws of a uniform distribution with parameters 0 and 1 for units
that belong to the first group, and by independent draws of a uniform random variable with
parameters 2 and 3 for units that belong to the second group. Next, the variable of interest
y = (yi)

N
i=1 was generated as follows: yi = 5 + 5xi + 3εi if i belongs to the first group and

yi = 40− (xi − 5)2 + 3εi if i belongs to the second group, where εi are independent draws of a
normal random variable with mean 0 and variance 1. Simulations were then conducted according
to the scheme described above. The results are presented in Table 1.

The two proposed estimators (“Yp̂(x,c∗) and “Yp̂(y∗)) display a decrease in relative bias compared

to estimators “Yp̂(x) and “Yp̂(ynn). The gap between the relative bias of “Yp̂(x,c∗) and that of “Yp̂(ynn)

is not large and makes it difficult to clearly rank these two estimators. The proposed estimators,
however, imply a clear decrease in variance compared to estimators “Yp̂(x) and “Yp̂(ynn). Estimator“Yp is clearly the best in terms of bias, which is not surprising. Indeed, it uses the true response
probabilities and is therefore unbiased for the total (the small relative bias is due to the simulation
process). Finally, the four estimators with estimated probabilities imply a huge decrease in
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Table 1: Comparison measures for five estimators in setting 1.

Estimator RB (×10−3) Var (×103) MSE (×104)“Yp̂(x) 6.96 7.59 2.83“Yp̂(x,c∗) 4.63 5.10 1.43“Yp̂(y∗) 3.25 5.17 0.97“Yp̂(ynn) 5.56 9.34 2.25“Yp −0.13 226.90 22.69

variance compared to the estimator with the true probabilities (“Yp), which confirms the result
in [7].

Setting 2: The values yi of the variable of interest y = (yi)
N
i=1 were generated independently

from a gamma distribution with parameters 10 and 1 for units that belong to the first group
and from a gamma distribution with parameters 40 and 1 for units that belong to the second
group. Next, values of an auxiliary variable x = (xi)

N
i=1 were generated as follows. We set

xi = 5 + ρ1yi + εi, where ρ1 = 0.7 and where εi was drawn from a normal random variable with
mean 0 and variance 10(1−ρ2

1) if i belongs to the first group. Moreover, we set xi = 5+ρ2yi+εi,
where ρ2 = 0.93, and where εi was drawn from a normal random variable with mean 0 and
variance 40(1 − ρ2

2) if unit i belongs to the second group. Simulations were then conducted
according to the scheme described above. The results are presented in Table 2. These results

Table 2: Comparison measures for five estimators in setting 2.

Estimator RB (×10−3) Var (×103) MSE (×104)“Yp̂(x) 11.04 13.61 9.01“Yp̂(x,c∗) 6.69 10.02 3.82“Yp̂(y∗) 5.44 9.83 2.84“Yp̂(ynn) 6.94 14.93 4.52“Yp 0.02 267.78 26.78

follow a fairly similar pattern to those of setting 1. The two proposed estimators (“Yp̂(x,c∗) and“Yp̂(y∗)) display a decrease in relative bias compared to estimators “Yp̂(x) and “Yp̂(ynn). However, the

gap between the relative bias of “Yp̂(x,c∗) and that of “Yp̂(ynn) is very small and does not allow us
to rank these two estimators. The proposed estimators again imply a clear decrease in variance
compared to estimators “Yp̂(x) and “Yp̂(ynn). Finally, estimator “Yp also displays by far the smallest
relative bias and the largest variance.

6 Conclusion

We have proposed two NWA procedures for handling nonignorable nonresponse when the vari-
able of interest follows a mixture distribution. Homogeneous response groups can be constructed
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based on the hidden structure of the variable of interest; they include information about the
variable of interest and the auxiliary information. Benefits in terms of reduction of nonresponse
bias and variance of the total estimator can be obtained if these groups are taken into account in
the response probability estimation. Our results are confirmed through a simulation study. We
have not considered the problem of variance estimation of the total estimator when the proposed
methods are applied. This problem is currently under investigation.
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Abstract. A logistic regression model, complementary log-log model and probit model are fre-
quently used for a generalised linear model of binary data. We consider deviance (log likelihood
ratio statistic) as a goodness-of-fit statistic. In this paper, using the continuous term of asymp-
totic expansion for the deviance under the null hypothesis that each model is correct, we obtain
the Bartlett adjusted deviance statistic for each model that improves the speed of convergence
to chi-square limiting distribution of deviance. Performance of each adjusted deviance statistic
is also investigated numerically.

Keywords. Asymptotic expansion, Bartlett adjustment, Complementary log-log model, De-
viance, Generalized linear model, Logistic regression model, Probit model

1 Introduction

We consider generalized linear models (Nelder and Wedderburn [5]) in which the response vari-
ables are measured on a binary scale. Let random variables Yα, α = 1, . . . , S be the number
of successes in S different subgroups, which are independent distributed according to binomial
distributions B(nα, πα), α = 1, . . . , S. If we use a monotone and differentiable function g(·) as a
link function, we obtain a generalized linear model for binary data as

g(πα) = x′αβ, α = 1, . . . , S, (1)

where xα = (xα1, . . . , xαp)
′, α = 1, . . . , S, are covariate vectors and β = (β1, . . . , βp)

′ is an
unknown parameter vector and (p < S). When g(t) is a canonical link function, that is,

g(t) = log

Å
t

1− t

ã
,
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model (1) is a logistic regression model. When

g(t) = gP (t) = Φ−1(t),

where

Φ(t) =
1√
2π

ˆ t

−∞
exp

Ç
−x

2

2

å
dx,

model (1) is a probit model. When

g(t) = log{− log(1− t)},

model (1) is a complementary log-log model.
We consider the null hypothesis

H0 : πα = πα(β) = g−1(x′αβ), α = 1, . . . , S. (2)

The deviance (log likelihood ratio statistic) is

D = 2
S∑
α=1

nα


Yα
nα

log

Å
Yα
nαπ̂α

ã
+

Å
1− Yα

nα

ã
log

Ü
1− Yα

nα
1− π̂α

ê ,
where π̂α = πα(β̂), α = 1, . . . , S and β̂ = (β̂1, . . . , β̂p)

′ is the maximum likelihood estimator of
β under H0 given by (2). Under the null hypothesis H0, it is known that the deviance D has a
χ2
S−p limiting distribution if

nα/n→ µα (0 < µα < 1) for each α, as n→∞, (3)

where n =
∑S
α=1 nα and

∑S
α=1 µα = 1. Usually, using large sample results, we test H0 by using

the statistic D for a goodness-of-fit test statistic of each model.
However, in the case in which all nα, α = 1, . . . , S are not large enough, such an approxi-

mation by a χ2
S−p limiting distribution to the distribution of D under H0 becomes poor. So,

there are risks that the hypothesis test based on large sample theory will give results opposite
to those of an exact test. In this paper, in order to reduce the risks, we propose a new adjusted
statistic D̃B of D whose speed of convergence to a chi-square distribution is quicker than that of
D. To construct D̃B, we use the following procedure. First, we formally obtain the asymptotic
expansion of the original statistic D assuming a continuous distribution of D. Next, we obtain
adjusted statistic D̃B by performing Bartlett adjustment to D on the basis of the asymptotic
expansion assuming a continuous distribution of D.

2 An asymptotic approximation for the distribution of D
under H0

With regard to evaluation of the lower probability of the deviance D under H0, we obtain the
followig theorem (a special case of Taneichi et al. [13]). Here, we consider the following As-
sumption 2.1 instead of the assumption given by (3).

Assumption 2.1. nα → ∞, α = 1, · · · , S, as n → ∞, with nα depending on n in such a way
that nα/n = µα, α = 1, . . . , S, where 0 < µα < 1 and

∑S
α=1 µα = 1.
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Theorem 2.1. When g−1 is a fourth time continuously differentiable function, under Assump-
tion 2.1 and assuming that D is continuously distributed, the lower probability of the deviance
D under H0 is evaluated as

Pr{D ≤ x|H0} = Pr{χ2
S−p ≤ x}+

1

n

1∑
j=0

vj Pr{χ2
S−p+2j ≤ x}+O(n−2),

where χ2
f denotes a chi-square random variable with degrees of freedom f ,

v0 = − 1

24
(2A1 − 6A2 + 12A3 − 3A4 + 4B1 − 12B2 + 6B3 − 3B4),

v1 = −v0,

where

A1 =
S∑
α=1

1− πα + π2
α

µαπα(1− πα)
, A2 =

S∑
α=1

µα(1− 3πα + 3π2
α)

π3
α(1− πα)3

G4
1(α)σ2

αα,

A3 =
S∑
α=1

µα(1− 2πα)

π2
α(1− πα)2

G2
1(α)G2(α)σ2

αα, A4 =
S∑
α=1

µα
πα(1− πα)

G2
2(α)σ2

αα,

B1 =
S∑
α=1

S∑
γ=1

µα(1− 2πα)

π2
α(1− πα)2

µγ(1− 2πγ)

π2
γ(1− πγ)2

G3
1(α)G3

1(γ)σ3
αγ ,

B2 =
S∑
α=1

S∑
γ=1

µα
πα(1− πα)

µγ(1− 2πγ)

π2
γ(1− πγ)2

G1(α)G2(α)G3
1(γ)σ3

αγ ,

B3 =
S∑
α=1

S∑
γ=1

µα
πα(1− πα)

µγ
πγ(1− πγ)

G1(α)G2(α)G1(γ)G2(γ)σ3
αγ ,

B4 =
S∑
α=1

S∑
γ=1

µα
πα(1− πα)

µγ
πγ(1− πγ)

G1(α)G2(α)G1(γ)G2(γ)σαασαγσγγ ,

Gi(α) = u(i)(x′αβ), α = 1, . . . , S, i = 1, 2,

σαγ = x′αK
−1xγ ,

K =
S∑
λ=1

µλ
πλ(1− πλ)

G2
1(λ)xλx

′
λ,

where u(i) is the ith derivative of u(x) = g−1(x).

Evaluation for the logistic regression model is given by applying

g−1(x) =
exp(x)

1 + exp(x)
,

G1(α) = πα(1− πα), α = 1, . . . , S,

and
G2(α) = πα(1− πα)(1− 2πα), α = 1, . . . , S
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to Theorem 2.1. Similarly, evaluation for the probit model is given by applying

g−1(x) = Φ(x),

G1(α) =
1√
2π

exp

[
−
{
Φ−1(πα)

}2

2

]
, α = 1, . . . , S,

and

G2(α) = − 1√
2π

Φ−1(πα) exp

[
−
{
Φ−1(πα)

}2

2

]
, α = 1, . . . , S

and evaluation for the complementary log-log model is given by applying

g−1(x) = 1− exp{− exp(x)},
G1(α) = −(1− πα) log(1− πα), α = 1, . . . , S,

and
G2(α) = −(1− πα){log(1− πα)}{1 + log(1− πα)}, α = 1, . . . , S

to Theorem 2.1, respectively.

We consider the appropriateness of using the Edgeworth approximation assuming a con-
tinuous distribution like Theorem 2.1. Yarnold [14] obtained an asymptotic expansion for the
null distribution of X2 (Pearson’s chi-square statistic). The expansion consists of continuous
and discontinuous terms. Yarnold [14] numerically examined the accuracy of approximations
based on the expansion, χ2 approximation, and Edgeworth approximation assuming a continu-
ous distribution for the null distribution of X2 and concluded that the Edgeworth approximation
assuming a continuous distribution should never be used when random variable has a lattice dis-
tribution. In a similar fashion to X2 statistic, approximations based on asymptotic expansions
for null distributions of the log likelihood ratio test statistic and the Freeman-Tukey statistic
were obtained by Siotani and Fujikoshi [9], that of the power-divergence statistics was obtained
by Read [6] and that of the φ-divergence statistics was obtained by Menéndez et al. [4]. The
numerical accuracy of the approximation was shown by Yarnold [14] for X2 statistic and by Read
[7] for power-divergence statistics. When the discontinuous term in the asymptotic expansion
can be expressed in a simple form as the discontinuous term for the null distribution of above
statistics, we must respect Yarnold’s recommendation.

On the other hand, from the numerical results obtained by Yarnold [14], we notice that the χ2

approximation rarely performs better than the Edgeworth approximation assuming a continuous
distribution. Thus, the Edgeworth approximation assuming a continuous distribution appears
to be an effective approximation when the discontinuous term in the asymptotic expansion
cannot be expressed in a simple form. Unlike in the case of the null distribution of above
statistics, it is very difficult to represent the discontinuous term in a simple form in the case of
the distribution of statistics under alternative hypothesis and in the case of that for more general
multinomial models such as contingency tables. The reason for the results are shown in Taneichi
et al. [11] and Taneichi and Sekiya [12], mathematically. Edgeworth approximations of the
distributions of some kinds of multinomial goodness-of-fit statistics under alternative hypotheses
have been investigated Taneichi et al. [11, 10] and Sekiya and Taneichi [8]. Taneichi and Sekiya
[12] discussed approximations for the distribution of statistics for the test of independence in
r × s contingency tables. Based on numerical investigations, we found that an omission of the
discountinuous term does not lead to a serious error.
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3 Bartlett adjusted deviance statistic

In this section, we propose the Bartlett adjusted deviance statistic for improving small sample
accuracy of χ2 approximation of the distribution of a random variable.

Suppose that a nonnegative random variable T has an asymptotic expansion such that

Pr{T ≤ x} = Pr{χ2
f ≤ x}+

1

n

1∑
j=0

aj Pr{χ2
f+2j ≤ x}+O(n−2).

Also suppose that the coefficients aj , (j = 0, 1) do not depend on the parameter n(> 0) and
must satisfy the relation a0 + a1 = 0.

In order to increase the accuracy of χ2 approximation of a random variable T , we consider
Bartlett adjustment of random variable T defined by TB.

TB =

Å
1 +

2a0

fn

ã
T. (4)

Then, it holds that

Pr{TB ≤ x} = Pr{χ2
f ≤ x}+O(n−2).

Lawley [3], Barndorff-Nielsen and Cox [1], and Barndorff-Nielsen and Hall [2] discussed Bartlett
adjustment for the log likelihood ratio statistic. Applying Theorem 2.1 to TB given by (4), we
obtain the Bartlett adjusted deviance statistic DB.

DB =

®
1 +

2v0

n(S − p)

´
D.

Practically, we must use estimate v̂0 obtained by substituting the maximum likelihood estimate
β̂ for true value β in v0. Therefore, we propose the statistic D̃B that is obtained by substitutig
v̂0 for v0 in DB.

4 Numerical studies

In this section, we compare the performance of the Bartlett adjusted deviance statistic D̃B with
that of the original deviance D using the Monte Carlo procedure.

We consider a generalized linear model given by (1) with p = 2 and xα,1 = 1 and xα,2 =
xα, α = 1, . . . , S. Let the true values of parameters β1 and β2 be β∗1 and β∗2 , respectively. Then,
the true value of πα is

π∗α = g−1(β∗1 + β∗2xα), α = 1, . . . , S.

As a link fuction g(·), we consider the logit link, complementary log-log link and probit link. We
give a design matrix

X = (1, vec{x})
and execute the following procedure.

For each α, we generate nα, α = 1, . . . , S binomial random numbers that are distributed
according to B(1, π∗α). From them, we calculate the number of successes Yα, α = 1, . . . , S and
the maximum likelihood estimates β̂1 and β̂2 for the parameters β1 and β2 by Fisher scoring
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method. Using the estimates, we calculate the values πα(β̂), α = 1, . . . , S, where β̂ = (β̂1, β̂2)′,
and the observed values of the statistics D and D̃B. This process is repeated J times.

Among the J times, let V be the number of times that the observed values of the statistic
exceed the upper ε point of the χ2 distribution with degrees of freedom S − p, that is, χ2

S−p(ε).

The performance of χ2 approximation for the distribution of each statistic can be evaluated on
the basis of the index

I =
V

J
− ε.

We consider the following two true parameters

(i) β∗1 = −0.1, β∗2 = 0.1,

(ii) β∗1 = 0.1, β∗2 = −0.1,

and investigate the performance of the following four cases of design matrix when S = 8.

(I) vec{x} = (2.7, 3.0, 3.3, 3.6, 3.9, 4.2, 4.5, 4.8)′.

(II) vec{x} = (2.85, 3.05, 3.25, 3.45, 3.65, 3.85, 4.05, 4.25)′.

(III) vec{x} = (log(2.7), log(3.0), log(3.3), log(3.6), log(3.9), log(4.2), log(4.5), log(4.8))′.

(IV) vec{x} = (log(2.85), log(3.05), log(3.25), log(3.45), log(3.65), log(3.85), log(4.05), log(4.25))′.

For each case, we consider the following two sample designs

(A) n1 = · · · = n8 = nA,

(B) n1 = · · · = n4 = nB, n5 = · · · = n8 = 2nB.

We investigate the performance for all combinations of two true parameters (i) and (ii), four
design matrices (I), (II), (III), and (IV), and sample design (A), where nA = 10, 20, and 30, and
sample design (B), where nB =10, 20, and 30. In the investigation, the number of repetitions is
J = 106. Figure 1 shows the absolute values of index I in the cases of true parameters (i) and
(ii), design matrices (I)–(IV) and significance level ε = 0.01, 0.05, and 0.10 when the model is
given by the complementary log-log link , sample design is (A) and nA = 10, 20, and 30. Figure
2 shows those for the model that is given by the probit link in the same situation as that in
Figure 1. When models are given by complementary log-log link and probit link with sample
design (B) and when the model is given by logit link with sample designs (A) and (B), results
of simulation are almost the same as those in Figure 1 and Figure 2.

From the results of our simulation, we find that the performance of the Bartlett adjusted
deviance statistic D̃B is better than that of the original deviance statistic D.
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Figure 1: Absolute value of index I when the model is given by the complementary log-log link
function for true parameters (i) and (ii) and sample design (A) with nA = 10, 20, 30: ◦, ♦ and M
are the values for D when ε = 0.01, 0.05 and 0.10, respectively, and •,� and N are the values for
D̃B when ε =0.01, 0.05 and 0.10, respectively. The 1st column is for design matrix (I), the 2nd
column is for design matrix (II), the 3rd column is for design matrix (III), and the 4th column
is for design matrix (IV).
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Figure 2: Absolute value of I when the model is given by the probit link function for true
parameters (i) and (ii) and sample design (A) with nA = 10, 20, 30: ◦, ♦ and M are the values
for D when ε =0.01, 0.05 and 0.10, respectively, and •,� and N are the values for D̃B when
ε =0.01, 0.05 and 0.10, respectively. The 1st column is for design matrix (I), the 2nd column
is for design matrix (II), the 3rd column is for design matrix (III), and the 4th column is for
design matrix (IV).
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Abstract. Nonlinear principal components analysis with optimal scaling (NLPCA-OS) is useful
for analyzing mixed measurement level data. The algorithm in NLPCA-OS is based on the
alternating least squares (ALS) algorithm, where optimal transformation and low-rank matrix
approximation are alternated until convergence. We have proposed an accelerated ALS algorithm
using the vector ε algorithm (vε-ALS) which increases the speed of convergence, and have
observed that computational costs by vε-ALS are less expensive than those by ordinary ALS
in small examples in which all variables are categorical. In this paper, we try to evaluate the
performance of proposed vε-ALS by simulation, in which NLPCA with vε-ALS is applied to
several simulated datasets which have large numbers of variables with a variety of mixing rates
of numerical and categorical variables. The simulation study indicates that the performance of
approximation by vε-ALS is improved for all simulated datasets and that the larger the number
of categorical variables is and the higher the mixing rate is, the more the vε-ALS reduces the
computational costs.

Keywords. Vector ε algorithm, Acceleration of convergence, Alternating least squares, Mixed
measurement level data, Simulation study.

1 Introduction

Nonlinear principal components analysis with optimal scaling (NLPCA-OS) is useful for analyz-
ing mixed measurement level (nominal, ordinal and numerical) data. The algorithm in NLPCA-
OS is based on the alternating least squares (ALS) algorithm, where optimal transformation and
low-rank matrix approximation are alternated until convergence, that is, the algorithm alter-
nates between optimal scaling for quantifying nominal and ordinal data and ordinary PCA for
the optimally scaled data. PRINCIPALS [6] and PRINCALS [1] are the typical ALS algorithms
for NLPCA.
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Kuroda et al. [2] have proposed an accelerated ALS algorithm for NLPCA using the vector
ε (vε) algorithm of Wynn [7] which increases the speed of convergence. We have applied the
method to some numerical examples (e.g., [2] and [3]) and have proposed some more accelerated
methods (e.g., two-step algorithm in [5] and re-starting method in [4]), and observed that com-
putational costs of NLPCA with the vε alternating least squares (vε-ALS) are less expensive
than those of NLPCA with ordinary ALS.

In the previous studies, we applied the proposed methods to datasets with small number
of variables (the number of variables is 20 at most) and all datasets we used consist of only
categorical (nominal) variables but not a mixture of numerical and categorical ones. In this
paper, we try to evaluate the performance of vε-ALS in further detail to clarify how well the
algorithm performs for large data and mixed measurement level data. To do this, we conduct
some simulations in which NLPCA with vε-ALS is applied to several artificial datasets which
have large numbers of variables with a variety of mixing rates of numerical and categorical
variables.

We give an overview of NLPCA-OS and its acceleration by vε-ALS in Section 2 and illustrate
numerical experiments on sixteen different types of datasets generated artificially (four different
sizes of datasets with four different mixing rates of categorical variables) in Section 3. We discuss
the performance of NLPCA with vε-ALS in Section 4.

2 Nonlinear PCA and its acceleration by vector ε ALS

Let X = (X1 X2 · · · Xp) be an n × p standardized matrix of observations on n objects and p
numerical variables. PCA postulates that X is approximated by the bilinear form

X̂ = ZA>, (1)

where Z is an n× r matrix of n component scores on r (1 ≤ r ≤ p) components and A is a p× r
matrix of p component loadings on r components.

In order to handle any categorical data or mixture of numerical and categorical data, NLPCA
requires the optimal scaled data X∗ , in addition to estimating Z and A, in which categorical
variables in X are optimally scaled and satisfies restrictions

X∗>1n = 0p and diag

ñ
X∗>X∗

n

ô
= Ip, (2)

where 1n and 0p are vectors of ones and zeros of length n and p, respectively. Thus NLPCA is
a least square problem to estimate optimal scaling parameter X∗ and model parameters Z and
A simultaneously, which minimize

θ = tr(X∗ − X̂)>(X∗ − X̂) = tr(X∗ − ZA>)>(X∗ − ZA>). (3)

The ALS algorithm can be used in NLPCA-OS. It alternates between ordinary PCA and
optimal scaling, and minimizes θ∗ in (3) under restriction (2). For given initial data X∗(0), the
procedure based on PRINCIPALS [6] is to iterate the following two steps until convergence:

Step 1 Model parameter estimation step: Obtain A(t) by solving an eigenvalue problemñ
X∗(t)>X∗(t)

n

ô
A = ADr, (4)
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where A>A = Ir and Dr is an r × r diagonal matrix of eigenvalues. Compute Z(t) from
Z(t) = X∗(t)A(t).

Step 2 Optimal scaling step: Calculate X̂(t+1) = Z(t)A(t)> from Equation (1). Find X∗(t+1)

such that

X∗(t+1) = arg min
X∗

tr(X∗ − X̂(t+1))>(X∗ − X̂(t+1))

for fixed X̂(t+1) under measurement restrictions on each of the variables. Since X∗(t+1) is
obtained by separately estimating X∗j for each j (j = 1, . . . , p), scale X∗(t+1) by columnwise

centering and normalizing. Re-compute X
(t+1)
j by an additional transformation to keep

the monotonicity restriction for ordinal variables and skip this computation for numerical
variables.

The superscript (t) indicates the t-th iteration. From the above iteration, we obtain a conver-
gence sequence {X∗(t)}t≥0. Although the true limit points are theoretically obtained at t =∞,
the solutions by NLPCA-OS are parameters based on X∗(t) obtained when the iteration con-
verges by the criterion θ.

Here we accelerate the above NLPCA with ALS using the vε algorithm of Wynn [7] which
is very effective to accelerate the slow convergence of a linearly convergent vector sequence.
Let {Ẋ(t)}t≥0 = {Ẋ(0), Ẋ(1), Ẋ(2), . . . } be the accelerated sequence of {X(t)}t≥0. We define the
inverse of vector X by [X]−1 = X /〈X,X〉 , where 〈·, ·〉 is the inner product of vectors. Then,
the vε algorithm generates {Ẋ(t)}t≥0 by using

vecẊ∗(t−1) = vecX∗(t) +
[î

vec(X∗(t−1) −X∗(t))
ó−1

+
î
vec(X∗(t+1) −X∗(t))

ó−1
]−1

, (5)

where vecX∗ = (X∗>1 X∗>2 · · · X∗>p )>. It is expected that this new sequence {Ẋ(t)}t≥0 converges

to a limit point X(∞) of {X(t)}t≥0 faster than {X(t)}t≥0. Our previous numerical experiments
(e.g., [2], [3], [4] and [5]) demonstrated that its speed of convergence is significantly higher than
that of the ordinary ALS algorithm .

The procedure to accelerate the ALS algorithm in PRINCIPALS described above iterates
the following two steps:

Step 1 PRINCIPALS step: Compute model parameters A(t) and Z(t) and determine optimal
scaling parameter X∗(t+1).

Step 2 Acceleration step: Calculate Ẋ∗(t−1) using {X∗(t−1),X∗(t),X∗(t+1)} from Equation (5)
and check the convergence by∥∥∥∥vec(Ẋ∗(t−1) − Ẋ∗(t−2))

∥∥∥∥2

< δ, (6)

where δ is a desired accuracy.

3 Numerical experiments

We examine the performance of the proposed acceleration for PRINCIPALS using vε-ALS by
employing simulated data generated as below, and demonstrate the advantage of vε accelerated
PRINCIPALS (vε-ALS in NLPCA) over ordinary PRINCIPALS (ordinary ALS in NLPCA) in
terms of the number of iterations and CPU time (in second) required for convergence.
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Data generation

Since we are interested in the performance of the proposed vε accelerated PRINCIPALS when
it is performed for data which have large numbers of variables and include both numerical and
categorical variables, we generate random data matrices with the following four types of number
of observations (n) and variables (p): (A) n=100, p=20, (B) n=100, p=50, (C) n=500, p=100
and (D) n=200, p=150. All categorical variables have 10 levels (10 categories). To each of the
datasets we further set four kinds of mixing rates of categorical variables: 0.25, 0.50, 0.75 and
1.00. The mixing rate 0.25 means that 25% of variables (rounded) are processed as categorical
data and 75% as numerical data, and so on. The number of components (r) is two for all
datasets.

We apply ordinary PRINCIPALS and vε accelerated PRINCIPALS to the above datasets.
Consequently we execute thirty-two types of experiments ({four data types} × {four mixing
rates of categorical variables} × {ALS and vε-ALS}).

Results of experiments

For all experiments, δ for convergence is set to 10−12, and PRINCIPALS terminates when
|θ(t+1) − θ(t)| < 10−12, where θ(t) is the t-th update of θ calculated from Equation (3). Each
algorithm also stops when the number of iterations exceeds 10,000. The procedure is replicated
100 times. All computations are performed with the statistical package R executing on Intel
Core i5 3.3 GHz with 4 GB RAM. CPU times taken are measured by the function proc.time.

Table 1 is summary statistics of the numbers of iterations from thirty-two 100 simulations.
Figure 1 shows the same thirty-two simulations in boxplots. The first graph from the left in
Figure 1 displays boxplots of eight simulations ({four mixing rates of categorical variables} ×
{ALS and vε-ALS}) for data type (A), the second for (B), the third for (C) and the last for (D).
The CPU times are similarly summarized in Table 2 and Figure 2.

From these tables and figures, as the data size is increasing, a greater number of iterations
and more CPU time are required, but vε-ALS greatly reduces the number of iterations and
CPU time. In case of 0.25 mixing rate, for example, ordinary ALS needs 178 iterations with
1.9 seconds for dataset (A) (p=20) but 639 iterations and 140 seconds for dataset (D) (p=150).
On the other hand, vε-ALS needs 49 iterations and 0.7 seconds for (A) but 188 iterations and
45 seconds for (D). We can observe similar results as the mixing rate of categorical variables
increases. The increase of the number of categorical variables requires computational cost and
the acceleration by vε-ALS is therefore effective. In case of dataset (D) (p=150), for example,
ordinary ALS needs 639 iterations with 140 seconds for 0.25 mixing rate but 1697 iterations
and 805 seconds for 1.00 mixing rate. On the other hand, vε-ALS needs 188 iterations and 45
seconds for 0.25 mixing rate but 644 iterations and 314 seconds for 1.00 mixing rate.

It can be observed that the vε-ALS converges almost 3 times faster than ordinary ALS in all
simulations. The tables also show the average speed-up rates in [SpeedUp] row of each data type,
which is computed by dividing the number of iterations (CPU time) required for ordinary ALS
divided by the number of iterations (CPU time) required for vε-ALS. In Figure 3, we illustrate
the speed-up rates of 100 simulations only for dataset (D) in boxplot. The similar boxplots
of the speed-up rate can be obtained for other datasets. Regardless of the data size and the
mixing rate of categorical variables, vε-ALS is smaller 2.62 – 3.61 times of iterations and shorter
2.50 – 3.13 times of CPU time than those of ordinary ALS, although the speed-up rates slightly
decrease according to the increase of mixing rate.
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0.25 0.50 0.75 1.00

Data type Stats ALS vε-ALS ALS vε-ALS ALS vε-ALS ALS vε-ALS

(A) n=100 Min. 51 17 89 29 125 40 180 65
p=20 1st Qu. 88.5 27 150.8 47.75 225.8 72.75 332.5 103.8

Median 123.5 35 210 60 323 96 474.5 154.5
Mean 178.2 49.33 302 93.81 448 133.69 605.7 193.8
3rd Qu. 182.2 50.5 308.8 86 532.5 147.5 737.5 241
Max. 2687 623 2464 1344 2752 935 3578 820
[SpeedUp] [3.61] [3.22] [3.35] [3.13]

(B) n=100 Min. 85 26 170 58 254 101 296 94
p=50 1st Qu. 150 48.75 290.5 97.5 476.8 147 586.5 194

Median 218 68.5 435 133 674 224.5 798 285
Mean 294.4 90.22 505.7 170.4 780.5 266.7 1032 372.3
3rd Qu. 334.5 95.25 580.8 208.5 922.5 337.5 1200.5 410
Max. 1799 409 1777 1267 3717 783 4894 1959
[SpeedUp] [3.26] [2.97] [2.93] [2.77]

(C) n=500 Min. 83 27 150 53 228 85 307 105
p=100 1st Qu. 181.8 61 308.8 100.2 468.5 152 615.8 227

Median 261 83 414.5 135 593 207.5 792.5 304.5
Mean 345.4 103.8 548.2 179.5 697.3 245.8 1147.2 437.6
3rd Qu. 357.5 111 672.8 216.8 875.2 297.5 1178.5 418.8
Max. 2187 499 3474 793 1708 1051 10000 2752
[SpeedUp] [3.33] [3.05] [2.84] [2.62]

(D) n=200 Min. 190 63 378 116 418 179 501 202
p=150 1st Qu. 341 107.8 619.8 224 898 329.8 1058 397

Median 468.5 143.5 867 329.5 1194 431 1436 569.5
Mean 639 187.7 1090.3 388.1 1411 527.3 1697 644.2
3rd Qu. 670.8 212 1297 448.2 1638 601.8 1987 785.5
Max. 8329 1263 3667 1534 4406 2354 7416 2192
[SpeedUp] [3.40] [2.81] [2.68] [2.63]

Table 1: Summary of statistics of the numbers of iterations of ordinary ALS and vε accelerated
ALS for four data types and four mixing rates of categorical variables.
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Figure 1: Boxplots of the number of iterations for data type (A) to (D) (from left to right in
order).

4 Concluding remarks

In this paper, we examined the performance of the vε-ALS algorithm which accelerates the
convergence of the sequence generated from ordinary ALS. To do this, we applied ordinary
ALS and vε-ALS to several simulated datasets generated from four different data sizes and four
different mixing rates of categorical variables. The numerical experiments for comparing the
number of iterations and CPU time by ordinary ALS and vε-ALS demonstrated that the larger
the number of categorical variables is and the higher the mixing rate is, the more the vε-ALS
reduces the computational costs. They also indicated that the performance of approximation
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0.25 0.50 0.75 1.00

Data type Stats ALS vε-ALS ALS vε-ALS ALS vε-ALS ALS vε-ALS

(A) n=100 Min. 0.66 0.34 1.21 0.55 1.96 0.77 3.07 1.26
p=20 1st Qu. 1.018 0.4475 1.992 0.7775 3.37 1.258 5.593 1.948

Median 1.35 0.53 2.695 0.92 4.745 1.6 7.855 2.795
Mean 1.898 0.6744 3.775 1.3441 6.489 2.141 10.015 3.448
3rd Qu. 1.925 0.685 3.86 1.2525 7.697 2.345 12.133 4.258
Max. 26.15 6.43 29.44 16.8 38.88 13.83 58.15 13.93
[SpeedUp] [2.81] [2.81] [3.03] [2.90]

(B) n=100 Min. 2.9 1.22 7.09 2.8 13 5.55 17.75 6.05
p=50 1st Qu. 4.76 1.907 11.81 4.402 23.9 7.875 34.78 12.04

Median 6.675 2.465 17.42 5.785 33.77 11.675 47.29 17.36
Mean 8.887 3.104 20.22 7.246 39.02 13.812 60.95 22.53
3rd Qu. 10.053 3.237 23.17 8.797 46.09 17.288 71.05 24.76
Max. 52.24 12.5 70.13 50.84 184.89 39.74 287.42 116.24
[SpeedUp] [2.86] [2.79] [2.83] [2.71]

(C) n=500 Min. 18.68 9.67 39.34 17.85 70.56 30.75 114.2 43.34
p=100 1st Qu. 36.31 15.82 77.09 29.22 142.03 51.48 224 87.26

Median 50.32 20.01 101.38 37.49 179.84 67.65 285.1 115.35
Mean 65.14 23.84 132.91 48.49 209.99 79.31 410.4 164.23
3rd Qu. 66.58 25.62 163.34 57.05 262.47 94.36 420.7 157.34
Max. 392.5 96.43 825.62 197.59 507.83 323.42 3489.6 991.63
[SpeedUp] [2.73] [2.74] [2.65] [2.50]

(D) n=200 Min. 43.41 16.78 115.4 38.93 163.9 74.04 238.9 101
p=150 1st Qu. 75.57 26.95 188 72.22 348.6 133.48 501.9 195.4

Median 103.07 35.03 261.6 104.67 463.4 173.78 681 278.1
Mean 139.57 44.66 329 122.92 545.9 211.73 805.1 313.9
3rd Qu. 146.21 49.99 392.7 141.39 630.3 241.1 942.5 382.1
Max. 1788.1 284.06 1096.7 476.74 1714.3 932.91 3508.4 1062.2
[SpeedUp] [3.13] [2.68] [2.58] [2.56]

Table 2: Summary of statistics of CPU times of ordinary ALS and vε accelerated ALS for four
data types and four mixing rates of categorical variables.
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Figure 2: Boxplots of CPU time for data type (A) to (D) (from left to right in order).

by vε-ALS is improved about 3 times of ordinary ALS for any number of categorical variables
in data.

For future problems, we have to investigate how much the proposed acceleration improves
computational efficiency when it is applied to more complex situations; such as variable selection
problem. Since we are developing faster algorithms (e.g., re-starting ALS in [4]), we are trying to
evaluate the performances of such algorithms in detail. Furthermore, there exist many other ALS
types of algorithms, so we are attempting to speed up the convergence of their ALS algorithms
by incorporating the proposed acceleration.
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Figure 3: Boxplots of the speed-up rates of 100 simulations for data type (D) (Left: the number
of iterations, Right: CPU time).
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Finite-Sample Multivariate Tests for
ARCH in Vector Autoregressive
Models
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Abstract. In this paper we propose finite-sample multivariate tests for ARCH effects in the
errors of vector autoregressive (VAR) models using Monte Carlo testing techniques and the boot-
strap. The tests under consideration are combined equation-by-equation LM tests, multivariate
LM tests and LM tests of constant error covariance matrix. We use a parametric bootstrap
to circumvent the problem that the test statistics in VAR models are not free of nuisance pa-
rameters under the null hypothesis. The tests are evaluated in simulation experiments and the
bootstrap tests are found to have excellent size and power properties. The LM tests of constant
error covariance matrix outperform the combined LM tests and multivariate LM tests in terms
of power.

Keywords. Conditional heteroskedasticity, Vector autoregressive model, Monte Carlo test,
Bootstrap

1 Introduction

The Lagrange multiplier (LM) test for autoregressive conditional heteroskedasticity (ARCH)
by [5] is widely used as a diagnostic test in time series models. It is easy to compute from
an auxiliary regression involving the squared least squares (LS) residuals. The LM statistic is
asymptotically distributed as χ2 under the null hypothesis. The multivariate generalisation of
the test (see e.g. [6]) requires estimating a large number of parameters in the auxiliary regression.
The test performs poorly for small and moderate sample sizes, particularly when the dimensions
are large (see e.g. [6]). Other multivariate LM tests for ARCH have been proposed (see [3] and
[4]), but these have not been much used.

Monte Carlo (MC) test techniques may be used to overcome some of the problems with
multivariate tests for ARCH. MC testing techniques deliver exact finite-sample tests in regression
models when the regressors are exogenous. In this paper we propose finite-sample multivariate
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LM tests for ARCH in vector autoregressive (VAR) models by following a suggestion in [3] of
replacing an exact test by a bootstrap test when the model includes lags. Our paper differs from
[3] because we consider VAR models instead of regression models with exogenous regressors. We
consider multivariate LM tests, whereas [3] consider combined equation-by-equation univariate
LM tests and multivariate Portmanteau tests for ARCH. The paper is organised as follows.
Multivariate LM tests for ARCH are described in Section 2. The bootstrap algorithm is outlined
in Section 3. The results of MC experiments investigating the properties of the tests in finite
samples are reported in Section 4. The tests are applied to credit default swap (CDS) prices in
Section 5. Section 6 concludes.

2 Multivariate LM Test for ARCH

We consider multivariate LM tests for conditionally heteroskedastic (ARCH) errors in the n-
variate vector autoregressive (VAR) model

yt = Π1yt−1 + · · ·+ Πpyt−p + ut, t = 1, . . . , T. (1)

The null hypothesis is that the errors ut are IID(0,Ω) against the alternative hypothesis that

they are conditionally heteroskedastic: ut = H
1/2
t εt, where Ht = E(utu

′
t|Ft−1) is the conditional

covariance matrix of the errors ut, Ft−1 is the σ-field generated by all available information until
time t− 1 and {εt} is a sequence of IID(0, In) random variables.

Combined Univariate Tests

The Lagrange multiplier (LM) test for ARCH [5] of order h in equation i is a test of b1 = · · · =
bh = 0 in the auxiliary regression û2

it = b0 + b1û
2
i,t−1 + · · ·+ bhû

2
i,t−h + eit. The test statistic has

the form LMi = TR2
i , where R2

i is the coefficient of determination in the auxiliary regression for
equation i. The LM statistic is asymptotically distributed as χ2(h) under the null hypothesis.
Following [3], standardised versions of the test statistics are obtained by replacing ûit by the
Cholesky-standardised residual ‹wit. The combined statistic is constructed as follows (see [3]):fiLM = 1− min

1≤i≤n
(p(fiLM i)), (2)

where p(fiLM i) are the individual p-values associated with the standardised LM statistics fiLM i.

The p-values may be derived from the asymptotic distribution of fiLM i, which is a χ2(h) distribu-
tion. The combined test is closely related to a Bonferroni-type testing procedure, but different
from the Bonferroni bound the MC procedure delivers a simulated joint p-value [3].

Multivariate LM Tests

The multivariate LM test for ARCH is based on the auxiliary regression

vech(ûtû
′
t) = b0 + B1vech(ût−1û

′
t−1) + · · ·+ Bhvech(ût−hû

′
t−h) + et. (3)

The operator vech stacks the elements on and below the main diagonal of an n×n matrix into a
1
2n(n+ 1)-dimensional vector. The null hypothesis is that B1 = · · · = Bh = 0. The multivariate
LM statistic can be shown to be of the form

MLM =
1

2
Tn(n+ 1)− T tr(“Ωvech

“Ω−1), (4)
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where “Ωvech is the estimator of the error covariance matrix from the auxiliary model (3) and“Ω = T−1∑T
t=1 ûtû

′
t is the estimator of the error covariance matrix from the VAR model (1)

[6]. Following [3], a standardised version of the test statistic is obtained by replacing ût by‹wt, the multivariate standardised residual. The MLM statistic is asymptotically distributed as
χ2(hn2(n+ 1)2/4) under the null hypothesis.

[4] propose a test for constant error covariance matrix. When testing for ARCH, a suitable
alternative is the constant conditional correlation autoregressive conditional heteroskedasticity

(CCC-ARCH) process of order h. Then Ht = DtPDt, where Dt = diag(h
1/2
1t , . . . , h

1/2
nt ) is a

diagonal matrix of conditional standard deviations of the errors ut. Further, D−1
t ut = εt, where

εt ∼ IID(0,P) and P is a positive definite matrix of conditional correlations. The conditional
variance ht = (h1t, . . . , hnt)

′ follows a CCC-ARCH(h) process

ht = a0 +
h∑
k=1

Aku
(2)
t−k, (5)

where a0 is an n-dimensional vector of positive constants, A1, . . . ,Ah are n×n diagonal matrices

and u
(2)
t = (u2

1t, . . . , u
2
nt)
′. The null hypothesis is A1 = · · · = Ah = 0. The LM statistic is

LMCCC = T sT (θ̃)′Ĩ−1
T (θ̃)sT (θ̃), (6)

where sT (θ̃) and ĨT (θ̃) are the relevant blocks of the average score vector and information
matrix, respectively, estimated under the null hypothesis (see [4]). The LMCCC statistic is
asymptotically distributed as χ2(nh) under the null hypothesis.

3 Bootstrap Tests for ARCH

In this section we present the Monte Carlo (MC) testing technique and bootstrap algorithm. [3]
develop a framework for MC tests which employs Cholesky-standardised multivariate residuals
from the multivariate linear regression model

Y = XB + U, (7)

where Y = (y1, . . . ,yn) is a T ×n matrix, X is a T × k matrix of full column rank, B is a k×n
parameter matrix and U = (u1, . . . ,un) is a T × n matrix of errors. The VAR model can be
written in the linear regression form (7) with Xt = (yt−1, . . . ,yt−p)

′ a typical row of X and B
is an np × n parameter matrix. The distribution of test statistics in the VAR model based on
Cholesky-standardised multivariate residuals are not free of nuisance parameters.

The bootstrap algorithm is a modification of the algorithm in [3] to autoregressions. Fol-
lowing a suggestion in [3], the LS estimator “B of B under the null hypothesis is used in the
parametric bootstrap in step 3. The tests based on the parametric bootstrap are not exact in
finite samples. They are only exact as the sample size tends to infinity.

Algorithm 3.1.
Bootstrap Monte Carlo tests for ARCH

Step 1 From the observed data, compute fiLM in (2) and denote it fiLM (0)
.

Step 2 Obtain N draws from W1, . . . ,WT ∼ NID(0, In) and denote the drawn variates W(j),
j = 1, . . . , N .
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Step 3 For each draw j, conditional on the observed regressor matrix X, the Cholesky factor
S

Û
of the residuals “U and the LS estimator “B of B, construct a bootstrap replication

Y(j) = X“B + W(j)S
Û
, j = 1, . . . , N.

Regress Y(j) on X and obtain the associated residual matrix “U(j), covariance matrix “Ω(j) =

T−1“U(j)′“U(j) and its Cholesky factor S
(j)

Û
. Obtain the simulated standardised residuals›W(j) = “U(j)(S

(j)

Û
)−1 = (‹w(j)

1 , . . . , ‹w(j)
n ),

where ‹w(j)
i = (‹w(j)

i1 , . . . , ‹w(j)
iT )′, i = 1, . . . , n.

Step 4 Compute the LM statistic for equation i and MC draw j, denoting it fiLM (j)

i . ComputefiLM (j)
= 1−min1≤i≤n(p(fiLM (j)

i )) using (2) as in step 1.

Step 5 Given fiLM (j)
, j = 1, . . . , N , compute the number of simulated values greater than or

equal to fiLM (0)
(denoted N “GN (fiLM (0)

)). The MC p-value is

p̂N (fiLM) = [N “GN (fiLM (0)
) + 1]/(N + 1).

The null hypothesis is rejected at the significance level α if p̂N (fiLM) ≤ α. The same algorithm
is used with the multivariate LM tests MLM and LMCCC . The asymptotic validity of the
bootstrap tests follows from Theorem 1 of [3] and consistency of the LS estimator “B of B.

4 Simulations

We conduct Monte Carlo simulations for size and power of the multivariate tests for ARCH with
n = 2. The samples sizes are T = 100, 200 and 400. The number of Monte Carlo replications
is 5000 for T = 100 and 200, and 2000 for T = 400. In the bootstrap tests the number of
replications is N = 499. The model for the conditional mean is a stationary VAR(2) model
with Π1 = diag(0.5) and Π2 = diag(0.3). Five different data generating processes (DGPs)
are considered for the errors ut. In DGP 1, ut ∼ NID(0, In). In DGPs 2 and 3, ut follows
CCC-GARCH(1, 1) processes:

ut = H
1/2
t εt, Ht = DtPDt, Dt = diag(h

1/2
1t , . . . , h

1/2
nt ), ht = a0 + A1u

(2)
t−1 + B1ht−1.

Furthermore, εt ∼ NID(0,P), where P = (ρij). The parameter values for A1 and B1 are A1 =
diag(0.08) and B1 = diag(0.90) in DGP 2 and A1 = diag(0.5) and B1 = 0 in DGP 3. The
constant vector a0 has all its elements a0i = 0.02, i = 1, . . . , n. The conditional correlation
parameter is ρij = 0.5 for i 6= j. DGP 4 is a diagonal BEKK-GARCH(1, 1) model given by

Ht = C + A′1ut−1u
′
t−1A1 + B′1Ht−1B1,

where C is a matrix with elements 0.1 on the main diagonal and off-diagonal elements 0.2,
A1 = diag(

√
0.08) and B1 = diag(

√
0.9). DGP 5 is an Extended CCC (ECCC) GARCH model
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DGP 1 2 3 4 5 1 2 3 4 5

Test h = 2 h = 5
T = 100

LM1 0.035 0.120 0.596 0.120 0.119 0.035 0.145 0.466 0.144 0.148
LM2 0.030 0.104 0.482 0.111 0.065 0.034 0.123 0.394 0.130 0.063fiLM 0.040 0.165 0.737 0.175 0.137 0.049 0.215 0.636 0.223 0.173
MLM 0.045 0.166 0.736 0.148 0.125 0.039 0.199 0.549 0.169 0.157
MLM∗ 0.036 0.143 0.708 0.130 0.110 0.040 0.201 0.551 0.169 0.160
LMCCC 0.024 0.151 0.780 0.144 0.107 0.026 0.183 0.696 0.186 0.137
LM∗CCC 0.040 0.180 0.813 0.178 0.139 0.048 0.235 0.743 0.236 0.176

T = 200
LM1 0.039 0.319 0.919 0.312 0.326 0.046 0.393 0.854 0.405 0.414
LM2 0.039 0.275 0.820 0.275 0.115 0.040 0.361 0.731 0.366 0.144fiLM 0.046 0.432 0.976 0.429 0.329 0.049 0.537 0.936 0.555 0.422
MLM 0.052 0.417 0.977 0.419 0.324 0.049 0.532 0.927 0.520 0.409
MLM∗ 0.046 0.389 0.974 0.389 0.301 0.045 0.519 0.921 0.503 0.393
LMCCC 0.038 0.456 0.988 0.441 0.330 0.038 0.563 0.975 0.568 0.424
LM∗CCC 0.046 0.479 0.989 0.463 0.352 0.048 0.586 0.977 0.594 0.449

T = 400
LM1 0.046 0.392 0.994 0.652 0.634 0.042 0.519 0.987 0.752 0.767
LM2 0.042 0.352 0.972 0.588 0.243 0.046 0.466 0.951 0.731 0.305fiLM 0.048 0.533 1.000 0.803 0.640 0.047 0.672 0.997 0.890 0.765
MLM 0.052 0.521 1.000 0.841 0.619 0.048 0.650 0.998 0.925 0.757
MLM∗ 0.045 0.498 1.000 0.825 0.598 0.043 0.639 0.997 0.923 0.746
LMCCC 0.042 0.574 1.000 0.837 0.668 0.046 0.702 1.000 0.918 0.776
LM∗CCC 0.049 0.578 1.000 0.846 0.679 0.050 0.714 1.000 0.921 0.787

Table 1: Simulated size and power of LM tests for ARCH when n = 2. The nominal significance
level is 5%.

similar to DGP 2, but with off-diagonal elements a12 = 0.001, a21 = b12 = 0.004 and b12 = 0.02
All estimations and numerical calculations are done using code written in R, version 2.15.2.

Table 1 presents the results for testing against ARCH of orders h = 2 and 5 in bivariate
models. In addition to the multivariate tests, the table shows the results for the individual
LM tests (denoted LM1 and LM2, respectively). The multivariate tests for ARCH tend to be
slightly undersized, with the exception of the multivariate LM test MLM . In particular LMCCC

is undersized, with size against h = 2 of 2.4% when N = 100, 3.8% when N = 200 and 4.2%
when N = 400. Bootstrapping the test brings its size closer to the nominal level. Turning to
power, we see that LMCCC is the most powerful test when the DGP is a CCC-GARCH model.
Despite being slightly undersized in small samples, the asymptotic LMCCC test performs well
in terms of power. If the errors are CCC-ARCH (DGP 3), then LMCCC is outperformed only
by its bootstrap version LM∗CCC . The test also has the highest power when the correlations are
not constant as in DGP 4 and when there is volatility interaction between the errors in DGP 5,
although the differences between the tests are small in the latter case. The combined LM testfiLM has lower power. The multivariate LM tests MLM and MLM∗ have lower power than the
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other multivariate tests with the exception DGP 4 and T = 400.

Outliers frequently occur in time series with conditional heteroskedasticity. We investigate
the robustness of the tests to outliers in DGPs 1 and 2, when T = 200 and h = 2. Following
[7] we consider additive and innovational outliers with outlier parameter ω = (3.5, 3.5)′ and
ω = (8, 8)′ (see [7] for details). We concentrate on the case where there is a simultaneous outlier
in both series at t = 101. We find that all tests are oversized in the presence of additive outliers,
in particular the combined test fiLM and the multivariate tests MLM and LMCCC have size
17.9%, 29.6% and 22.6%, respectively, when the nominal significance level is 5%. Innovational
outliers, on the other hand, have little impact on the size of the tests. The univariate tests and
the combined test are slightly undersized, the size of LM1, LM2 and fiLM being 2.0%, 3.0% and
3.1% respectively, while the size of the multivariate tests increases by about 1 percentage point
compared to the case with no outliers. In DGP 2 for power, fiLM , MLM and LMCCC have
rejection probabilities 53.5%, 55.1% and 78.5% in the presence of additive outliers and 27.5%,
28.6% and 33.0% in the presence of innovational outliers. The full set of results are reported in
the full length paper.

5 Application to Credit Default Swap Prices

We apply the multivariate LM tests for ARCH to VAR models estimated on credit spread and
credit default swap (CDS) prices data. We take a subsample of the companies in Table 1 of
[1]. The companies in our subsample are Bank of America, Citigroup, Goldman Sachs, Barclays
Bank and Vodafone. We use 5-year maturity CDS prices and credit spreads from Datastream.
The data are daily observations from 1 January 2009 to 31 January 2012. The number of daily
observations for each company is T = 804. In addition to the whole sample period, we divide
the data into 2 sub-periods of T = 402 observations and 4 sub-periods of T = 201 observations.
The reason for considering sub-periods is that we want to detect differences between the tests for
smaller values of T than the full sample size T = 804. The lag length of the VAR model is p = 2
for Bank of America, p = 3 for Citigroup, p = 3 for Goldman Sachs, p = 4 for Barclays Bank
and p = 3 for Vodafone. The estimated VAR models contain dummy variables taking the value
1 for the date in question and 0 otherwise: 25 February 2009, 10 April 2009 and 8 June 2009
for Citigroup, 9 April 2009 for Goldman Sachs, 6 February 2009 and 4 June 2009 for Barcalys
Bank, and 8 June 2009 for Vodafone. There is evidence that the bond and CDS markets share
periods of high volatility; for all companies large movements in one series is matched by large
movements in the other series. This suggests that multivariate tests for ARCH effects will be
more powerful than either univariate tests or combined tests. For the full sample period of
T = 804 observations, all tests are significant at the 5% level and all tests are significant at
the 1% level, except the univariate LM test for h = 5 in the equation for the credit spread
for Bank of America. In fact, most p-values are either 0.000 or 0.001. For the sub-period of
T = 402 observations, the multivariate tests MLM , MLM∗, LMCCC and LM∗CCC are almost
all significant at the 5% and 1% levels.

The results for sub-periods of T = 201 observations (p-values reported in Table 2 for sub-
periods 2 and 3) are more interesting from the point of view of being able to detect differences
between the tests. We observe that the p-values of the asymptotic MLM tests are larger than the
p-values of the bootstrap MLM∗ tests, whereas the opposite holds for the asymptotic LMCCC

tests and bootstrap LM∗CCC tests, which is in agreement with the findings in the simulations
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Company h LMCDS LMCS MLM LMCCC
fiLM MLM∗ LM∗CCC

Sub-period 2
Bank of America 2 0.000 0.044 0.000 0.000 0.001 0.001 0.001

5 0.000 0.007 0.000 0.000 0.001 0.001 0.001
10 0.000 0.085 0.000 0.000 0.001 0.001 0.001

Citigroup 2 0.333 0.737 0.014 0.020 0.551 0.033 0.022
5 0.103 0.803 0.004 0.000 0.167 0.009 0.001

10 0.280 0.980 0.000 0.000 0.427 0.001 0.001
Goldman Sachs 2 0.053 0.003 0.000 0.000 0.010 0.001 0.001

5 0.001 0.037 0.000 0.000 0.001 0.001 0.001
10 0.000 0.221 0.000 0.000 0.002 0.001 0.001

Barclays Bank 2 0.000 0.000 0.000 0.000 0.001 0.001 0.001
5 0.000 0.000 0.000 0.000 0.001 0.001 0.001

10 0.000 0.001 0.000 0.000 0.001 0.001 0.001
Vodafone 2 0.000 0.000 0.000 0.000 0.001 0.000 0.001

5 0.000 0.000 0.000 0.000 0.001 0.001 0.001
10 0.000 0.008 0.000 0.000 0.001 0.001 0.001

Sub-period 3
Bank of America 2 0.119 0.013 0.005 0.000 0.020 0.009 0.001

5 0.148 0.065 0.020 0.000 0.100 0.032 0.001
10 0.431 0.342 0.020 0.000 0.566 0.021 0.001

Citigroup 2 0.103 0.015 0.005 0.000 0.031 0.014 0.001
5 0.340 0.036 0.049 0.000 0.064 0.044 0.001

10 0.029 0.237 0.013 0.000 0.057 0.010 0.001
Goldman Sachs 2 0.136 0.567 0.025 0.063 0.241 0.035 0.050

5 0.386 0.379 0.093 0.023 0.612 0.100 0.033
10 0.131 0.015 0.156 0.000 0.026 0.121 0.001

Barclays Bank 2 0.746 0.008 0.039 0.000 0.015 0.052 0.001
5 0.724 0.070 0.630 0.000 0.120 0.586 0.001

10 0.959 0.369 0.522 0.008 0.575 0.467 0.007
Vodafone 2 0.093 0.292 0.563 0.003 0.157 0.507 0.004

5 0.404 0.258 0.373 0.002 0.421 0.356 0.001
10 0.471 0.708 0.591 0.013 0.689 0.565 0.015

Table 2: Tests for ARCH in the estimated VAR models for CDS prices in sub-periods 2 and 3.

that the MLM test is slightly oversized, whereas LMCCC is conservative. On balance, the
univariate tests (denoted LMCDS and LMCS for the CDS and credit spread series respectively)
and the combined test only detect ARCH effects in about half of the cases. The multivariate
tests find more evidence of ARCH. More rejections are recorded for LMCCC and LM∗CCC than
for MLM and MLM∗, and the p-values of the former are smaller than the p-values of the latter.
The bootstrap test LM∗CCC finds the most evidence of ARCH.
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6 Conclusions

In this paper we have introduced and evaluated multivariate bootstrap tests for ARCH in vector
autoregressive models. The tests are based on standardised multivariate least squares residuals
and are therefore easy to calculate. The results show that the bootstrap tests outperform the
asymptotic tests in terms of both size and power. Our results also show that a less frequently used
test against constant conditional correlation GARCH is more powerful than other multivariate
LM tests such as combined univariate LM tests and multivariate LM tests which assume no
particular alternative to the null hypothesis. The tests are applied to credit default swap (CDS)
prices. The multivariate tests find significant ARCH effects in almost all series.
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Abstract. Quality is nowadays indispensable in every activity, but its control has been cir-
cumvented by many, because of the statistical technicality of the subject and the apparent
uselessness of acceptance sampling (AS), dealt with in this study. With the current comput-
ing power and the access to the Internet, the control of Quality can be used where fit. For
Gaussian variables and their acceptance sampling by variables, the usual standards are based
on the quality index, the behaviour of which is addressed. Its computation is reviewed and, as
our main objective, made available directly on our open website. As the acceptance criterion is
based on the non-central t-distribution, its computation is commented and made available on
the Internet, through a computer program prepared for this purpose. A Monte Carlo solution
is also provided, which might be used if the computation of the distribution were not feasible.

Keywords. Quality Control, acceptance sampling, inspection by variables, Gaussian variable,
international standards, “Form 1”, non-central t-distribution.

1 Fundamentals and scope

Quality has become a necessity in every activity, manufacturing or services, the customer be-
ing a driving force that promotes the need for improvement, responsibility, competitiveness.
Achieving quality cannot dispense with measurement, hence statistic control. Although many
in business circumvent the harder, statistical aspects of Quality and its control, as clearly re-
marked by Gunter ([8]), there is no way to substitute them. Numerous studies were done by
researchers some decades ago, when the theory was being constructed (among many, e.g., [9],
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[13], [15]), and, in our own work, we have insisted (e.g., [3], [4]) in the importance of acceptance
sampling, which is a sharp example of a technique necessary to control the quality at the fron-
tiers of a production system, unless there is a solid connection with the suppliers or the clients,
which fortunately is becoming more frequent. Nowadays, the Internet can facilitate these control
actions, as will be seen in the present study.

Acceptance sampling (AS), and statistical process control are the two parts usually consid-
ered in Quality Control. In AS by variables, the quality index is key to take decisions in the
case of having to meet a single specification limit, such as it is dealt with in the standards for
quality control, such as the American standard of the year 2008 ([2], the successor of [12]) or its
equivalent international ISO standard of 2013 ([10]).

In this study, the computations underlying “Form 1” in the standard are addressed and made
available to a user on the Internet. Indeed, with the current availability of computing power
and access via the Internet, no simplifications are needed, such as the one ingeniously proposed
by Hamaker ([9]) in the past. Based on a Gaussian variable that is the quality characteristic of
interest, the procedure aims at controlling the quality of a lot by means of a random sample from
it, leading to a comparison that dictates the decision, the comparison between the quality index,
Q, and the acceptability constant, k, the lot being accepted if Q ≥ k, and rejected otherwise.
This is, of course, the test of a hypothesis, and the essence of the technique is the knowledge of
the distribution of the statistic, Q, to find its critical value, k.

Whenever, contrary to the present case, neither an analytical nor a reasonably feasible numer-
ical solution are available, a Monte Carlo approach is an alternative. Here, as an experimental
“confirmation” of the numerical solution, the computing by a Monte Carlo simulation is also
presented, both paths (numerical and simulated) being made solvable in our websites.

2 Acceptance criterion

The classical equations for Type I and Type II errors underlying inspection sampling lead to the
sampling plan, i.e., sample size, n, and acceptability constant, k (e.g., [3]):

{
Pac($ = AQL) = 1− α
Pac($ = LTPD) = β,

(1)

in which Pac is the probability of acceptance, $ is the fraction defective (currently “fraction
nonconforming”), AQL (“Acceptance Quality Limit”9) is the maximum percent defective (tradi-
tional for “fraction nonconforming”) with probability 1− α, and LTPD (“Lot Tolerance Percent
Defective”) is the maximum fraction defective for β. Values such as the following can be found:
AQL = 1.5%, α = 5%, LTPD = 12%, β = 10%. The acceptance criterion is given by the follow-
ing condition, in which X̄ and S are, respectively, the sample average and standard deviation.

Q =
X̄ − L
S

≥ k (2)

where Q is the quality index, and k the acceptability constant. (The equals sign is important
because the practical comparison is made with Q rounded to the same number of significant
figures as in k.) Note that a different definition of the quality index,

9Instead of the historical “Acceptable Quality Level”.

COMPSTAT 2014 Proceedings



Miguel Casquilho and Fátima Rosa 275

Q′ =
X̄ − L
S/
√
n

= Q
√
n ≥ k′ (3)

might be more natural from a statistician’s standpoint. This, making Q′ ≡ t (t in Eq. 4, below),
would lead directly to a known distribution. Then, e.g., for n = 10 and AQL = 4%, instead of
testing Q ≥ 1.23 (from Table 1), it would be Q′ ≥ 3.89 (= 1.23

√
10), which would, however,

make the calculations more cumbersome to the user. It has, nevertheless, since long been the
laudable intention of the founders of Quality, themselves statisticians, to make its rules easily
applicable by the general users.

When both specification limits, lower, L, and upper, U , are present, it is usual to write
QL and QU , respectively, and in the case of the upper limit the numerator is changed to the
“symmetric” U − X̄, for obvious practical convenience. We arbitrarily chose here to work with
the lower specification limit just because it is closer to (X̄ − µ)/S. (The case of both limits is,
however, out or our present scope, and constitutes the so-called “Form 2”.)

Regarding the distribution of the statistic Q, the seminal work by Resnikoff and Lieberman
([11]) and the recent synthesis book by Schilling and Neubauer ([14]) are solid sources: Q is
related to t, such that it is t = Q

√
n, and t follows a non-central t-distribution,

t ∼ F (t; ν, δ) (4)

where the parameters are, in this application, given by

ν = n− 1

δ =
√
n Φ−1(1−AQL) (5)

with Φ the standard Gaussian distribution (and Φ−1 its inverse function). From this will come
the acceptance criterion, for a single specification limit (in this case, the lower one), as mentioned.

For the non-central t-distribution, the cumulative distribution function (cdf), F , can be given
by (e.g., [1])

F (t; ν, δ) = Cν

ˆ ∞
0

Φ(tu/
√
ν − δ)uν−1e−u

2/2du (6)

with

Cν =
î
Γ(ν/2) 2ν/2−1

ó−1
(7)

where Γ(·) is the common Gamma function (extension of the factorial).
The criterion in Eq. 2 depends on the computation of the non-central t. This computation

is described in the next section, and, as is the objective of this study, is made available on our
website.

3 Computation

The computing of Eq. 6 was done numerically, as it appears that the integral in it is not
amenable to analytical treatment, with the details as follows.

The computation of Cν is easy, as the argument of the Gamma function in this application
(ν/2, with ν = n − 1) is always a positive integer or half-integer, so the function becomes a
factorial or a simple multiple of

√
π.
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Inside of the integrand, for the Gaussian integral, Φ(·), in computer languages such as the
one used, Fortran 90, we relied on

Φ(z) =
1

2

ñ
1 + erf(

z√
2

)

ô
(8)

where ’erf’ is the error function, as given by the compiler.

The computation of Eq. 6 thus would boil down to a common numerical integration were it
not for the upper integration limit (∞). For the purpose of this study, this difficulty was solved
by determining experimentally which would be a “sufficiently” large value, say, M , for the upper
integration limit (instead of ∞) for various possible, more or less favourable combinations of t,
ν, and δ. We did not delve into a deeper search for accuracy in the values of k, provided full
agreement is obtained, as the values available for comparison are just those in the standards,
which of course are rounded.

The integral in Eq. 6 achieved subsequent agreement (all the figures in the numbers) with
the values of k in Table B-1 reproduced in Table 1, for an upper integration limit of

M = x
√

5 n q (9)

(meaning rounding or nearest integer), integer for simplicity, which proved sufficient for all
the sample sizes tested. This heuristic expression that we propose for M is inspired in the
fact that Resnikoff and Lieberman ([11]) present their tables of F (Eq. 4) as a function of
(in their notation) x/

√
f , with f the degrees of freedom (ν here), and a still more prudent

(greater) n = ν + 1.

n α M AQL = 1.50 AQL = 4.00

7 10 % 6 1.50 1.15
10 10 % 7 1.58 1.23
20 7.8 % 10 1.69 1.33
35 6 % 13 1.76 1.39
50 5 % 16 1.80 1.42

Table 1: Values of k from Table B-1 in [2] (AQL in %), with their underlying values of α, for
verification.

In order to verify the values in Table 1, the computation of k as a function of n, AQL, and
the adequate α, with the proposed M (or a user-supplied one), can be done at our dedicated
webpage ([6]), through a computer program of ours that computes the non-central t-distribution.
(The computing done on the website, i.e., simply using a browser, is limited to about 30 s.)
The limit M , with an integration step of 2 × 10−3, led to computing times of about 10–70 s,
in the Computing Center system of IST (CIIST) with Amd64 machines, at 2 GHz, running
Debian Linux. Preliminary computing experiments were done in a parallel, MPI computing
system (Milipeia), but the system was not considered indispensable, all the more because it
is not anonymously accessible via the Internet. The verification can also be experimentally
done, by Monte Carlo simulation, with numerical agreement, in another webpage of ours ([5]),
a concomitant website, [7], being available for the above cited “Form 2”.
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Figure 1: Table B-1 in [2] of k, given “sample size” (n) and “acceptable quality level” (AQL,
currently acceptance quality limit).

Conclusions

We think that the rigorous tools of Statistics as applied to Quality Control (QC) must be
brought to general attention, after an epoch in which they have been circumvented to facilitate
the matters of Quality. The advent of ubiquitous computing power, namely through the Internet,
makes QC accessible, even to non-specialists. Acceptance sampling (AS), one of the two branches
of statistical, the other being Statistical Process Control, can and should nowadays be applied
without restraints.

AS by variables, for the typical Gaussian random variable, was shown in its basic“Form 1”, as
described in the generally adopted international standards, where a conveniently simple criterion
is available to the decision maker. The underlying computations were explained, and an open
website is available to anyone needing to assess a quality index, Q, in its comparison with its
critical value, the acceptability constant, k.
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Abstract. Sparse principal component analysis is a very active research area in the last decade.
In the same time, there are very few works on sparse factor analysis. We propose a new con-
tribution to the area by exploring a procedure for sparse factor analysis where the unknown
parameters are found simultaneously.

Keywords. `1 penalties, Matrix manifolds, Projected gradients.

1 Introduction

Exploratory factor analysis (EFA) is a model-based multivariate technique that aims to explain
the relationships among p manifest random variables by r (� p) latent random variables called
common factors. The EFA model assumes that some portion of the variation of each observed
variable remains unaccounted for by the common factors. Thus, p additional latent variables
called unique factors are introduced, each of which accounts for this portion of variance of the
corresponding manifest variable [12]. In formal terms, the EFA model represents/approximates
a given n× p data matrix Z of p observed (standardized) variables on n observations as a linear
combination of r common and p unique factors

Z ≈ FΛ> + UΨ, (1)

where Λ is a p × r parameter matrix of factor loadings. The choice of r is either subjective or
based on preliminary validation. In both case its value is subject to some limitations [12]. The
r-factor model (1) assumes that all involved random variables (Z,F and U) have zero means and
unit variances, and that both common and unique factors are uncorrelated. Most importantly,
they are also assumed mutually uncorrelated, and the p× p matrix Ψ is assumed diagonal with
non-zero diagonal entries. Following the r-model defined above and the assumptions made, it
can be found that the sample correlation matrix R is presented/approximated by EFA as:

R ≈ RZZ = ΛΛT + Ψ2 . (2)

Thus, the main problem of EFA is to find the pair {Λ,Ψ} which gives the best fit in some
sense to the sample correlation matrix R (for certain r). If the data are assumed normally
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distributed the maximum likelihood principle can be applied [12]. Then, finding {Λ,Ψ} can be
formulated as minimizing the following negative loglikelihood function [9, 12]:

minΛ,Ψ log(det(ΛΛT + Ψ2)) + trace((ΛΛT + Ψ2)−1R) , (3)

which for short is called ML-EFA.
If nothing is assumed about the distribution of the data, the loglikelihood function (3) can

still be used as a measure of the discrepancy between the model and the sample correlation
matrices, RZZ and R. There are a number of other discrepancy measures [9] which are used in
place of (3). A natural choice is the least squares approach for fitting the factor analysis model
(2), which can be formulated as the following general class of weighted least squares problems:

min
Λ,Ψ
‖(R− ΛΛT −Ψ2)V ‖2 , (4)

where V is a matrix of weights, and ‖‖ denotes the Frobenius matrix norm ‖A‖2 = traceATA.
The case of V = Ip is known as the least squares factor analysis, LS-EFA. The second special
case V = R−1, is known as the generalized least squares problem, GLS-EFA.

The minimization problems ML, LS and GLS listed above are not unconstrained. The un-
knowns Λ and Ψ are sought subject to the following constraints [9]: for ML and GLS,

ΛTΨ−2Λ to be diagonal , (5)

and for LS,

ΛTΛ to be diagonal . (6)

The constraint (5) explains why Ψ is required by EFA to have non-zero diagonal entries.
This assumption is equivalent to the assertion that no observable random variable can ever be
explained entirely by a common factor. This assumption and several other features, e.g. factor
scores indeterminacy [12], make the EFA model highly controversial, which probably explains
why EFA is far less popular dimension reduction technique than principal components (PCA).

For any orthogonal r × r matrix Q we have:

RZZ = ΛΛT + Ψ2 = ΛQQTΛT + Ψ2 = ΛQ(ΛQ)T + Ψ2 , (7)

which is known as the rotation indeterminacy in EFA. Indeed, the constraint (5) eliminates the
indeterminacy (7), however such solutions are usually difficult for interpretation. Instead, the
common practice is to make use of (7): rotate the initially found factor loadings Λ by some kind
of “simple structure” rotation [12] to make them more interpretable. By “interpretable” it is
meant that each factor has only few large loadings. The rule is to ignore, effectively make zero,
the remaining rather small ones. In fact, the factor loadings interpretation relies on artificially
constructed sparse loadings Λ, many of which are neglected, and thus considered zeros.

We propose to modify the EFA fitting problems (3) and (4) by introducing sparse-inducing
constraints. Then, the resulting factor loadings Λ will be sparse in an optimal way. This strategy
is not new. The same interpretation problem occurs in PCA. Its solution led in the last decade
to developing a great number of new procedures directly producing sparse component loadings,
which considerably simplifies their interpretation. In contrast, there are very few works on sparse
EFA, e.g.[3, 13]. The proposed work will be a further contribution to this new research area.

COMPSTAT 2014 Proceedings



Sara Fontanella, Nickolay T. Trendafilov and Kohei Adachi 283

2 New EFA parameters

It has been argued in [15], that, in fact, the constraints (5) and (6) facilitate the algorithms for
numerical solution of the different EFA definitions (3) and (4), see for details e.g. [9, 12]. As we
mentioned, occasionally (5) and (6) may facilitate the interpretation of Λ, but in general this
is not the case. The alternative traditional approach to rotate the initial factor loadings Λ to
“simple structure” gives, in turn, rotated factor loading violating (5) and (6).

In this work we adopt the new formulation of the EFA estimation problems (3) and (4)
proposed in [15]. The constraints (5) and (6) will not be needed any more. The only natural
constraints inferred from the r-factor analysis model (2) are that the p× r matrix Λ should have
full column rank, and that the p×p diagonal matrix Ψ2 should be positive definite. Additionally,
we relax the second condition and assume positive semi -definite diagonal Ψ2. There are two
reasons for this. From EFA model point of view this constraint seems too restrictive. From
numerical point of view the algorithms developed in [15] do not relay on Ψ2 > 0. Moreover,
maintaining Ψ2 > 0 may contradict to achieving high level of sparseness (Section 5).

Consider the eigenvalue decomposition of the positive semi definite ΛΛT of rank at most r
in (2), i.e. let ΛΛT = QD2QT , where D2 is an r × r diagonal matrix composed by the largest
(nonnegative) r eigenvalues of ΛΛT arranged in descending order and Q is a p× r orthonormal
matrix containing the corresponding eigenvectors. Note that for this reparameterization ΛTΛ is
diagonal, i.e. the condition (6) is fulfilled automatically. Then (2) can be rewritten as:

RZZ = QD2QT + Ψ2 . (8)

Thus, instead of the pair {Λ,Ψ}, a triple {Q,D,Ψ} is sought in [15]. Note, that the model
(8) does not permit rotations, only permutations are possible. Thus, the new factor loadings
Λ are given by QD. Clearly, when Q is sparse, Λ will have the same sparseness. In order to
maintain the factor analysis constraints, the triple {Q,D,Ψ} should be sought such that Q be an
p× r orthonormal matrix, and D and Ψ – diagonal. Note, that we do not insist for non-singular
Ψ, however the singularity of D implies failing of the r-factor analysis model.

The new formulation of the factor analysis estimation problems is straightforward. Indeed,
for a given sample correlation matrix R, the ML-EFA is reformulated as follows:

min
Q,D,Ψ

log(det(QD2QT + Ψ2)) + trace((QD2QT + Ψ2)−1R) , (9)

and the LS- and the GLS-EFA estimation problems are rewritten as:

min
Q,D,Ψ

‖(R−QD2QT −Ψ2)V ‖2 . (10)

3 Sparse factor loadings

Let qi denote the ith column of Q, i.e. Q = (q1, q2, ..., qr), and τ = (τ1, τ2, ..., τr) be a vector of
tuning parameters, one for each column of Q. We consider a penalized version of EFA, where the
`1 norm of each of the columns of Q is penalized, i.e. ‖qi‖1 ≤ τi for all i = 1, 2, ..., r. Introduce
the following discrepancy vector qτ = (‖q1‖1, ‖q2‖1, ..., ‖qr‖1) − τ , which can also be expressed
as qτ = 1>p [Q� sign(Q)] − τ , where sign(Q) is a matrix containing the signs of the elements of
Q, and 1p is a vector with p unit elements. We adapt the scalar penalty function max{x, 0}

@ COMPSTAT 2014



284

used by [16] to introduce the following vector penalty function Pτ (Q) = [qτ � (1p + sign(qτ )]/2.
Then, the penalized versions of (9) and (10) can be defined, for the ML-EFA as:

min
Q,D,Ψ

log(det(QD2QT + Ψ2)) + trace((QD2QT + Ψ2)−1R) + Pτ (Q)>Pτ (Q) , (11)

and for the LS- and the GLS-EFA as:

min
Q,D,Ψ

‖(R−QD2QT −Ψ2)V ‖2 + Pτ (Q)>Pτ (Q) . (12)

Note, that Pτ (Q)>Pτ (Q) penalizes the sum of squares of ‖qi‖1 − τi for all i = 1, 2, ..., r, i.e.
precise fit of ‖qi‖1 to each tuning parameter τi cannot be achieved.

4 Gradients and Stiefel gradients

The gradients of the ML-, LS- and GLS-EFA objective functions with respect to the unknowns
{Q,D,Ψ} are given in [15] as the following block-matrix: (−Y QD2,−QTY Q � D,−Y � Ψ).
For ML-EFA, one has Y = 2R−1

ZZ(R − RZZ)R−1
ZZ , and for LS- and GLS-EFA it changes to

Y = 4V (R − RZZ)V . Now we need to find the gradient ∇Q of the penalty term Pτ (Q)>Pτ (Q)
with respect to Q, which should be added to −Y QD2.

Making use of the identity trace(A�B)C = traceA(B> � C), we find that:

∇Q =
1

2
W � [1p(w � Pτ )] , (13)

where 1p is a p× 1 vector and 1p×r is a p× r matrix with unit entries, and

w = 1p + th(γqτ ) + (γqτ )� [1p − th2(γqτ )] , (14)

and

W = th(γQ) + (γQ)� [1p×r − th2(γQ)] . (15)

The dynamical system approach employed in [15] can be readily applied for solving (11)
and (12). It involves numerical integration of matrix ordinary differential equations (ODE) for
{Q,D,Ψ} defined by their projected gradients. Particularly, it involves projected gradient dy-
namical system for Q on the Stiefel manifold of all p × r orthonormal matrices. There exist a
number of specialized numerical methods for solving such problem, e.g. [4] and others listed
in [15]. In contrast to the standard EFA alternating approaches [9, 12], the dynamical system
approach gives matrix algorithms which produce simultaneous solution for {Q,D,Ψ} exploit-
ing the geometry of their specific matrix structures. Moreover, such algorithms are globally
convergent, i.e. the convergence is reached independently of the starting (initial) point.

The numerical ODE solvers currently available in MATLAB [11] are not suitable for solving
large optimization problems. They track the whole trajectory defined by the ODE which is
time-consuming and undesirable when the asymptotic state is of interest only. This limits the
application of the proposed approach to solving (11) and (12) for rather small data sets.

An alternative way is to employ iterative algorithms directly working on matrix manifolds
[1, 5, 17]. The listed above gradients can be readily used for solving (11) and (12) by employing
MANOPT, a free MATLAB-based software for optimization on matrix manifolds [2].
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Figure 1: Number of zeros obtained in 100 runs of sparse ML-EFA (11) for different τ .

.

5 Numerical examples

In this Section we first explore the behavior of the proposed sparse EFA on simulated data
considered in [3]. Then, in contrast to [3, 13], we consider two examples from the classic EFA.

Simulated data [3]

We examine the performance of the proposed approach by employing the simulated data con-
structed in [3]. They take a hypothetical 12×4 sparse loadings matrix Λ with the following non-
zero entries: λ11 = λ21 = λ31 = 1.8, λ42 = λ52 = λ62 = 1.7, λ73 = λ83 = λ93 = 1.6 and λ10,4 =
λ11,4 = λ12,4 = 1.5, and Ψ2 = Diag(1.27, .61, .74, .88, .65, .81, .74, 1.3, 1.35, .74, .92, 1.32).
The ”population” covariance matrix is created by (2), and then we normalize it to obtain a
correlation matrix used to generate normally distributed zero mean independent samples.

We generate 100 data matrices each of which is analyzed by sparse ML-EFA. For this reason
we solve (11) for six decreasing values of τ(=

√
12, 3.0534, 2.6427, 2.2321, 1.8214, 1.4107). The

solution for any particular τ is used as a starting value for the next run with the consecutive τ .
The starting values for the first τ(=

√
12 = 3.4641) are chosen randomly. The number of the

zero loadings among all 12× 4 = 48 for each τ are depicted in Figure 1. For τ =
√

12, nearly all
factor loadings matrices are dense, only 4 of them contain a single zero entry. For τ = 2.6427,
there are 22 factor loadings matrices with no zero entry, 49 – with a single zero entry, 22 –
with two zero entries, and the rest seven have three zero loadings. For τ = 1.4107, there are 93
factor loadings matrices with 36 zero entries, 6 – with a 35 zeros, and only one – with 34 zero
entries. In other words, with τ = 1.4107 the sparse ML- EFA achieves 93% exact recovery of
the underlying sparseness. The case τ = 1 is not depicted, as it produces excessive sparseness.
Clearly, the correct tuning parameter for this problem is around τ = 1.4107. After the correct
sparseness is localized, one can perform further runs to achieve the best corresponding fit.
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Harman’s Five Socio-Economic Variables [8, p.14]

First, we illustrate the proposed procedures for sparse EFA on a well known data set from
classic EFA, namely the Harman’s Five Socio-Economic Variables [8, p.14]. This small data
set is interesting because the two- and the three-factor solutions from LS- and ML-EFA are
‘Heywood cases’ [8, 12], i.e. Ψ2 contains zero diagonal entries, or Ψ2 ≥ 0. One-factor solution is
not considered interesting as it explains only 57.47% of the total variance.

Table 1 contains several sparse LS-EFA solutions of (12) starting with τ =
√

5 = 2.2361,
which is equivalent to the standard (non sparse) LS-EFA solution. For all of them we have
Ψ2 ≥ 0. Clearly, POP, EMPLOY and HOUSE tend to be explained by the common factors
only, which is already suggested by the non sparse solution (τ =

√
5). Increasing the sparseness

of the factor loadings results in variables entirely explained by either a common or unique factor.
The presence of loadings with magnitudes over 1 demonstrates the well known weakness of LS-
EFA in fitting the unit diagonal of a correlation matrix. It is well known that ML-EFA does not
exhibit this problem which is illustrated by the next example.

VARS τ =
√

5 τ = 1.824 τ = 1.412 τ = 1
QD Ψ2 QD Ψ2 QD Ψ2 QD Ψ2

POP -.62 -.78 .00 .07 1.0 .00 -.00 1.0 .00 .00 -.99 .00
SCHOOL -.70 .52 .23 .94 -.20 .07 .85 -.00 .27 -.28 -.00 .92
EMPLOY -.70 -.68 .04 .19 .87 .21 -.00 1.0 .00 -.00 -.99 .00
SERVICES -.88 .15 .20 .78 .23 .34 .58 .13 .65 -.18 -.00 .97
HOUSE -.78 .60 .03 1.0 -.22 .00 1.1 -.07 .00 -1.2 .00 .00

Table 1: LS-EFA solutions for Five Socio-Economic Variables, [8, p.14].

Holzinger-Harman’s Twenty-Four Psychological Tests [8, p.123]

Finally, we illustrate the proposed procedures for sparse EFA on another well known data set
from classic EFA, namely the Holzinger-Harman’ Twenty-Four Psychological Tests [8, p.123]. It
is widely used to illustrate different aspects of classic EFA [8, 12].

The correlation matrix [8, p.124] of these data is non-singular and we apply ML-EFA (11).
The first five columns of Table 2 contain the solution (factor loadings QD and unique variances
Ψ2) of (11) with τ =

√
24 = 4.899, i.e. the standard ML-EFA solution, which is nearly identical

to the ML solution obtained in [8, p.215]. Then, we rotate (with normalization) the factor
loadings QD from the first four columns by VARIMAX from MATLAB [11], and the result is given
in the next four columns of Table 2. The loadings in bold correspond to non-zero loadings of
the sparse ML-EFA solution of (11) obtained with τ = 2.2997 and depicted in the last columns
of Table 2. Further decrease of τ results in sparser loadings, but regarded as too simplified.
Note, that to interpret the VARIMAX solution, one must subjectively ignore the loadings with
small absolute values. The sparse factor loadings are easily interpreted only by focusing on the
nonzero loadings.
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VARS τ =
√

24 = 4.899 Varimax τ = 2.2997
QD Ψ2 Rotated QD QD Ψ2

1 .60 .39 -.22 .02 .44 .69 .16 .16 .19 .88 .32
2 .37 .25 -.13 -.03 .78 .44 .12 .10 .08 .28 .85
3 .41 .39 -.14 -.12 .64 .57 .14 .11 -.02 .54 .70
4 .49 .25 -.19 -.10 .65 .53 .23 .08 .10 .55 .69
5 .69 -.28 -.03 -.30 .35 .19 .74 .15 .21 .82 .35
6 .69 -.20 .08 -.41 .31 .20 .77 .23 .07 .84 .32
7 .68 -.29 -.08 -.41 .28 .20 .81 .07 .15 .86 .29
8 .67 -.10 -.12 -.19 .49 .34 .57 .13 .24 .64 .54
9 .70 -.21 .08 -.45 .26 .20 .81 .23 .04 .87 .27
10 .48 -.49 -.09 .54 .24 -.12 .17 .17 .83 -.18 .91 .28
11 .56 -.14 .09 .33 .55 .12 .18 .37 .51 .63 .59
12 .47 -.14 -.26 .51 .44 .21 .02 .09 .72 .72 .50
13 .60 .03 -.30 .24 .49 .44 .19 .08 .53 .30 .47 .51
14 .42 .02 .41 .06 .65 .05 .20 .55 .08 -.47 .74
15 .39 .10 .36 .09 .70 .12 .12 .52 .07 -.53 .70
16 .51 .35 .25 .09 .55 .41 .07 .53 .06 -.57 .68
17 .47 -.00 .38 .20 .60 .06 .14 .57 .22 -.72 .54
18 .52 .15 .15 .31 .59 .29 .03 .46 .34 -.65 .61
19 .44 .11 .15 .09 .76 .24 .15 .37 .16 -.35 .82
20 .61 .12 .04 -.12 .59 .40 .38 .30 .12 .34 .76
21 .59 .06 -.12 .23 .58 .38 .17 .22 .44 .51 .69
22 .61 .13 .04 -.11 .60 .40 .37 .30 .12 .30 .79
23 .69 .14 -.10 -.04 .50 .50 .37 .24 .24 .58 .04 .63
24 .65 -.21 .02 .18 .50 .16 .37 .30 .50 .63 .58

Table 2: ML-EFA solutions for Twenty-Four Psychological Tests [8, p.123].

6 Conclusion

We propose a new method to construct sparse factor loadings for the classic EFA. This is, in
fact, a new approach to EFA, which readily produces interpretable EFA results. Unfortunately,
this can be achieved on the expense of loosing some portion of the fit of the sparse EFA model
(2) to the sample correlation matrix R. Further research is needed to quantify this loss, and
possibly relate it to the sparseness of the factor loadings in new sparse EFA algorithms.

There are few methods for sparse PCA, e.g. [6, 14, 16], able to produce either orthonormal
component loadings or uncorrelated components. In contrast to PCA, the factor loadings Λ(=
QD), both original and sparse, are not orthonormal. However, how the sparse factor loadings
affect the correlations among the estimated factors remains to be studied.
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Efficiency of partially reduced-bias
mean-of-order-p versus
minimum-variance reduced-bias
extreme value index estimation
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Abstract. A recent class of estimators of a positive extreme value index (EVI), related to
a mean-of-order-p (MOP) class of EVI-estimators is enlarged and studied for finite samples
through a Monte-Carlo simulation study. A comparison of this class and a representative class
of minimum-variance reduced-bias (MVRB) EVI-estimators is performed. The class of MVRB
EVI-estimators is related to a direct removal of the dominant component of the bias of the
most popular estimator of a positive EVI, the Hill estimator, performed in such a way that the
minimal asymptotic variance is kept at the same level.

Keywords. Heavy right-tails, Monte-Carlo simulations, Semi-parametric estimation, Statistics
of extremes

1 The estimators under study and scope of the paper

Let X1, . . . , Xn be independent, identically distributed (i.i.d.) random variables (r.v.’s) with a
common distribution function (d.f.) F . Let us denote the associated ascending order statistics
(o.s.) by X1:n ≤ · · · ≤ Xn:n and let us assume that there exist sequences of real constants
{an > 0} and {bn ∈ R} such that the maximum, Xn:n, linearly normalized, i.e., (Xn:n − bn) /an,
converges in distribution to a non-degenerate r.v. Then the limiting distribution is necessarily
an extreme value (EV) distribution, with the functional form

EVξ(x) =

®
exp(−(1 + ξx)−1/ξ), 1 + ξx > 0, if ξ 6= 0,
exp(− exp(−x)), x ∈ R, if ξ = 0.

(1)

The d.f. F is said to belong to the max-domain of attraction of EVξ, and we write F ∈ DM (EVξ).
The parameter ξ is the extreme value index (EVI), the primary parameter of extreme events.
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The EVI measures the heaviness of the right tail function F := 1 − F , and the heavier the
tail, the larger the EVI is. In this paper we work with Pareto-type distributions, with a strict
positive EVI, i.e. in D+

M := DM (EVξ)ξ>0. Essentially due to the fact that asymptotic properties
of second-order parameters’ estimators are known when ρ < 0, we often assume a right tail
function,

F (x) = 1− F (x) = Cx−1/ξ
Ä
1 +D1x

ρ/ξ + o
Ä
xρ/ξ
ää
, as x→∞, ξ > 0, (2)

for C > 0, D1 6= 0, ρ < 0 (see [13]). Then, with the possible parameterization, A(t) =
ξβtρ, ρ < 0, and denoting by U(t) the tail quantile function, U(t) := F←(1− 1/t), t > 1, with
F←(y) := inf{x : F (x) ≥ y}, the generalized inverse function of F , we have

lim
t→∞

lnU(tx)− lnU(t)− ξ lnx

A(t)
=
xρ − 1

ρ
, (3)

a result more generally proved in [6] for ρ ≤ 0 and F ∈ D+
M , where |A| is necessarily a regularly

varying function with an index of regular variation equal to ρ. Further note that (2) is equivalent
to (3) with ρ < 0.

The class of EVI-estimators under play

For Pareto-type models, the most common EVI-estimators are the Hill (H) estimators, intro-
duced in [14], which are the averages of the log-excesses, lnXn−i+1:n− lnXn−k:n, 1 ≤ i ≤ k < n,
and can thus be written as

H(k) :=
1

k

k∑
i=1

ln
Xn−i+1:n

Xn−k:n
=

k∑
i=1

ln

Ç
Xn−i+1:n

Xn−k:n

å1/k

= ln

(
k∏
i=1

Xn−i+1:n

Xn−k:n

)1/k

, 1 ≤ k < n. (4)

The H EVI-estimator is thus the logarithm of the geometric mean (or mean-of-order-0) of U :=
{Uik := Xn−i+1:n/Xn−k:n, 1 ≤ i ≤ k < n} . More generally, the authors in [2] considered as basic
statistics the mean-of-order-p (MOP) of U, with p ≥ 0, now written for any p ∈ R:

Ap(k) =



Ç
1
k

k∑
i=1

Upik

å1/p

, if p 6= 0,Ç
k∏
i=1

Uik

å1/k

, if p = 0,

and an associated class of MOP EVI-estimators, that more generally than in [2], [3], [7] and [8],
can be defined as

Hp(k) ≡MOPp(k) :=


1−A−pp (k)

p =
1−
Å

1
k

k∑
i=1

Up
ik

ã−1

p , if p < 1/ξ, p 6= 0,

lnA0(k) = H(k), if p = 0,

(5)

with H0(k) ≡ H(k), given in (4). In [11], for p = 0, and in [2], for 0 < p < 1/ξ, was proved that
if F ∈ D+

M and k is intermediate, i.e. k = kn, 1 ≤ k < n, is such that

k = kn →∞ and kn = o(n), as n→∞, (6)
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the estimators Hp(k), in (5) are consistent for the estimation of ξ provided that 0 ≤ p < 1/ξ. If
we further assume the validity of the second-order condition in (3), with ρ possibly null, we can
write for 0 ≤ p < 1/(2ξ) the asymptotic distributional representation,

Hp(k)
d
= ξ +

σHpZ
(p)
k√
k

+ bHpA(n/k)(1 + op(1)),

bHp = bHp (ξ, ρ) =
1− pξ

1− ρ− pξ , σ
2
Hp

= σ2
Hp

(ξ) =
ξ2(1− pξ)2

1− 2pξ
, (7)

where Z
(p)
k is standard normal.

Remark 1.
We thus have an asymptotic normal behavior for Hp(k), in (5), if 0 ≤ p < 1/(2ξ) and k such
that

√
kA(n/k) → λ, finite. There is however a reasonably high asymptotic bias (a decreasing

function of p) when λ 6= 0, i.e. when we slightly increase k up to values where the mean square
error (MSE) of Hp(k) is minimized.

Remark 2.
Further note that for p = −1, in (5), we get H−1(k) :=

Ä
1
k

∑k
i=1Xn−k:n/Xn−i+1:n

ä−1 − 1, the
so-called t-Hill EVI-estimator in [15]. Moreover, with the parameterization p = 1 − β, we get
the functional studied in [1], for β > 0, or equivalently, p < 1.

Working just for technical simplicity in the class of models in (2), the representation in (7),
for p = 0, with bH0

= 1/(1− ρ), led the authors in [4] to directly remove the dominant compo-
nent of the bias of the H EVI-estimator, given by ξβ(n/k)ρ/(1 − ρ), considering, for adequate
second-order parameters’ estimators, (β̂, ρ̂), provided in [10], among others, the corrected -H
(CH) minimum-variance reduced-bias (MVRB) EVI-estimator,

CH(k) ≡ CHβ̂,ρ̂(k) := H(k)
(
1− β̂

1− ρ̂

Å
n

k

ãρ̂ )
. (8)

Similarly, and with values of p such that the asymptotic normality of the estimators in (5)
was known to hold at the time, i.e. for 0 ≤ p < 1/(2ξ), as proved in [2], the authors in [3] noticed
that there is an optimal value

p ≡ pM = ϕρ/ξ, with ϕρ = 1− ρ/2−
»
ρ2 − 4ρ+ 2

/
2, (9)

which maximises the asymptotic efficiency of the class of estimators in (5). Then, they considered
an optimal MOP (OMOP) r.v., defined by OMOP (k) := HpM (k), with Hp(k) given in (5),
deriving its asymptotic behaviour. Such a behaviour and some extra developments in [7], led
the author in [8] to introduce a class of partially RBMOP (PRBMOP) EVI-estimators based on
Hp(k), in (5), given by

RBp(k; β̂, ρ̂) ≡ PRBMOPp(k) := Hp(k)
(
1− β̂(1− ϕ(ρ̂))

1− ρ̂− ϕ(ρ̂)

Å
n

k

ãρ̂ )
, (10)

still dependent on a tuning parameter p.
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We shall further estimate the optimal k-value for the H EVI-estimation, as given in [12],

computing k̂0|H0
=
Ä
(1− ρ̂)n−ρ̂/

Ä
β̂
√−2ρ̂

ää2/(1−2ρ̂)
, H00 := H(k̂0|H0

), and considering next the
RB EVI-estimator

RB∗(k) := H
p̂
M

(k), p̂M = ϕρ̂/H00, (11)

with ϕρ given in (9).

Scope of the paper

In Section 2, we state and prove a theorem related to the EVI-estimator in (5), that provides
also the asymptotic behaviour of the class of EVI-estimators in (10), for any negative real p. In
Section 3, and through the use of Monte Carlo simulation techniques, we derive finite sample
distributional properties of the class of PRBMOP EVI-estimators, in (10), and the adaptive
OMOP EVI-estimator in (11), comparatively to the class of MVRB EVI-estimators, in (8).

2 Asymptotic behaviour of the EVI-estimators for negative p

We next state and prove the main theoretical result in the article:

Theorem 2.1. If F ∈ D+
M and (6) holds, the estimators Hp(k) in (5) are, for any real p < 1/ξ,

consistent for the estimation of ξ. Moreover, for consistent estimators (β̂, ρ̂) such that

ρ̂− ρ = op(1/ lnn), as n→∞, (12)

a property so far known to be achievable for models in (2), the RBp(k) estimators in (10) are
also consistent for the EVI-estimation.
Under the validity of the second-order condition in (3), with ρ possibly null, the asymptotic
distributional representation in (7) follows for any real p < 1/(2ξ). Moreover, also for any real
p < 1/(2ξ), and under condition (12),

RBp(k; β̂, ρ̂)
d
= ξ +

σHpZ
RBp
k√
k

+ bRBpA(n/k)(1 + op(1)),

bRBp = bRBp (ξ, ρ) =
ρ(pξ − ϕρ)

(1− pξ − ρ)(1− ρ− ϕρ)
, (13)

with a dominant bias component op(A(n/k)) if and only if p = pM = ϕρ/ξ, with ϕρ given in (9).

Proof. Note that, with U(·) the tail quantile function, we can write the distributional identity
X = U(Y ), with Y a standard Pareto r.v., i.e. a r.v. with d.f. FY (y) = 1− 1/y, y ≥ 1. For the

o.s. associated with a strict Pareto sample (Y1, . . . , Yn), we have Yn−i+1:n/Yn−k:n
d
= Yk−i+1:k,

1 ≤ i ≤ k. Moreover, kYn−k:n/n
p−→ 1, as n → ∞, i.e. Yn−k:n

p∼ n/k. Consequently, and

provided that k →∞, with k/n→ 0, as n→∞, Uik
p∼ Y ξ

k−i+1:k, 1 ≤ i ≤ k.
Further note that

E(Y a) =
1

1− a if a < 1, Var(Y a) =
a2

(1− a)2(1− 2a)
, if a < 1/2. (14)
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Working next under the second-order framework in (3), and even more generally assuming that
we can have ρ = 0, using the interpretation of the Box-Cox function as the logarithm when the
power equals 0, we can write

Tp(k) :=
1

k

k∑
i=1

Ç
Xn−i+1:n

Xn−k:n

åp
=

1

k

k∑
i=1

Y pξ
i

(
1 +A(n/k) (Y ρ

i − 1)/ρ+ op(A(n/k))
)p

=
1

k

k∑
i=1

Y pξ
i + pA(n/k)

1

k

k∑
i=1

Y pξ
i (Y ρ

i − 1)/ρ+ op(A(n/k)).

On the basis of (14), a derivation similar to the one in [2], enables us to get the result in the
theorem related to Hp(k), in (5), for all ξ > 0 and p < 1/(2ξ), even a negative real number, and
for the EVI-estimator Hp(k) = (1− T−1

p (k))/p.

Noticing next that RBp(k;β, ρ) := Hp(k)
(
1− β(1−ϕρ)

1−ρ−ϕρ
(n
k

)ρ ), we easily derive that the dom-

inant component of the bias is given by

(1− pξ)A(n/k)

1− pξ − ρ − (1− ϕρ)A(n/k)

1− ρ− ϕρ
=

ρ(pξ − ϕρ)A(n/k)

(1− pξ − ρ)(1− ρ− ϕρ)
,

i.e. it is null only for p = ϕρ/ξ. If we estimate consistently β and ρ through the estimators β̂
and ρ̂, and condition (12) holds, we can use Cramer’s delta-method, and in the lines of [8], we
get the result in the theorem not ony for p ≥ 0, but for any negative real p.

In Figure 1, to visualize the reduction in bias achieved by the PRBMOP EVI-estimation, a
representation of bHp = bHp(ξ, ρ) and bRBp = bRBp(ξ, ρ), respectively given in (7) and (13), as
functions of ξ, for p = 0.1, 0.5, 1 and ρ = −1, can be found.

Quick and simple MVRB and PRBMOP EVI-estimators

Since the second-order reduced bias estimators in (8) and (10) depend on the estimation of the
second order parameters β and ρ, and just as suggested in [10] for the MVRB EVI-estimator in
(8), we could also have considered quick and simple estimators, a by-product of the estimators
in (8) and (10), setting there β̂ = 1 and ρ̂ = −1. We then get

CH(k) := H1,−1(k) = H0(k)

Å
1− aCHk

n

ã
and

RBp(k) = RBp(k; 1,−1) = Hp(k)

Å
1− aRBk

n

ã
(15)

with aCH = 1/2, aRB = (1−ϕ(−1))/(2−ϕ(−1)), ϕ(−1) = (3−
√

7)/2, and where Hp(k) stands
for the MOP EVI-estimator in (5), with H0(k) ≡ H(k), the Hill EVI-estimator in (4).

If we consider the replacement of the estimators in (5) and (8) by the quick and simple
estimators in (15), the dominant component of bias changes, but the asymptotic variance is still
kept equal to σ2

RBp
, in (7). The dominant component of the asymptotic bias of CH(k) is then

of a smaller order than A(n/k) if and only if (β, ρ) = (1,−1). For both CH(k) and RBp(k) the
dominant component of bias, of the order of k/n, is of a larger order than the one of the Hp(k)
EVI-estimators for models with ρ < −1.
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Figure 1: Values of bHp = bHp(ξ, ρ) and bRBp = bRBp(ξ, ρ), as functions of ξ, for p = 0.1, 0.5, 1 and
ρ = −1

Remark 3.
Note that the MOP EVI-estimator is a special case of the so-called quick and simple EVI-
estimators, since it uses β̂ = 0 in (5).

Remark 4.
The quick and simple estimators in (15) are adequate only if the guess β = 1, ρ = −1 captures
properly the deviation of the underlying tail from a strict Pareto tail, but educated guesses may
be much more precise than are the usually noisy estimates of higher order parameters. Note
however that the second-order parameters’ estimates proposed in this paper are quite reliable in
the class of Hall-Welsh models.

3 Monte Carlo simulations

We have performed extensive simulations associated with the Generalized Pareto (GP ) model,
related to EVξ(·), in (1), through the relationship F (x) = 1 + lnEVξ(x) = 1 − (1 + ξx)−1/ξ,
x ≥ 0, ξ > 0, for which ρ = −ξ, and the Burrξ,ρ model, with d.f. F (x) = 1 − (1 + x−ρ/ξ)1/ρ,
x ≥ 0, ξ > 0, ρ < 0. In all Monte-Carlo simulation experiments we have considered multi-sample
simulations of size 5000 × 20 and sample sizes n = 100, 200, 500, 1000, 2000 and 5000. For
details on multi-sample simulation, we refer [9].
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Mean values and MSE paths

For each value of n and for each of the aforementioned models, we have first simulated, as
functions of k, the number of top o.s. involved in the estimation, and on the basis of first run
of size 5000, the mean values (E) and root MSEs (RMSEs) of the EVI-estimators in (8) and
(10), for values of p = −1,−0.5,−0.25,−0.1 and p = `/(10ξ), ` = 1(1)9, so that p < 1/ξ and we
have valid estimates. As an illustration, we present Figure 2 associated with Burr1,−0.5 parents.
We further notice that for all simulated parents with ρ ∈ (−1, 0), RB∗ is always in between the
PRBMOP for ` = 1 (close to CH) and ` = 2, both regarding mean values and RMSEs. In this
same region of ρ-values, the best performance is always achieved in the region 5 ≤ ` ≤ 9, as can
be seen in Figure 2.
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Figure 2: Mean values (left) and RMSEs (right) of H(k), CH(k), RB∗(k) and RBp(k), p = −1,−0.25
and p = `/10ξ, ` = 2, 4, 6, for a Burr1,−0.5 underlying parent

Mean values and MSEs at optimal levels

We have computed the Hill EVI-estimator at the simulated value of k0|H := arg mink RMSE
Ä
H(k)

ä
,

the simulated optimal k in the sense of minimum RMSE. We have also computed RBp0, i.e. the
PRBMOP EVI-estimatorRBp(k) computed at the simulated value of k0|RBp := arg mink RMSE

Ä
RBp(k)

ä
.

As an illustration of the bias reduction achieved with the PRBMOP EVI-estimators in (10) at op-
timal levels, see Table 1, related to the modelGP0.25. We there present, for n = 100, 200, 500, 1000, 2000
and 5000, the simulated mean values at optimal levels ofH00, CH0 andRBp0 for p = −1,−0.5,−0.25,−1
and p = `/(10ξ), considering the two regions, ` = 1, 2, 3, 4, where we can guarantee consistency
and asymptotic normality, and ` = 5, 6, 7, 8, 9, where only consistency is assured by Theorem 2.1.
We further consider RB∗0 . Information on 95% confidence intervals, computed on the basis of the
20 replicates with 5000 runs each, is also provided. For each region, and among the estimators
considered, the one providing a smaller squared bias than the best one in the previous region is
written in italic, and underlined whenever it turns out to be the best in a region, beating the
best estimator in the previous region.

We next present in Table 2 the simulated values of the indicators,

REFFRBp|H := RMSE (H00)/RMSE (RBp0), (16)
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Table 1: Simulated mean values of H00, CH0, RBp0, p = −1,−0.5,−0.25, RB∗0 and RBp0, p = `/(10ξ), ` = 2(1)9, for
GP0.25 underlying parents, together with 95% confidence intervals

GP ξ parent, ξ = 0.25
n 100 200 500 1000 2000 5000
H00 0.419± 0.0024 0.390± 0.0028 0.365± 0.0018 0.347± 0.0016 0.335± 0.0012 0.320± 0.0011
CH0 0.406± 0.0030 0.382± 0.0017 0.360± 0.0017 0.345± 0.0018 0.333± 0.0013 0.319± 0.0009
p = −1 0.452± 0.0027 0.416± 0.0026 0.381± 0.0016 0.361± 0.0019 0.345± 0.0013 0.327± 0.0008
p = −0.5 0.431± 0.0032 0.400± 0.0025 0.371± 0.0017 0.353± 0.0018 0.340± 0.0013 0.323± 0.0009
p = −0.25 0.419± 0.0031 0.391± 0.0017 0.366± 0.0018 0.350± 0.0019 0.337± 0.0014 0.321± 0.0009
RB∗0 0.388± 0.0031 0.370± 0.0023 0.349± 0.0015 0.336± 0.0015 0.327± 0.0012 0.314± 0.0008

` = 2 0.361± 0.0027 0.351± 0.0020 0.338± 0.0016 0.328± 0.0015 0.321± 0.0012 0.310± 0.0007
` = 3 0.337± 0.0022 0.330± 0.0024 0.323± 0.0016 0.317± 0.0013 0.311± 0.0011 0.304± 0.0008
` = 4 0.295± 0.0002 0.293± 0.0002 0.293± 0.0001 0.293± 0.0001 0.293± 0.0001 0.292± 0.0001
` = 5 0.249± 0.0002 0.250± 0.0001 0.250± 0.0001 0.250± 0.0001 0.250± 0.0001 0.250± 0.0001
` = 6 0.250± 0.0001 0.250± 0.0001 0.250± 0.0001 0.250± 0.0001 0.250± 0.0001 0.250± 0.0001
` = 7 0.249± 0.0001 0.250± 0.0001 0.250± 0.0001 0.250± 0.0001 0.250± 0.0001 0.250± 0.0001
` = 8 0.243± 0.0002 0.247± 0.0001 0.249± 0.0001 0.250± 0.0001 0.250± 0.0001 0.250± 0.0001
` = 9 0.226± 0.0002 0.232± 0.0001 0.238± 0.0001 0.242± 0.0001 0.245± 0.0001 0.247± 0.0001

again for a GP0.25 model. Similar REFF-indicators have also been computed for the CH and
RB∗ EVI-estimators. In the first row of Table 2, we provide RMSE00, the RMSE of H00, so
that we can easily recover the RMSE of all other estimators. The following rows provide the
REFF-indicators of CH and RBp, for the same values of p as in Table 1. We further present a
similar REFF-indicator for RB∗. A similar mark (italic and/or underlined) is used. Confidence
intervals are not provided for REFF-indicators larger than 10, but are available from the authors.

Remark 5.
An indicator higher than one means a better performance than the H estimator, i.e. the higher
these indicators are, the better the associated EVI-estimators perform, comparatively to H00.

Table 2: Simulated RMSE of H00 (first row) and REFF -indicators of CH, RBp, p = −1,−0.5,−0.25, RB∗ and RBp,
p = `/(10ξ), ` = 2(1)9, and for GP0.25 underlying parents, together with 95% confidence intervals

GP ξ parent, ξ = 0.25
n 100 200 500 1000 2000 5000
RMSE00 0.237± 0.1756 0.196± 0.1684 0.155± 0.1592 0.131± 0.1525 0.112± 0.1460 0.092± 0.1377
CH0 1.148± 0.0049 1.118± 0.0027 1.088± 0.0025 1.069± 0.0018 1.057± 0.0018 1.042± 0.0012
p = −1 0.911± 0.0058 0.926± 0.0035 0.939± 0.0032 0.941± 0.0032 0.947± 0.0030 0.948± 0.0019
p = −0.5 1.006± 0.0055 1.005± 0.0030 1.001± 0.0029 0.995± 0.0025 0.994± 0.0023 0.989± 0.0015
p = −0.25 1.064± 0.0050 1.051± 0.0027 1.037± 0.0026 1.026± 0.0023 1.021± 0.0020 1.012± 0.0012
RB∗ 1.231± 0.0034 1.194± 0.0021 1.157± 0.0020 1.133± 0.0021 1.115± 0.0016 1.094± 0.0014

` = 2 1.445± 0.0032 1.350± 0.0023 1.263± 0.0023 1.213± 0.0024 1.177± 0.0023 1.138± 0.0022
` = 3 1.717± 0.0038 1.563± 0.0033 1.420± 0.0036 1.340± 0.0032 1.279± 0.0032 1.215± 0.0035
` = 4 5.203± 0.0301 4.460± 0.0218 3.582± 0.0214 3.037± 0.0131 2.636± 0.0122 2.172± 0.0080

` = 5 34.900 40.247 53.187 65.706 76.072 96.346

` = 6 34.768 40.360 53.204 65.298 75.078 93.574
` = 7 30.255 36.245 47.763 57.696 65.384 77.688
` = 8 18.053 23.072 31.802 38.688 44.293 51.241
` = 9 8.791± 0.0708 9.467± 0.0735 10.932 12.456 14.347 17.536
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4 Concluding remarks

1. Note that for 5 ≤ ` ≤ 9, we have consistency of the estimators either in (5) or in (10),
but no guarantee of asymptotic normality, and even of bias reduction comparatively to the
MOP EVI-estimators. Despite of this comment the EVI-estimators in this region can be
the ones that exhibit the best performance regarding both mean values and RMSEs.

2. The estimators for negative values of p can beat the Hill at optimal levels but never the
CH EVI-estimators regarding both bias and RMSE. They are not indeed efficient, despite
of the fact that the similar MOP EVI-estimator for p = −1 (see [1]) has revealed to be the
most robust EVI-estimator, but with a low efficiency. This comment could thus lead to a
discussion of robustness versus efficiency and to the need of an indicator that takes both
concepts into account (see e.g. [5]).

3. For both mean values and RMSEs at optimal levels, and again if we restrict ourselves to
the region of p-values where we can so far guarantee asymptotic normality, the best results
were obtained at p = 4/(10ξ) for most of the simulated models.

4. Regarding RMSE, the consistent and asymptotically normal PRBMOP EVI-estimators
at optimal levels, can always beat the MVRB EVI estimators also at optimal levels for
all 0 < p < 1/(2ξ). They can however be beaten by the only consistent PRBMOP EVI-
estimators

Ä
1/(2ξ) ≤ p < 1/ξ

ä
, at optimal levels, for most of the simulated parents.
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Data-driven wavelet resolution
choice in multichannel box-car
deconvolution with long memory

J.R. Wishart, University of New South Wales, j.wishart@unsw.edu.au

Abstract. In wavelet deconvolution, the finest resolution level is a key parameter which needs
to be chosen carefully. In this paper a data-driven method is presented that selects the finest
resolution level using a blockwise thresholding method in the Fourier domain. In particular, we
present a method that applies to the general multichannel model whereby a practitioner observes
many box-car convolutions of a signal of interest (with possible different levels of box-car ‘blur’)
with additive long memory noise. The box-car functions governing the blur are assumed to have
Badly Approximable (BA) width. To the best of the author’s knowledge, no automatic fine
resolution selection method exists for the box-car wavelet deconvolution paradigm. We present
a method that selects the optimal level that is adaptive to box-car width and noise levels and
conduct a short numerical study to supplement the findings.

Keywords. Box-car, Badly Approximable, Data-driven, fractional Brownian motion, Fourier
analysis, Meyer Wavelet, Multichannel deconvolution, Wavelet Analysis

1 Introduction

Wavelet deconvolution methods have been a popular area of research for inverse problems in
recent history. One of the popular algorithms is the WaveD method first proposed in [7]. This
method is a hard-thresholding wavelet deconvolution estimator that is attractive since it is a non-
iterative technique that, utilising the Fast Fourier Transform, is fast and easy to compute and also
has desirable theoretical properties. The methodology has been extended to the multichannel
and long memory cases in recent years in [5, 13, 15, 9, 1], among others. Most recently, [1] and
[9] consider a framework with both a multichannel signal and additive long memory errors. The
particular context given in [9] will be the focus here.

consider an estimator and measure its performance from a minimax perspective. They also
consider a more general in the sense that it encompasses the case when the additive errors are
Gaussian or sub-Gaussian (a type of moment condition) but considers the context where both
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the number of channels in the multichannel model and the number of observations per channel
diverge to infinity. This paper will focus on the context of [9] which considers the number of
channels to be fixed and constant, the error is driven by a fractional Brownian motion process
and optimality is measured from a maxiset type perspective.

The WaveD method, does however, require calibration or tuning of its key parameters. These
key parameters are the resolution levels to include in the wavelet expansion and the threshold
levels at each resolution. The theoretical optimal choice of parameters for the thresholds is well
understood and addressed in detail in [9] for a maxiset type perspective and in [1] for a minimax
type perspective. In both cases an asymptotic condition is required on the finest resolution
level. However, specific calibration of this parameter in finite cases, when box-car convolution
is apparent, has not been addressed to the authors knowledge. The asymptotic theory of [9]
requires that the finest resolution level for box-car blur, jB1 , satisfies,

2j
B
1 �

Å
nα∗

log n

ã1/(2ν̃∗+1)

(1)

where ν̃∗ is a parameter that summarises the overall degree of ill-posedness of the multichannel
model and a � b means there exists constants c, C > 0 such that cb < a < Cb. The condition
on jB1 in (1) is an asymptotic condition to assure bounds on Lp-risk for estimation (see [9]). As
such, it cannot be used to determine the appropriate level of truncation in the wavelet expansion
from a finite sample. Data driven methods do exist for fine resolution level calibration. However,
they seem to consider only the case of regular smooth convolution whose spectrum decays with
a power law. This method for smooth blur is not directly suitable and we present an alternative
that is better for the box-car convolution case.

The paper is organised in the following way. In Section 2, a review of the the wavelet
deconvolution expansion and the multichannel model with long memory is given. In Section
3, the fine resolution estimator is presented. In Section 4 a numerical study is conducted with
concluding remarks given in Section 5 along with some comparison to other frameworks.

2 Preliminaries

Consider the problem of recovering f ∈ L2(T ), periodic on T = [0, 1]. Let K`, ` = 1, 2, . . . ,M ;
be a set of box-car blurring kernels, also defined on T that generate the set of convolutions,

K` ∗ f(t) =

ˆ c`

−c`
f(t− x) dx, t ∈ T, ` = 1, 2, . . . ,M ; (2)

where c` > 0 for each ` = 1, 2, . . . ,M ; and c` are referred to as the box-car half widths. Suppose
(2) is only observable with additive long memory noise with,

dY`(t) = K` ∗ f(t) dt+ σ`n
−α`/2dBH`(t), t ∈ T, ` = 1, 2, . . . ,M. (3)

Here, BH` are independent standard fractional Brownian motions with known Hurst parameters
H` = 1 − α`/2 ∈ [1/2, 1). The noise level is governed by the usual parametrisation, σ`n

−α`/2.
See [14, 15, 9] for a link between the asymptotic theoretical model, (3), and the discrete model
faced by practitioners. An example of model (3) is given in the left plot of Figure 1.
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Figure 1: Left plot: signal with two channels; black line = first channel with c1 = 1/
√

353, grey
line = second channel with c2 = 1/

√
89. Right plot: dotted line = target signal, solid line =

MWaveD estimate using block method, ĵB1 = 6; dashed line = MWaveD estimate using smooth
method, ĵS1 = 4.

In the Fourier domain, model (3) takes the form,

ym,` = km,` · fm +
σ`

nα`/2
zm,`, ` = 1, 2, . . . ,M ; (4)

where ym,` =
´
e−2πimxdY (x), zm,` =

´
e−2πimxdBH`(x). The Fourier coefficients of K` and f

are denoted km,` and fm respectively.

Meyer Wavelet Basis. Denote (Ψ,Φ) to be the periodised Meyer wavelet and scaling func-
tions (cf. [11, 10]). These functions induce a set of orthonormal basis functions,

Φj,k(t) = 2j/2Φ(2jt− k), Ψj,k(t) = 2j/2Ψ(2jt− k), j ≥ 0, k ∈ Z, t ∈ R,

known as the dilated and translated wavelet functions at resolution level j and scale position
k/2j . With these wavelet functions, any periodic f ∈ L2 has expansion,

f(x) =
∑
k

aj,kΦj0,k(x) +
∑
j≥j0

∑
k

Ψj,k(x), where aj,k =

ˆ
f Φj,k and bj,k =

ˆ
f Ψj,k.

The values aj,k and bj,k are known as the scaling and wavelet coefficients. The Meyer wavelet
basis is particularly useful here both mathematically and computationally since it is band-limited
and thus has a simple behaviour in the Fourier domain.

MWaveD estimator. The WaveD estimator of [7] was extended recently by [9] to handle the
multichannel context in the presence of long memory noise. This extended estimator, referred
to here as MWaveD, is defined,

f̂(x) =
2j0−1∑
k=0

âj0,kΦj0,k(x) +
j1∑
j=j0

2j−1∑
k=0

b̂j,k1{|̂bj,k|>λj}Ψj,k(x) (5)

where indices j0 and j1 correspond to the coarsest and finest resolution levels in the expansion
and k indexes the detail locations inside each resolution.
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The MWaveD coefficients, b̂j,k, are computed with a weighted average of the observations in
model (4),

b̂j,k =
∑
m∈Cj

Ψj,k
m

∑M
`=1 σ

−2
` nα` |m|1−α`km,`ym,`∑M

`=1 σ
−2
` nα` |m|1−α` |km,`|2

(6)

where Ψj,k
m denotes the Fourier transform of Ψj,k (and f denotes the conjugate of f) and

Cj =
¶
m ∈ Z : Ψj,k

m 6= 0
©

. De-noising is applied through hard-thresholding with the scale level

thresholds λj = ζτj
√

log n where ζ is a smoothing parameter and τj is the standard error of (6)
with

τ2
j =

∑
m∈Cj

|Ψj,k
m |2

(
M∑
`=1

σ−2
` nα` |m|1−α` |km,`|2

)−1

. (7)

If the noise levels, σ`, are unknown to the practitioner, they are estimated using σ̂` using a
standard approach. A typical estimator of σ̂` is the median absolute deviation of the estimated
wavelet coefficients at the highest possible resolution level, J = blog2 nc− 1. Then both b̂j,k and
τj are computed by replacing σ` with σ̂`.

These MWaveD estimates are computed in Figure 1 using the suggested blockwise selection
method presented below and comparing with the existing stopping method. The suggested
blockwise selection method allows higher resolution levels and consequently a better estimator
that is closer to the true signal.

3 Fine resolution estimation

The goal is to find the highest possible resolution level in the wavelet expansion, while preserving
the optimal properties of MWaveD in [9]. The deconvolution process in the Fourier domain involves
division by the Fourier coefficients of the convolution kernel. This has the impact of inflating
the noise process when the kernel decays at higher frequencies. Data-driven methods have
been considered to alleviate this in [3] and [4] where the blurring function K` is unknown and
observed in noise. It was extended to the long memory and multichannel context in [15, 9]. In
this scenario, the convolution is assumed to be a regular smooth type where the convolution
kernel in the Fourier domain obeys a power law decay,

|km| � |m|−ν , m ∈ R (8)

for some ν > 0. They then employ a stopping rule in the Fourier domain to select the finest
resolution level when the Fourier convolution coefficients drop below the maximum of the thresh-
old for the noise level. This is the point where the price paid by inflating the noise outweighs
any benefit of higher scale information in the signal and the wavelet expansion is unstable.
Specifically, the stopping rule suggests (cf. [9]),

ĵS1 = max
`=1,...,M

log2

ö
min

¶
m ∈ Z+ : |km,`| ≤ mα`/2nα`/σ` log(nα` /σ

2
` )
©ù
− 1. (9)

Method (9), will be referred to as the smooth rule. Unfortunately, the box-car convolution
coefficients do not exhibit the same simple power law decay as (8) in the Fourier domain. The
Fourier coefficients of the box-car function take the form,

km,` =
sin(2πmc`)

2πmc`
, m ∈ Z, ` = 1, 2, . . . ,M ; ⇒ |km,`| � |mc`| /|mc`| (10)
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where |x| = inf {|x− r| : r ∈ Z} is the distance from x and its closest integer (cf. [13, p.63]).

Information is lost at some frequencies if the box-car half width is a rational, i.e. for rational
c` = a/b, then km,` vanishes for all frequencies, m, that are a multiple of b. The problem is less
severe if one considers the half-widths to be Badly Approximable (BA) numbers (the reader is
referred to [6, 7, 5, 13] for more detail). The BA numbers contain the quadratic irrationals and
we will focus on these for simulation examples in this paper.

As observed by [8], one of the main numerical difficulties with box-car deconvolution is that
the Fourier coefficients vary wildly due to approximations in |·| given in (10).

However, this instability is avoided when taking sums over dyadic blocks, e.g. over the sets
Cj which have cardinality |Cj | = 2j+1. In particular, an equivalence between sums over dyadic
blocks of the box-car spectrum with BA half widths and regular smooth decay when ν = 3/2 is
shown in [7, Proposition 2]. Figure 2 shows the instability in the box-car spectrum compared
with regular smooth decay. The smooth method picks a lower final resolution than is necessary
since the log spectrum of the box-car drops below the log bound earlier than the ‘equivalent’
smooth spectrum with ν = 3/2 for the smooth method due to the instabilities of the box-car.
This is shown in the right plot of Figure 3.

Blockwise selection. With this in mind, we adapt the methods of [2] who consider a block-
wise estimation of fine scale levels in the image-deblurring case. The deconvolution process at
resolution j involves averaging over dyadic blocks, Cj (see (6)). The cost of this deconvolution
process inflates the variance of the noise coefficients to τ2

j given by (7). The blockwise selection
rule keeps all resolution levels such that the cost of deconvolution is no more than the maximum
allowed noise level. The maximum noise level we can allow whilst preserving the properties of
[9] is of the order, (

2j
M∑
`=1

log(nα`/σ2
` )

)−1

. (11)
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Figure 2: Comparison of the log decay of box-car Fourier coefficients and the noise bounds.
Solid lines are y = 2 log |km,`| for width levels c` = 1/

√
353 on the left plot and c` = 1/

√
89 on

the right plot. Dashed line = log spectrum of Γ(3/2, 0.025) density in Fourier domain (example
of (8) with ν = 3/2). Dotted line = bound on log scale for the smooth method (see right hand
side of inequality in (9)).
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Thus, the blockwise selection method involves choosing ĵB1 to be the largest resolution such that,
τ2
j does not exceed (11):

ĵB1 = min

j ≥ 0 : τ2
j ≥

(
2j

M∑
`=1

log(nα`/σ`)

)−1
− 1. (12)

This blockwise selection method in (12) will be referred to as the block method.
This maximum noise level is of the appropriate order due to the following argument. From

the results of [9], the degree of ill-posedness of box-car blur in the multichannel model, ν̃∗ defined
in (1), satisfies the equation 2ν̃∗ + 1 = 2 + α∗ + 1/(2M) where α∗ = max`=1,...,M α`. Similarly,
define α∗ = min`=1,...,M α`, then using the results in [9, Section 7] with (12) implies,

2−ĵ
B
1

(
M∑
`=1

log(nα`/σ2
` )

)−1

� τ2
ĵB1
≤ Cn−α∗ ĵB1 2̂j

B
1 (1+α∗+1/M). (13)

Then, rearranging (13) shows that (1) agrees with the estimator in (12),

C

Å
nα∗

log n

ã
≤ 2̂j

B
1 (2+α∗+1/M) = 2̂j

B
1 (2ν̃∗+1)

for some constant C > 0. If the maximum noise level was increased, then this optimal level could
be violated and the optimal properties of [9] would not hold. Thus, the block method is a more
appropriate choice to make for this context of multichannel box-car blur.

A visual comparison of the two resolution selection methods is given in Figure 3, which
applies the block and smooth methods to the multichannel data displayed in the left plot of
Figure 1. The results of Figure 3 were then used to generate the right plot of Figure 1 using the
MWaveD approach.
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j
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−15
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Figure 3: Block vs smooth method. Left plot = block method using log scale; solid line = log τ2
j ;

dashed line = −j log 2 − log
∑
` log(nα`/σ2

` ); ĵ
B
1 = 6. Right plot = smooth method; black and

grey lines = log decay of box-car spectrum in first and second channels; dotted = log bound;
ĵS1 = blog2 38c − 1 = 4

4 Numerical study

To justify our small theoretical result, we supplement our findings with a simulation study to
compare the performance of the two methods discussed in the paper. Simulations were conducted
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on the four test signals of the LIDAR, Bumps, Blocks and Doppler which are common in the
literature (see e.g. [3, 9]). However, due to brevity and space constraints only the LIDAR case is
reported here for the forthcoming calibrations of (3). Performance was measured by computing
the Root Mean Integrated Square Error (RMISE) for the MWaveD estimates, f̂ , from model (3)
with M = 1, 2, 3 or 4. The MWaveD tuning parameters used the theoretical thresholds, λj , from
[9] with the smoothing parameter set to be ζ = 2

√
α∗ and the highest resolution was selected

using either the block method or the smooth method. The RMISE was approximated using 1024
replications of each scenario. Each simulation was generated using Mn = 4096 values which
were split amongst the available channels giving n = b4096/Mc observations for each channel.
This ensures a fair comparison of equal information across the multichannel model. The box-car
half width was fixed across all channels, using c` = 1/

√
353 or 1/

√
89. Further, the dependence

level in the noise was set to be α` = 0.8 (H` = 0.6) in all channels (noise simulated using the
fracdiff package from CRAN). Three noise level were studied using the signal to noise ratio,
measured in dB, the low noise case (30dB), medium noise (20dB) and high noise case (10dB).

Table 1 shows the results for the simulation study where each cell entry denotes the RMISE
of the estimator at each noise level and box-car width, with the average of the estimated fine res-
olution level (to the nearest integer) shown in parenthesis. The block method always produced
a higher fine resolution level compared to the smooth method. Also, the RMISE was globally
smaller for the block method across all channels, noise levels and box-car widths, indicating
that the higher resolutions included important information resulting in a better estimate. Thus,
it is clear that the smooth method consistently underestimates the appropriate fine resolution
level. This is not surprising since the smooth method was designed for regular smooth blur and
the block method has been tuned to correspond to the optimal properties in [9].

One Channel Two Channels
10dB 20dB 30dB 10dB 20dB 30dB

1/
√

353
block 0.1647(4) 0.1297(5) 0.0818(5) 0.1647(4) 0.1297(5) 0.0818(5)
smooth 0.1950(3) 0.1450(4) 0.1441(4) 0.1950(3) 0.1450(4) 0.1441(4)

1/
√

89
block 0.2039(4) 0.1606(5) 0.1061(5) 0.2039(4) 0.1606(5) 0.1061(5)
smooth 0.2054(3) 0.1945(3) 0.1449(4) 0.2054(3) 0.1945(3) 0.1449(4)

Three Channels Four Channels
10dB 20dB 30dB 10dB 20dB 30dB

1/
√

353
block 0.1754(4) 0.1254(5) 0.0804(5) 0.1625(4) 0.1167(5) 0.0770(5)
smooth 0.1921(3) 0.1914(3) 0.1423(4) 0.1949(3) 0.1941(3) 0.1441(4)

1/
√

89
block 0.2215(4) 0.1608(4) 0.1023(5) 0.2034(3) 0.1591(4) 0.1066(5)
smooth 0.2229(3) 0.1926(3) 0.1557(4) 0.2346(2) 0.1945(3) 0.1940(3)

Table 1: Monte-Carlo approximations to RMISE and resolution levels for MWaveD estimates
for M = 1, 2, 3 or 4 in the low, medium and high noise scenarios with box-car widths = 1/

√
353

or 1/
√

89
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5 Conclusion

We have presented a data-driven method for choosing the finest possible wavelet resolution level
for wavelet deconvolution of box-car blur. This block method is compared with the smooth

stopping method for resolution level estimation and shown to be superior for the box-car case.
The presented method automatically adapts to the level of box-car blur (c` half widths), and to
the level of noise, σ`, for all ` = 1, 2, . . . ,M .

It may be possible to consider the prospect of resolution estimation with noisy deconvolution
(km,` being only observable in noise). However, the MWaveD estimation would perhaps need to
be re-considered since the weighting regime in (6) depends on km,` directly.

The block methodology might also be relevant for the recent work in [1]. The authors in [1]
consider a similar asymptotic condition on j1 (denoted J in their paper). Their framework is
more general in some ways than the context of [9] considered here with [1] having more relaxed
conditions on the error variables being either a Gaussian variable or sub-Gaussian variable (type
of moment condition). They are also some extra challenges since they consider a more general
functional deconvolution type model with long memory instead of the ‘standard’ deconvolution
model in (3) and [1] assume the number of channels diverges to infinity with n in their con-
text. They also consider the block-thresholding wavelet estimator where the wavelet coefficients
at each resolution level are grouped into sub-blocks of size log n and thresholded separately
compared to [9] which implement the simple hard thresholded wavelet estimator where the coef-
ficients are given a single threshold for each resolution. It seems possible that the methodology
could be adapted to the context of [1] but it is outside the scope of the current work presented
here. It would likely require a more delicate block resolution estimation method to assess the
variability within each of the sub-blocks of length log n created at each resolution level implicit
in the construction of the general blockwise thresholding wavelet estimator. In addition, the
method might need to adapt to the diverging number of channels, M , to ensure consistency
with their results and as postulated by [12] might require extra nontrivial results on number
theory to allow this divergence.
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for paired longitudinal data
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Abstract. This paper compares three block bootstrap testing methods for detecting the dif-
ference of two means in longitudinal data when the data of two groups are paired. The block
resampling techniques used in this paper include moving block bootstrap, circular block boot-
strap and stationary bootstrap. These are used to approximate the null distributions of test
statistics. In each test we here consider the following four types of test statistics: (i) sum
of absolute values of difference between two mean sequences, (ii) sum of squares of difference
between two mean sequences, (iii) estimator of area-difference between two mean curves, and
(iv) difference of kernel estimators based on two mean sequences. Monte Carlo simulations are
carried out in order to examine the sizes and powers of the testing methods.

Keywords. Moving block bootstrap, Circular block bootstrap, Stationary bootstrap, Test of
mean difference, Longitudinal data

1 Introduction

Comparison of two means or regression curves of two populations is one of important prob-
lems in statistics and related fields. Suppose now that there are paired two samples given by
{(Yi(t), Xi(t))}qi=1 for t = 1, . . . , n, where q and n are the numbers of subjects and observed
points, respectively. And assume that, for fixed t, Y1(t), . . . , Yq(t) are independent over q sub-
jects, and that X1(t), . . . , Xq(t) are independent over q subjects, where Yi(t) and Xi(t) are
continuous in t. Then we consider the model

Yi(t) = f(t) + εi(t), Xi(t) = g(t) + ηi(t), i = 1, . . . , q, t = 1, . . . , n, (1)
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where f(t) and g(t) are unknown regression functions, and εi(t) and ηi(t) are the error terms
having means 0 and finite variances. Our problem is then to test

H0 : f(t) = g(t) for all t vs. H1 : f(t) 6= g(t) for some t, (2)

where H0 and H1 are the null and alternative hypotheses, respectively.

For example, Figure 1 shows a real dataset of wind velocity measured by an artificial satellite
and a radar on the earth, where q = 11 and n = 13. From this dataset, we want to know
whether the mean behavior of the two devices in measuring wind velocity is equal or not. Then
the problem is formulated as (2) and the significant difference between them is investigated by
some methods, which is briefly explained in Section 4.

0 2 4 6 8 10 12 14

0
2

0
6

0
1

0
0

1
4

0

Day

W
in

d
 V

e
lo

c
it
y
 (

m
/s

)

0 2 4 6 8 10 12 14

0
2

0
6

0
1

0
0

1
4

0

Day

W
in

d
 V

e
lo

c
it
y
 (

m
/s

)

Figure 1: Wind velocity data (left: satellite, right: radar)

For (2), there are several methods assuming that the error terms are independent and identi-
cally distributed (i.i.d.) and are normal. However, it may be unrealistic to put such assumptions
when we analyze a real dataset. If we cannot assume the normality, the nonparametric approach,
for example by [1], is available. Another possible choice would be an application of resampling
such as nonparametric bootstrap. In i.i.d. setting, the bootstrap [2] is a quite useful tool, how-
ever, in time series analysis, the naive application fails to capture the dependent structure of data
because it ignores the order of observations. In order to overcome this problem, model-based
and block resampling approaches are proposed; see, for example, [5] and references therein.

In this paper, we focuse on a paired two-sample problem which can be reduced to a one-
sample problem, and compare three block bootstrap testing methods, [8], [9] and [10], for de-
tecting the difference of two means in paired longitudinal data, which can be viewed as tests for
functional data (e.g. [11]). The contribution of this paper is to clarify the mutual relationships
of the level and power properties among [8], [9] and [10], since such investigation has not been
done yet. The block bootstraps considered in this paper include moving block bootstrap [4],
circular block bootstrap [6] and stationary bootstrap [7]. In Section 2, we review the testing
methods, [8], [9] and [10], which calculates p-values (achieved significance levels) using [4], [6]
and [7], respectively. In order to investigate the properties of sizes and powers of the above
testing methods, Monte Carlo simulations are carried out in Section 3, and an example of real
data analysis and some concluding remarks are given in Section 4.

2 Testing methods using block bootstraps

In this section, we review the testing methods using block bootstrap proposed by [8], [9] and
[10]. Note that the area-difference given by A =

´
|f(t) − g(t)| dt is 0 under H0 and positive

under H1. Then, the hypothesis of our interest reduces to testing

H0 : A = 0 vs. H1 : A > 0. (3)
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We first introduce several test statistics to detect the difference between f(t) and g(t) in (1).
The following statistic is proposed by [3]:

Sn = Sn(D1, . . . , Dn) =

n−1∑
j=0

Ñ
j+h∑
t=j+1

Dt

é2[n n−1∑
t=1

(Dt+1 −Dt)
2

2

]−1

, (4)

where Dt = Yt − Xt for t = 1, . . . , n, or Dt = Yt−n − Xt−n for t = n + 1, . . . , n + h, Yt =∑q
i=1 Yi(t)/q, Xt =

∑q
i=1Xi(t)/q, h = [np] is the integer part of np, and p is a tuning constant

satisfying 0 < p < 1 which is determined by the fully data-driven approach; the second approach
described in [3, pp.1043–1044]. The statistic (4) is essentially based on kernel estimators of f(t)
and g(t). As another type of test statistics, we can use

T1n = T1n(D1, . . . , Dn) =
n∑
t=1

|Dt|, T2n = T2n(D1, . . . , Dn) =
n∑
t=1

D2
t . (5)

Further, taking account of the area-difference A,

T3n = T3n(D1, . . . , Dn) =
1

2

n−1∑
t=1

(|Dt|+ |Dt+1|)I+ +
1

2

n−1∑
t=1

|Dt|2 + |Dt+1|2
|Dt|+ |Dt+1|

I− (6)

is also available as a test statistic, where I+ = I{DtDt+1 ≥ 0}, I− = I{DtDt+1 < 0} and
I{·} is the indicator function, respectively. The test statistic (6) seems to have a complicate
form, however it is an estimator of A in (3) constructed by the trapezoidal rule with linear
interpolations of adjacent observation values. Intuitively the values (4), (5) and (6) are small
when H0 is true, while they are large when H0 is false. Therefore, T1n, T2n, T3n and Sn enable
us to measure the discrepancy between f(t) and g(t).

Next we explain three testing algorithms referring to [4], [6] and [7]. We call them Moving
Block Bootstrap (MBB), Circular Block Bootsrap (CBB) and Stationary Bootstrap (SB) tests,
respectively. The main idea of these methods is that we apply MBB, CBB and SB techniques
in order to approximate the null distribution of (4), (5) and (6). Let D0,t = Dt − D̄ = Dt −∑n
t=1Dt/n for t = 1, . . . , n, and dt and d0,t denote realizations of Dt and D0,t. For simplicity,

let T be a generic notation for T1n, T2n, T3n or Sn. For a given significance level α, MBB, CBB
and SB tests are described in Algorithms 2.1, 2.2 and 2.3, respectively.

Algorithm 2.1 (MBB test).

Step 1 Divide the centered observations d0,1, . . . , d0,n into k(= n− `+1) successive overlapping
blocks {ξ1, . . . , ξk} with each length `(≤ n), where ξt = {d0,t, . . . , d0,t+`−1} for t = 1, . . . , k.

Step 2 Draw m blocks {ξ∗b1 , . . . , ξ
∗b
m} randomly with replacement from {ξ1, . . . , ξk}, and put first

n elements of {ξ∗b1 , . . . , ξ
∗b
m} as a resample {d∗b1 , . . . , d∗bn }, where m = [n/`] (if n/` is an

interger) or m = [n/`] + 1 (otherwise).

Step 3 Calculate t∗b = T (d∗b1 , . . . , d
∗b
n ) based on the resample in Step 2.

Step 4 Calculate the achieved significance level, ’ASL =
∑B
b=1 I{t∗b ≥ tobs}/B, by repeating

Steps 2 and 3 an appropriate number of times B, and reject H0 if ’ASL ≤ α, where
tobs = T (d1, . . . , dn).
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Algorithm 2.2 (CBB test).
CBB test is different from MBB test only in the construction of blocks, so Steps 3 and 4 are
same as in MBB test. Steps 1 and 2 in CBB test are given as follows:

Step 1 Divide {d0,1, . . . , d0,n} into n blocks with each length ` in the manner of circular block
bootstrap [6], and put

ξj =

{
{d0,j , . . . , d0,j+`−1}, j = 1, . . . , n− `+ 1,

{d0,j , . . . , d0,n, d0,1, . . . , d0,j+`−n−1}, j = n− `+ 2, . . . , n.

Step 2 Draw m blocks {ξ∗b1 , . . . , ξ
∗b
m} randomly with replacement from {ξ1, . . . , ξn}, and take

first n elements of {ξ∗b1 , . . . , ξ
∗b
m} as a resample {d∗b1 , . . . , d∗bn } (b = 1, . . . , B), where m is

defined in Step 2 of Algorithm 2.1.

Algorithm 2.3 (SB test).

Step 1 Define ξ∗b(t, `) as the block starting from d0,t with length `(≥ 1), and

ξ∗b(t, `) =

{
{d0,t, . . . , d0,t+`−1}, t = 1, . . . , n− `+ 1,

{d0,t, . . . , d0,n, d0,1, . . . , d0,t+`−n−1}, t = n− `+ 2, . . . , n.

Step 2 Generate L∗b1 , . . . , L
∗b
K

i.i.d.∼ Geo(s) and I∗b1 , I
∗b
2 , . . . , I

∗b
K

i.i.d.∼ DU(n) for K = min{k :∑k
i=1 L

∗b
i ≥ n} in the manner of SB [7], where Geo(s) and DU(n) denote geometric

distribution with parameter s = 1/`, and discrete uniform distribution on {1, 2, . . . , n},
respectively.

Step 3 Combine K blocks: ξ∗b = {ξ∗b(I∗b1 , L
∗b
1 ), . . . , ξ∗b(I∗bK , L

∗b
K)}.

Step 4 Construct a resample {d∗b1 , . . . , d∗bn } by putting the first n elements of ξ∗b.

Step 5 Calculate t∗b = T (d∗b1 , . . . , d
∗b
n ) for b = 1, . . . , B, and reject H0 if ’ASL ≤ α similar to

Step 4 in MBB and CBB tests.

3 Numerical examination

We carry out Monte Carlo simulations to investigate the size and power properties of the testing
methods considered in Section 2. For comparison, we also conduct Bowman and Young’s test
for paired data [1, p.85] (hereafter termed “BY” for short). In our level and power studies, the
nominal level is α = 0.05 and 0.10. All our results are based on independent 2000 simulation
replications of paired two samples, {(Yi(t), Xi(t))}, where B = 2000 replications of resampling
are applied to every two samples in Algorithms 2.1, 2.2 and 2.3. Naturally, the same initial
samples are used for the comparisons.

We generate initial samples according to (1) whose means are specified by f(t) = c and
g(t) = 0, where c = 0, 0.2, 0.4, 0.6, 0.8, 1.0. The case of c = 0 or c 6= 0 corresponds to the null
hypothesis or the alternative hypothesis being true. The values, q and n, are q = 10, 20, 30 and
n = 10. As for the error terms εi(t) and ηi(t), if f(t) and g(t) explain most of the correlation
structure contained in the data, then it may be realistic to consider that the errors are nearly
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i.i.d., or very weak dependency exists in εi(t) and ηi(t). Thus, we choose the following Gaussian

AR(1) errors: εi(t) = φεi(t−1)+z1i(t) and ηi(t) = φηi(t−1)+z2i(t), where z1i(t)
i.i.d.∼ N(0, τ2),

z2i(t)
i.i.d.∼ N(0, τ2), φ = 0,±0.1,±0.2, τ2 = (1− φ2)V(εi(t)) = (1− φ2)V(ηi(t)), and V(εi(t)) =

1, 3, 5. The computation has been carried out for all combinations of these parameters, however,
to save space, the results for the case of α = 0.05, q = 10, 30 and V(εi(t)) = 3 are given in Tables
1 and 2.

Since it is preferable that the empirical level is nearly equal to the nominal level α, our choice
of ` in MBB, CBB and SB tests is done so that the empirical level is close to α. If there are some
candidates which have the same level errors, we make the conservative choice, viz., we choose `
such that the empirical level is less than the nominal level. Further if there are some candidates
whose empirical levels are equal, we select ` to maximize the empirical power among them.

The resulting choices of ` are given in Table 1. This table shows that CBB and SB tests
need longer ` for φ ≤ 0 and shorter ` for φ > 0, and that MBB test does not need longer ` for
both cases. In general, since the block bootstrap methods take account of dependency structure
of observations, it is expected that we need longer ` in all MBB, CBB and SB tests, however
the results of Table 1 show that MBB test with Trn (r = 1, 2, 3) may reduce to the case of i.i.d.
resampling.

MBB CBB SB
q φ T1n T2n T3n Sn T1n T2n T3n Sn T1n T2n T3n Sn

10 −0.2 1 1 1 3 5 6 4 2 9 5 3 2
−0.1 1 1 1 2 7 4 2 1 5 4 2 1

0 1 1 1 2 4 1 1 1 3 1 1 1
0.1 1 1 1 2 2 1 1 1 1 1 1 1
0.2 1 1 1 2 1 1 1 1 1 1 1 1

30 −0.2 1 1 1 3 6 5 4 2 9 8 4 2
−0.1 1 1 1 3 7 3 2 2 8 3 2 2

0 1 1 1 3 4 1 1 2 3 1 1 1
0.1 1 1 1 2 2 1 1 1 1 1 1 1
0.2 1 1 1 2 1 1 2 2 1 1 1 2

Table 1: Optimum ` in MBB, CBB and SB tests for α = 0.05 and V(εi(t)) = 3

Now, we first summarize the results of the level studies. The empirical levels of MBB, CBB,
SB and BY tests are given in Table 2. From this table, we can observe that BY test has a large
level error, while MBB, CBB and SB tests have a tendency to keep the nominal level α as a
whole. In particular, the level error of CBB and SB tests is small for φ ≤ 0. For φ > 0, the
level error of MBB, CBB and SB tests with T1n and Sn is small, however those with T2n and
T3n seems to be slighlty large.

Next, we discuss the power studies. Since we found similar tendencies among the nine cases
of (q,V(εi(t))), we show the results for (q,V(εi(t))) = (20, 3) with φ = 0,±0.2. The empirical
powers were affected by the number of subjects q as well as the variance of noise. The increase of
noise variance causes the decrease of empirical power as a whole, however the power properties
among the three variances given above were nearly equal to each other. Thus, we choose and
discuss the case where V(εi(t)) = 3.

Since the bad behavior of BY test was observed in our level study, we exclude the results of
BY test and our discussion below concentrates on the properties of MBB, CBB, and SB tests.
Figure 2 compares the empirical powers corresponding to T1n, T2n, T3n, and Sn when the block
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MBB CBB SB
q φ T1n T2n T3n Sn T1n T2n T3n Sn T1n T2n T3n Sn BY

10 −0.2 0.012 0.026 0.026 0.056 0.045 0.052 0.050 0.053 0.048 0.048 0.047 0.051 0.531
−0.1 0.021 0.036 0.042 0.047 0.056 0.048 0.051 0.035 0.051 0.052 0.052 0.035 0.532

0 0.029 0.051 0.054 0.048 0.049 0.049 0.055 0.042 0.049 0.050 0.054 0.043 0.535
0.1 0.041 0.068 0.081 0.043 0.057 0.067 0.078 0.059 0.040 0.068 0.077 0.054 0.546
0.2 0.057 0.092 0.111 0.050 0.059 0.095 0.111 0.068 0.059 0.092 0.112 0.069 0.537

30 −0.2 0.009 0.021 0.024 0.051 0.043 0.054 0.052 0.043 0.045 0.051 0.053 0.043 0.414
−0.1 0.018 0.032 0.037 0.051 0.052 0.045 0.047 0.054 0.050 0.051 0.051 0.051 0.400

0 0.029 0.046 0.051 0.053 0.054 0.047 0.053 0.052 0.047 0.049 0.052 0.057 0.415
0.1 0.044 0.070 0.078 0.045 0.053 0.070 0.080 0.061 0.045 0.070 0.077 0.066 0.435
0.2 0.064 0.100 0.120 0.043 0.064 0.099 0.110 0.068 0.064 0.100 0.120 0.070 0.434

Table 2: Empirical levels of MBB, CBB, SB and BY tests for α = 0.05 and V(εi(t)) = 3

bootstrap method is fixed in each test. This figure shows that the empirical power of T3n is
most powerful among them, and that the relationship among powers corresponding to the four
test statistics is given by T3n ≥ T2n ≥ T1n ≥ Sn in most cases. This indicates the numerical
superiority of these tests using T3n in power. On the other hand, Figure 3 shows the comparison
of empirical powers corresponding to MBB, CBB and SB tests when the test statistic is fixed.
From this figure, we can observe that CBB and SB tests are more powerful than MBB test, and
that the empirical powers of CBB and SB tests are quite similar to each other.

4 Wind velocity data analysis and some concluding remarks

Applying MBB, CBB and SB tests with every possible ` to the wind velocity data in Figure 1,
we obtain the results that’ASL’s of MBB, CBB and SB tests with T1n, T2n and T3n are all 0.000
for ` = 1, . . . , 12; those with Sn for ` = 1, . . . , 12 are 0.087, 0.293, 0.820, 0.875, 0.960, 0.639,
0.496, 0.250, 0.000, 0.000, 0.000, 0.252 in MBB test; 0.083, 0.093, 0.128, 0.162, 0.172, 0.154,
0.178, 0.154, 0.122, 0.093, 0.130, 0.133 in CBB test; and 0.086, 0.135, 0.133, 0.160, 0.148, 0.145,
0.151, 0.151, 0.158, 0.148, 0.150, 0.153 in SB test. BY test rejects the null hypothesis in (3).
Therefore, there is a possibility of the significant difference between the satellite and radar in
measuring wind velocity.

In this paper we have compared three block bootstrap testing methods MBB, CBB and SB
for two means in paired longitudinal data. Our numerical studies indicate the applicability of
MBB, CBB and SB tests for weakly dependent data even when the sample size is very small.
In some cases, we have confirmed the effectiveness of application of CBB and SB tests using
T2n and T3n as test statistics. The problem on block length selection in the block resampling is
very important, and the development of a fully data-driven approach to selecting (mean) block
length in the above tests will be needed for practical data analyses. Further, extensions of the
testing methods to several curves and/or grouped data cases would be required in the future.
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Functional data modeling to measure
exposure to ozone

M. Arisido, University of Padova, Department of Statistical Science, Italy, Arisido@stat.unipd.it

Abstract. One of the many challenges involved in environmental studies of pollutants on
human health is how to measure the daily exposure to ozone. Despite hourly measures of ozone
concentrations are available, studies on short-term effects of ozone and human health reduce
the hourly measures to a single daily summary measure, such as daily average, daily maximum
etc. This reduction leads to disregard the non-uniform temporal distribution of the pollutant,
and can be an issue in modelling the association between short-term effects of ozone and human
health outcome. We present alternative approach by treating all hourly measures of a day as
one function. The functional form of ozone incorporates all hourly measures and aids to uncover
important features of the daily patterns of ozone. To investigate the effect of the hourly records
on health, we consider a functional generalized linear model (FGLM) in which the predictor is
functional ozone and the response is daily hospital admissions. The model allows to estimate the
effect of ozone as a function of daily hour that allows to examine the influence of the pollutant
throughout the day. Thus, the portion of daily ozone function potentially linked to health can
be recognized. We demonstrate the superiority of our approach over the classical models that
use daily summary measures using out-of-sample predictive performance.

Keywords. functional data; hospital admission; lag; Ozone.

1 Introduction

Despite the increasing number of statistical studies on pollutants and health, there have been rare
methodology that take into account the daily patterns of the concentrations. Often, although
hourly measures of concentrations are available, studies on short-term effects of ozone reduce
the hourly measures to a single daily summary statistics such as, daily maximum, daily average
etc [4, 13]. Those summary statistics lead to the use of classical statistical methods such as the
generalized additive models (GAMs) [5] to investigate the effect of ozone on health [2]. However,
those summary statistics are rough syntheses of the daily patterns of ozone concentrations. Using
them, totally disregard the non-uniform temporal distribution of the pollutant.
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We propose the use of functional regression models, that allow to incorporate all hourly
measurements of ozone. The interest is to investigate the association between exposure to ozone
and daily hospital admissions (Morbidity) in a functional data analysis (FDA) setting. We adopt
the functional generalized linear model (FGLM) to explain the Poisson daily hospital admissions.
We show that aligning common features of the ozone functions can help to identify the portion
of ozone curve potentially linked to health.

The study used data limited to the summer periods (June-July-August) of the years 1996-
2002 for city of Milan, Italy. Daily hospital admission data for the specified period were obtained
from the regional health informative system for all hospitals located in the city of Milan. Mete-
orological and environmental data for the same periods were obtained from the regional agency
for environmental protection (ARPA) of Lombardia.

2 Methods: Functional data Modelling and Application

The term ’Functional data’ was introduced by [11] to denote samples that consists of curves. The
idea behind analyzing data using FDA technique is to change the discrete timely observed data
into functions, thereby one function is considered as a single observation. In our application, let
Xi(t), i = 1, . . . , N denote the day i ozone concentrations recorded over the daily hours t. In
practice, ozone concentrations are measured at discrete grid of points tj , j = 1, . . . , J for each
day. For day i hourly ozone concentrations were measured at J = 24 discrete time points. To
estimate the continuous curve Xi(t), we used a set of B-spline basis functions φ1, . . . , φK , so
that Xi(t) can be specified in the form

Xi(t) =
K∑
k=1

ckφk(t) (1)

where K is the number of basis functions, ck are the coefficients of the basis to be estimated
using smoothing technique. We apply the roughness penalty approach criterion of [10] to smooth
the ozone data as:

SSE(c) =
N∑
j

(yij −Xi(tj))
2 + λ

ˆ T

0

(
X ′′i (tj)

)2
dt (2)

where yij is the the recorded ozone data in the day i at daily hour j, and the integrated,
squared, second derivative measures the roughness of the function. The parameter λ continu-
ously controls the smoothness of the fit, and can be selected by the generalized cross-validation
criterion (GCV) [12]. Sample of 20 functional data obtained using (1) are shown in Figure 1
(left). As can be observed from the plotted functions, the curves exhibit identifiable features
(landmarks) such as daily maxima or minima. However, the location of these features varies
from day to day; each function reaches its maximum concentrations level at different hour; which
make difficult to compare day to day variability of the pollutant at their respective maxima.
The curves could be aligned to have the maximal ozone concentrations at the same time point
[11, 3]. This may be an important idea in the context of air pollutant and health to capture
the portion of ozone curve near maximum that can be potentially harmful. Formally, the ith

function, xi(t) is transformed to X∗i (t) = Xi(hi(t)), where hi(t) is called time-warping function
which defines the transformation [11]. Figure 1 (right) displays the same sample functional data
after alignment.
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Figure 1: Sample of 20 ozone functional data (left) and the same ozone functional data after
alignment using hour at which the ozone concentrations of a function is maximum (right).

Functional regression models

The daily number of hospital admissions yi in day i is assumed to be distributed as a Poisson
variable with mean denoted by µi = E(yi). To model the data, the link function log(µi) is
connected to the predictor. This was done using functional generalized linear models (FGLM),
the extension of generalized linear models [8] to the case in which the predictor is functional and
the response is scalar. The model is given by

logµi = α+

ˆ T

0
Xi(t)β(t)dt (3)

where Xi is the day i ozone concentrations curve as obtained in Section 2, β(t) is the
functional coefficient which describes the influence of the pollutant at time t on daily number
of admissions. For example, the value of β(t) evaluated at the daily hour 1 pm describes the
influence of this hourly ozone on one day total number of admissions. The intercept is represented
by α. The functional coefficient β(t) can be specified in the form β(t) =

∑L
l=1 blθl(t). where bl

are coefficients of the B-spline basis θl with dimension L. To estimate bl, we used P-spline
type penalty given by [7], which requires using a simple difference penalty on the coefficients bl.

Formally, let ∆bj = bj−bj−1, the second difference penalty is λ
∑
j

(
∆2bj

)2
, where λ still controls

the weight of the penalty. We included other confounding predictors including other pollutant
in 3 either as linear components or non-linear smooth functions. Particularly, particulate matter
(PM), a complex mixture of small particles and liquid droplets including acids and other organic
chemicals, may account the observed relationship between ozone and health outcome [6]. For
this reason, we considered the daily average of of particulate matter smaller than 10 micrometers
in diameter (PM10) and its one day lag. As it is commonly done, we included the daily maximum
temperature as smooth non-linear function (f(Temp)) instead of restricted parametric form. To
control seasonal confounding, we also included day of the week (DOW) and calendar year (Year)
as factor predictors. For day of the week, (Monday = 1, . . . ,Saturday = 6) and Sunday is the
baseline. Similarly, for calendar year, (1997 = 1, . . . , 2002 = 6) and year 1996 is the baseline.
The full flexible model is

logµi = α+

ˆ T

0
Xi(t)β(t)dt+ PM10 + f(Tempi) +

6∑
j=1

δjDOWj +
6∑

k=1

γkYeark (4)
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Often, the impact of the pollutants on health persists for some days from the date of exposure.
For this reason measures of pollutants are often lagged by a number of days to explain the current
day health outcome. To examine the best time lag to use, we consider four different lagged values
(0-3 lags) of functional ozone.

Model selection

For model selection, two methods can be considered: the Unbiased Risk Estimate (UBRE) and
the generalized cross-validation (GCV) which are suggested by [14] in the context of generalized
additive model (GAM). The UBRE is suggested when the scale parameter of the distribution of
the data is known as the Poisson case in our data. For which the UBRE score is given as D

n +2Pn ,
where D is the deviance (twice the difference between the log-likelihood for the saturated model
and the log-likelihood for the present model), P is the total degrees of freedom and n is number
of observations (functions). The model with small UBRE score is the better model in terms of
goodness of fit. If the scale parameter is unknown, model selection can be done using the well
known generalized cross-validation(GCV) criterion [5, 12], computed as nD

(n−p)2 .

3 Results

Four different models were fitted according to number of lagged days for functional ozone. The
estimates of β(t) together with 95% point-wise intervals for each model were shown in Figure
2. The estimates were achieved using 8 B-spline basis of order 3 and second order difference
penalty. The results were insensitive to the change in other values of B-spline. The confidence
interval of the estimated coefficient curve of the current day ozone exposure (lag 0) involves zero
almost throughout the day. The functional estimate of one day lagged values of ozone (lag 1)
is significant mainly in the afternoon of the daily hours, which indicates that exposure to ozone
in the previous day is associated to the current day hospital admissions. The 95% point-wise
confidence intervals for the estimate of two days lagged values of ozone (lag 2) and three days
lagged values (lag 3) involve zero in the majority of the regions, but they show a significant effect
in the night hours. Note that the same overall patterns for lag 2 and lag 3 estimates, which may
indicate the persistence may last up to 3 days. To confirm this, we fitted a model using lag 7
to investigate if the estimate would be different from lag 2 and lag 3; the resulting estimate was
very close to that of the estimate from lag 3.

The results of the confounding predictors included as linear components were summarized
in Table 1. The estimated value (associated standard deviations in the bracket) are given for

the current day PM10 and its one day lag (PMlag
10 ), which are significantly associated with daily

number of hospital admissions. The factor predictors days of the week and calendar year are
significant each at 6 degrees of freedom.

The Unbiased Risk Estimate (UBRE) (see model selection in Sect.2) is used to select the
best time lag for ozone exposure. The UBRE scores given in Table 1 show that lag 1 ozone
exposure produced lower UBRE score compared to the other lags; the dependence of hospital
admissions on one day lag functional ozone is selected as best.

A second model estimates were considered for the aligned ozone curves. The main objective is
to improve the estimated coefficient curve by aligning the observed curves at the daily maximum
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Figure 2: Estimate of ozone functional coefficient, β(t), with different lag controlling other
confounding predictors

The functional ozone with the following lags:

lag 0 lag 1 lag 2 lag 3

PM10 0.025
∗

0.024
∗

0.024
∗

0.026
∗

(0.008) (0.007) (0.008) (0.008)

PMlag
10 0.019

∗
0.020

∗
0.020

∗
0.021

∗

(0.008) (0.075) (0.007) (0.008)

Observations 599 598 597 596
UBRE 0.511 0.504 0.516 0.523

Table 1: Results for predictors with linear components under
the functional linear regression models using different lag struc-
ture for the functional ozone. The estimates (associated stan-
dard deviation in the bracket) are given for particulate matter

(PM10) and the one day lag particulate matter (PMlag
10 )

∗ indicates the significance of the predictor
UBRE: Unbiased Risk Estimate.
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Figure 3: Estimated coefficient curves of ozone under linear functional model using aligned ozone
curves at daily maximum for the same day ozone exposure (lag 0) and the previous day ozone
exposure (lag 1)

(3 pm). The estimates of the confounding predictors and their significance levels were the same
as the analysis under the original (unaligned) curves. Using the UBRE criterion, still the lag 1
ozone exposure model came out the best as compared to the other lag structure under aligned
ozone curve analysis. In fact, the estimates for lag 2 and lag 3 were not significantly different
from their estimates in Figure 2. As such, we report the estimates for the the same day ozone
(lag 0) and the previous day ozone exposure (lag 1) in Figure 3. These estimates are fairly
improved under the alignment. Particularly, it is interesting to note that the lag 1 estimate
(Figure 3, right) does not involve zero starting from the point at which the original curves were
aligned (3 pm). Thus, the region of the estimated curve starting from the daily maximum is
significantly associated to hospital admissions.

We notice that the FGLM results agree with preliminary results where models were fitted at
each hourly ozone concentrations using classical generalized additive models (GAM). The model
with concentrations level in the evening came out as the preferred one according to UBRE (see
model selection in Sec. 2). Figure 4 reports the estimated effected with associated 95% confidence
intervals and the UBRE score of the models. Although the estimated ozone effect is significant
for each model, the estimated effect is maximum at the daily hour of 9 pm and the UBRE is
minimum at the same time point. The Figure includes two more models fitted to the daily
average and the daily maximum (the vertical lines, in the right side) to compare with the results
of the hourly estimates. We note that the hourly measure and the daily summaries (average and
maximum) data are scaled appropriately prior to model fitting. The daily maximum produced
higher estimate than the hourly measures, but once again, the UBRE indicates the model with
the daily maximum may not be the better model.

4 Predicting hospital admission

We compare the current approach predictive accuracy with four other approaches of ozone
exposure models. Two of these models involve a generalized additive model using daily average
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Figure 4: The estimated hourly ozone effect with associated 95% confidence interval (left) and
the UBRE scores (right) under the standard GAM. Results for the daily average (ave) and
maximum (max) are also displayed at the far right-hand side using vertical lines. Data for the
hourly measures and the daily summaries are scaled appropriately prior to model fitting.

Ozone exposure model:

GAM-Average GAM-Maximum GAM-CP1 GAM-CP2 FGLM-O FGLM-A

RMSE 33.391 33.392 28.415 28.419 19.034 19.011

Table 2: Out-of-sample RMSE for different ozone exposure models including the functional
regressions approach.

and daily maximum ozone as main predictors by adjusting the same confounders used in 4. For
comparison, we also included two alternative ozone exposure measure in [1]. These are (1) the
difference between day time maximum hourly concentrations and threshold level and (2) night
time average concentrations. They showed that their method capture the daily variability of
ozone better than classical summary measures. We refer to these as GAM-CP1 and GAM-CP2
respectively. We consider FGLM based on the observed ozone curves (FGLM-O) and based on
aligned curves of ozone (FGLM-A). The time period of the study in years 1996-2002 is divided
in two groups. Data for years 1996, 1997, 1998 and 1999 were used as training set. The data for
years 2000, 2001 and 2002 were used as validation or test set. The idea is to use the first four
years data to predict the daily hospital admission for the latter three years and then to compute
the out-of-sample residual mean squared error (RMSE). We report the prediction results in Table
2. In this context, the RMSE of a model indicates the performance of the model in predicting
daily admission in the validation group using the training group. When the RMSE score is
smaller, the model is better in predicting the response. Consequently, the functional regressions
approach in Table 2 have higher predicting ability compared to the other approaches. Here,
functional regression based on aligned curve (FGLM-A) has improved the forecasting accuracy
slightly in terms of RMSE measure. Clearly, exposure model based on daily summary measures
perform worse than other approaches.
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Raquel Caballero-Águila, Universidad de Jaén, raguila@ujaen.es
Aurora Hermoso-Carazo, Universidad de Granada, ahermoso@ugr.es
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Abstract. This paper is concerned with the recursive optimal least-squares linear estimation
problem for a class of discrete-time linear stochastic systems with measured outputs perturbed
by autocorrelated and cross-correlated noises. It is assumed that the multiple measurements are
subject to one-step delays with different delay rates, and the measurement delay phenomenon
occurs randomly. Under these assumptions and by an innovation approach, recursive algorithms
with a simple structure and easily implementable are obtained for the prediction, filtering and
fixed-point smoothing problems. It is assumed that the signal evolution model is unknown and
the recursive estimation algorithms are derived requiring only information about the mean and
covariance functions of the processes involved in the observation model, as well as the knowledge
of the delay probabilities. A simulation example is shown to illustrate the effectiveness of the
proposed algorithms.

Keywords. Least-squares estimation, innovation approach, correlated noises, delayed measure-
ments.

1 Introduction

In the past decades, the development of network technologies has promoted the study of the esti-
mation problem in multi-sensor systems, where the imperfection of the communication channels
usually causes random sensor delays and/or multiple packet dropouts during the transmission
process. Standard observation models are not appropriate to describe these random uncertain-
ties, and classical estimation algorithms cannot be applied directly. Several modifications of
the standard estimation algorithms have been proposed to incorporate the effects of randomly
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delayed measurements (see [2] and [5], among others). Although in these papers all sensors are
assumed to have the same delay characteristics, this assumption has been generalized considering
multiple delayed sensors with different delay characteristics (see, for example, [1] and [3]).

On the other hand, the assumption of independent white noise processes can be restrictive in
many real-world problems where correlation and cross-correlation of the noises may be present.
For this reason, the estimation problem in systems with correlated and cross-correlated noises,
is becoming an active research topic (see [4] and references therein).

Motivated by the above analysis, this paper addresses the signal estimation problem from
multiple one-step randomly delayed measurements with different delay characteristics, under
the assumption that the measured outputs are perturbed by one-step autocorrelated and cross-
correlated observation noises.

The main contributions of this paper are: (a) unlike [1], where the measured outputs are
perturbed by white observation noises, the current model includes the possibility of simultaneous
one-step auto-correlated and cross-correlated observation noises in the measured outputs and
random delays after transmission; (b) the proposed estimators are globally optimal in the linear
least-squares sense and the algorithms structure is recursive and suitable for online applications.
As in [1], the proposed algorithms are obtained without requiring full knowledge of the state-
space model generating the signal process and by applying an innovation approach. However, the
uncorrelation assumption of the observation noises in [1] guarantees that the noise estimators
are zero, while this is not true for the problem at hand, where the noise estimators must be
taken into account in the innovation process derivation, due to the correlation assumptions of
the noise processes.

The rest of the paper is organized as follows. In Section 2, we present the delayed measure-
ment model to be considered and the assumptions and properties under which the LS linear
estimation problem is addressed. Recursive filtering and fixed-point smoothing algorithms are
derived in Section 3 and the performance of the proposed algorithms is illustrated by a numerical
simulation example in Section 4.

Notation: The notation used throughout the paper is standard. AT and A−1 denote the
transpose and inverse of a matrix A, respectively. The shorthand Diag(a1, . . . , am) denotes a
diagonal matrix whose diagonal entries are a1, . . . , am. 1 = (1, . . . , 1)T denotes the all-ones
vector and I the identity matrix. If the dimensions of matrices are not explicitly stated, they
are assumed to be compatible for algebraic operations. The notation ◦ denotes the Hadamard
product ([C ◦D]ij = CijDij) and δk−s represents the Kronecker delta function.

2 Problem formulation

The optimal least-squares (LS) linear estimation problem of a discrete-time signal zk using
multiple one-step randomly delayed measurements, with correlated noises, is addressed under
the assumption that the evolution model of the signal is unknown and only information about
its mean and covariance functions is available; specifically:

Assumption 1: The n-dimensional signal process {zk; k ≥ 1} has zero mean and its autoco-
variance function is expressed in a separable form, E[zkz

T
j ] = AkB

T
j , j ≤ k, where A and B are

known n×M matrix functions.
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Consider the following observation model with one-step random delays:

ỹk = Hkzk + ṽk, k ≥ 1,
yk = (I − Γk)ỹk + Γkỹk−1, k > 1; y1 = ỹ1,

(1)

where {ỹk; k ≥ 1} is the m−dimensional measured output process; Hk for k ≥ 1 are known
matrices, {ṽk; k ≥ 1} is the measurement noise, and Γk = Diag

(
γ1
k , . . . , γ

m
k

)
, where γik, i =

1, . . . ,m, are Bernoulli random variables. The following assumptions are established:

Assumption 2: {ṽk; k ≥ 1} is a zero-mean process with Cov[ṽk, ṽs] = ‹Rk,kδk−s+ ‹Rk,sδk−1−s+‹Rk,sδk+1−s.

Assumption 3: For i = 1, 2, . . . ,m, the process {γik; k > 1} is a sequence of independent
Bernoulli random variables with known probabilities P

[
γik = 1

]
= pik, ∀k > 1. For i, j =

1, 2, . . . ,m, the variables γik and γjs are independent for k 6= s, and Cov[γik, γ
j
k] are known.

Assumption 4: The signal process, {zk; k ≥ 1}, and the processes {ṽk; k ≥ 1} and {Γk; k > 1}
are mutually independent.

The above assumptions lead to the following properties:

• The random matrices {Γk; k > 1} are independent or, equivalently, the m-dimensional
process {γk; k > 1}, where γk = (γ1

k , . . . , γ
m
k )T , is a white sequence. The first and second-

order moments of these processes are known, and the following notation will be used:

Γk ≡ E [Γk] = Diag
(
p1
k, . . . , p

m
k

)
Kγ
k ≡ E[γkγ

T
k ], K1−γ

k ≡ E[(1− γk)(1− γk)T ], Kγ,1−γ
k ≡ E[γk(1− γk)T ].

• If G is a m × m random matrix independent of {Γk, k > 1}, the Hadamard product
properties lead to

E[ΓkGΓk] = Kγ
k ◦E[G], E[ΓkG(I−Γk)] = Kγ,1−γ

k ◦E[G], E[(I−Γk)G(I−Γk)] = K1−γ
k ◦E[G].

To simplify future expressions, the observation model (1) will be written equivalently as

yk = xk + vk, k ≥ 1,
xk = (I − Γk)Hkzk + ΓkHk−1zk−1, k ≥ 2; x1 = H1z1,
vk = (I − Γk)ṽk + Γkṽk−1, k ≥ 2; v1 = ṽ1.

(2)

From the assumptions and properties of the observation model, the following first and second
order properties of the processes {xk; k ≥ 1} and {vk; k ≥ 1} and, consequently, those of the
observation process, {yk; k ≥ 1}, are easily obtained.

(I) The process {xk; k ≥ 1} has zero mean and Kx
k ≡ Cov[xk, xk] is given by

Kx
k = K1−γ

k ◦ (HkAkB
T
k H

T
k ) +K1−γ,γ

k ◦ (HkAkB
T
k−1H

T
k−1)

+Kγ,1−γ
k ◦ (Hk−1Bk−1A

T
kH

T
k ) +Kγ

k ◦ (Hk−1Ak−1B
T
k−1H

T
k−1), k ≥ 2;

Kx
1 = H1A1B

T
1 H

T
1 .

(3)
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(II) The process {vk; k ≥ 1} has zero mean and

Cov[vk, vs] = Rk,kδk−s +Rk,sδk−1−s +Rk,sδk−2−s, s ≤ k,
where

Rk,k = K1−γ
k ◦ ‹Rk,k +K1−γ,γ

k ◦ ‹Rk,k−1 +Kγ,1−γ
k ◦ ‹Rk−1,k +Kγ

k ◦ ‹Rk−1,k−1, k > 1;

Rk,k−1 =
Ä
I − Γk

ä ‹Rk,k−1

Ä
I − Γk−1

ä
+ Γk‹Rk−1,k−1

Ä
I − Γk−1

ä
+ Γk‹Rk−1,k−2Γk−1, k > 2;

Rk,k−2 = Γk‹Rk−1,k−2

Ä
I − Γk−2

ä
, k > 3;

R1,1 = ‹R1,1, R2,1 =
Ä
I − Γ2

ä ‹R2,1 + Γ2
‹R1,1, R3,1 = Γ3

‹R2,1.

(4)

(III) The processes {xk; k ≥ 1} and {vk; k ≥ 1} are uncorrelated and, consequently,

Ky
k ≡ Cov[yk, yk] = Kx

k +Rk,k, k ≥ 1, (5)

with Kx
k and Rk,k given in (3) and (4), respectively.

3 LS linear estimation problem

To obtain a recursive algorithm for the LS linear estimator, ẑk/L, of the signal, zk, based on
the randomly delayed observations {y1, . . . , yL}, an innovation approach has been used. In this
section, recursive algorithms for the signal LS linear predictor (L < k), filter (L = k) and
fixed-point smoother (L > k) are presented.

Prediction and filtering recursive algorithm The signal predictors ẑk/L, L < k, and the
signal filter, ẑk/k, are obtained as

ẑk/L = AkOL, L < k; ẑk/k = AkOk, (6)

where the vectors Ok are recursively calculated from

Ok = Ok−1 + JkΠ
−1
k µk, k ≥ 1; O0 = 0.

The matrix function J is given by

Jk = GTBk − rk−2G
T
Ak
− Jk−2Π−1

k−2R
T
k,k−2 − Jk−1Π−1

k−1T
T
k,k−1, k > 2;

J2 = GTB2
− J1Π−1

1 T T2,1, J1 = BT
1 H

T
1

with rk = E[OkO
T
k ] recursively obtained from

rk = rk−1 + JkΠ
−1
k JTk , k ≥ 1; r0 = 0.

The innovation, µk, satisfies

µk = yk −GAkOk−2 −Rk,k−2Π−1
k−2µk−2 − Tk,k−1Π−1

k−1µk−1, k > 2;

µ2 = y2 − T2,1Π−1
1 µ1, µ1 = y1,
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where Tk,k−1 = E[ykµ
T
k−1] is recursively obtained from

Tk,k−1 = GAkJk−1 +Rk,k−1 −Rk,k−2Π−1
k−2T

T
k−1,k−2, k > 2;

T2,1 = GA2B
T
1 H

T
1 +R2,1.

The innovation covariance matrix, Πk, is given by

Πk = Ky
k −GAkrk−2G

T
Ak
−Rk,k−2Π−1

k−2R
T
k,k−2 − Tk,k−1Π−1

k−1T
T
k,k−1

−GAkJk−2Π−1
k−2R

T
k,k−2 −Rk,k−2Π−1

k−2J
T
k−2G

T
Ak
, k > 2;

Π2 = Ky
2 − T2,1Π−1

1 T T2,1, Π1 = Ky
1 .

The matrices Ky
k and Rk,s, for s = k, k−1, k−2, are given in (5) and (4), respectively. Finally,

the matrices GAk and GBk are defined by

GΨk = (I − Γk)HkΨk + ΓkHk−1Ψk−1, Ψ = A, B.

The performance of the LS estimators ẑk/L, L ≤ k, is measured by the covariance matrices

of the estimation errors, Σk/L = E
î
(zk − ẑk/L)(zk − ẑk/L)T

ó
. Using expression (6), and taking

into account that rL = E[OLO
T
L ], we obtain the following expressions

Σk/L = Ak[B
T
k − rLATk ], L ≤ k.

Note that the computation of the prediction and filtering error covariance matrices does
not depend on the current set of observations, as it only needs the matrices Ak and Bk, which
are known, and the matrices rL, which are recursively calculated from (3); hence, the error
covariance matrices provide a measure of the estimator performance even before we get any
observed data.

Fixed-point smoothing algorithm. The fixed-point smoother ẑk/L, L > k, is calculated as

ẑk/L = ẑk/L−1 + Sk,LΠ−1
L µL, L > k,

with initial condition given by the filter, ẑk/k, and

Sk,L = [Bk − Ek,L−2]GTAL − Sk,L−2Π−1
L−2R

T
L,L−2 − Sk,L−1Π−1

L−1T
T
L,L−1, L > k, (L > 2)

S1,2 = B1G
T
A2
− S1,1Π−1

1 T T2,1

with Sk,k−1 = AkJk−1 and Sk,k = AkJk. The matrices Ek,L satisfy the recursive formula

Ek,L = Ek,L−1 + Sk,LΠ−1
L JTL , L > k; Ek,k−1 = Akrk−1, Ek,k = Akrk.

The filter ẑk/k, the matrices GAL, TL,L−1 and JL, the innovations νL and their covariance
matrices ΠL are obtained from the linear filtering algorithm.

Using the recursive formula of the fixed-point smoother, the following expression for the
fixed-point smoothing error covariance matrices, Σk/L = E

î
(zk − ẑk/L)(zk − ẑk/L)T

ó
, L > k, is

immediately deduced
Σk/L = Σk/L−1 − Sk,LΠ−1

L STk/L, L > k,

with the filtering error covariance matrix, Σk/k, as initial condition.
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Remark. Further research topics include the extension of our results to more general obser-
vation models. For example, a similar study to that performed in this paper would allow us to
extend the current results to the case of randomly delayed measurements correlated at consecu-
tive sampling times. This extension would cover some real-world problems, such as transmission
models with stand-by sensors, where two successive observations cannot be delayed.

4 Numerical simulation example

Let {zk; k ≥ 1} be a zero-mean scalar signal with autocovariance function E[zkzj ] = 1.025641×
0.95k−j , j ≤ k, which is factorizable according to Assumption 1 just taking, for example,
Ak = 1.025641 × 0.95k and Bk = 0.95−k. For the simulations, the signal is assumed to be
generated by an autoregressive model, zk+1 = 0.95zk + wk, where {wk; k ≥ 1} is a zero-mean
white Gaussian noise with variance 0.1, for all k.

Consider measurements coming from two sensors,

ỹk =

Ç
ỹ1
k

ỹ2
k

å
=

Ç
1.5
0.5

å
zk +

Ç
ṽ1
k

ṽ2
k

å
, k ≥ 1

where {ṽik; k ≥ 1}, i = 1, 2, are defined by ṽik = ci(ηk + ηk+1), i = 1, 2, with c1 = 2, c2 = 1.5
and {ηk; k ≥ 1} a zero-mean Gaussian white process with variance 0.5.

Now, according to the proposed observation model, it is assumed that, at any sampling time
k > 1, the measured output from the i-th sensor, ỹik, can be randomly delayed by one sampling
period during network transmission; that is,

yik = (1− γik)ỹik + γikỹ
i
k−1, k > 1; yi1 = ỹi1, i = 1, 2,

where {γik; k > 1}, i = 1, 2, are independent sequences of independent Bernoulli random
variables with P

[
γ1
k = 1

]
= pi, k > 1.

Firstly, to compare the performance of the predictor, ẑk/k−1, filter, ẑk/k, and fixed-point
smoothers, ẑk/L, with L = k + 1, k + 2, k + 3, the corresponding error variances are calculated
considering constant delay probabilities, p1 = 0.3 and p2 = 0.4. The results are displayed in
Figure 1 which shows that the error variances corresponding to the fixed-point smoother are
less than those of the filter and the filtering error variances are smaller than the prediction
ones, thus confirming that the smoother has the best performance while the predictor has the
worst performance. This figure also shows that the performance of the fixed-point smoothers
improves as the number of available observations increases. Analogous results are obtained for
other values of the probabilities pi, i = 1, 2.

Next, we study the filtering error variances, Σk/k, when the delay probabilities p1 and p2

are varied from 0.1 to 0.9. In all the cases we have examined, the filtering error variances
present insignificant variation from the 10th iteration onwards and, consequently, only the error
variances at a specific iteration are shown here. Figure 2(a) displays the filtering error variances
at k = 50 versus p1 (for constant values of p2 = 0.1 to 0.5) and Figure 2(b) shows these variances
versus p2 (for constant values of p1 = 0.1 to 0.5).

From these figures it is concluded that the performance of the filter improves as the delay
probabilities, pi, i = 1, 2, decrease. Consequently, more accurate estimations are obtained as pi

comes nearer to 0, case in which all the observations arrive on time.
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Figure 1: Prediction, filtering and smoothing error variances, when p1 = 0.3 and p2 = 0.4.
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Figure 2: (a) Filtering error variances, Σ50/50, versus p1 (for constant values of p2 = 0.1 to 0.5).
(b) Filtering error variances Σ50/50 versus p2 (for constant values of p1 = 0.1 to 0.5).
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[2] Hermoso-Carazo, A. and Linares-Pérez, J. (2008) Linear and quadratic least-squares estima-
tion using measurements with correlated one-step random delay. Digital Signal Processing,
18, 450–464.

[3] Hounkpevi, F. O. and Yaz, E. E. (2007) Minimum variance generalized state estimators for
multiple sensors with different delay rates. Signal Processing, 87, 602–613.

[4] Hu, J., Wang, Z. and Gao, H. (2013) Recursive filtering with random parameter matrices,
multiple fading measurements and correlated noises. Automatica, 49, 3440–3448.

[5] Yang,Y. H., Fu, M. Y. and Zhang, H. S. (2013) State estimation subject to random commu-
nication delays. Acta Automatica Sinica, 39, 237–243.

COMPSTAT 2014 Proceedings



Density and Distribution Function
estimation through iterates of
fractional Bernstein Operators
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MIO, UM 110, Campus de Luminy Marseille, France, claude.mante@mio.osupytheas.fr

Abstract. We describe a method for distribution function and density estimation with Bernstein
polynomials. We take advantage of results about the eigenstructure of the Bernstein operator to
refine the Sevy’s convergence acceleration method, based on iterates of this operator; the original
Sevy’s algorithm is improved by introducing fractional operators. The proposed algorithm has
better convergence properties than the classical one; the price to pay is a controllable loss of the
shape-preserving properties of the Bernstein approximation (monotonicity and positivity in the
Density Estimation setting). The method is tested on simulated data.

Keywords. Density Estimation, Bernstein operator, root of operators, Bernstein polynomials,
Lagrange polynomials

1 Introduction

Bernstein simultaneously introduced in 1912 the polynomials and the operator that bear his
name in a famous paper [2]. But, as Farouki [8] noticed, this approximation has been seldom
used, due to its slow convergence. For instance, to approach f(t) = t2 on the unit interval
with a maximal error of 10−4, we need a polynomial of degree 2500 [8] ! Nevertheless, this
operator (denoted Bn) has attractive shape-preserving properties: if f is positive (or monotone,
or convex), its image Bn [f ] is so (see [5] for further properties). Consequently, the structure of
a distribution function (d.f.) is preserved by Bn; this point strongly motivated the use of the
Bernstein approximation in Density Estimation [19, 1, 3, 12, 13, 14].

Notations

We will work in the Banach space C [0, 1] of continuous functions on [0, 1], equipped with the
norm ‖f‖ := max

x∈[0,1]
|f (x)|. The subspace of polynomials of degree ≤ n will be denoted Pn, and
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Pn will be the supplementary of P1 in Pn. We will denote F+ the closed convex cone of positive
functions of C [0, 1], and F1 the closed convex set of functions of C [0, 1] integrating to 1.

Consider an operator U : C [0, 1] → C [0, 1]; for n ≥ 2 (fixed), its restriction to Pn will

be denoted
◦
U , and its restriction to Pn will be denoted U . For the sake of simplicity, the

restrictions of the identity operator to these subspaces will be denoted 1 instead of
◦
1 or 1;

Mat (U ;B1, B2) will denote the matrix representation of U with respect to the bases B1 and

B2 of C [0, 1]. We will use the matrix p-norms ‖U‖p := sup
v 6=0

‖U(v)‖p
‖v‖p

where ‖v‖p is the usual

vector `p-norm. Notice that ‖U‖1 := max
1≤k≤dim(U)

∑dim(U)
j=1 |Uj,k|, ‖U‖2 is the spectral norm, and

‖U‖∞ := max
1≤j≤xdim(U)

∑dim(U)
k=1 |Uj,k| (see [7]).

2 Expression of powers of the Bernstein operator into different
bases

The Bernstein operator Bn : C [0, 1]→ C [0, 1] is defined by [4, 15, 18]:

Bn [f ] (x) :=
n∑
j=0

wn,j(x)f(
j

n
)

with wn,j(x) :=
(n
j

)
xj (1− x)n−j ; its range R (Bn) ⊆ Pn. Cooper and Waldron [4] gave its

spectral decomposition, which can be also written into the form hereunder [16].

Theorem 2.1. The Bernstein operator can be represented in the diagonal form

Bn [f ] =
n∑
j=0

λ
[n]
j π

[n]
j ⊗ π

∗[n]
j (Ln [f ])

where f ∈ C [0, 1], λ
[n]
j = n!

(n−j)! nj ∈ ]0, 1] and π
[n]
j ∈ Pn are its eigenvalues and eigenvectors,

π
∗[n]
j is the dual vector of π

[n]
j , and u⊗ v∗ (w) := u 〈v∗, w〉.

We will need the Lagrange interpolation operator (equispaced case) Ln : C [0, 1]→ C [0, 1]

defined by: Ln [f ] (x) :=
n∑
j=0

`n,j (x) f(
j

n
), with

`n,j (x) :=
n∏
k=0
k 6=j

nx− k
j − k .

Three bases of Pn will be needed:

1. the Bernstein’s basis Wn := {wn,j (x) , 0 ≤ j ≤ n}

2. the Lagrange’s basis Ln := {`n,j (x) , 0 ≤ j ≤ n}

3. the eigenvectors of Bn, Π[n] :=
{
π

[n]
j (x) , 0 ≤ j ≤ n

}
.
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Let us denote LW[n] the transformation matrix associated with the bases Ln and Wn , whose

jth column consists in the coordinates of wn,j in the basis Ln. The following results can be easily
demonstrated [16]:

Lemma 2.2. Mat

Å ◦
Bn;Ln,Wn

ã
= In and Mat

Å ◦
Bn;Wn,Wn

ã
= LW[n].

Thank to this lemma, we obtain for any k ≥ 2 a first matrix representation of Bk
n from the

diagram:

Bk
n : C [0, 1]

Ln−→ (Pn, Ln)
In−→ (Pn,Wn)

LWk−1
[n]−→ (Pn,Wn) . (1)

Besides, Theorem 2.1 gives an alternative representation of this operator:

Bk
n : C [0, 1]

Ln−→ (Pn, Ln)
LΠ[n]−→

Ä
Pn,Π[n]

ä Λk
[n]−→
Ä
Pn,Π[n]

ä ΠW[n]−→ (Pn,Wn) (2)

where Λ[n] is the diagonal matrix associated with the vectorÄ
1, 1, 1− 1/n,

Ä
3n− 2)/n2

ä
, · · · , n!/nn

ä
of eigenvalues of Bn, and LΠ[n] and ΠW[n] are transformation matrices associated with the

three bases.

3 Sevy’s sequences for d.f. and density approximation

We saw that in the elementary case f(t) = t2, the speed of convergence of Bn [f ] towards f is
only O

î
1
n

ó
[8]; the situation is worse in the special case of d.f.s, since it can be proven [15] that

one should rather expect O
[

1√
n

]
. To get a sequence of approximations converging faster than

Bn, Sevy [17] proposed to supersede Bn by the iterated operator

IIn :=
Ä
1− (1−Bn)I

ä
(3)

and proved the following result.

Theorem 3.1. ([18], see also [4]) For n ≥ 1 fixed, and any function F defined on [0,1], we
have: ∥∥∥IIn[F ]− Ln [F ]

∥∥∥ −→ 0
I→∞

.

Such a sequence build a bridge between I1
n[F ] = Bn [F ] and Ln [F ]. It is worth noting

that Ln [F ] interpolates the data but can be very bumpy and that in the equispaced case, the
interpolation errors are maximal ([6, Ch. 2]; [11, Ch. 5]). Suppose now F is a d.f.; Bn [F ] is also
a d.f., but in general Ln [F ] will not share the same characteristics. Thus, it is natural to try to
determine some optimal number of iterations I∗ ≥ 1 in order that II

∗
n [F ] has the structure of a

d.f., while II
∗+1
n [F ] has not. In other words, the density approximation f̂n

(I∗)
(x) := d

dxI
I∗
n [F ] (x)

should be bona fide, i.e. should belong to F+ ∩ F1, while f̂n
(I∗+1)

/∈ F+ ∩ F1 (see [15]).
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4 Interpolating Sevy’s sequences (see [16])

To refine Sevy’s sequences, we build for K ≥ 2 the Kth “root” of the operator Gn := (1−Bn)
involved in Formula 3. Because Bn only preserves P1, the eigenvalues of Gn belong to ]0, 1[.
Thus, thanks to classical results about convergent series of operators (see [10] for instance), one
may consistently define the fractional operator

Gn
(1/K)

:= exp

Å
1

K
log
Ä
Gn
äã
. (4)

One can easily verify the following lemma.

Lemma 4.1. ∀ I ≥ 1,

IIn =
Ä
1− (1−Bn)I

ä
=

Ç
1−
Å

1−
◦
Bn

ãIå
◦ Ln.

Consequently, we can proceed as if f ∈ R (Ln) and don’t have to worry about the “Lagrange
residual” f − Ln [f ]. Since P1 is preserved by Bn and because of Lemma 4.1, Ikn (f) = L1 [f ] +
Ikn (Ln [f ]− L1 [f ]), and we can set the definition of K-fractional Sevy’s sequences.

Definition 4.2. Let K ≥ 2, and f ∈ C [0, 1]. The K-fractional Sevy’s sequence of approxima-
tions of f is:

Ijn;K [f ] := L1 [f ] +
(
1−Gn(j/K)

)
(Ln [f ]− L1 [f ]) , j ≥ 1.

Such a sequence interpolates the original one, since Ij Kn;K [f ] = Ijn (f). Its matrix representa-
tion stems from diagram 2.

Lemma 4.3. Mat

Ç
◦
I
j

n;K ;Ln,Wn

å
= ΠW[n]◦Λ(j/K)

[n] ◦LΠ[n], where Λ
(j/K)
[n] is the diagonal matrix

associated with the vector(
1, 1, 1−

Å
1

n

ã(j/K)

, 1−
Å

3n− 2

n2

ã(j/K)

, · · · , 1−
Å

1− n!

nn

ã(j/K)
)
.

5 Numerical issues

Because of Lemmas 2.2 and 4.1, building a classical Sevy’s sequence amounts to compute powers
of the transformation matrix LW[n] (see diagram 1). The condition number of this matrix in

the `2-norm is [7]:
‖LW[n]‖2∥∥∥LW−1

[n]

∥∥∥
2

=
λ

[n]
0

λ
[n]
n

= nn

n! ≈ en√
2πn

(asymptotically - see [9]). Thus, LW[n] is

ill-conditioned, and one must expect to meet numerical problems when n is big. The situation
is potentially worse for fractional sequences, since Lemma 4.3 shows that the matrix of the
restricted operator depends on both the ill-conditioned transformation matrices LΠ[n] and ΠW[n]

(see Figure 1).
But the point for us is merely to control numerical errors in computing Ijn;K [f ]! No-

tice that on the one hand Mat

Å ◦
Bn;Ln,Wn

ã
= In (Lemma 2.2), while on the other hand

Mat

Å ◦
Bn;Ln,Wn

ã
= ΠW[n] ◦ Λ[n] ◦ LΠ[n] (diagram 2). Consequently, the matrix norms

COMPSTAT 2014 Proceedings



C. Mante 339

Figure 1: Logarithm of the condition numbers of the transformation matrices PL[n], PΠ[n] and

LW[n] ; the continuous line corresponds to the asymptotic value n− 1
2Log (2πn).
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ò PL

ô PP

æ LW

∥∥∥ΠW[n] ◦ Λ[n] ◦ LΠ[n] − In
∥∥∥

1∥∥∥ΠW[n] ◦ Λ[n] ◦ LΠ[n] − In
∥∥∥
∞

(5)

are convenient indicators of loss of numerical accuracy imputable to the ill-conditioning of the
transformation matrices. Since the only easy-to-handle basis is the power basis, the transforma-
tion matrices PL[n], PΠ[n] and PW[n] are straightforwardly computed, and we can write:

ΠW[n] = PΠ−1
[n] ◦ PW[n]

LΠ[n] = PL−1
[n] ◦ PΠ[n]

(6)

(formally). But we can derive from Figure 1 that these inverse matrices cannot be computed
with sufficient accuracy in general. Thus, it’s necessary to supersede in (6) the inverse matrices
by the Moore-Penrose generalized inverses PΠ+

[n] and PL+
[n]. This gives rise to the regularized

operators: fiΠW [n] := PΠ+
[n] ◦ PW[n]

L̃Π[n] := PL+
[n] ◦ PΠ[n].

(7)

On Figure 2, we plotted the logarithm of the second indicator of Formula (5), for n ranging
from 1 to 35 (a similar graph can be obtained for the first indicator). Two cases must be
distinguished on this plot: the “symbolic” one, where polynomial eigenfunctions were computed
from the recurrence formula given by [4], and the “numerical” one, where they were computed
by polynomial interpolation of the eigenvectors of LW[n], giving rise to the alternative basis“Π[n] :=

{
π̂

[n]
j (x) , 0 ≤ j ≤ n

}
. Of course, we should have π̂

[n]
j = ±π[n]

j ∀ 0 ≤ j ≤ n if there were

not different roundoff errors on both sides, imputable to different algorithms! That is why we

@ COMPSTAT 2014



340 Density and d.f. estimation through iterated Bernstein Operators

5 10 15 20 25 30 35

-30

-20

-10

0

10

{
¥
-norm of the error matrix Hblue: symbolic; grey: numericalL

Figure 2: The sequences
{
Log

(∥∥∥fiΠW [n] ◦ ΛTr[n] ◦ L̃Π[n] − In
∥∥∥
∞

)
, 1 ≤ n ≤ 35

}
andß

Log

Å∥∥∥∥fi“WΠ[n] ◦ ΛTr[n] ◦ L̃“Π[n] − In
∥∥∥∥
∞

ã
, 1 ≤ n ≤ 35

™
; ΛTr[n] is the diagonal matrix obtained

by setting to zero each eigenvalue < 10−12.

took into account the numerical rank of
◦
Bn, discarding from the computation of Formula (5)

eigenvectors associated with eigenvalues smaller than 10−12 (see Figure 2 and its legend).

It is worth noting that the computational cost in the symbolic case is considerable: it took
about 6600 seconds to produce the symbolic part of Figure 2, while the numeric part was obtained
in 80 seconds.

6 Application to density an d.f. estimation

Suppose F is some differentiable d.f. associated with a random variable X defined on [0, 1], and
that SN := {X1, · · ·XN} is a N -sample of X, giving rise to the empirical d.f. FN (x). Babu et
al. [1] proposed to estimate F by a Bernstein polynomial ‹FN,m of degree m:‹FN,m(x) :=

m∑
k=0

FN (
k

m
)wm,k(x) = Bm[FN ] (8)

with m ≤ m0 := dN/Log (N)e. The proposed method consists in superseding Bm0 [FN ] by
some II

∗
m∗;K [FN ], where m∗ ≤ m0 and I∗ ≥ K (fixed) are convenient values of the degree of the

estimator and of the number of iterations in Definition 4.2.

As an illustration, we displayed first on Figure 3 the results obtained with a sample of size
200 of β (3, 12), with K = 10. We found that I∗ = 32 iterations of the fractional operator (4)
simultaneously corresponded to a satisfactory fit of the e.d.f. and an approximately bona fide
density estimation. Thus, in this case, the fractional number of iterations was r∗ = 1 + 22

10 . On
this plot, we superimposed to the true d.f. three estimators: the Babu’s one, of degree m0 = 38,
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Figure 3: Estimation of the β (3, 12) d.f. and density from a sample. Left panel: the true d.f.
(orange), the Babu’s one (gray and dashed, of degree m0 = d200/Log (200)e = 38), the classical
Bernstein estimator of degree m = 34 (gray), and the proposed one (black), of degree 34 too.
Right panel: density estimators obtained by deriving the d.f.s estimated.
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the Bernstein estimator of degree m = 34, and the iterated estimator (black), of degree 34 too.
The density estimators are derivatives of these d.f.s

In addition, we collected in Table 1 results from simulations carried on with 30 samples of
size N = 150 (⇒ m0 = 30) of four Beta distributions. For sake of simplicity, we fixed I∗ = 20
(see [16] for a theoretical justification). For each one of these samples and for each estimator (4
estimators of the d.f. and 3 estimators of the density, since the e.d.f. is not differentiable), the

Integrated Squared Error (ISE)
´ Ä

F̂ (x)− F (x)
ä2
dx and the L1 error norm

´ ∣∣∣f̂(x)− f(x)
∣∣∣ dx

were computed. Clearly, even in this suboptimal situation (I∗ = 20 ), the proposed estimators
outperformed classical ones, excepted in the very simple case β (1, 2) (uniform distribution).
Notice the honorable performances of the good old e.d.f.!

Table 1: Simulations results. First group of colums: the distribution simulated, and optimal
value of m (for further details, see [16]); second group: median of 103.ISE of estimated distri-
bution functions; third group: median of the L1 error norms for estimated densities. Best result
are in bold characters.

Probability m∗ e.d.f. B30 Bm∗ I20
m∗ B′30 B′m∗ I′20

m∗

β (1, 2) 16 0.497 0.415 0.38 0.569 0.1 0.09 0.108
β (2, 4) 18 0.6 0.51 0.56 0.368 0.108 0.12 0.099
β (3, 12) 25 0.32 0.783 0.908 0.258 0.197 0.207 0.118
β (10, 10) 25 0.318 1.16 1.37 0.289 0.248 0.263 0.153
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Abstract. The aim of disease mapping is to estimate the spatial pattern in disease risk across a
set of areal units, in order to identify units which have elevated disease risk. Existing methods use
Bayesian hierarchical models with spatially smooth conditional autoregressive priors to estimate
disease risk, but these methods cannot identify the geographical extent of spatially contiguous
high-risk clusters of areal units. We propose a two stage approach, which first produces a set
of potential cluster structures for the data and then chooses the optimal structure by fitting
an extended Bayesian hierarchical model. The first stage uses a hierarchical agglomerative
clustering algorithm, spatially adjusted to account for the neighbourhood structure of the data.
This algorithm is applied to data prior to the study period, and produces a set of n potential
cluster structures. The second stage fits a Poisson log-linear model to the data, in which the
optimal cluster structure and the spatial pattern in disease risk is estimated via a Markov Chain
Monte Carlo (MCMC) algorithm. After assessing the methodology with a simulation study, it
was applied to a study of respiratory disease risk in Glasgow, Scotland, where a number of high
risk clusters were identified.

Keywords. Clustering, Conditional autoregressive model, Disease mapping

1 Introduction

Disease risk varies geographically as a result of many factors, including differences in environ-
mental exposures, and cultural and behavioural differences between the inhabitants of different
areas. Even within a city such as Glasgow, there are substantial inequalities in terms of health
and disease risk, with poverty being one of the most important reasons for these differences.
It is of interest to health agencies to be able to identify clusters of areas which have similar
disease risks in order to make informed policy decisions. Many different approaches have been
proposed for the identification of the spatial extent of high-risk clusters in spatial disease maps,
including Bayesian hierarchical modelling [3], scan statistics [6] and point process methodology
[4]. The first of these is typically based on a Poisson log-linear model, where covariates and/or a
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set of random effects are used to represent the spatial disease risk pattern. The random effects
are included to account for spatial correlation in the response that was not captured by the
covariates; and are typically modelled by a conditional autoregressive (CAR) prior [2]. CAR
priors make the naive assumption of global correlation between all pairs of random effects in
geographically adjacent areal units, and therefore produce a spatially smooth risk surface. How-
ever, such smoothing is detrimental to our main aim, which is to identify groups of areas which
have much higher (or lower) risks compared with surrounding areas, so an alternative approach
is required.

Therefore, this paper outlines new methodology which allows for the estimation of the spa-
tial pattern in disease risk, whilst simultaneously detecting the spatial extent of high or low
risk clusters. In doing so, the cluster structure is accounted for when estimating disease risk,
so that high risk clusters are not smoothed towards their geographical neighbours that do not
exhibit elevated risks. The methodology brings together hierarchical agglomerative clustering
techniques and conditional autoregressive models in a two-stage approach. The first stage is
a spatially-adjusted hierarchical agglomerative clustering algorithm first proposed in [1], which
respects the spatial contiguity of the study region. This algorithm is applied to disease data
preceding the study period to elicit candidate cluster configurations. The second stage fits an
extension of the Poisson log-linear model originally developed by [8] to the study data, where
Markov Chain Monte Carlo (MCMC) simulation methods are used to estimate both the optimal
cluster structure and disease risk.

2 Bayesian disease mapping

Disease maps allow us to graphically illustrate the differences within a geographical area. Such
maps are produced by partitioning the study region into non-overlapping areal units such as
electoral wards or census tracts, and then calculating the overall risk of disease for the population
living in each areal unit.

Study Design and Modelling

The study region A is partitioned into n non-overlapping areal units A = {A1, . . . ,An}, and Y =
(Y1, . . . , Yn) and E = (E1, . . . , En) represent the observed and expected numbers of disease cases
in each unit during the study period. The latter are constructed by external standardisation,
based on the age and sex demographics of the population living in each areal unit. A Poisson
log-linear model is commonly used to estimate disease risk, and a general form is given by

Yi|Ei, Ri ∼ Poisson(EiRi) i = 1, ..., n, (1)

ln(Ri) = xTi β + φi.

Here Ri represents disease risk in areal unitAi, and is modelled by a vector of covariates xTi =
(1, xi1, . . . , xip), with coefficients β = (β0, . . . , βp), and a random effect φi. The random effects
φ = (φ1, . . . , φn) account for the spatial autocorrelation induced into the disease data by factors
such as unmeasured confounding, neighbourhood effects and grouping effects. They are modelled

COMPSTAT 2014 Proceedings
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by a conditional autoregressive (CAR) prior, which induces spatial correlation via a binary
neighbourhood matrix W , where wij = 1 if areal units (Ai,Aj) share a common border (denoted
i ∼ j) and wij = 0 otherwise. Note that wii = 0 for all i. CAR priors can be specified as a set of
n univariate conditional distributions f(φi|φ−i), where φ−i = (φ1, . . . , φi−1, φi+1, . . . , φn). The
simplest of these CAR priors was the intrinsic prior proposed by [2], and this model is given by

φi|φ−i ∼ N

Ç∑n
j=1wijφj∑n
j=1wij

,
1

τ2(
∑n
j=1wij)

å
i = 1, . . . , n, (2)

where τ2 is a conditional precision parameter. The conditional expectation of φi is the mean
of the random effects in neighbouring areal units, while the variance is inversely proportional
to the number of neighbouring units. This set of conditional distributions correspond to a
multivariate Gaussian distribution, with mean zero but an improper precision matrix given by
Q = (diag(W1)−W ), where W1 is a vector containing the number of neighbours for each areal
unit.

3 Method

We propose a two-stage approach for estimating the spatial pattern in disease risk and identifying
spatially contiguous clusters that exhibit either elevated or reduced disease risks. In the first
stage we utilise the spatially adjusted hierarchical agglomerative clustering algorithm proposed
by [1], and use it to elicit a set of candidate cluster configurations for the data. In the second
stage we propose a hierarchical Bayesian model for the disease data which can simultaneously
select the optimal cluster configuration from the candidates elicited in Stage 1 and also estimate
disease risk.

Stage 1 - Eliciting cluster configurations using hierarchical agglomerative
clustering

The method of clustering (for details see [5]) involves grouping together objects that are similar
whilst separating those that are different, which is appropriate here because we wish to identify
groups of areal units with similar disease risks. The clustering algorithm is taken from [1] and
is applied to disease data preceding the study period, because it is likely to exhibit a similar
spatial risk pattern to the study data unless substantial urban regeneration has taken place.
Let (Y (1),E(1)), . . . , (Y (q),E(q)) denote the observed and expected disease counts for the q time
intervals (usually years) preceding the study period. These earlier data are used to elicit a set
of n potential cluster configurations for the study data, which are denoted here by {C1, . . . , Cn}.
Here Ck = {Ck(1), . . . , Ck(k)} partitions the n areal units A = {A1, . . . ,An} into k spatially
contiguous groups, where Ck(j) is the j th cluster. The set of all possible spatially contiguous
cluster configurations for the study region A is very large, so we use this clustering step to vastly
reduce the number of potential cluster structures to be considered in stage 2.

The data are clustered on the log standardised incidence ratio scale, that is ln(Y (j)/E(j)), be-
cause this corresponds to the linear predictor scale in (1). Letψ = [ln(Y (1)/E(1)), . . . , ln(Y (q)/E(q))]
be the n× q matrix whose columns comprise ln(Y (j)/E(j)) for j = 1, . . . , q, and denote the ith

row by ψi = [ln(Y
(1)
i /E

(1)
i ), . . . , ln(Y

(q)
i /E

(q)
i )], the vector of q values for areal unit Ai. The data
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are clustered using a modified hierarchical agglomerative clustering algorithm, which initially
considers each data point as its own singleton cluster, and then joins together the two least
dissimilar clusters at each stage to form a larger cluster. This process is repeated until only one
cluster containing all data points remains. For a configuration with k clusters the dissimilarity,
dij , between clusters i (Ck(i)) and j (Ck(j)) can be measured by a number of metrics called
linkage methods, but based on the results of [1] we will proceed with centroid linkage in this
paper.

Centroid linkage measures the dissimilarity as the Euclidean distance between the average
of the two clusters, that is dij = ||C̄k(i) − C̄k(j)||, where C̄k(i) = (1/ni)

∑
f :Af∈Ck(i)

ψf , and ni is

the number of areal units in cluster Ck(i). The hierarchical agglomerative clustering algorithm
described above is extended so that it produces spatially contiguous clusters, which is achieved
by only allowing clusters containing two areal units which share a common border to be merged
at each step. The algorithm produces a set of candidate cluster structures {C1, . . . , Cn}.

Stage 2 - A model for estimating the cluster structure and disease risk

The study data are denoted by (Y ,E), and the best cluster structure for these data from the
set of n candidates {C1, . . . , Cn} elicited from stage 1 is estimated together with disease risk by
extending the Poisson log-linear CAR model given in Section 2 in two main ways. This approach
takes advantage of the natural ordering of the cluster structures to allow the number of clusters
to be considered as a univariate parameter within the model. The mechanism for implementing
a given cluster structure is the neighbourhood matrix W , which is altered so that wij only equals
one if areal units (Ai,Aj) share a border and are in the same cluster. Thus if two adjacent areal
units are in the same cluster their random effects are partially correlated and are smoothed over
in the modeling, while if they are in different clusters they are conditionally independent and
are not smoothed over. Thus there is a one-to-one relationship between the number of clusters
and the value of W , and the n candidate values of W are denoted by (W1, . . . ,Wn). Here W1

corresponds to a single cluster and thus equals W , the original adjacency structure of the re-
gion. This value thus enforces strong spatial smoothing across the region, as no high or low risk
clusters have been identified. In contrast, Wn corresponds to all n areal units being assigned to
their own cluster of size one, and thus Wn is the zero matrix. This value thus corresponds to
independent random effects with no spatial smoothing constraints.

However, the intrinsic CAR prior is not appropriate here, since our model could produce a
neighbourhood matrix W in which an areal unit has no neighbours due to it being a singleton
cluster. If this was areal unit i, this would cause

∑n
j=1wij = 0, yielding an infinite mean and

variance in (2). Instead, we use the localised CAR model outlined in [8], where an extended
random effects vector ‹φ = (φ, φ∗) is used, with φ∗ being the global random effect which is
potentially common to all areas and prevents the infinite mean and variance problem outlined
above. An extended (n+1) × (n+1) neighbourhood matrix W̃ is specified for this vector, which
takes the form

W̃ =

Ç
W w∗
wT
∗ 0

å
COMPSTAT 2014 Proceedings
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where w∗ = (w1∗, . . . , wn∗) and wi∗ = I[
∑
i∼j(1− wij) > 0]. Here, I[.] denotes an indicator

function, which sets wi∗ = 1 if any entry in row i of the neighbourhood matrix W is changed
from a 1 to a 0 due to a neighbouring area being in a different cluster. Otherwise, w∗i = 0.

Based on this extended neighbourhood matrix, ‹φ is modelled as ‹φ = N(0, τ2Q(W̃ , ε)−1) with
the precision matrix

Q(W̃ , ε) = diag(W̃1)− W̃ + ε1. (3)

This corresponds to the intrinsic CAR model for the extended random effects vector ‹φ,
with a small positive constant added to the diagonal of the precision matrix to ensure that it is
invertible. The invertibility of Q(W̃ , ε) is required as its determinant is computed when updating
W , and [8] suggest that the results are insensitive to ε and set ε = 0.001. The full conditionals
of this extended CAR model are given by

φi|‹φ−i ∼ N

Ç∑n
j=1wijφj + wi∗φ∗∑n
j=1wij + wi∗ + ε

,
τ2∑n

j=1wij + wi∗ + ε

å
, (4)

φ∗|‹φ−∗ ∼ N

Ç ∑n
j=1wj∗φj∑n
j=1wj∗ + ε

,
τ2∑n

j=1wj∗ + ε

å
.

This means that the conditional expectation is a weighted average of the random effects in
neighbouring areas and the global random effect φ∗, with binary weights based on the current
choice of W matrix. Here, ›W = (W̃1, . . . , W̃n) is the set of extended neighbourhood matrices
related to the set of cluster structures elicited in stage 1, where W̃j is the matrix corresponding
to the cluster structure with j clusters. Given this extended CAR prior, the overall Bayesian
hierarchical model we propose is given by

Yi|Ei, Ri ∼ Poisson(EiRi) for i = 1, . . . , n,

ln(Ri) = β0 + φi,‹φ ∼ N(0, τ2Q(W̃ , ε)−1),

W̃ ∼ Discrete(W̃1, . . . , W̃n;π1, . . . , πn),

πj =
exp(−jθ)
n∑
i=1

exp(−iθ)
, (5)

β0 ∼ N(0, 1000) for j = 1, . . . , p,

θ ∼ Uniform(0, 1),

τ2 ∼ Uniform(0, 1000).

Initially, a discrete uniform prior was considered for W̃ , but it may not be appropriate
to give equal weighting to structures with extremely large numbers of clusters, as the spatial
autocorrelation present in the data suggests the number of clusters will be relatively small.
Therefore our prior probabilities for (W̃1, . . . , W̃n) are given by (π1, . . . , πn), with an additional
parameter θ being introduced to control the strength of the weights. When θ = 0 a discrete
uniform prior is assumed for W̃ , while θ = 1 corresponds to a scaled exponential weighting which
gives larger prior weight to values of W corresponding to fewer clusters.
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4 Motivating application

The study region is the Greater Glasgow and Clyde health board, which contains the city of
Glasgow in the east and the river Clyde estuary in the west. Glasgow is the largest city in
Scotland, with a population of around 600,000 people. The health board is split into n = 271
administrative units known as intermediate geographies (IGs), containing populations of between
2,244 and 10,877 people with a median value of 4,239. The disease data are the numbers of
hospital admissions with a primary diagnosis of respiratory disease in each IG in 2011, which
corresponds to the International Classification of Disease tenth revision codes J00-J99 and R09.1.
The expected hospital admission numbers were calculated using external standardisation, based
on age and sex adjusted rates for the whole of Scotland. The top panel of Figure 1 displays the
standardised incidence ratio (SIR) for respiratory hospital admission, which is the ratio of the
observed to the expected numbers of cases. The figure identifies regions of high risk in the east
of the city and directly to the south of the river, which include heavily deprived areas such as
Easterhouse and Govan. In contrast, areas in the centre (just north of the river) and far south
of the study region exhibit much lower risks, which are affluent areas such as the West End and
Giffnock.

Results

The two-stage clustering model proposed in Section 3 was applied to these data, where the clus-
tering step used respiratory disease data from 2008 to 2010. The fitted risk surfaces for these
data sets exhibit similar spatial patterns to the 2011 study data, with Pearson’s correlation co-
efficients of 0.86 (2010 data), 0.84 (2009 data) and 0.82 (2008 data) respectively. Markov-Chain
Monte Carlo inference was used to obtain these results, with 5000 samples used for burn-in
and a further 5000 used for the inference. The optimal cluster structure was chosen to be that
corresponding to the mode cluster number, which in this case was 18. Our method has the
advantage of being able to quantify the uncertainty in the number of clusters identified, and a
95% credible interval for this ranges between 17 and 28. In addition, the median cluster number
was 21.

The estimated risk surface (greyscale) and cluster structure (white dots) for the configuration
with 18 clusters are displayed in the bottom panel of Figure 1, which has the same scale as the SIR
plot in the top panel of that figure. In the majority of cases, there do appear to be differences in
risks between neighbouring clusters, and two of the more prominent clusters have been labelled
A and B on the map. The low risk Cluster A is the affluent West End of the city which is
surrounded on all sides by more deprived areas. Cluster B includes a number of prosperous
areas to the north of the city, including Milngavie, Milton of Campsie and Lennoxtown, which
have much lower risks than neighbouring areas such as Kirkintilloch and the East End of the
city, which are less affluent. The clusters appear to be based around grounds of socio-economic
deprivation, which is well known to be linked with disease risk. The high risk areas in Figure 1
are generally areas with high levels of deprivation, while the lower risk areas are more affluent.
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5 Conclusion

The main aim of this paper was to develop statistical methodology to simultaneously estimate
the spatial pattern in disease risk and identify clusters of areas exhibiting high (and low) risk. To
achieve this aim a new methodology has been developed which fuses together spatial agglomer-
ative hierarchical clustering techniques with an extended conditional autoregressive model, with
inference based on Markov-Chain Monte Carlo simulation. This approach allows us to identify
an optimal cluster structure which best describes the data, and it extends [1] by quantifying the
uncertainty in the cluster structure. The clustering techniques are applied to disease risk data
prior to our study period, allowing us to elicit candidate cluster structures for the study data.
These candidate structures have a natural ordering in terms of the number of clusters, which
allows them to be considered as a univariate parameter in our Bayesian hierarchical model. This
model estimates disease risk directly via the random effects, allowing for correlation between
neighbouring areal units which are in the same cluster, but not enforcing it for areas in different
clusters. Our approach differs from that used in [1], where the cluster structure was fixed when
estimating the remaining model parameters. Here we are able to produce a credible interval for
the number of clusters and can identify other potential alternative cluster structures which are
supported by the data.
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Figure 1: The top panel displays the standardised incidence ratio (grey-scale) for respiratory
disease hospitalisation in 2011 in Greater Glasgow. The bottom plot displays the estimated risk
surface (grey-scale) from the model with 18 clusters (white dots).
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Jan Amos Visek, Charles University in Prague, visek@fsv.cuni.cz

Abstract. The paper proposes a test of restricted versus unrestricted model in the framework of
linear regression model estimated by the least weighted squares - robust version of the ordinary
least squares. The patterns of simulations of the quantiles of test statistic are included.

Keywords. Test of restricted model, robustness, the least weighted squares.

1 Introduction of basic framework

Test of restricted versus unrestricted model - based on comparison of residual sums of squares -
belongs to the basic tool of classical regression analysis. A justification of the idea of utilizing
the sums of squares has its roots in the L2-metric of Euclidean space and in a nearly exclusive
employment of the least squares (LS) and/or the maximum likelihood (ML). Because the latter
was employed mostly under assumption of normality, when LS and ML coincide, it implicitly
accepted L2-metric, too. But this justification is not sufficient. We need the fact that the
restricted model is nested in the unrestricted one (see Conditions C 3). For the non-nested models
the situation is much more complicated and the (heuristic) ideas supporting an alternative
approach seem to be less convincing than those for the nested models, see e. g. [19].

In the robust approach the problem was firstly addressed on ICORS 2011 and ERCIM 2013
(see [18]) and in a bit different framework by Hannay and Stahel, see [5], [11]. There were also
attempts to establish significance of the individual explanatory variable by the bootstrap, see
[9] or [10], which can lead - when generalized into the framework with submodels - to the similar
results as we present here.

The low attention devoted to the topics is quite understandable from the technical point of
view. Robust estimators - usually defined as solutions of extremal problems - either distort the
L2-metric or turn originally nested models into non-nested ones - we will see it below10. The
paper is an attempt to solve the problem as a technical one, the philosophical side of it would
require much more space. Let us fix notations.

10There are also other technical reasons - e. g. in the most cases we cannot apply Fisher-Cochran theorem
because different weights given to different residual in fact changes the homoscedastic situation into heteroscedastic
one - details again below.
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Denote by N the set of all positive integers and for any p ∈ N let Rp be the p-dimensional
Euclidean space11. Further, let (Ω,A, P ) be the probability space and write Z(ω) for the random
variable (r.v.) Z when we need to emphasize that we consider its value of at a given point ω ∈ Ω.
Finally, II stays for the diagonal unit matrix and N (µ,Σ) denotes the normal distribution with
the mean vector µ and covariance matrix Σ.

For any n ∈ N and a fixed β0 ∈ Rp consider the linear regression model

Yi = X ′iβ
0 + ei, i = 1, 2, ..., n. (1)

where Xi’s are p-dimensional explanatory variables, see Conditions C1 below. In what follows
we will need also matrix notations. So, let us write the model in the form

Y = Xβ0 + e (2)

where Y = (Y1, Y2, ..., Yn)′, X = (X1, X2, ..., Xn)′ and e = (e1, e2, ..., en)′. We will keep the
traditional framework, the significance of explanatory variables was studied in, i. e. assuming
the normality of error terms. So, we consider the framework implied by the assumptions:
Conditions C1 The sequence {(X ′i, ei)′}∞i=1 is sequence of independent and identically distributed
(p + 1)-dimensional random variables (i.i.d. r.v.’s) with distribution function FX,e(v, u) =

F (1)(v(1))·F (2)
X,e(v

(2), u) where F (1)(v(1)) : R1 → [0, 1] is d. f. degenerated at 1 and F
(2)
X,e(v

(2), u) =

FX(v(2)) · Fe(u) where FX(v(2)) : Rp−1 → [0, 1] is absolutely continuous and Fe(u) = N (0, σ2).
Finally, cov(X1) is regular.
Remark 1 Conditions C1 allow for intercept. Hence the first column of the design matrix is
the n-dimensional vector of ones. If the model without intercept is considered a straightforward
modification of the present conditions has to be adopted. All the considerations, made in what
follows, then keep to hold.

For any β ∈ Rp and i ∈ N let us denote the i-th residual as

ri(β) = Yi −X ′i · β. (3)

Definition 1 For n ∈ N put W = diag {w1, w2, ..., wn} with wi ∈ [0, 1]. Then the estimator

β̂(WLS,n,w) = arg min
β∈Rp

n∑
i=1

wir
2
i (β) =

(
X ′WX

)−1
X ′WY (4)

is called the weighted least squares estimator (WLS)12.
Denoting r2

(i)(β) the i-th order statistic among the squared residuals, i. e.

r2
(1)(β) ≤ r2

(2)(β) ≤ ... ≤ r2
(n)(β),

we will study a robust version of β̂(OLS,n), namely:
Definition 2 The estimator

β̂(LWS,n,w) = arg min
β∈Rp

n∑
i=1

wir
2
(i)(β) (5)

11To avoid possible confusions, hereafter all the vectors will be assumed to be the column ones.
12For the simplicity we have assumed that X ′WX is regular; otherwise we have to employ a generalized inverse.
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is called the least weighted squares estimator (LWS), see [14].

Remark 2 Notice that in the definition of β̂(LWS,n,w) the weights are assigned to the order
statistics of squared residulas rather than to the squared residuals directly. It is immediately
clear that β̂(LWS,n,w) is in fact β̂(WLS,n,w) applied on some permutation, say π = π(ω), of the
order of original data, see [17, 18] and discussion below.

Remark 3 Let h ∈ N, n2 < h ≤ n, w∗h = 1 and w∗∗i = 1, i = 1, 2, ..., h with w∗i = w∗∗i = 0
otherwise. Then

β̂(LWS,n,w∗) = arg min
β∈Rp

r2
(h)(β) = β̂(LMS,n,h) and β̂(LWS,n,w∗∗) = arg min

β∈Rp

h∑
i=1

r2
(i)(β) = β̂(LTS,n,h)

for β̂(LMS,n,h) see [8] and for β̂(LTS,n,h) [4].

In what follows we shall restrict ourselves on monotone weights and we will assume:

Conditions C2 The weight function w(u) is continuous, strictly decreasing, w : [0, 1]→ [0, 1]
with w(0) = 1 and put wi = w

Ä
i−1
n

ä
.

The strict monotonicity of weights is only a technical task, in simulation below we will use
w(u) decreasing for 0 ≤ u ≤ h/100 from 1 to 0.99, then linearly decreasing to 0.01 at u = g/100
and finally decreasing from this value to w(1) = 0.

Both, β̂(LMS,n,h) as well as β̂(LTS,n,h), can suffer by instability with respect to an (arbitrary)
small shift or deletion of one observation, see [6, 12, 13, 15]. Moreover, in contrast to M - or
MM -estimators - when we want to reach the scale- and regression-equivariance of the estimator
- β̂(LWS,n,w∗) does not require any studentization of residuals by the scale-equvivariant and
regression-invariant estimator of standard deviation of error term, see [2]. In other words, we
can compute it “directly” by a simple and quick algorithm, without computing a preliminary
scale estimate, compare it with MM -estimators in [20]. Finally, the speed of algorithm allows
to tailor the weight function for unknown level of contamination in a way of the Forward Search,
[1]. That was the reasons for proposing β̂(LWS,n,w) which has improved some features of previous
estimators and inherited the plausible properties. On the other hand, we have to pay for it. The
price, to be paid, is highly involved proof of consistency (as we estimate implicitly the scale of
error terms), [17] (see also [16]).

2 Preliminary findings on the least weighted squares

Let Π(n) be the set of all permutations of integers {1, 2, ..., n}. Fix π ∈ Π(n), π = {π1, π2, ..., πn}
and put

Yπ = (Yπ1 , Yπ2 , ..., Yπn)′ , Xπ = (Xπ1 , Xπ2 , ..., Xπn)′ and eπ = (eπ1 , eπ2 , ..., eπn)′

and consider the model

Yπ = Xπβ
0 + eπ.

Then denote

β̂(WLS,n,w)
π = arg min

β∈Rp

n∑
i=1

wi
Ä
Yπi −X ′πiβ

ä2
=
(
X ′πWXπ

)−1
X ′πWYπ (6)
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and (see Denifition 1)

S2
π =

n∑
i=1

wi
Ä
Yπi −X ′πi β̂(WLS,n,w)

π

ä2
= min

β∈Rp

n∑
i=1

wi
Ä
Yπi −X ′πiβ

ä2
. (7)

Obviously we have S2
π = S2

π(ω). Finally, fix ω0 ∈ Ω and put

π̂(ω0) = arg min
π∈Π(n)

S2
π(ω0). (8)

Notice that π̂ depends on ω but naturally also on Y and X (which we did not included into
notation - for a while - as they are fixed and moreover when fixing ω0, we have Y = Y (ω0) and
X = X(ω0)). The definition of β̂(WLS,n,w), i. e. (6), and (8) yield

S2
π̂(ω0)(ω0) = min

π∈Π(n)

min
β∈Rp

n∑
i=1

wi
Ä
Yπi −X ′πiβ

ä2
(9)

and hence
β̂

(WLS,n,w)
π̂(ω0) (ω0) = β̂(LWS,n,w)(ω0), (10)

for more details see [17, 18]. Fixing some π ∈ Π(n), let us put

B (π) = {ω ∈ Ω : π = π̂(ω)} ,

remember (8). We have
∪π∈Π(n)B(π) = Ω

and the strict monotonicity of weights implies that from π(1) 6= π(2) we have

P
Ä
B(π(1)) ∩B(π(2)) = ∅

ä
= 1.

Let us consider a fix π0 ∈ Π(n). Taking into account (10), we find for any ω ∈ B (π0
)

β̂(LWS,n,w)(ω) = β̂
(WLS,n,w)
π0 (ω) = arg min

β∈Rp

n∑
i=1

wi
(
Yπ0

i
(ω)−X ′π0

i
(ω)β

)2
. (11)

Recalling that {(X ′i, ei)′}∞i=1 is a sequence of i.i.d. r.v.’s, we conclude that for all π ∈ Π(n) the
set B(π) has the same probabilistic features. In other words, B(π)’s are undistinguishable from
the probabilistic point of view each from other. It means also that

P (B (π)) = (n!)−1 . (12)

It opens a way for studying the tests statistics (proposed below) conditionally for selected π ∈
Π(n) and then “to take the mean value” employing (12).

We will fix π ∈ Π(n) once again. Then for any ω ∈ B(π) (6) and (11) imply

β̂(LWS,n,w)(Y,X) = β̂(WLS,n,w)
π (Y,X) = arg min

β∈Rp

¶
(Yπ −Xπβ)′W (Yπ −Xπβ)

©
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= arg min
β∈Rp

{Ä
Ỹπ − X̃πβ

ä′ Ä
Ỹπ − X̃πβ

ä}
= β̂(OLS,n)(Ỹπ, X̃π) (13)

where for W see Definition 1 and

Ỹπ = W
1
2Yπ and X̃π = W

1
2Xπ. (14)

So, although the least weighted squares - similarly as other robust estimators distorted the L2

metric, but by the considerations, we have just concluded, we returned back to this metric,
of course for the data transformed as given in (14), i. e. for the heteroscedastic data. Please
remember in the rest of paper the relation (14). The equality

β̂(LWS,n,w)(Y,X) = β̂(WLS,n,w)
π (Y,X) = β̂(OLS,n)(Ỹπ, X̃π) (15)

is the fundamental for all further considerations, it open the way for all further results. More-
over, it hints that the idea to compare the residual sum of squares for restricted and unrestricted
model can attain again the legitimacy. Unfortunately, it holds only partially due to the het-
eroscedasticity of data, see (14) and the next paragraph.

3 Establishing the test of restricted against unrestricted model

Let us start with fixing the framework. We want to test the models

Y = Xβ0 + e against Y = Zγ0 + v (16)

where γ0 ∈ Rq and we will assume that the Conditions C1 hold with the appropriate modifi-
cations also for the latter model. Moreover, we assume - as in the classical framework - that
models are nested:
Conditions C3 The matrices X and Z are such that M(Z) ⊂M(X) where M(A) is the set of
all linear combinations of columns of matrix A.
Remark 5 Prior to continuing let us recall that the test of restricted versus unrestricted model
in the classical framework is based on the idea that the respective residual sums of squares are not
significantly different. We apply the test to avoid an unpleasant situation of employing restricted
model although it is worse than the unrestricted one. Hence the test is to reject the hypothesis if
there is a suspicion that the restricted model need not be sufficient for explanation.

At this moment we need to recall one thing from the previous paragraph. As we saw in (15),
we have defined at any point ω ∈ Ω π = π(ω) and Ỹπ, X̃π (see (14) and (8), respectively) and
then β̂(LWS,n,w)(Y,X) = β̂(OLS,n)(Ỹπ, X̃π) We have also mentioned at the previous paragraph
that π = π(ω, Y,X). Finally, we can study the model

Ỹπ(ω,Y,X) = X̃π(ω,Y,X)β
0 + ẽπ(ω,Y,X) (17)

with Ỹπ(ω,Y,X) = W
1
2Yπ(ω,Y,X), X̃π(ω,Y,X) = W

1
2Xπ(ω,Y,X) and ẽπ(ω,Y,X) = W

1
2 eπ(ω,Y,X) (18)

and employ the ordinary least squares. The residual sum of squares for this model is then (see
(7) and (15) )

S2
π(ω,Y,X) =

n∑
i=1

wi
(
Yπi(ω,Y,X) −X ′πi(ω,Y,X)β̂

(LWS,n,w)
π(ω,Y,X)

)2
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=
n∑
i=1

(
Ỹπi(ω,Y,X) − X̃ ′πi(ω,Y,X)β̂

(OLS,n)
π(ω,Y,X)

Ä
Ỹπ(ω,Y,X), X̃π(ω,Y,X)

ä)2

. (19)

We can do the same for the latter model in (16). But then generally the inclusion

M(Zπ(ω,Y,Z)) ⊂M(Xπ(ω,Y,X)) (20)

does not hold because generally we have π(ω, Y, Z) 6= π(ω, Y,X). In other words, the models
Ỹπ(ω,Y,X) = X̃π(ω,Y,X)β

0+ẽπ(ω,Y,X) and Ỹπ(ω,Y,Z) = Z̃π(ω,Y,Z)β
0+ẽπ(ω,Y,Z) are not nested although

the models in (16) were nested. So, we cannot utilize the residual sums of squares S2
π(ω,Y,X) and

S2
π(ω,Y,Z), for comparing the “quality” of models in (16), at least not in the philosophy of classical

regression analysis.

Now, we have basically two possibilities. Either to test the models in (16) by means of
residual sum of squares of two models - which are however nested - or to test them without the
“restriction of being nested” as it was done in the classical statistics for the non-nested models.
We are going to study in the rest of paper the former possibility. We do not claim in any case that
the latter one is a deadlock but it requires much more space and presentations of results of various
attempts (for discussion see e. g. [7, 19]). So, we will consider the heteroscedastic models13 (its
clear that we can drop ω from the subindex π(ω, Y,X) due to (12) and the considerations above
it)

Ỹπ(Y,X) = X̃π(Y,X)β
0 + ẽπ(Y,X) against Ỹπ(Y,X) = Z̃π(,Y,X)γ

0 + ṽπ(Y,X) (21)

with

Ỹπ(Y,X) = W
1
2Yπ(Y,X), X̃π(Y,X) = W

1
2Xπ(Y,X), ẽπ(Y,X) = W

1
2 eπ(Y,X), L

Ä
ẽπ(Y,X)

ä
= N

Ä
0, σ2W

ä
(22)

and

Z̃π(Y,X) = W
1
2Zπ(Y,X), ṽπ(Y,X) = W

1
2 vπ(Y,X) and L

Ä
ṽπ(Y,X)

ä
= N

Ä
0, σ2W

ä
. (23)

Moreover, notice please that under Conditions C1 - due to the fact that W is the diagonal
matrix - ẽ as well as ṽ have independent coordinates - we will need it later.

So, we have transformed the task (16) to the form (21), the regression coefficients will be
estimated by the ordinary least squares and the test statistic will be based on the residual sum
of squares. At the first glance it seems simple, because in the classical framework such task
was solved - but not for heteroscedastic error terms because the crucial step in the study of
such a problem was the employment of Fisher-Cochran theorem, requiring the homoscedastic
response variable. At this moment, an idea to transform the heteroscedastic data back to the
homoscedastic ones and then carry out the test can appear. But then the all probabilistic
considerations would be done in a different framework14. Due to the fact that the reordering of
rows in the design matrices X and Z (as given in (21) ) was the same, (20) holds. Then we can
proceed in the same way as in the classical statistics employing the decomposition

ẽ′ẽ= ẽ′
[
II−X̃

Ä
X̃ ′X̃

ä−1
X̃ ′
]
ẽ+ ẽ′

[
X̃
Ä
X̃ ′X̃

ä−1
X̃ ′−Z̃

Ä
Z̃ ′Z̃
ä−1

Z̃ ′
]
ẽ+ ẽ′Z̃

Ä
Z̃ ′Z̃
ä−1

Z̃ ′ẽ (24)

13Realize please that the heteroscedasticity is somewhat “artificial”, i. e. the character of heteroscedasticity is
given - except of “nuisance” parameter σ2 - by the matrix W .

14An extended discussion with details was carried out in [18] where also some other references to the topic
were given.
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where (see (3) )

ẽ′
[
II − X̃

Ä
X̃ ′X̃

ä−1
X̃ ′
]
ẽ = e′W

1
2

[
II − X̃

Ä
X̃ ′X̃

ä−1
X̃ ′
]
W

1
2 e

=︸︷︷︸
denote

e′M1e = r′
Ä
β̂OLS,n(Ỹ , X̃)

ä
r
Ä
β̂OLS,n(Ỹ , X̃)

ä
(25)

and in the similar way we can write the second and the third term of (24) as

e′M2e and e′M3e.

Now we can employ the same steps as in the proof of Fisher-Cochran theorem, see e. g. [3]. Let
the orthonormal vector base ofRn, say q̃1, q̃2, ..., q̃n, be selected so that the vectors (q̃1, q̃2, ..., q̃n−p),
(q̃n−p+1, ..., q̃n−q) and (q̃n−q+1, q̃n−q+2, ..., q̃n) are the eigenvectors of the matrices M1, M2 and M3

corresponding to their positive eigenvalues, respectively. Moreover, denote (ψ1, ψ2, ..., ψn−p, 0, ..., 0),
(0, 0, ..., 0, φn−p+1, φn−p+2, ..., φn−q, 0, ..., 0) and (0, 0, ..., 0, θn−q+1, θn−q+2, ..., θn) the eigenval-
ues corresponding to these eigenvectors of the three matrices, respectively. Finally put Q =
(q̃1, q̃2, ..., q̃n) and recall that then Q′Q = QQ′ = II and also recall that L(e) = N (0, σ2II).

Having put Ψ = diag (ψ1, ψ2, ..., ψn−p, 0, ..., 0), Φ = diag (0, 0, ..., 0, φn−p+1, ..., φn−q, 0, ..., 0)

and Θ = diag (0, 0, ..., 0, θn−q+1, θn−q+2, ..., θn), let us define random vectors ε = Ψ
1
2Q′e, τ =

Φ
1
2Q′e and κ= Θ

1
2Q′e so that IEε= 0, cov(ε) = IE

[
Ψ

1
2Q′ee′QΨ

1
2

]
= σ2Ψ

1
2Q′QΨ

1
2 = σ2Ψ

1
2 Ψ

1
2 =

σ2Ψ and hence L(ε) =N (0, σ2Ψ). Similarly, IEτ = 0, cov(τ) = σ2Φ and L(τ) =N (0, σ2Φ) and
IEκ= 0, cov(κ) =σ2Θ and L(κ) =N (0, σ2Θ). Moreover, εi ≡ 0 for i=n− p+ 1, ..., n, τi ≡ 0 for
i= 1, 2, ..., n− p, n− q + 1..., n, κi ≡ 0 for i= 1, 2, ..., n− q and covariance matrix of the vector
(ε′, τ ′, κ′)′ is the diagonal one. Then their normality yields their independence. Now,

ε′ε=
n−p∑
i=1

ε2
i = e′QΨQ′e = e′M1e= r′

Ä
β̂OLS,n(Ỹ , X̃)

ä
r
Ä
β̂OLS,n(Ỹ , X̃)

ä
. (26)

So, r′
Ä
β̂OLS,n(Ỹ , X̃)

ä
r
Ä
β̂OLS,n(Ỹ , X̃)

ä
is the sum of n− p independet r. v.’s which are squares

of normally distributed r. v.’s. Then utilizing (25) (remember that ẽ = W
1
2 e)

var
(∥∥∥r Äβ̂OLS,n(Ỹ , X̃)

ä∥∥∥) = IE

(
r′
Ä
β̂OLS,n(Ỹ , X̃)

ä
r
Ä
β̂OLS,n(Ỹ , X̃)

ä)
= IE

(
e′W

1
2

[
II − X̃

Ä
X̃ ′X̃

ä−1
X̃ ′
]
W

1
2 e
)

= IE
(
tr(e′W

1
2

[
II − X̃

Ä
X̃ ′X̃

ä−1
X̃ ′
]
W

1
2 e)
)

= IE
(
tr(W

1
2 ee′W

1
2

[
II − X̃

Ä
X̃ ′X̃

ä−1
X̃ ′
]
)
)

= σ2W
[
II − X̃

Ä
X̃ ′X̃

ä−1
X̃ ′
]

=
n∑
i=1

wi (1− dii)

where dii =
[
X̃
Ä
X̃ ′X̃

ä−1
X̃ ′
]
ii

. Taking into account that ε = Ψ
1
2Q′e and employing the (22),

we find analogously var (‖ε‖) = σ2∑n−p
i=1 ψi. Due to (26), we have

∑n−p
i=1 ψi =

∑n
i=1wi (1− dii).

It means that the residual sum of squares ε′ε = r′
Ä
β̂OLS,n(Ỹ , X̃)

ä
r
Ä
β̂OLS,n(Ỹ , X̃)

ä
has the

generalized χ2-distribution:
Definition 3 Let for k ∈ N and σ2

i > 0, i = 1, 2, ..., k the sequence of random variables
{ξi}ki=1 be normally ees distributed with zero means and variances σ2

i . Then the distribu-
tion of the random variable τ =

∑k
i=1 ξ

2
i will be called generalized χ2-distribution with s =

@ COMPSTAT 2014



358 Robust test of restricted model

∑k
i=1 σ

2
i degrees of freedom and k-dimensional scale-parameter σ2 =

(
σ2

1, σ
2
2, ..., σ

2
k

)
. Denote

it by χ2
generalized(s, σ

2). Further, let the random variable η be independent from τ and have

the χ2
generalized(t, λ

2) distribution. Then the distribution of random variable η
t /

τ
s will be called

the generalized F -distribution with s and k degrees of freedom and scale-parameters λ2 and σ2.
Denote it by Fgeneralized(s, t, λ

2, σ2).

Along the similar lines we find that τ ′τ =
Ä
β̂OLS,n)

ä Ä
β̂OLS,n

ä
− r′

Ä
γ̂OLS,n)

ä
r
Ä
γ̂OLS,n

ä
has

the generalized χ2-distribution with σ2∑n−q
i=n−p+1 φi = σ2∑n

i=1wi (dii − cii) degrees of freedom

(cii =
[
Z̃
Ä
Z̃ ′Z̃
ä−1

Z̃ ′
]
ii

) and the (p−q)-dimensional scale parameter σ2
τ =

(
σ2φn−p+1, σ

2φn−p+2,

..., σ2φn−q
)
. Due to the independence of ε and τ , we have:

Theorem 3.1.

F =
r′
Ä
β̂OLS,n(Ỹ , X̃)

ä
r
Ä
β̂OLS,n(Ỹ , X̃)

ä
− r′

Ä
γ̂OLS,n(Ỹ , Z̃)

ä
r
Ä
γ̂OLS,n(Ỹ , Z̃)

ä
∑n
i=1wi (dii − cii)

×

×
∑n
i=1wi (1− dii)

r′
Ä
β̂OLS,n(Ỹ , X̃)

ä
r
Ä
β̂OLS,n(Ỹ , X̃)

ä (27)

has the generalized F -distribution with σ2∑n
i=1wi (dii − cii) and σ2∑n

i=1wi (1− dii) degrees of
freedom and the scale parameters σ∗∗ =

(
σ2φn−p+1, σ

2φn−p+2, ..., σ
2φn−q

)
and σ∗ =

(
σ2ψ1, σ

2ψ2,
..., σ2ψn−p

)
.

4 The simulation study

It is clear that employing the second terms of the right hand side of (24) and (25), we can
easy simulate F from (27) (generating e. g. X and Z by p and q dimensional normal d.f. and
normally distributed error terms). In simulations (patterns of results are given below) we used
w(u) decreasing for 0 ≤ u ≤ h/100 from 1 to 0.99, then linearly decreasing to 0.01 at u = g/100
and finally decreasing from this value to w(1) = 0 (h and g are in the head of tables). For
various sample sizes n we have generated k = 1000 F ’s and then we found round(n ·0.975) and
round(n · 0.995) order statistics. This was repeated ` = 1000 times (k and ` also in the head
of tables) and mean value and mean absolute deviations were computed (the latter are given in
the below tables in round parentheses as subindices and multiplied by 100).

Tables
k = 1000, ` = 1000, h = 75, g = 95 and α = 0.975.

n 30 40 50 60 70 80

F̂0.995(n) 6.355(2.614) 6.032(2.409) 5.801(2.018) 5.679(1.953) 5.626(1.870) 5.545(1.723)

F0.995(n) 6.598 6.188 5.974 5.843 5.755 5.691

k = 1000, ` = 1000, h = 75, g = 95 and α = 0.995.

n 30 40 50 60 70 80

F̂0.975(n) 4.222(1.432) 4.073(1.238) 3.962(1.085) 3.905(1.043) 3.879(0.964) 3.856(0.910)

F0.975(n) 4.291 4.106 4.009 3.948 3.906 3.876
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k = 1000, ` = 1000, h = 55, g = 85 and α = 0.975.

n 30 40 50 60 70 80

F̂0.975(n) 4.226(1.978) 4.058(1.698) 3.943(1.434) 3.920(1.344) 3.861(1.197) 3.840(1.139)

F0.975(n) 4.291 4.106 4.009 3.948 3.906 3.876

5 Conclusions

It is clear that much more extended study (for various levels of contamination, for various
degrees of freedom, etc.) will be necessary to give a reliable picture about behaviour of the test.
Nevertheless, already these 3 tables indicate that the quantiles of the corresponding distribution
are not very far from the Fisher-Snedecor F which can help us for a rough idea about possibility
to accept or reject the restricted model. Moreover, time which is necessary for given data (i. e.
for given Z and X) to simulate the quantile is (due to the speed of present computational
means) rather short, say maximally minutes (the software - written in MATLAB - is available
on request).
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[15] Vı́̌sek, J. Á. (2005) Selection of robust method. Numerical examples and results. Bulletin of
the Czech Econometric Society, (2005) 11, 1 - 58.
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Abstract. We construct a nonparametric estimator of conditional quantiles of Y given X = x
using optimal quantization. Conditional quantiles are particularly of interest when the condi-
tional mean is not representative of the impact of the covariable X on the dependent variable Y .
Lp-norm optimal quantization is a discretizing method used since the 1950’s in engineering. It
allows to construct the best approximation of a continuous law with a discrete law with support
of size N . The aim of this work is then to use optimal quantization to construct conditional
quantile estimators. We study the convergence of the approximation (N →∞) and the consis-
tency of the resulting estimator for this fixed-N approximation. This estimator was implemented
in R in order to evaluate the numerical behavior and to compare it with existing methods.

Keywords. Nonparametric estimation, Conditional quantile, Optimal quantization.

1 Introduction

Quantile regression allows to assess the impact of a covariable X on a (scalar) response variable
Y and is an alternative to standard regression. It is particularly of interest when the mean does
not provide an enough satisfactory picture of the distribution. We then get a more complete
picture of the conditional distribution if we consider the conditional quantile functions

x 7→ qα(x) = inf{y ∈ R : F (y|x) ≥ α}, (1)

for various α ∈ (0, 1), where F (·|x) stands for the conditional distribution of Y given X = x.
They are equivalently defined by solving the following optimization problem:

qα(x) = arg min
a∈R

E[ρα(Y − a)|X = x], (2)
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where ρα(z) = αzI[z≥0] − (1− α)zI[z<0] is called the check function.

An important application of conditional quantiles is that they provide reference hypersurfaces
(curves when d = 1) if we consider the quantile functions x 7→ qα(x) when x varies, and confident
intervals of the form Iα = [qα(x), q1−α(x)] when x is fixed, which are widely used in many
domains, as medicine, economics or lifetime analysis.

There exist many approaches to define conditional quantile estimators since the literature
on quantile regression became really large in recent years. For example, [1] focuses on nearest-
neighbor estimators of a conditional quantile while local linear estimator is investigated in [6].

We define in [2] a new estimator of conditional quantiles based on optimal quantization and
we perform a numerical study of this estimator in [3]. Optimal quantization is a tool allowing to
discretize any continuous distribution of a random vector X. It then provides an approximation
of X by a discrete random vector with support of size N . This approximation is obtained by
projecting X on a set of N points, called a grid. This grid is chosen in such a way that the
Lp-norm difference between X and its discretized version is minimal. The reader can refer to
[4, 5] for more details on optimal quantization.

We will first briefly recall in Section 2 the general idea of our method and explain the
different steps in the construction of our estimator. Then, in Section 3, we provide a numerical
comparison of our estimator with three alternative quantiles estimators.

2 Conditional quantile estimation through optimal
quantization

In this section, we first explain the general idea of the construction of our estimator introduced
in [2]. We then detail point by point this construction that is implemented in a R package called
QuantifQuantile (available on the CRAN).

In the sequel, we denote by Y a real random variable and X a d-dimensional random vector.
We define an estimator of conditional quantiles thanks to Lp-norm quantization. The idea is
to replace X in (2) by a discrete version, obtained by projecting X on an optimal quantization
grid. We then take an empirical version of this approximation. Let us specify this construction.

Assume that X belongs to Lp, i.e. ‖X‖p := E[|X|p]1/p < ∞. Let γN ∈ (Rd)N a set of N
points of Rd, called a grid. We approximate X by the projection of X onto this grid, that we
denote ‹XγN := ProjγN (X). Obviously, the quality of this approximation depends hugely on the

choice of the grid. We then choose γN as the grid minimizing the quantization error ‖X− ‹XγN ‖p.
Classic result in quantization ensures the existence (but not the unicity) of such grid under the
assumption that the law of X does not charge any hyperplanes. We will denote in the sequel‹XN the projection of X onto an optimal grid. In practice, an optimal grid is constructed using
a stochastic gradient algorithm. This algorithm is detailed further. The reader may refer to [4]
for more details on the concept of quantization. We then define

q̃Nα (x) := arg min
a∈R

E[ρα(Y − a)|‹XN = x̃], (3)

where x̃ is the projection of x onto γN .

Let us now assume that we have n independent copies (X ′1, Y1)′, . . . , (X ′n, Yn)′. We define an
estimator of conditional quantiles by taking an empirical version of this approximation, denoted
q̂N,nα (x). Its construction is provided in the sequel.
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We derived the following theorems for the convergence of q̃Nα (x) when N →∞ and of q̂N,nα (x)
when n→∞ and N fixed. We need the following assumptions.

Assumption (A) (i) The random vector (X,Y ) is generated through Y = m(X, ε), where
the d-dimensional covariate vector X and the error ε are mutually independent; (ii) the link
function (x, z) 7→ m(x, z) is of the form m1(x) + m2(x)z, where the functions m1(·) : Rd → R

and m2(·) : Rd → R
+
0 are Lipschitz functions; (iii) ‖X‖p <∞ and ‖ε‖p <∞; (iv) the distribution

of X does not charge any hyperplanes.

Assumption (B) (i) The support SX of PX is compact; (ii) ε admits a continuous density f ε :
R→ R

+
0 (with respect to the Lebesgue measure on R).

To obtain rates of convergence, we will need the following reinforcement of Assumption (A).

Assumption (A′) Same as Assumption (A), but with (iii) replaced by (iii)′ there exists
δ > 0 such that ‖X‖p+δ <∞, and ‖ε‖p <∞.

Assumption (C) PX is continuous and has a compact support.
Under these assumptions, the underlying curve m is quite smooth, which avoids possible

peaks or jumps.

Theorem 2.1. Fix α ∈ (0, 1). Then (i) under Assumptions (A)-(B),

‖q̃Nα (X)− qα(X)‖p ≤ 2

 
max

( α

1− α,
1− α
α

)
[m]

1/2
Lip

∥∥∥LN (X)
∥∥∥1/2

p
‖X − ‹XN‖1/2p ,

for N sufficiently large, where (LN (X)) is a sequence of X-measurable random variables that is
bounded in Lp; (ii) under Assumptions (A′)-(B),

‖q̃Nα (X)− qα(X)‖p = O(N−1/2d), as N →∞.

Theorem 2.2. Fix α ∈ (0, 1). Then, under Assumptions (A)-(B),

sup
x∈SX

∣∣∣q̃Nα (x)− qα(x)
∣∣∣→ 0, as N →∞.

Theorem 2.3. Fix α ∈ (0, 1), x ∈ SX and N ∈ N0. Then, under Assumptions (A), (B)(i),
and (C), we have that, as n→∞,

|q̂N,nα (x)− q̃Nα (x)| → 0,

in probability, provided that quantization is based on p = 2.

More details on these theorems and their proofs can be found in [2].
We will now explain step by step the construction of q̂N,nα (x). We will then complete this

section with an illustration on some dataset.

Determining an optimal N-grid

Since the starting idea of our method consists in replacing X with a discrete version with support
of size N , the first step is naturally dedicated to the choice of an optimal N -grid for X, with N
fixed. Since no theoretical quantization result provides such a grid, the only way at our disposal
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to get it is to use a stochastic gradient algorithm. Starting from an initial grid denoted γ̂N,0, we
update the grid at step t− 1 thanks to the observation Xt, playing the role of stimuli.We then
obtain the grid at step t, for t = 1, . . . , n. After n steps, we thus get a grid γ̂N,n considered as
optimal. Let us make it more precise.

Let (δt), t ∈ N0, be a deterministic sequence in (0, 1) such that∑
t

δt =∞ and
∑
t

δ2
t <∞.

For N fixed, the algorithm works as follows.

Algorithm 2.1.
For t = 1 . . . , n,

Step 0 The initial grid γ̂N,0 in (Rd)N is chosen by sampling randomly among the Xi’s without
replacement.

Step t The grid at step t is defined recursively as

γ̂N,ti =

 γ̂N,t−1
i − δt|γ̂N,t−1

i −Xt|p−1 γ̂N,t−1
i −Xt
|γ̂N,t−1
i −Xt|

if Projγ̂N,t−1(Xt) = γ̂N,t−1
i

γ̂N,t−1
i otherwise

,

where γ̂N,ti ∈ Rd denotes the ith component of γ̂N,t, i = 1, . . . , N .

We observe that only one point of the grid at step t − 1 moves at each step t: the one on
which the stimuli Xt is projected.

The resulting grid γ̂N,n allows thus to quantize X: we define “XN,n = Projγ̂N,nX. This is
important to point out that this quantization step provides a grid that is chosen independently
of Y . Thus, the link function m does not play any role in this step.

Estimating conditional quantiles

As above-mentioned, an approximation of conditional quantiles is defined by replacing X by its
projection on the optimal N -grid in the definition. An estimator is then constructed by taking
an empirical version of this approximation, as follows :

Algorithm 2.2.
Let (X ′1, Y1)′, . . . , (X ′n, Yn)′ be n independent copies of (X,Y ).

Step 1 We project each Xi on the grid γ̂N,n and we write “XN
i = Projγ̂N,n(Xi). We then work

with the projected sample {(“XN ′
i , Yi)

′}i=1,...,n.

Step 2 The conditional quantiles are then estimated by

q̂N,nα (x) = arg min
a∈R

n∑
i=1

ρα(Yi − a)I
[X̂N
i =x̂N ]

,

where x̂N = Projγ̂N,n(x). In practice, q̂N,nα (x) is simply evaluated as the sample α-quantile

of the Yi’s whose corresponding Xi admits x̂N as projection onto γ̂N,n.
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Figure 1: Comparison of population (black) and grid-projected sample (green) cdf for samples of size 500 (left)
and 5000 (right) generated from a beta distribution (for the green one, the sample was projected onto an optimal
quantization grid of size N = 25).

The first step of this algorithm is illustrated in Figure 1. We generate observations with
law Beta(0.3,0.3) and we consider N = 25. Using Algorithm 2.1, an optimal grid is constructed
and we project the sample onto this grid. The left graph represents the grid-projected sample
cumulative distribution function (cdf) in green and the population one in black for a sample size
n = 500. The right one is similar with n = 5000. We observe that the grid-projected sample
versions fit very well the population ones (better and better when n increases).

Nevertheless, the grid provided by the stochastic gradient algorithm may be a poor approxi-
mation of the optimal one when the sample size is small (when n is equal to 300 or less). Indeed,
γ̂N,n is constructed after n iterations. As the choice of the grid is the basis in the construction of
our estimator, it has a major impact on the resulting reference curves that are not smooth. For
this reason, we use bootstrap to introduce a more appropriate conditional quantile estimator.

For some integerB, we generateB samples of size n from our original sample {(Xi,
′ Yi)

′}i=1,...,n

with replacement. Each bootstrap sample is then used as stimuli to construct a grid by per-
forming the stochastic gradient algorithm. Thanks to these B grids, we get B estimations of

qα(x) thanks to Algorithm 2.2, that we denote q̂
(1)
α (x), . . . , q̂

(B)
α (x). The bootstrap version of our

estimator is then defined as:

q̄N,nα,B (x) =
1

B

B∑
b=1

q̂(b)
α (x). (4)

We usually take B = 50 when X is univariate.
Figure 2 represents the curves of estimated conditional quantiles for a sample of size n = 500.

The left panel of Figure 2 is obtained without bootstrap and the right one with bootstrap. This
bootstrap version provides clearly smoother curves.

Selecting the number N of quantizers

The choice of the number N of quantizers is crucial: for too small N , the curves show a large
bias and for too large N , the variability is important but the bias smaller.

We propose a data driven selection criterion for N . As explained in [3], we first investigate
the MSE (Mean Squared Error) as a function of N (by taking some suitable family of possible
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Figure 2: For n = 500, X ∼ U(−3, 3), Y = X3/5+ε, with ε ∼ N (0, 1) independent of X, the curves of estimated
conditional quantiles, without and with bootstrap respectively. They are obtained with α = 0.05, 0.25, 0.5, 0.75
and 0.95 respectively (upwards). Left: Without bootstrap, Right: B = 50

values for N). These curves are actually convex and we choose an optimal value for N as the
“arg min” of MSE(N). Of course, the MSE is calculated using the true conditional quantiles.
We then propose a bootstrap estimate of the MSE that only uses the observations. We observe
that the corresponding curves are convex and minimized for a N close the optimal one for the
true MSE (see [3] for more details). Let us specify this criterion.

Let {x1, . . . , xNx} be a set of Nx deterministic points for which we want to estimate qα(x)
(generally equispaced on the support of X). We actually generate B + ‹B bootstrap samples
of size n from the initial sample. The first B bootstrap samples allows to construct q̄N,nα,B (xj)

as above explained. The last ‹B are used to calculate ‹B estimations of qα(xj), that we denote

q̂
(b̃)
α (xj), for b̃ = 1 . . . , B̃. The true conditional quantiles are replaced by q̂

(b̃)
α (xj) in the expression

of the MSE, and we take the mean of these B̃ versions. More precisely, we define’MSE(N) =
1

Nx

Nx∑
j=1

Ñ
1‹B B̃∑
b̃=1

Ä
q̂(b̃)
α (xj)− q̄N,nα,B (xj)

ä2é
. (5)

We then select the optimal number N of quantizers as“N∗ = arg min
N∈N

’MSE(N), (6)

where N denotes a grid of values for N chosen according to the sample size of the considered
dataset.

3 Comparison with alternative conditional quantile estimators

We explained in the previous section the construction of our estimator and we proposed a selec-
tion criterion for the tuning parameter N . We now recall three well-known conditional quantile
estimators and the selection criteria for their own tuning parameters. We then summarize the
boxplot comparison realized in [3] and specify which estimators seem preferable in each situation.
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The k nearest-neighbor is introduced in [1]. This estimator of qα(x) is defined as follows. Let
X∗i = |Xi−x| for i = 1, . . . , n and let X∗n1 < · · · < X∗nn denote the order statistics of X∗1 , . . . , X

∗
n

and Yn1, . . . , Ynn the induced order statistics of (X∗1 , Y1), . . . , (X∗n, Yn), i.e. Yni = Yj if X∗ni = X∗j .

For any positive integer k ≤ n, the k nearest-neighbor estimator q̂kα(x) = q̂k,nα (x) is the [kα]th
order statistics of Yn1, . . . , Ynn. The idea is to select the k points of the data such that their
X’s are the nearest of x, whence the name, and to calculate the quantile of order α of their Y ’s.
Of course, k plays the role of tuning parameter and must be specified. Since we did not find in
the literature an efficient method to select k only based on the data, we choose k by taking it
minimizing the mean squared error among an set of values for k, that we will denote k∗.

The kernel weighted local linear estimator introduced by [6] is the second competitor. This
estimator is defined as q̂YJ

α (x) = â, with

(â, b̂) = arg min
(a,b)∈R×R

n∑
i=1

ρα
Ä
Yi − a− b(Xi − x)

ä
K

Å
x−Xi

h

ã
,

where K is a kernel function, choosen as the standard normal density, and where h is the
bandwidth. We choose h according to α as

hα = hmean

Ç
α(1− α)

ϕ(Φ−1(α))2

å
,

where ϕ and Φ are respectively the standard normal density and distribution functions, and
where hmean is the optimal choice of h for regression mean estimation, selected thanks to a
cross-validation criteria. We also consider the local constant version of this estimator. More
precisely, it is defined as q̂YJc

α (x) = â, with

â = arg min
a∈R

n∑
i=1

ρα
Ä
Yi − a

ä
K

Å
x−Xi

h

ã
,

and where the kernel function and the bandwidth are chosen as in the local linear case.
Notice that an important point in conditional quantile estimation is the choice of the ob-

servations Xi that will be taken into account when estimating qα(x). We see that q̂YJ
α (x) and

q̂YJc
α (x) choose it thanks to some bandwidth while q̂kα(x) is constructed using the k observations

whose X-part is the closest to x. Our method is based on the observations whose X-part is pro-
jected on the same point of the grid as x (we call the set of such points a quantization cell). The
main advantage of our method is then that the number of observations used to estimate qα(x)
is adaptive with x. The choice of a bandwidth is felt to be interesting when the observations X
are quite uniformly distributed on the support of X but it may be disadvantageous when the
density of the points is smaller in some regions of the support.

We then compare our estimator with these competitors. We consider different models (ho-
moscedastic and heteroscedastic) and sample sizes (n = 300, 500 and 1000). For each of them,
we generate 500 samples and we calculate the estimates q̄N,nα,B (x), q̂YJ

α (x), q̂YJc
α (x) and q̂kα(x).

We then realize the boxplots of the mean squared error (MSE) according to each estimator.
We generally observe that q̄N,nα,B (x) generally outperforms its competitors when the covariate is

not uniformly distributed. In case of uniformly distributed X, q̂YJ
α (x) is often better. We il-

lustrate it in Figure 3 where we generate 500 samples of size n = 300 with X = 6Z − 3,with
Z ∼ Beta(0.3, 0.3) and Y = X3/5 + ε, where ε is a normal error term independent of X.
We observe that q̄N,nα,B (x) provides the smallest MSE, followed by q̂kα(x). More details on this
comparison study can be found in [3].
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Figure 3: For 500 replications of sample of size n = 300 from model Y = 1
5
X3 + ε, the boxplots of the MSE

in the estimation of the conditional quantile curves: in blue, with q̄N,nα,B (x), in green, with q̂kα(x), in purple, with

q̂YJ
α (x) and in red, with q̂YJc

α (x). Left to right: α = 0.05, 0.25, 0.5, 0.75, 0.95

Bibliography

[1] Bhattacharya, P.K. and Gangopadhyay, A.K. (1990) Kernel and nearest-neighbor estimation
of a conditional quantile. Annals of Statistics, 7(3), 1400–1414.

[2] Charlier, I., Paindaveine, D. and Saracco, J. (2014) Conditional quantile estimation through
optimal quantization. Submitted.

[3] Charlier, I., Paindaveine, D. and Saracco, J. (2014) Numerical study od a conditional quan-
tile estimator based on optimal quantization. Manuscript in preparation.

[4] Pagès, G. (1998) A space quantization method for numerical integration. Journal of Com-
putational and Applied Mathematics, 89(1), 1–38.

[5] Pagès, G. and Printems, J. (2003) Optimal quadratic quantization for numerics: the Gaus-
sian case. Monte Carlo Methods and Applications, 9(2), 135–165.

[6] Yu, K. and Jones, M.C. (1998) Local linear quantile regression. Journal of the American
Statistical Association, 93(441), 228–237.

COMPSTAT 2014 Proceedings



A combined nonparametric test for
seasonal unit roots

Robert M. Kunst, Institute for Advanced Studies Vienna and University of Vienna, kunst@ihs.ac.at

Abstract. Nonparametric unit-root tests are a useful addendum to the toolbox of time-series
analysis. They tend to trade off power for enhanced robustness features. We consider combina-
tions of variants of the RURS (seasonal range unit roots) test statistic and of the level-crossings
count. This combination exploits two main characteristics of seasonal unit-root models, the
range expansion typical of integrated processes and the low frequency of changes among main
seasonal shapes. The combination succeeds in achieving power gains over the component tests.
Simulations explore the finite-sample behavior relative to traditional parametric tests.

Keywords. Seasonality, nonparametric tests, visualization, time series.

1 Introduction

The current literature on seasonal time series (see [9] or [6], for example) ascribes the origin
of the basic discrimination problem among conflicting paradigms for the generation of seasonal
features to [10].

The three main model worlds of concern are: (a) deterministic seasonal variation, as custom-
arily expressed via seasonal dummy variables; (b) seasonal unit roots and seasonal integration;
(c) stochastic stationary cyclical variation. A distinctive feature among these concepts is their
implication for long-run forecasts of seasonal patterns. Deterministic seasonal patterns in an
otherwise stationary environment entail that the sample average of seasonal shapes is the ap-
propriate long-run predictor for future shapes. Seasonal integration emphasizes the importance
of the most recent pattern as a shape predictor, even though this prediction will face increasing
uncertainty at increasing horizon and persistent shape changes are to be expected. Stationary
cyclical variation implies trivial predictions at longer horizons.

The most important statistical tools for discriminating among these main concepts of seasonal
time-series generators evolved in the 1990s: the HEGY test by [11], the CH test by [5], and
some further contributions that are conveniently summarized by [9]. These tests are parametric,
build on Gaussian likelihoods, and optimize power properties for specific designs. By contrast,
nonparametric tests aim at increased robustness at the price of reduced power.
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Variance-ratio tests for seasonal unit roots were considered by [15] who generalized the
testing concept by [3] to the seasonal case. Whereas these tests achieve additional robustness,
they cannot be viewed as narrow-sense nonparametric. [12] and [13] based their RURS (RUR
seasonal) test on the nonparametric RUR (range unit-root) test by [2] which uses a count of
new records in time series as a unit-root criterion. The test suggested here combines a variant
of this RURS test with another nonparametric unit-root testing idea that was investigated by
[4] and [8] and relies on counting zero crossings.

We provide an additional motivation for our selection of component tests in our new test by
first presenting the idea of jittered seasonal phase plots. These plots are constructed as follows.
First, the information on seasonal shapes is condensed into classes, and then the transition
patterns between these classes are recorded.

The paper is organized as follows. Section 2 introduces jittered seasonal phase plots as a
visualization tool. Section 3 considers the nonparametric combination test. Section 4 applies
the methods to exemplary time series. Section 5 concludes.

2 Jittered seasonal phase plots

Generally, we restrict attention to the quarterly case. In principle, the monthly case (or any
other seasonal aspect) can be handled analogously. Due to the large number of possible seasonal
shapes, however, the visualization tools outlined below are less attractive for monthly data.

Initially, consider the quarterly Gaussian seasonal random walk (SRW)

xt = xt−4 + εt, t ≥ 0, xt = 0,−3 ≤ t ≤ 0, (1)

with Gaussian iid increments εt. A characteristic feature of such seasonal unit-root processes are
the infrequent but persistent changes in the rank position of quarters. If the series is plotted by
quarters—the spring series, the summer series etc.—the four seasonal curves cross each other
rarely. If they do, however, they do not tend to cross back into their previous ranking order.

The idea of counting intersections of quarterly plots in order to obtain a non-parametric
statistic for discriminating among the main seasonal generating models was mentioned by [12].
Each crossing represents a change of the qualitative seasonal pattern, in the sense that, for
example, stronger sales of a product during the spring season give way to higher sales in summer.

In the following, we classify the shapes of four consecutive quarterly observations within a
year into eight possible qualitative seasonal patterns 0 ≤ m ≤ 7, according to whether the value
rises or falls between two adjacent quarters. We code the cases as three-digit binary numbers,
using ‘1’ for an increase between quarters and ‘0’ for a decrease. Note that the direction from the
last quarter of a year to the first quarter of the next year is ignored in the discretization. This
follows the idea that seasonality should be viewed independently from the year-to-year trend.
Thus, the 111 pattern (m = 7) is not subdivided into cases with a strong slump at the beginning
of the year and cases with a persistent upward movement.

Discretization of the sample space into eight classes entails a considerable loss in information
and can only be justified if it assists in the discrimination problem of concern. Unfortunately,
direct connected phase plots do not turn out to be very useful for the classification of the
generating seasonal process, even with large samples.

A main problem in the simple phase plot is that it does not show the population within
the classes. One suggestion would be to randomize the observations in an interval such as
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[m − 0.4,m + 0.4], which would correspond to the technique of jittering. A more sophisticated
visualization may distribute the observations that belong to class m according to their ‘depth’
within the class. Given that an observation is classified to m according to increases or decreases
in specific quarters, it is said to be ‘deep’ in the class when these increases or decreases are
large, while almost constant patterns can be seen as ‘shallow’. There are three quarter-to-
quarter movements, and an observation may be deep regarding quarter 1-2 and shallow in other
quarters.

We decided to define the positions by maximum relative depth, calculated from maximum
absolute inter-quarter increases or decreases. We opted to position the shallow points in the
center of the interval and the deep points at the boundaries. Thus, classes are usually entered in
the center as fresh and shallow members, and after an extended period in the class the boundaries
are approached. For later reference, we denote the position within the bin as x̃, such that x̃ = 0
corresponds to its center.

There is no coercive convention for the left and right parts of the interval, [m− 0.4,m) and
(m,m+0.4]. We decided for uniform randomization, i.e. jittering in the literal sense. For seasonal
unit-root processes, deep observations tend to be followed by deep ones, and this randomization
tends to generate a St. Andrew’s cross or saltire, a pattern that sends a clear message to the
observer. For an SRW, the result of this procedure is shown in the left part of Figure 1.

0 2 4 6
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6

0 2 4 6

0
2

4
6

Figure 1: Jittered phase diagrams for pattern classes. Generating model for the left plot is a
quarterly Gaussian seasonal random walk, for the right plot a process with deterministic seasonal
variation. In both cases, 40,000 observations have been generated.

Whereas unit-root seasonality generates the hitherto highlighted features, i.e. rare transitions
between bins and persistence within some bins, many real-world seasonal cycles, for example
temperature series, support deterministic models (see the example in Section 4). A simple
generating model for such deterministic seasonal variation is a stable ARMA model superseded
with a repetitive cycle expressed via seasonal dummy variables. For exposition, we consider the
model

xt = 0.4xt−4 +
4∑
j=1

djδj,t + εt, (2)

with standard Gaussian errors and δj,t denoting seasonal dummy constants. For the deter-
ministic pattern, we impose (d1, . . . , d4) = (0, 8, 3, 10). Such deterministic seasonal processes
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are characterized by an inherent tendency to switch back to the old pattern regime after any
crossings.

The impression is confirmed in a jittered phase plot shown in the right portion of Figure 1.
There is a strong preference for one class, and occasional visits to other classes remain episodic.

3 A nonparametric test for seasonal unit roots

We first note that the classification decision based on the jittered plots mainly depends on two
features: (i) the transition frequency across shape classes and (ii) the precision of the saltire
shapes. Our presentation continues to be restricted to the quarterly case, although it is straight
forward to generalize to other periodicities, unlike the phase-plot visualization.

Concerning the transition frequency, it is convenient to start from the case that the data-
generating process is a seasonal random walk. The event of a shape transition, for example

x1,t > x2,t, x1,t−1 < x2,t−1, (3)

with xi,j denoting the quarter i in year j, clearly is equivalent to

x1,t − x2,t > 0, x1,t−1 − x2,t−1 < 0. (4)

In an SRW, the quarters represent independent random walks. The difference between quarters
is then a random walk itself, so the above event is a zero crossing for the random walk x1,t−x2,t.

Some facts on the distribution of zero crossings in random walks are known from the literature
([4], [8]). In particular, [4] showed that the modified zero crossings count

K∗T (0) =
σ̂÷MAD

T−0.5
T∑
t=1

I(Xt−1 ≤ 0, Xt > 0) + I(Xt−1 > 0, Xt ≤ 0) (5)

is asymptotically distributed as |N(0, 1)|. Here, σ̂ denotes an estimate of the standard error of

the increments ∆Xt, whereas ÷MAD is an estimate of their absolute first moments. These two
correction factors are suggested to be formed empirically as

σ̂ =

Ã
T−1

T∑
t=1

(∆Xt)2, ÷MAD = T−1
T∑
t=1

|∆Xt|. (6)

[8] (GS) then generalized this result to trend-corrected random walks, for which the modified
crossings statistic converges to a Rayleigh distribution. In particular, however, GS showed that
replacing the sample variance in K∗T (0) by a long-range variance in the vein of variance-ratio
tests or the popular unit-root test by [14] succeeds in making the test robust to autocorrelation
in the increments under the null of a unit root. The main argument in their proof relies on a
result by [1]. Thus, the test that was strictly valid only for random walks in the version of [4]
becomes a test for the null of a first-order integrated process, in symbols I(1). Substituting the
quarter-to-quarter differences xi+1,t − xi,t, i = 1, 2, 3, for the random walk Xt yields a seasonal
variant of the crossings count

ζ1 =
σ̂÷MAD

T−0.5
T∑
t=2

I(Ξ(x1,t, . . . , x4,t) 6= Ξ(x1,t−1, . . . , x4,t−1)), (7)
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with t = 1, . . . , T denoting the years in the sample and Ξ(.) the function that classifies four
observations within a year into one of the eight seasonal shapes. In the modified statistic ζ̃1, the
estimate σ̂ is replaced by a long-run standard deviation estimate.

Concerning the precision of the saltire, we form a second nonparametric test statistic ζ2

from the median distance between observations in the (i, j) bin and the saltire form. We use the
Euclidean the distance of the absolute point (|x̃t−1|, |x̃t|) and the 45 degree line, if x̃ denotes a
properly normalized observation relative to the center of the corresponding bin, i.e. the maximum
difference among adjacent quarters within a year t. This distance, in turn, equals 2−0.5∆|x̃t| in
the diagonal (i, i) bins, and its average should converge to an absolute moment of a distribution
of increments.

We note, however, that the bins have been scaled to minima and maxima. Such maxima are
known to expand at the rate of T 0.5 for random walks and at a much slower rate of log T for
stationary Gaussian variables. Thus, the average of the increments in a scaled world approaches
zero at a rate of T−0.5 for random walks, while its properties depend on characteristics of
the data-generation process including error distributions for stationary variables. Accordingly,
the nonparametric test statistic ζ2 is defined as T 0.5 multiplied by the medium distance of
observations and the saltire, i.e.

ζ2 = T 0.5med||x̃t| − |x̃t−1||/
√

2 (8)

We opt for the median rather than the mean for the sake of distributional robustness. A closely
related nonparametric unit-root test statistic was suggested by [2] (AES) who used the count of
new records in the time series. We note that the range is proportional to the number of records.

Unfortunately, a robustification step comparable to the correction by GS for the original
suggestion by [4] is not available for the AES test. This property is rooted deeply in the
construction principle of the tests. The level-crossings count is sensitive to moments of the
generating distribution, which are then adjusted for by a correction factor, and this factor is in
turn robustified in the GS version. In the AES test, by contrast, the adjustment term cancels
out, and the distribution of the test statistic is independent of the moment properties of the
generating law for pure random walks.

It pays to reconsider the shapes that we encountered by simulation in Section 2 in the light
of this discussion. For an SRW, the saltire shape is approximated as the sample size increases,
with the average distance from the saltire decreasing. For a non-seasonal random walk, both the
horizontal and vertical directions of the bins expand at the rate T 0.5, and the bins are densely
filled. For white noise, both directions expand slowly, and the bins are filled in a circular fashion,
with points in the corners remaining rare.

In various simulation experiments using generating processes with and without seasonal unit
roots, we found the discriminatory power of the two test statistics to be quite satisfactory. We
also found that dependence between ζ1 and ζ2 is not too strong, particularly under the non-unit
root alternative, so it pays to use both of them jointly.

Briefly consider a time-series plot of a trajectory of, for example, a random walk. The
statistic ζ1 increases at every zero crossing, and ζ2 changes at every new extremum. This may
insinuate that random-walk realizations with many crossings and thus a large value of ζ1 have
a slower expansion rate and thus larger ζ2. For very small samples, the two test statistics are
indeed correlated by construction. This strong dependence soon disappears as the sample size
increases.
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The statistics ζ1 and ζ2 process different information. Whereas good or even optimal com-
binations of individual tests can be constructed by the Bonferroni principle, we here insist on
the convenient simplicity of a combination that is evaluated quickly. A linear combination such
as ζ1 + cζ2 may have higher power than individual tests. Whereas relative scales would suggest
c = 7, we opted for the larger value of c = 17 that was suggested by various comparative power
simulations. From these simulations at varying sample sizes, we show two exemplary plots in
Figure 2. Test power is seen to increase rapidly as c approaches values around c = 17 from below
and to decrease slowly as c increases further. The power maxima appear as a nearly straight line
and recommend a constant value of c. Lower optimal c, however, are sometimes found close to
the null as well as at a large distance from the null, where the ζ2 test is often unable to achieve
power close to one.
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Figure 2: Ratios of test power along generated models xt = φxt−1 + εt, for φ = 1 − φ̃ and φ̃
on the y–axis. Tests are based on linear combinations ζ1 + cζ2, with c on the x–axis. For given
φ̃, power is divided by the maximum, such that a value of 1 on the z–axis indicates maximum
power. Left graph for T = 100, right graph for T = 400.

In the following, the statistics

ζ =
ζ1 + 17 ζ2

18
, ζ̃ =

ζ̃1 + 17 ζ2

18
(9)

will be in focus. Table 1 provides some corresponding quantiles.

Based on the simulated quantiles, Table 2 adds some simple power simulations. Test power
is investigated along the ray through the alternative

xt = φxt−4 + εt, (10)

with φ varying over 0.9 + j ∗ 0.01 with j = 0, . . . , 10, such that j = 10 represents the null and
j = 0 implies φ = 0.9. This rather crude simulation design corresponds to the very basic seasonal
unit-root test that was suggested originally by [7], which is rarely used nowadays. Nonetheless,
power turns out to be surprisingly good, although lower than for the parametric HEGY test or
the test by [7], which was constructed particularly along the same ray and has the best power
here. The combined version ζ = ζ1+17ζ2

18 dominates the single tests convincingly, sometimes
excepting an area close to the null, where ζ2 alone shows a slight advantage. On the other hand,
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Table 1: Significance points for the nonparametric tests.

T = 100 T = 400 T = 4000
1% 5% 10% 1% 5% 10% 1% 5% 10%

ζ1 2.10 1.53 1.27 2.12 1.55 1.29 2.15 1.58 1.29
ζ2 0.25 0.20 0.17 0.23 0.19 0.17 0.22 0.18 0.16

ζ1+17ζ2
18 0.32 0.25 0.22 0.31 0.25 0.22 0.31 0.24 0.21

ζ̃1 1.66 1.18 0.94 1.93 1.37 1.11 2.06 1.49 1.20
ζ̃1+17ζ2

18 0.29 0.22 0.19 0.30 0.22 0.19 0.29 0.23 0.19

Table 2: Power properties of the nonparametric tests.

T = 100 T = 400
φ ζ1 ζ2 ζ ζ1 ζ2 ζ

1.00 0.050 0.050 0.050 0.050 0.050 0.050
0.99 0.074 0.083 0.086 0.184 0.268 0.267
0.98 0.102 0.121 0.131 0.367 0.575 0.577
0.97 0.140 0.171 0.188 0.548 0.798 0.806
0.96 0.183 0.229 0.253 0.712 0.914 0.927
0.95 0.229 0.283 0.319 0.825 0.965 0.978
0.94 0.279 0.339 0.388 0.895 0.986 0.993
0.93 0.326 0.394 0.452 0.940 0.995 0.998
0.92 0.377 0.446 0.520 0.967 0.997 0.999
0.91 0.427 0.497 0.585 0.984 0.999 1.000
0.90 0.473 0.544 0.643 0.992 1.000 1.000

Generating model is xt = φxt−4 + εt. Significance level is 5%. φ = 1 is the null.

ζ2 shows unsatisfactory performance in small samples at a comparatively large distance from
the null. Also [12] and [13] report low power in many directions for a non-parametric test that
is similar to ζ2.

Table 2 evaluates the power for the original statistics ζ1 and ζ and not for the adjusted
statistics ζ̃1 and ζ̃. Not much is lost, however, in this simple design if the adjustment is applied.
The situation changes when autocorrelation is present under the null.

A known problem with both original nonparametric unit-root tests ζ1 and ζ2 and thus also
with the combined ζ is that the statistical properties are sensitive to deviations from the pure
SRW walk model under the null. The test becomes non-similar. Our experiments (unreported
due to lack of space) confirm this problem. If the SRW generating mechanism is replaced by
xt = xt−4+ut with ut stable autoregressive, the test becomes undersized for negative and positive
autocorrelation, with the size bias persisting at slightly larger samples. Under the alternative,
the size bias entails lower power.

Implementing the long-run variance correction reduces the distortion problems. The com-
ponent test based on ζ2 cannot be adjusted, thus the combined test inherits problems from its
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Figure 3: Power function for T = 100 and T = 400. Black: ζ̃1; red: ζ2; green: ζ̃. Light blue
dashes: a HEGY variant. Generating model is xt = φxt−4 + ut, ut = θut−1 + εt, θ = 0.25j, j =
−3, . . . , 3.

typically strongly weighted component. The adjusted portion ζ̃1, however, succeeds in removing
a good part of the distortion. Another feature, however, makes Figure 3 even more interesting.
In these simulations, we ran control simulations based on the traditional parametric HEGY test.
Actually, we considered two versions of the HEGY test: first, an F test for the seasonal unit
roots at −1 and at ±i; second, an F test for the same seasonal unit roots, although under the
incorrect assumption of a unit root at +1. The power performance of both HEGY versions is
very similar. The HEGY test is clearly beaten by the nonparametric tests under investigation.

The power performance of the HEGY test agrees well with literature sources, thus the differ-
ence between the tests is not due to specific problems of the parametric tests but rather to the
effect of additional power of range expansion tests that was also emphasized by AES. We note
that the dominance of the test ζ̃ shrinks as T increases, and the HEGY test actually dominates
at a larger distance from the null. The effect appears to be at odds with the usual statistical
test construction that is based on asymptotic optimization, and it is difficult to interpret. A
tentative explanation may be that the nonparametric tests concentrate on the true classification
features of interest, such as zero crossings and range expansion, while the parametric tests are
limited by the precision of the regression estimates.

4 Empirical applications

Whereas the simulated charts are mostly based on relatively large samples, empirical data sets
typically are much shorter, whether they are taken from economics or from other disciplines.

Austrian industrial production is a quarterly variable that is available from 1957. The left
panel of Figure 4 shows the seasonal jitter plot for the years 1957–2011. The seasonal pattern
shows some variation, but it usually returns to its basic shape quickly. A blurred saltire forms
in bin # 5, which represents the activity troughs during summer vacation and in the cold start
of the year, with rising activity during the second and fourth quarters. The values of the test
statistics are (ζ̃1, ζ2, ζ̃) = (0.27, 0.17, 0.17). These values are in the non-rejection region, maybe
excepting ζ2 which provides weak evidence for rejection, as it is close to the 10% quantile. Similar
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results are obtained for other aggregate economic variables with strong seasonality, such as for
example unemployment rates.
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Figure 4: Jittered phase plot for Austrian industrial production 1957–2011, and for temperature
at Heathrow airport 1984-2011, quarterly observations.

The right panel of Figure 4 shows the jitter plot for air temperature at Heathrow. This vari-
able provides an example for purely deterministic seasonality with almost negligible dependence
among seasonal patterns in adjacent years. Four symmetric spots in the bin # 6 represent the
repetitive cycle of rise-rise-fall that is observed annually with no exception. Here, the values of
the test statistics are (ζ̃1, ζ2, ζ̃) = (0, 0.21, 0.20), with ζ2 playing a key role in rejecting seasonal
unit roots.

It is of some interest to compare these test results to the outcome of traditional parametric
tests for seasonal unit roots. For example, the most straightforward test of that type is the
HEGY test due to [11], which rejects the unit root null for both considered variables. HEGY
results vary slightly across lag-order specifications for augmenting terms.

5 Summary and conclusion

We demonstrate that the suggested nonparametric combination test tends to dominate its con-
stituent component tests, and the suggested weight appears to be well chosen. Surprisingly, in
some designs the test even dominates parametric tests for seasonal unit roots. Our results are
in line with AES, whose simulations are quite supportive for their idea in traditional unit-root
situations, as their RUR test often outperforms standard tests, such as the Dickey-Fuller test.
Our results are less in line with the simulations of [4] who delineate a gloomy picture for the
power of their nonparametric tests, even if combined with traditional tests.

We are also able to demonstrate that the visualization by jittered phase plots is an appealing
and potentially helpful tool in the investigation of the nature of seasonality in time series. The
slanted cross or saltire appears to be a well recognizable shape, and deviations from the pure
form are easily spotted by the human eye.

A main problem with seasonality remains: good discrimination requires samples that are
slightly larger than those that are typically available. Really long time series are needed in order
to discriminate safely the case of pattern reversion from the case of episodic pattern change.
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Abstract. A basic assumption of many statistical models is that the same set of model
parameters holds for the entire sample. However, different parameters may hold in subgroups
(or clusters) which may or may not be explained by additional covariates. Finite mixture models
are a common technique for detecting such clusters and additional covariates (if available) can
be included as concomitant variables. Another approach that relies on covariates for detecting
the clusters are model-based trees. These recursively partition the data by splits along the
covariates and fit one model for each of the resulting subgroups. Both approaches are presented
in a unifying framework and their relative (dis)advantages for (a) detecting the presence of
clusters and (b) recovering the grouping structure are assessed in a simulation study, varying
both the parameter differences between the clusters and their association with the covariates.

Keywords. finite mixture model, model-based clustering, model-based recursive partitioning

1 Introduction

A basic assumption of many statistical models is that its set of parameters applies to all ob-
servations. However, subgroups may exist for which different sets of parameters hold, e.g., the
relationship between some response and regressors might be different for younger and older
individuals. If the breakpoint which separates “younger” and “older” were known, parameter
stability can simply be assessed by checking for parameter differences between these two specific
subgroups. However, if the breakpoint is unknown or if there is a smooth transition between
“young” and “old”, the subgroups can be still be detected in a data-driven way. Either a finite
mixture model [5] can be employed, possibly using age as a concomitant variable [2] to model
smooth transitions between clusters. Alternatively, model-based recursive partitioning [9] can
capture the difference by one or more splits in the partitioning variable age, yielding a tree
structure (similar to classification and regression trees, [1]) where each leaf is associated with a
parametric model.



380 To Split or to Mix? Tree vs. Mixture Models for Detecting Subgroups

Given their shared goal of establishing subgroups to capture parameter instabilities across
subgroups, how do these mixture models and model-based trees compare? A unifying framework
for both methods is presented and their relative (dis)advantages for (a) detecting the presence
of clusters with different parameters and (b) recovering the underlying grouping structure are
assessed in a simulation study.

2 Theory

Although both mixture models and model-based trees can be applied to general parametric mod-
els estimated by means of the maximum likelihood (ML) principle, we focus on linear regression
here because it is the most simple and commonly applied model:

yi = x>i β + εi (1)

with response yi, regressor vector xi, and errors εi for observations i = 1, . . . , n. The unknown
vector of regression coefficients β can be estimated by least squares, which yields the same
estimates as ML estimation under the assumption of independent normal errors with variance
σ2. In the latter case the log-likelihood is given by

∑n
i=1 log φ(yi;x

>
i β, σ

2) where φ(·) denotes
the probability density function of the normal distribution.

Within this framework, both trees and mixture models can assess whether the same coefficient
vector β holds for all n observations and, if parameter stability is violated, simultaneously find
clusters/subgroups and estimate the associated cluster-specific coefficients. Further covariates
zi can be used as concomitant or partitioning variables, respectively, to establish these clusters.

Finite mixture models

Finite mixture models assume that the data stem from K different subgroups with unknown
subgroup membership and subgroup-specific parameters β(k) and σ(k) (k = 1, . . . ,K). The full
mixture model is a weighted sum over these separate models (or components):

f(yi;xi, zi, β(1), σ(1), . . . , β(K), σ(K)) =
K∑
k=1

πk(zi) · φ(yi;x
>
i β(k), σ

2
(k)). (2)

The component weights may depend on the additional covariates zi through a concomitant
variable model [2], typically a multinomial logit model

πk(zi) =
exp(z>i α(k))∑K
g=1 exp(z>i α(g))

(3)

with component-specific coefficients α(k). For identifiability, one group (typically the first) is
used as a reference group and the coefficients of this group are set to zero: α(1) = 0. This
also includes the special case without concomitant variables, where zi = 1 is just an intercept
yielding component-specific weights πk(zi) = π(k).

Given the number of subgroups K, all parameters in the mixture model are typically esti-
mated simultaneously by ML using the expectation-maximization (EM) algorithm. To choose
the number of subgroups K, the mixture model is typically fitted for K = 1, 2, . . . and then
the best-fitting model is selected by some information criterion. Here, we employ the Bayesian
Information Criterion (BIC).
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Model-based recursive partitioning

Model-based recursive partitioning [9] can also detect subgroups for which different model pa-
rameters hold. These subgroups are separated by sample splits in the covariates zi used for
partitioning. The algorithm performs the following steps:

1. Estimate the model parameters in the current subgroup.

2. Test parameter stability along each partitioning variable zij .

3. If any instability is found, split the sample along the variable zij∗ with the highest insta-
bility. Choose the breakpoint with the highest improvement in model fit.

4. Repeat 2–4 on the resulting subsamples until no further instability is found.

Here, we only briefly outline how these parameter instability tests work and refer to [8] for the
theoretical details. The basic idea is that the scores, i.e., the derivative of log φ(·) with respect to
the parameters, evaluated at the estimated coefficients behave similar to least squares residuals:
They sum to zero and if the model fits well they should fluctuate randomly around zero. However,
if the parameters change along one of the partitioning variables zij , there should be systematic
departures from zero. Such departures along a covariate can be captured by a cumulative sum
of the scores (ordered by the covariate) and aggregated to a test statistic, e.g., summing the
absolute or squared cumulative deviations. Summing the scores along a categorical partitioning
variable then leads to a statistic that has an asymptotic χ2 distribution while aggregation along
numeric partitioning variables can be done in a way that yields a maximally-selected score (or
Lagrange multiplier) test. In either case, the p-value pj can be obtained for each ordering
along zij without having to reestimate the model. The p-values are then Bonferroni-adjusted to
account for testing along multiple orderings and partitioning continues until there is no further
significant instability (here at the 5% level).

Since each split can be expressed through an indicator function I(·) (for going left or right),
each branch of the tree can be represented as a product of such indicator functions. Therefore,
the model-based tree induced by recursive partitioning is in fact also a model of type (2), albeit
with rather different weights:

πk(zi) =
Jk∏
j=1

I(s(j|k) · zi(j|k) > b(j|k)) (4)

where z(j|k) denotes the j-th partitioning variable for terminal node k, b(j|k) is the associated
breakpoint, s(j|k) ∈ {−1, 1} the sign (signaling splitting to the left or right), and Jk the number
of splits leading up to node k.

Differences and similarities

While both methods are based on the same linear regression model and aim at detecting sub-
groups with stable parameters, certain differences arise:

• Because K is fixed for each mixture model, it is based on model selection via an information
criterion whereas the selection of K through a tree is based on significance tests.
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• Covariates z are optional for mixture models and latent subgroups can be estimated. For
a tree, those covariates are required. Furthermore, if no covariates associated with the
subgroups are available, the groups cannot be detected.

• The concomitant model (3) assumes a smooth, monotonic transition between subgroups.
The sample splits of a tree (4) represent abrupt shifts, multiple splits in a covariate are
able to represent a non-monotonic transition. While variable selection is inherent to trees,
it requires an additional step for mixtures models.

• Trees yield a hard clustering and mixtures a probabilistic clustering of the observations.

To investigate how the aforementioned differences between the two methods affect their
ability to detect parameter instability, a simulation study is conducted, which is described in
the next section.

3 Simulation study

To determine how well mixture models and model-based trees detect parameter instability, two
basic questions are asked. First, is any instability found at all? Second, if so, are the correct
subgroups recovered? These two aspects are potentially influenced by several factors: How does
the relationship between the response y and the regressors x differ between the subgroups and
how strongly does it differ? If there are any additional covariates z available, how and how
strongly are those covariates connected to the subgroups? In general, we expect the following:

• Given the covariates z are associated strongly enough with the subgroups, trees are able to
detect smaller differences in β(k) than mixtures because they employ a significance test for
each parameter rather than an information criterion for full sets of parameters. In contrast,
mixtures are more suitable to detect subgroups if they are only loosely associated with the
covariates z, as long as the differences in β(k) are strong enough.

• If the association between covariates and subgroups is smooth and monotonic, mixtures
are more suitable to detect the subgroups whereas trees are more suitable if the association
is characterized by abrupt shifts and possibly non-monotonic.

• If several covariates determine the subgroups simultaneously, the mixture is more suitable,
whereas trees are more suitable if z includes several noise variables unconnected to the
subgroups.

Motivated by these considerations, the simulation design is explained in the next section.

Simulation design

A single regressor x and four additional covariates z1, . . . , z4 are drawn from a uniform dis-
tribution on [−1, 1]. The response y is computed with errors drawn from a standard normal
distribution. Two subgroups of equal size are simulated. How they differ is governed by the
form of β – either in their intercept, slope, or both – and the magnitude of their differences is
governed by the simulation parameter κ (Table 1). How the covariates are connected to the
subgroups is governed by the form of πk(z) – either via a logistic or a step function – and the
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Label Details

Coefficients intercept β(1) = (κ, 0)> β(2) = (−κ, 0)>

slope β(1) = (0, κ)> β(2) = (0,−κ)>

both β(1) = (κ,−κ)> β(2) = (−κ, κ)>

Covariates axis1 logistic with α(2) = (exp(ν), 0, 0, 0)>

diagonal logistic with α(2) = (exp(ν),− exp(ν), 0, 0)>

double step tree with π2(z) = I(z1 > −0.5)I(z1 < 0.5)

Table 1: Simulation scenarios for regression coefficients and covariates.

strength of this association is governed by simulation parameter ν. Here, three scenarios for
πk(z) are considered: a smooth logistic transition along z1, a smooth logistic transition along
z1 and z2 simultaneously, and a sharp transition along z1 with two breakpoints (labeled axis1,
diagonal, and double step, respectively). The corresponding parameter vector of the logistic
function and the breakpoints can be found in Table 1. The simulation parameters cover the
following ranges: κ ∈ {0, 0.05, . . . , 1} and ν ∈ {−1,−0.5, . . . , 2}. Note that β(1) and β(2) are
identical if κ = 0 and thus only one subgroup is simulated. Each coefficient scenario is combined
with every covariate scenario and the sample size n ∈ {200, 500, 1000} is varied. The covariates
z3 and z4 are always noise variables and thus either included or excluded in z. For each of these
conditions, 500 datasets are drawn and three methods applied: a model-based tree, a plain mix-
ture, and a mixture with concomitant variables. Both mixtures are fitted with K = {1, . . . , 4}
and K̂ selected via BIC. For all computations, the R system for statistical computing [7] is used
along with the add-on packages partykit [4] and flexmix [3].

Outcome assessment

To address the first question of whether or not any instability is found, the hit rate is computed:
This is the rate of selecting more than one subgroup – this corresponds to splitting at least
once for a tree and to selecting K̂ > 1 for a mixture. To address the second question if the
right subgroups are found, the estimated clustering is compared to the true clustering. Many
external cluster indices such as the Rand index favor a “perfect match”, i.e., splitting one true
subgroup into several estimated subgroups (as might be unavoidable in a tree) is penalized by
the index. Cramér’s coefficient is invariant against such departures from a perfect match [6] and
thus employed here.

Simulation results

Exemplary results are shown for the scenario with differences in both coefficients with n = 200
observations, without the noise variables z3 and z4, and the double step scenario as well as
the logistic scenarios axis1 and diagonal with three levels ν = {−1, 0, 1} of separation between
subgroups. For the double step scenario, the hit rate for detecting instability is depicted in the
left panel of Figure 1. The tree clearly outperforms both mixtures. For the logistic scenarios
axis1 and diagonal, the hit rates are depicted in Figure 2. If the covariates are only weakly
associated with the subgroups (ν = −1, left column), the tree is unable to detect the subgroups,
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Parameter instability (κ)
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Figure 1: Hit Rate (left panel) and Cramér’s coefficient (right panel) for the double step covariate
scenario. Line type: dashed for tree, solid for mixture, dot-dashed for plain mixture.

regardless of how strongly they differ in their regression coefficients. Both mixtures are able
to detect instability beyond a threshold of κ = 0.7 and reach hit rates of almost 1. For a
medium association (ν = 0), the tree is able to detect smaller differences in the regression
coefficients than the mixtures but for larger differences both mixtures equally outperform the
tree. If the association is strong (ν = 1), the tree outperforms both mixtures. The mixture
with concomitants in turn outperforms the plain mixture which is per definition invariant to
(changes in) the association between covariates and subgroups. Interestingly, the tree performs
rather similarly for the scenarios axis1 and diagonal, indicating that approximation through
sequential splits works rather well. For κ = 0 only one true subgroup exists and mixtures nearly
always select K̂ = 1 while trees incorrectly select K̂ > 1 subgroups only in less than 5% of the
cases (which is the significance level employed in the parameter stability tests).

The corresponding recovery of the subgroups as measured by Cramér’s coefficient is depicted
in the right panel of Figure 1 for the double step scenario. Similar to the detection of instability,
the tree outperforms both mixtures. For the logistic scenarios, the Cramér’s coefficients are
shown in Figure 3. For low and medium levels of association between covariates and subgroups,
both mixtures outperform the tree for stronger instabilities. For a medium level of association
(ν = 0) and small instabilities, the tree’s advantage in detecting instabilities translates into an
advantage of also uncovering the correct subgroups. However for a stronger association (ν = 1),
the mixture with concomitants recovers the true subgroups better than the other two methods
once the hit rates are similar across methods. Despite its good hit rates, the tree never exceeds
a Cramér’s coefficient of about 0.6. This is the case regardless of how strong the regression
coefficients differ, indicating that the tree’s ability to uncover the correct subgroups is limited
by the (relative) weakness of association between covariates and subgroups. For an even stronger
association (ν > 1, not depicted here), the tree recovers the subgroups as well as the concomitant
mixture in the axis1 scenario but fails to do so in the diagonal scenario.

For larger numbers of observations (n = 500 or 1000) and the other two coefficients sce-
narios (intercept and slope), results are similar to those shown here, just being generally more
pronounced. Including two additional noise variables z3 and z4 affected both the tree and the
concomitant mixture, with hit rates dropping slightly stronger for the mixture.
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Figure 2: Hit Rate for the logistic covariate scenarios for three levels of ν ∈ {−1, 0, 1}.
Line type: dashed for tree, solid for mixture, dot-dashed for plain mixture.
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Figure 3: Cramér’s coefficient for the logistic covariate scenarios for three levels of ν ∈ {−1, 0, 1}.
Line type: dashed for tree, solid for mixture, dot-dashed for plain mixture.
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4 Discussion

Both methods are suitable to detect parameter instability (or lack thereof) and recover the
subgroups (if any). Which method is more suitable depends largely on the association between
the subgroups and covariates as well as how strongly the subgroups differ in their respective
parameter vectors. If the association between subgroups and covariates is strong, the tree is
able to detect smaller differences in the parameters than the mixtures. The approximation of
a smooth transition between classes through sample splits works rather well. In addition, the
tree can represent a non-monotonic association which the mixtures cannot. If the association
between subgroups and covariates is weak but the difference in the parameters reasonably strong,
mixture models are more suitable than the tree. Mixture models are also capable of detecting
latent subgroups without any association to covariates. It would be interesting to investigate
whether these relationships also apply to situations with more subgroups and mixtures with
higher numbers of components. Further questions for further research include the assessment of
subgroup recovery on a test set rather than in-sample and variable selection for the concomitant
models of mixtures, which could also be accomplished with an information criterion.

In summary, both methods have their relative advantages and thus are more suitable to detect
parameter instability and uncover subgroups in different situations. As the exact structure is
unknown in practice, we suggest using both methods to gain better insight into the data.
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Abstract. In this paper we consider the implementation of propensity score matching for clus-
tered data. Different approaches to reduce bias due to cluster level confounders are considered:
matching within clusters and random or fixed effects models for the estimation of the propensity
score. All the methods are illustrated with an application to the estimation of the effect of
caesarean section on the Apgar score using birth register data from Sardinia hospitals.

Keywords. Causal inference, Propensity score, Matching, Multilevel data, Caesarean section,
Apgar score.

1 Introduction

Methods based on the propensity score are widely used in many fields to estimate causal effects
with observational data. When treatment assignment is not randomized but it is reasonable
to assume that selection is on observables, matching (as well as weighting and stratification)
methods are used to adjust for different distributions of the observed characteristics in the
treated and the control groups [7]. Apart from few exceptions [2, 8, 11] these methods have been
considered only for unstructured data. However, in many applications data show a hierarchical
structure (e.g., students nested into schools, patients nested into hospitals, individuals nested
into geographical areas). We consider situations where both individual and cluster-level (e.g.,
hospital) characteristics can influence both treatment intake and the outcome. In these contexts
ignoring cluster-level confounding factors would introduce a bias.

In this paper, we consider different approaches to take into account the hierarchical structure
of the data with the aim of reducing the bias due to group-level characteristics. These methods
are particularly useful when it is not possible to measure all cluster-level confounders. To
illustrate the methods, we consider estimating the effect of caesarian section on the Apgar score.
In our application, the relevant structure is represented by a hierarchy of 2 levels (individuals
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nested into hospitals) and we will consider this type of data structure in the following. However,
the approaches we consider can be easily adapted to more complex structures.

Propensity score matching with clustered data

Suppose we have a two-level data structure where N micro units at the first level, indexed
by i (i = 1, 2, ..., nj), are nested in J macro units at the second level (clusters), indexed by j
(j = 1, 2, ..., J). We consider a binary treatment administered at the individual level, T , and an
outcome variable, Y also measured at the individual level. Pre-treatment variables can be first
(X) or second level (Z) variables.

Under the potential outcome framework, let Yij(t) be the potential outcome if unit ij was
assigned to treatment t, t ∈ {0, 1}. An individual causal effect is a comparison of Yij(1) with
Yij(0), yet only one of the two potential outcomes is observed depending on the value of Tij .
Usually, the Average Treatment effect on the Treated (ATT) is considered as an interesting
summary of individual causal effects: ATT = E(Yij(1)− Yij(0) |Tij = 1).

To identify the ATT with observational data, the following assumptions are often invoked:

• SUTVA: If T = T ′ then Y (T ) = Y (T ′) for all T, T ′ in {0, 1}N

• Unconfoundedness: Y (1), Y (0) ⊥ T |(X,Z);

• Overlap: 0 < P (T = 1 | (X,Z)) < 1.

The Stable Unit Treatment Value Assumption (SUTVA, [9]) requires that potential outcomes
for a unit are not affected by the treatment received by other units, and there are no hidden
versions of the treatment. Unconfoundedness asserts that the probability of assignment to
a treatment does not depend on the potential outcomes conditional on observed covariates
[9]. Unconfoundedness essentially assumes that within subpopulations defined by values of the
covariates, we have random assignment of the treatment; it rules out the role of unobserved
variables and therefore is often referred to also as selection on observables [7].

Rosenbaum and Rubin [9] showed that under the previous assumptions, adjustment on the
propensity score eliminates bias due to observed confounders. The propensity score, e, is defined
for each unit as the probability to receive the treatment conditional given its covariate values.
In our setting, assuming that all covariates are observed we have eij = Pr(Tij = 1|(Xij , Zj)).
The propensity score is a one-dimensional summary of the multidimensional set of covariates,
such that when the propensity score is balanced across the treatment and control groups, the
distribution of all covariates are balanced in expectation across the two groups. In this way
the problem of adjusting for a multivariate set of observed characteristics reduces to adjusting
for the one-dimensional propensity score and this can be done using several Propensity Score
Matching (PSM) algorithms that, for each given unit, determine a set of units in the opposite
treatment condition with similar value for the propensity score.

In observational studies the propensity score is not known and must be estimated from the
data, usually using logit or probit models. Obviously, an incorrectly estimated propensity score
may lose its balancing property. More importantly, if one or more variables affecting the selection
into treatment and potential outcomes are not observed, then unconfoundedness is violated and
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ATT estimators based on PSM will be biased. In fact, PSM can only balance variables used in
the propensity score model. In the following we shall assume that we have good measurement
on all individual level confounders, X, but we may have no information on all or some of the
second-level confounders, Z. We consider different approaches to implement PSM with a 2-level
data structure. Two groups of strategies can be adopted in order to take into account the
hierarchical structure of the data: implementing the matching within clusters; using a model
for the estimation of the propensity score that takes the hierarchical structure explicitly into
account. Therefore, the approaches we compare are as follows:

A Single-level propensity score; matching on the pooled dataset;

B Single-level propensity score; matching only within-clusters;

C Single-level propensity score; preferential within-cluster matching;

D Random-effect propensity score; matching on the pooled dataset;

E Fixed-effect propensity score; matching on the pooled dataset.

Approach A ignores completely the hierarchical structure. In this case, if we do not include
all relevant confounders at the second level in the propensity score and obtain a good balance
on all of them, our ATT estimator based on the PSM will be biased. Approach B deals with
this problem by matching units within clusters only. This automatically guarantees that all
cluster-level variables (measured and unmeasured) are perfectly balanced. This can come to a
cost. Control units to be matched with treated units are only searched within the same cluster.
In this way it could be that we lose some good match and so the balancing of individual level
variables could be worse. Moreover, if we impose a caliper it could be that we do not find a
control matched unit that we would find in other clusters. So, an additional problem could be
losing some treated units.

To avoid these problems and combine the benefits of approaches A and B, approach C starts
by searching control units within cluster. If none is found, control units are searched in other
clusters. This approach improves the balancing of cluster level variables with respect to approach
A and avoids the lost of units of approach B.

In alternative to exploiting the hierarchical structure in the implementation of the matching,
approaches D and E take it into account when modelling the propensity score. In particular,
approach D and E use a random or fixed effect, respectively, to represent unmeasured cluster
level variables. Arpino and Mealli [2] and Thoemmes and West [11] showed that PSM using
random or fixed effects models are able to reduce the bias of ATT due to unmeasured cluster
level variables. However, our simulation exercise is more realistic because it is inspired by a real
case studies, it involves a larger number of individual level variables and strongly unbalanced
dataset.

Estimating the effect of caesarian section on Apgar score

Apart from individual level variables, the literature suggested the relevance of hospital level
factors both on the decision of taking a medical treatment and on the medical outcomes for
several procedures. In other words, these cluster level variables may act as confounders and so
the researcher should adjust the analysis accordingly. For example, Caceras et al. [4] and Bragg
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et al. [3] indirectly measured the impact of hospital variables on the likelihood of a caesarean
delivery. Similarly, since the work of Hughes et al. [6] it is clear that these variables may also
affect the quality of the outcome. When we refer to unobserved variables at the hospital level
we are referring to variables whose role has been proved or conjectured by previous studies; for
example variables which do not vary at the hospital level for a reasonably long period of time,
like obstetrician practice, physicianÕs preferences and guidelines promoting or restricting the
liberal use of caesarean sections. Clearly, it is not always possible to observe all hospital level
factors that contribute to the decision of operating a caesarean section and may also impact
on the infantÕs health as measured by the Apgar score. To this end we adopt the strategies
detailed in the previous section.

2 Data

The data set we consider contains information on deliveries occurred in the 22 hospitals of the
Italian region of Sardinia in 2010 and 2011. The source is the official form on the birth event
(known as CedAP) filled by physicians after the birth and accounting for all hospitalized births in
the specified period. The form is divided in three parts containing sociodemographic information
on the mother, the pregnancy and the infant. From the initial population of 23,925 observations
we extracted the subset of non-complicated pregnancies in order to better isolate the effect of the
caesarian section on the target variable. In particular, we selected nulliparous women at 32 or
more weeks of gestational age with a singleton and living infant in vertex (head-down) position,
without birth anomalies. We further restrict the sample to mothers aged between 15 and 44. The
subset of non-complicated pregnancies is widely used in observational studies related to cesarean
section, for example [3, 4] make analogous variable selections, but the former study also limits
the sample to hospitals with almost 500 deliveries per year. The selected subset contains 14,757
cases clustered in 20 hospitals (the observations of two hospitals were removed since after the
selection they contained only treated or untreated women). Proportions of caesarean sections
across hospitals vary from a minimum of 0.11 to a maximum of 0.64 with an average of 0.35 (see
Table 1). We focus on the 5-minute Apgar score as the outcome variable. This score is a simple
and widely established indicator of the infantÕs health. It is well known that low Apgar scores
are strongly associated with high mortality rates [1]. In our sample the proportion of low (< 7)
scores is 0.0064. The score distribution is highly skewed with an average score of 9.54.

We built the propensity score model for the probability of caesarean section relying on a set
of clinical (X) and social (Z) variables that proved significant in previous studies. In the first
group of predictor we have infant weight, motherÕs gestational age, induction of labour and
pregnancy related pathologies. In the second group we have socio-demographic information like
maternal age and maternal education

3 Empirical Results

We start by reporting in Table 2 the mean differences of covariates across treated and untreated
women for each balancing strategies. The last row of the table averages the (absolute) differences
over all covariates and it known as the standardized bias (ASAM), an overall measure of covari-
ate balance. We report the balance before matching and compare it with the balance we obtain
with approaches A, B, C, D and E. Several variables showed a standardized bias higher than
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Hospital N. births N. caesarean o/o caesarean o/oo low apgar
sections sections infants

1 2,532 1,166 46.0 16.5
2 1,788 623 34.8 2.7
3 1,687 540 32.0 5.3
4 1,473 632 42.9 14.2
5 1,253 410 32.7 0.7
6 1,197 428 35.7 3.3
7 980 240 24.4 2.0
8 875 238 27.2 5.7
9 529 190 35.9 3.7
10 434 135 31.1 6.9
11 403 164 40.6 0
12 396 117 29.5 7.5
13 351 134 38.1 8.5
14 266 74 27.8 7.5
15 208 99 47.5 9.6
16 191 122 63.8 10.4
17 103 40 38.8 9.7
18 50 9 18.0 20
19 32 13 40.6 0
20 9 1 11.1 0
Total 14,757 5,375
Mean 737.8 268.7 35.0 6.75

Table 1: Number of cesarean sections and low Apgar infants by hospital.

commonly accepted threshold (5% or 10%) representing substantive unbalance before matching.
All considered approaches were effective in reducing imbalance even if approaches B and C show
a slightly worse balance. However, these methods compared to method A take into account
possible hospital level confounding effects and give anyway acceptable balance of all individual
covariates. In particular, method B should be the preferred one given that it automatically
balances all hospital level factors but still guarantees good balance of individual observed con-
founders compared to the other approaches. Finally, approaches D and E give slightly better
ASAM than B and C for individual level covariates even if the balance of unobserved covariates
at the hospital level is not guaranteed as is in within cluster matching.

In Table 3 the total number of treated units dropped due to the caliper option is shown. Here
the caliper is 0.25 in standard deviation units so all treated units with a propensity score (e)
outside the range (e− 2σe, e+ 2σe), where σe indicates the standard deviation of the propensity
score, will be discarded. When matching within hospitals we keep the same criterion by using the
standard deviation of the clusters as the reference value. The matched dataset were obtained
using macros based on the Matching package [10].It is interesting noting that the number of
drops is not a constant proportion of the cluster size (not shown), as the covariate distribution
may vary across clusters.

In Table 4 we show the ATT estimate for unmatched (i.e. the raw effect prior to any
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Variable Before A B C D E

Maternal Age (years)

< 20 -14.942 -0.632 -0.552 -0.551 -0.936 -1.685

20-24 -12.461 1.254 2.278 2.269 1.593 1.223

25-29 -15.048 0.151 1.778 1.780 0.915 1.257

30-35 -6.119 -0.708 -0.854 -0.818 -2.297 0.288

> 35 26.672 0.128 -1.435 -1.461 1.035 -1.383

Maternal Education

Less than High School -2.534 0.239 -4.264 -4.360 -2.495 -3.746

High School 0.575 -1.359 1.794 1.1784 0.452 2.172

Graduate or more 2.802 -0.997 3.063 2.998 0.581 -0.235

Missing -0.056 0.828 0.418 0.688 2.849 2.910

Infant Weight (grams)

< 2500 21.498 0.524 0.413 0.402 0.620 -0.291

2500-4000 -23.880 -1.700 -2.542 -2.544 -0.120 0.193

>4000 9.138 2.187 3.782 3.856 1.160 0.104

Labor Induction -5.038 -1.547 0.393 0.437 -2.562 -2.813

Gestational Age

Preterm (< 37 weeks) 23.273 -1.789 -1.584 -1.622 -1.937 0.193

Early norm (37− 38 weeks) 26.950 0.400 -1.583 -1.486 -0.099 -1.933

Late norm (≥ 39 weeks) -40.737 0.798 2.522 2.495 1.367 1.697

Pathology during pregnancy∗ 20.756 0.353 4.225 4.088 2.616 1.447

ASAM 14.863 0.917 1.970 1.981 1.390 1.386

∗ This is a dichotomous variable set to 1 if one (or more) of the following diseases occurred during pregnancy:
Diabetes mellitus, Eclampsia, Hypertension, Placenta Previa.

Table 2: Mean differences of mothers characteristics before and after matching.

Hospital N. births N. caesarean N. drops N. drops N. drops N.drops N.drops
sections A B C D E

14,757 5,375 0 38 0 0 0

Table 3: Number of dropped treated units.

adjustment) and matched datasets. The effect of caesarean is consistently estimated to be
positive: it increases the risk of low Apgar score. It is worth noting that approaches B and C
that control for hospital factors show considerably lower estimates than approach A. This may
signal a possible overestimation of the effect of caesarean section when hospital confounding
effects associated to higher prevalence of this section mode are not taken into account. Similarly,
also multilevel and fixed effect propensity score models (approaches D and E) yield a pooled
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estimate lower than that of approach A. Clearly, approaches B-C and D-E have a higher mean
ASAM than approach A (1.197-1.198 and 1.390-1.386 versus 0.94) and this should be considered
the cost of balancing the potential confounders at the hospital level. is not surprising: indeed
these two matching strategies are expected to diverge when there is strong imbalance at the
hospital level but not globally.

Strategy Without A B C D E

Metrics match

Balance

Drops 0 0 38 0 0 0

ASAM 14.8 0.91 1.97 1.98 1.39 1.38

# of outcomes (every 1000 individuals)

in treated 10.9 10.9 11.0 10.9 10.9 10.9

in untreated 5.2 9.1 9.6 9.7 9.9 9.9

ATT 5.75 1.80 1.40 1.23 1.02 1.07

Table 4: Empirical results for unmatched and matched subsets (strategies A-E). For each strat-
egy: Drops is the number of dropped treated units; ASAM is the average standardized mean
difference in covariates values across treated and untreated units; ATT is the mean difference
between the number of outcomes in treated and untreated groups.

Simulation study

Motivated by previous empirical analysis we made a simulation experiment which illustrates
the implications of different matching strategies when there is unobserved confounding at the
cluster level. We followed a semi-empiric simulation strategy (see for example Huber et al. [5])
in the sense that we kept the original set of covariates and introduced an additional hospital
level variable (H) to analyze the confounding effect. The variable H is set up constant for
all observations in the same hospital. We then simulated the effect of a null, mild and strong
confounding effect of H on the balance and the ATT by increasing its coefficient (βH) in the
outcome and treatment equations.

Simulation results show that when there is no unobserved confounding (βH = 0) approaches
B-E yield a similar average balance, which is only slightly higher than the balance attained
in approach A, which is the best approach in this situation. However, when the size of the
confounding effect increases, approaches B-E yield considerably lower average balance and bias
than approach A and so should be preferred when unobserved confounding at the cluster level
is suspected.

4 Concluding remarks

In this paper we discuss the advantages and drawbacks of different techniques to implement
propensity score matching with clustered data. We apply these techniques to a population
dataset containing information on the birth event in a two year period, clustered in twenty
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hospitals. When clusters size are big as in our application and there is potential confounding
due to unobserved hospital level variables, an effective approach consists in implementing the
matching within clusters or starting with a within matching approach and then use the pooled
sample for remaining unmatched cases.
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Abstract. A control chart based on the quantile function to monitor the shape parameter of a
Weibull distribution is proposed and its performance is analyzed by Monte Carlo simulation. The
importance of monitoring the shape parameter even when the other parameters of the Weibull
distribution are assumed known is further enhanced, together with motivating examples.
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1 Introduction and Motivation

Even when the mean value and the standard deviation conform to the process specifications, we
can have quite different distributions in terms of skewness and kurtosis. As an example we refer
the Weibull distribution, with cumulative distribution function (cdf) given by

F (x) = 1− exp

Å
−
Å
x− λ
δ

ãαã
, x ≥ λ, (1)

with λ ∈ R, δ > 0 and α > 0, commonly used to model asymmetric positive data. The versatility
induced by the shape parameter α enables us to obtain different distributional shape, as can
be seen from its probability density function (pdf), f(x) = dF (x)/dx, represented in Figure 1
(left), for λ = 0 and δ = 1. This versatility has contributed for its prominent role in many
areas of research. In particular, the Weibull distribution is commonly used in many life testing
and reliability studies, allowing us to obtain a failure rate function h(x) := f(x)/(1 − F (x)) =
(α/δ) ((x− λ)/δ)α−1 , x ≥ λ, with different monotonic behavior, according to the value of α:
if α = 1 we have a constant failure rate (CFR) function, if α < 1 we obtain a decreasing
failure rate (DFR) function, and if α > 1 we have an increasing failure rate (IFR) function. In
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Economics and Social Sciences, the Weibull distribution has also been frequently used to describe
income distributions, to define inequality indexes of wealth, and as a survival model of firms,
for instance. But we can also find applications of the Weibull distribution in other areas, such
as in Health Sciences, Hydrology and Meteorology. It should also be noted that the coefficients
of skewness and kurtosis of the Weibull distribution depend only on the shape parameter, α.
The illustrative situations previously mentioned undoubtedly reveal the importance in detecting
possible changes in the shape parameter of the Weibull distribution.

Apart from the importance of the three-parameter Weibull distribution in several applica-
tions, even with the expense of higher difficulties in which concerns the parameter’s estimation
when the location parameter is unknown (see, for instance, [6], [25], [10]), we are going to fo-
cus on the most commonly used two-parameter Weibull distribution, with location at zero, and
cdf obtained from (1) by replacing λ by 0. In this case we have several possible and efficient
estimators for the scale and the shape parameters (see [11], [1], [2], [27], [13] and [14], among
others). In the literature several control charts associated with Weibull processes are also pro-
vided: among others, we refer control charts for monitoring the scale or the shape parameters
([24], [23], [22], [21]), and the percentiles ([16], [15], [3], [7]). Here we propose a new control
chart for the shape parameter based on the quantile function, along the lines of [4], although
the methodology used to define the chart can be extended to detect shifts in other parameters,
even associated with the three-parametric family. The paper is organized as follows. Section 2
provides some information about the quantile and the sample quantile functions here considered.
Section 3 presents a control chart based on the quantile function and Section 4 concludes with
the analysis of the control chart performance and some comments.

2 Quantile Function and Sample Quantile Function

Definition 2.1. Given a general cdf F (x) of a random variable (rv) X, the quantile function
Q(u), is defined by

Q(u) = F−1(u) = inf {x : F (x) ≥ u} , 0 ≤ u ≤ 1.

Remark 6.
Q(u) can be used to define some (non)parametric location, scale and position measures of a rv X,
such as the median Q(0.5), the interquartile range Q(0.75)−Q(0.25), the percentiles Q(p/100),
the mean value E(X) =

´ 1
0 Q(u)du and the variance V (X) =

´ 1
0 (Q(u)− E(X))2 du, among

others. For other details see [17] and [18].

For the standard Weibull(λ = 0, δ = 1, α) ≡ Weibull(α) distribution, the quantile function,
Qα(u), is given by

Qα(u) = (− ln(1− u))
1
α , 0 ≤ u ≤ 1. (2)

In Figure 1 (right) we picture the quantile function for the Weibull(α) distribution. From this
figure we observe that small changes in α result in large differences in the distribution in terms
of skew and tail-weight, less evident for the Weibull distributions with α < 1. Even for small
values of u we can observe differences between the quantile functions. Finally, the distributional
shape of the Weibull models with α ≤ 1 is very different from the one obtained for α > 1. Let
(X1, · · · , Xn) be a sample of size n of a rv X and (X1:n ≤ · · · ≤ Xn:n) the sample of associated
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Figure 1: Probability density function (left) and quantile function (right) for the Weibull distri-
bution with α = 0.25, (0.25), 1.75.

ascending order statistics. For the sample (empirical) quantile function, ‹Q(u), there are several
possible definitions. Here we consider the following one:

Definition 2.2. The sample (empirical) quantile function is the piecewise linear function:‹Q(u) = n

Å
i

n
− u
ã
Xi−1:n + n

Å
u− i− 1

n

ã
Xi:n for

i− 1

n
≤ u ≤ i

n
, i = 1, · · · , n. (3)

3 Control chart based on the quantile function

To implement any control chart the nominal process parameters must be either assumed known
(given from past experience with similar processes or fixed from engineering specifications) or
estimated from a Phase I reference sample, taken when the process is assumed stable and in-
control. The estimation of such parameters will have effect on the performance of the control
chart (see, for instance, [8]). Here we only consider the known parameter’s case, and without loss
of generality, a standard Weibull distribution associated with the data process X, with shape
parameter α > 0, that may change from the in-control value α0, to the out-of-control value α1.

The control chart we propose to detect changes in the shape parameter α is based on the
test of hypothesis

H0 : X ∼ F (x, α0) versus H1 : X ∼ F (x, α1), α1 6= α0,

where F (x, α) denotes the cdf of X, and the associated control statistic is defined by

χ2 =
Ä‹Q−Q0

ä′∑−1

0

Ä‹Q−Q0

ä
, (4)

where Q0 denotes a vector of quantile function values associated with the in-control distribution
evaluated in r points ui, i = 1, · · · , r, 0 < u1 < · · · < ur < 1, where we must monitor the
quantile function and ‹Q denotes a vector of the sample quantile function evaluated in the same
values ui.

If there exist large differences between the observed values of the sample quantile function
and the expected values, we conclude that the underlying data distribution has shifted. Thus,
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we have the following decision rule: Reject H0 if χ2
obs ≥ χ1−p, i.e. when the observed value of

the control statistic is greater or equal to the (1− p)-probability quantile of the control statistic
distribution, χ1−p, with p = 1/ARL0 and ARL0 denoting the desired in-control Average Run
Length (ARL) of the chart.

Following Mosteller [12] and Kubat and Epstein [9] the distribution of the control statistic
in (4) can be approximated with either a central or a non-central chi-square distribution. They
state that under H0, the vector ‹Q = (‹Q(u1), · · · , ‹Q(ur)) has approximately, for a large sample of
size n, a r-dimensional normal distribution with a mean vector Q0 = [µi]r×1, with µi = Q0(ui)
and a variance-covariance matrix

∑
0 = [σij ]r×r, with

σij =
ui(1− uj)

nf(Q0(ui))f(Q0(uj))
for i ≤ j and σij = σji.

Then, the control statistic has approximately a chi-square distribution with r degrees of freedom
(d.f.). Under H1, the control statistic has approximately a noncentral chi-square distribution

with r d.f. and noncentrality parameter η(α) = (Qα −Q0)
′∑−1

0 (Qα −Q0) , with Qα denoting
the vector of quantile function values defined in equation (2). Consequently, the ARL of the
chart is approximately given by

ARL(α) =
1

1− F
χ
′2
r,η(α)

(χ2
r,1−p)

, α > 0,

where F
χ
′2
r,η(α)

denotes the cdf of the noncentral chi-square rv with r d.f. and noncentrality pa-

rameter η(α) = (Qα −Q0)
′∑−1

0 (Qα −Q0), and χ2
r,1−p denotes the (1− p)-probability quantile

of the chi-square distribution with r d.f.
In our case, i.e., for the Weibull(α0), the vector Q0 = [µi] and the matrix

∑
0 = [σij ] have

the following elements, for 1 ≤ i ≤ j ≤ r:

µi = (− ln(1− ui))
1
α0 and σij =

ui(1− ui)−1

nα2
0 (ln(1− ui) ln(1− uj))1− 1

α0

.

Remark 7.
The choice of the tuning parameters ui, 1 ≤ i ≤ r, where to monitor the quantile function
must take into consideration the process parameters of most interest to be monitored, or if we
have candidates for the alternative distribution, in our case the magnitudes of the shift in the
shape parameter we must detect, we must evaluate the corresponding quantile functions in values
where they most differ. The distribution of the control statistic in (4), and consequently, the
performance of the chart, also depends on the number r of the tuning parameters. To avoid
taking decisions on the basis of a very conservative test, r should be small.

4 Control chart performance and some comments

To illustrate the performance of the previous control chart we consider data from the following
in-control distributions: Weibull(α0), α0 = 0.5, 0.75, 1, 1.25, 1.5, 2, corresponding to distributions
with different failure rate behavior and different skew and kurtosis (see Table 1).
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α0 0.5 0.75 1 1.25 1.5 2

Failure rate DFR DFR CFR IFR IFR IFR
Skewness 6.619 3.121 2.000 1.430 1.072 0.631
Kurtosis 87.720 18.987 9.000 5.802 4.390 3.245

Table 1: Type of failure rate, skewness and kurtosis of the in-control distributions, Weibull(α0).

We have taken samples of size n = 25 (this value is a bit larger than it is usual in Statistical
Quality Control, but not large in other applications, for instance, in Economics) and we have
chosen r = 3 tuning parameters, more precisely, u1 = 0.915, u2 = 0.955 and u3 = 0.995. The
piecewise linear quantile function in (3) lead us to the values ‹Q(u1) = 0.125X22:25 + 0.875X23:25,‹Q(u2) = 0.125X23:25 + 0.875X24:25 and ‹Q(u3) = 0.125X24:25 + 0.875X25:25.

The sample size n = 25 was chosen taking into consideration that quantile-based estimation
is adequate for large samples and attempting to validate the approximation of the distribution of
the statistic in (4) to a chi-square. The selection of r and the vector u of the values ui was done
on the basis of the quantile function pictured in Figure 1 (left), choosing ui values in the region
where the quantile functions under H0 and H1 most differ, but also taking into consideration
the works of Dubey [2] and Hassanein [6], that suggest estimators based on a few very high and
very low sample percentiles (although the situation under study is not exactly the same). In [2],
efficient percentile-based estimators for the Weibull parameters are proposed: an estimator of
the shape parameter based on the 17th and the 97th sample percentiles, which does not depend
upon any knowledge about the scale; an estimator for the scale based on the 40th and the 82nd
sample percentiles, in case of unknown shape parameter; the 24th and 93rd sample percentiles
that jointly are efficient estimators for both the scale and the shape parameters. In [6], the
optimum spacings of the few (2, 4 or 6) sample quantiles used in estimators of the location and
the scale parameters of a Weibull distribution when the shape parameter is known, also led to
the choice of very high and low sample percentiles, between 86th and 98th, and 1th and 14th.

As we are working with very asymmetric models, we have decided to simulate the in-control
distribution of the control statistic in order to validate the previously advanced approximated
chi-square distribution. We have considered a sample of 1000000 values for each scenario
(F (α0), n, Q0(ui), ‹Q(ui) and ui, i = 1, · · · , 3). The analysis of the simulated distribution lead
us to conclude that the suggested approximation to the χ2

3 distribution is not very accurate
in this case. Table 2 presents the (1 − p)-probability quantiles of the simulated control statis-
tic distribution when we consider samples of size n = 25, 100, and of the χ2

3 distribution for
comparison. As we can observe the high quantiles of the simulated distribution are, in general,
very different from the ones obtained for the χ2

3 distribution. Although these differences get
smaller as n increases, if the shape parameter is very small the differences persist large, even
for n = 100. Indeed we have considered other combinations of n, r and u, such as, n = 20,
r = 5, u = (0.475, 0.525, 0.625, 0.725, 0.975) and u = (0.625, 0.675, 0.725, 0.775, 0.975), but we
have obtained similar conclusions.

Therefore, for each scenario we have considered the 99.5% probability quantile of the simu-
lated distribution, in order to have an ARL0 ' 200, and then, we have computed by simulation
the in-control ARL of the chart. Similarly, we have obtained the out-of-control ARL by sim-
ulation. A bit surprisingly, we get a control chart very efficient only to detect decreases in
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n 25 100
ARL0 100 200 370.4 500 1000 100 200 370.4 500 1000
1− p 99% 99.5% 99.73% 99.8% 99.9% 99% 99.5% 99.73% 99.8% 99.9%
Weibull(0.5) 13.697 19.348 25.704 29.078 38.177 13.057 16.754 20.519 26.685 27.602
Weibull(0.75) 9.227 12.243 15.514 17.187 21.440 10.252 12.752 15.254 16.566 19.757
Weibull(1) 7.796 10.064 12.402 13.644 16.697 9.417 11.471 13.489 14.563 17.186
Weibull(1.25) 7.365 9.198 11.083 12.120 14.624 9.162 10.942 12.738 13.689 16.085
Weibull(1.5) 7.368 8.979 10.485 11.395 13.642 9.094 10.742 12.417 13.270 15.448
Weibull(2) 7.267 8.872 10.230 11.012 12.898 9.102 10.665 12.181 12.979 14.942
χ2

3 11.345 12.838 14.156 14.796 16.266 11.345 12.838 14.156 14.796 16.266

Table 2: (1 − p)-probability quantiles of the simulated control statistic distribution and of the
χ2

3 distribution.

the shape parameter, i.e., from α0 to α < α0. Looking again to the values presented in Ta-
ble 2 we observe that the value of a given quantile increases (decreases) substantially with the
skew and the kurtosis (with the value of the shape parameter α) of the underlying distribution.
Thus, when the value of the shape parameter decreases, the values of the control statistic easily
overpass the (1 − p)-probability quantile of the in-control distribution of the control statistic,
and hardly overpass it when the shape parameter increases. As we can observe from the ARL
values presented in Table 3, the control chart is very efficient to detect decreases in the shape
parameter of a Weibull distribution, or in other words, to detect increases in the asymmetry
and kurtosis of the underlying data distribution in comparison with the reference distribution,
providing simulated ARL values very small.

α 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15
ARL 202.9 38.4 10.0 3.7 1.9 1.3 1.1 1.0
α 0.75 0.7 0.65 0.6 0.55 0.5 0.4 0.3 0.25
ARL 202.3 66.8 24.8 10.5 5.2 3.0 1.5 1.1 1.0
α 1 0.9 0.8 0.75 0.7 0.6 0.4 0.3 0.25
ARL 202.4 42.2 11.1 6.4 4.0 2.0 1.3 1.1 1.0
α 1.25 1.2 1.15 1.1 1.05 1 0.75 0.5 0.25
ARL 205.4 110.6 60.6 34.0 19.7 11.9 2.0 1.1 1.0
α 1.5 1.45 1.4 1.35 1.3 1.25 1.2 1.1 1 0.75 0.5
ARL 203.9 127.8 79.2 49.2 30.9 19.8 13.0 6.1 3.4 1.4 1.0
α 2 1.9 1.8 1.75 1.7 1.6 1.5 1.25 1 0.75 0.5
ARL 202.0 116.4 60.9 43.4 31.0 16.1 8.8 2.7 1.4 1.1 1.0

Table 3: ARL of the chart implemented to detect decreases in the shape parameter of the Weibull
distribution, from α0 = 0.5, 0.75, 1, 1.25, 1.5, 2 to α, based on the simulated distribution of the
control statistic. The values α0 and ARL0 ' 200 are underlined.
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Abstract. The optic nerves meet at the Optic Chiasma (OC) in a midsagittal plane at the base
of the brain. There, half of the axons from each nerve cross over into the other nerve, so that
some visual information from the left eye travels in parallel with information from the right eye
within each of the two nerves. The blending of the two eye images allows one to perceive the
projective shape of the scene. The Corpus Callosum (CC) connects the two cerebral hemispheres
and facilitates interhemispheric communication. It is the largest white matter structure in the
brain. Albert Einstein’s brain was removed shortly after his death, weighted, dissected and
photographed by a pathologist. High resolution versions of those pictures were quantitatively
studied in two recent papers listed in the references. Contours of CC midsagittal sections are
extracted from MRI images. Given that Einstein passed at 76, we extracted a small subsample
of CC brain contour, in the age group 64-83, and tested how far is the average CC contour from
Einstein’s. The analysis was performed on the Hilbert manifold of planar contours, following
the methodology recently developed by the authors.

1 Albert Einstein’s Brain Image Data and Shape of Euclidean
Contours

Einstein’s brain was removed shortly after his death (most likely without prior family consent ),
weighted, dissected and photographed by a pathologist. Among other pictures, a digital scan of
a picture of the General Relativity creator’s half brain taken at the autopsy is displayed below;
we extracted the contour of the CC from this Einstein’s brain image, the shape of which would
be set as a null hypothesis in our testing problem (see Figure 1). Fletcher (2013)[8] extracted
contours of CC midsagittal sections from MRI images, to study possible age related changes in
this part of the human brain. His study points out to certain age related shape changes, in the
corpus callosum. Given that Einstein passed at 76, we consider a subsample of corpus callosum
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Figure 1: Right hemisphere of Einstein’s brain including CC midsagittal section (left) and its contour (right).

brain contours from Fletcher(2013)[8], in the age group 64-83, to test how far is the average CC
contour from Einstein’s. The data is displayed in Figure 2.

Figure 2: Corpus callosum midsagittal sections shape data, in subjects ages - 65 to 83

We consider contours, boundaries of 2D topological disks in the plane. To keep the data
analysis stable, and to assign a unique labeling, we make the generic assumption that across the
population there is a unique anatomical or geometrical landmark starting point p0 on such a con-
tour of perimeter one, so that the label of any other point p on the contour is the “counterclock-
wise” travel time at constant speed from p0 to p. A regular contour γ̃ is regarded as the range of
a piecewise differentiable regular arclength parameterized function γ : [0, L]→ C, γ(0) = γ(L),
that is one-to-one on [0, L). Two contours γ̃1, γ̃2 have the same direct similarity shape if there
is a direct similarity S : C → C, such that S(γ̃1) = γ̃2. Two regular contours γ̃1, γ̃2 have the
same similarity shape if their centered counterparts satisfy to γ̃2,0 = λγ̃1,0, for some λ ∈ C\0.
Therefore Σreg

2 , set of all direct similarity shapes of regular contours, is a dense and open subset
of P (H), the projective space corresponding to the Hilbert space H of all square integrable
centered functions from S1 to C. (see Ellingson et al (3013)[5]).

All CC contours were matched by selecting an initial anatomic landmark on the lower pos-
terior CC and traveling along the contour of the midsection in arclength time. The algorithm
1.1 bellow was used for the matching.

Algorithm 1.1.
This algorithm randomly selects k matched sampling points from the uniform distribution over
[0, Lj) for a sample of n contours, where Lj is the perimeter of contour j and j = 1, 2, . . . , n.

Step 1 Select a common starting point for all n contours such that this represents the contour
at time s1.
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Step 2 Generate s2, s3, . . . , sk ∼ Uniform(0, 1). Sort these in increasing order and relabel
them as t1, t2, . . . , tk.

Step 3 Obtain matched sampling points for each contour.

For j=1:n
Evaluate contour j at times t1 ∗ Lj , t2 ∗ Lj , . . . , tk ∗ Lj to obtain z(t1 ∗ Lj), z(t2 ∗
Lj), . . . , z(tk ∗ Lj)

End

For the matching algorithm applied to the CC data, see Figure 3.
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Figure 3: Matched sampling points on midsagittal sections in for CC data (Einstein’s is the upper left CC).

2 Asymptotic distributions for means on Hilbert manifolds

Definition 2.1. Assume H is a separable, infinite dimensional Hilbert space over the reals.
A chart on a separable metric space (M, ρ) is a one to one homeomorphism ϕ : U → ϕ(U)
defined on an open subset U ofM to a Hilbert space H. A Hilbert manifold is a separable metric
space M, that admits an open covering by domain of charts, such that the transition maps
ϕV ◦ ϕ−1

U : ϕU (U ∩ V )→ ϕV (U ∩ V ) are differentiable.

The projective space P (H) of a Hilbert space H, set of all one dimensional linear subspaces
of H, has a natural structure of Hilbert manifold modeled over H. Define the distance between
two vector lines as their angle, and, given a line L ⊂ H, a neighborhood UL of L can be mapped
via a homeomorphism ϕL onto an open neighborhood of the orthocomplement L⊥ by using the
decomposition H = L⊕L⊥. Then if L1⊥L2, the map is a ϕL1 ◦ϕ−1

L2
is differentiable map between

open subsets in L⊥1 , respectively in L⊥2 .

Definition 2.2. An embedding of a Hilbert manifold M in a Hilbert space H is a one-to-one
differentiable function j : M → H, such that for each x ∈ M, the differential dxj is one to
one, and the range j(M) is a closed subset of H and the topology of M is induced via j by the
topology of H.
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406 Corpus Callosum of average individual compared with Einstein’s

As an example, we consider the Veronese-Whitney (VW) embedding j : P (H) in LHS =
H⊗H, introduced in the finite dimensional case by Kent (1992)[9], given by

j([γ]) =
1

‖γ‖2γ ⊗ γ
∗, [γ] ∈ P (H). (1)

Definition 2.3. If j : M → H is an embedding and given a random object X on M, the
associated Fréchet function is Fj(x) = E(‖j(X)− j(x)‖2). The set of all minimizers of Fj is the
extrinsic mean set of X. If the extrinsic mean set has one element only, that element is called
the extrinsic mean and is labeled µj .

Lemma 2.4. (Patrangenaru(1998)[12]) Consider a random object X on M and assume j(X)
has the mean vector µ. Then the extrinsic mean set is the set of all points x ∈ M, such that
j(x) is at minimum distance from µ. (iii) In particular, µj exists if there is a unique point
on j(M) at minimum distance from µ, the projection Pj(µ) of µ on j(M), and in this case
µj = j−1(Pj(µ)).

The Veronese-Whitney mean ( VW mean) is the extrinsic mean for a random object X = [Γ]
on P (H) with respect to the VW embedding, and it exists if and only if E( 1

‖Γ‖2 Γ ⊗ Γ∗) has a

simple largest eigenvalue. In this case, the VW mean is µj = [γ], where γ is an eigenvector for
this eigenvalue.

3 Test statistic for the one sample neighborhood hypothesis

Assume Σj is the extrinsic covariance operator of a random object X on the Hilbert manifold
M, with respect to the embedding j : M → H (see Ellingson et al.(2013)[5]). Let M0 be a
compact submanifold of M. Let ϕ0 :M→ R be the function

ϕ0(p) = min
p0∈M0

‖j(p)− j(p0)‖2, (2)

and let Mδ
0,B

δ
0 be given respectively by

M
δ
0 = {p ∈M, ϕ0(p) ≤ δ2},Bδ

0 = {p ∈M, ϕ0(p) = δ2}. (3)

Since ϕ0 is Fréchet differentiable and all small enough δ > 0 are regular values of ϕ0, it
follows that Bδ

0 is a Hilbert submanifold of codimension one in M. Let νp be the normal space

at a points p ∈ Bδ
0, orthocomplement of the tangent space to Bδ

0 at p. We define Bδ,X0

B
δ,X
0 = {p ∈ Bδ

0,Σj |νp is positive definite}. (4)

Definition 3.1. The neighborhood hypothesis consists in the following two alternatives:

H0 : µj ∈M δ
0 ∪ Bδ,X0 vs.H1 : µj ∈ (M δ

0 )c ∩ (Bδ,X0 )c. (5)

Munk et al. (2008)[11] show that, in the case of random objects on Hilbert spaces, the
test statistic for these types of hypotheses has an asymptotically standard normal distribution
for large sample sizes. Here, we consider neighborhood hypothesis testing for the particular
situation in which the submanifold M0 consists of a point m0 on M. We set ϕ0 = ϕm0 , and
since Tm0{m0} = 0 we will prove the following result (see Ellingson et. al. (2013) [5]).
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Theorem 3.2. If M0 = {m0}, the test statistic for the hypotheses specified in (3) has an
asymptotically standard normal distribution and is given by:

Tn =
√
n{ϕm0(µ̂j)− δ2}/sn, s2

n = 4〈ν̂, Sj,nν̂〉where (6)

Sj,n =
1

n

n∑
i=1

(tan ˆ̃µ dj(X)n
Pj(j(Xi)− j(X)n))⊗ (tan ˆ̃µ dj(X)n

Pj(j(Xi)− j(X)n)) (7)

is the extrinsic sample covariance operator for {Xi}ni=1, and

ν̂ = (dµ̂j,nj)
−1t̂anj(µ̂j,n)(j(m0)− j(µ̂j,n)). (8)

4 Neighborhood hypothesis for the mean shape of an
Euclidean contour

Given any VW-nonfocal probability measure Q on P (H), from Section 3 we see that if γ1, . . . , γn
is a sample from Γ, then µ̂j,n is the projective point of the eigenvector corresponding to the
largest eigenvalue of 1

n

∑n
i=1

1
‖γi‖2γi⊗γ

∗
i . Given n i.i.d.r. objects (i.i.d.r.o.’s) from a VW-nonfocal

distribution on P (H), the asymptotic distribution of j(X)n is converges as follows

√
n(j(X)n − µ)→d G as n→∞, (9)

where G has a Gaussian distribution NLHS (0,Σ) on LHS a zero mean and covariance operator
Σ. It follows that the projection Pj : LHS → j(P (H)) ⊂ LHS is given by

Pj(A) = νA ⊗ ν∗A, (10)

where νA is the eigenvector of norm 1 corresponding to the largest eigenvalue δ2
1 of A, Pj(µ) =

j(µj), and Pj(j(X)n) = j(µ̂j,n)
Applying the delta method to (9), Ellingson et al.(2013)[5] arrived at a CLT for the VW

extrinsic sample mean µ̂j,n. Because of the infinite dimensionality, in practice, a sample estimate
for the covariance operator is always degenerate, so studentization does not work. We then
reduce the dimensionality via the neighborhood hypothesis methodology. Suppose that j :
P (H) → LHS is the VW embedding in (1) and δ > 0 is a given positive number. Using the
notation in Section 3, we now can apply the results above to random shapes of regular contours.
Assume xr = [γr], ‖γr‖ = 1, r = 1, . . . , n is a random sample from a VW-nonfocal probability
measure Q. Asymptotically the tangential component of the VW-sample mean around the VW-
population mean has a complex multivariate normal distribution. In particular, if we extend the
CLT for VW-extrinsic sample mean Kendall shapes in Bhattacharya and Patrangenaru (2005)[2],
to the infinite dimensional case, the j-extrinsic sample covariance operator Sj,n, when regarded
as an infinite Hermitian complex matrix has the following entries

Sj,n,ab = n−1(δ̂2
1 − δ̂2

a)
−1(δ̂2

1 − δ̂2
b )
−1 (11)

n∑
r=1

< ea, γr >< eb, γr >
∗ | < e1, γr > |2, a, b = 2, 3, . . .

with respect to the complex orthobasis e2, e3, e4, . . . of unit eigenvectors in the tangent space
Tµ̂j,nP (H). Recall that this orthobasis corresponds via the differential dµ̂j,n with an orthobasis
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(over C ) in the tangent space Tj(µ̂j,n)j(P (H)), therefore one can compute the components ν̂a of

ν̂ from equation (8) with respect to e2, e3, e4, . . . , and derive for s2
n in (6) the following expression

s2
n = 4

∞∑
a,b=2

SE,n,abν̂
aν̂b, (12)

where SE,n,ab given in equation (11) are regarded as entries of a Hermitian matrix.

5 Bootstrap confidence regions for means of contours and
Corpus Callosum one-sample test

Similarly to the standard arithmetic mean, we see that the extrinsic mean provides a summary
of the shapes by reducing the variability ( see Ellingson et al. (2013a)[6] ). Another plus of the
extrinsic mean is that the computation is fast ( see Bhattacharya et. al.(2012)[3]).

One method for performing inference, is through nonparametric nonpivotal bootstrap (Efron
(1979)[4]). The nonparametric bootstrap algorithm for constructing a confidence region for
extrinsic mean contour is given below.

Algorithm 5.1.
INPUT x: (x is k×n complex matrix with norm one columns); k: number of matched points on
contours ; n: number of contours(columns); N: number of bootstraps
OUTPUT CR: confidence region

Step 1 Compute extrinsic mean of x

For i=1:n
Xi = xi ∗ x∗i

End

X̄ = sum(X)/n
µVW = eigenvector corresponds to the largest eigenvalue of X̄

Step 2 Bootstrap

For j=1:N
u1, . . . , un = random integer∼uniform(1,n)
y1:n = xu1 , . . . , xun

For i=1:n
Yi = yi ∗ y∗i

End

Ȳ = sum(Y )/n
µBVWj = eigenvector corresponds to the largest eigenvalue of Ȳ
φBVWj =real part of trace((Ȳ − X̄)(Ȳ − X̄)T )

End
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cutoff=95%quantile of φBVMj

CR={µBVWj | ((φBVWj < cutoff) ∗ µBVWj) ∩ (µBVWj 6= 0), j = 1, . . . , N}

We will use the neighborhood hypothesis test on the manifold of planar contours to test if
the average shape of the CC in a population of sixty five to eighty three years old people is close
to the shape of Einstein’s CC. Data in Figure 2 was used to test the hypothesis that the mean
CC shape is in a small neighborhood around the shape of Einstein’s CC (Figure 5). The closest
representatives of the VW sample mean of the shapes of contours of the CC midsections vs the
shape of Einstein’s CC midsection are displayed in Figure 4. The overlaps of the two contours
are rare, which visually shows that the average CC contour shape is significantly different from
Einstein’s. The maximum value for δ where the test is significant was found to be 0.1367, which

Figure 4: Superimposed icons for 2D direct similarity shapes of CC midsections : sample mean (red) vs Albert
Einstein’s (blue)

Figure 5: 95% bootstrap confidence region for the extrinsic mean CC contour by 1000 resamples.

is quite large taking into account the fact that the diameter of any finite dimensional complex
projective space with the Fubini-Study metric, is π

2 . The corresponding neighborhood for this
value of δ is pictured in Figure 5.

Although other recent studies focussed more on size, rather then shape, they tell the same
story: an average brain is not close to A. Einstein’s brain, although it weighted less than the
average ( see Falk et al. (2013)[7] and Man et al. (2014)[10]). Our results, while from a different
perspective than in Man et. al.(2014)[10], point as well to the fact that A.Einstein’s corpus
callosum, being relatively thicker, allowed for a better connectivity between the left and right
hemispheres of the brain, than the connectivity in the average subject in his group age.
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Statistical Registration of Frontal
View Gait Silhouette with
Application to Gait Analysis
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Abstract. We study the problem of analyzing and classifying frontal view gait video data. In
this study, we focus on the shape scale changing in the frontal view human gait, we estimate
scale parameters using the statistical registration and modeling on a video data. To demonstrate
the effectiveness of our method, we apply our model to the frontal view gait authentication. As
a result, our model shows good performance for the scale estimation and human gait authenti-
cation.

Keywords. Shape analysis, Gait analysis, Scale estimation

1 Introduction

We study the problem of analyzing and classifying frontal view gait video data. A study on the
human gait analysis is very important in the fields of the health/sports management, medical
research, and the biometrics.

Gait analysis is mainly based on motion capture system and video data. The motion capture
system can give the precise measurements of trajectories of moving objects, but it requires the
laboratory environments and this system cannot be used in the field study. On the other hand,
the video camera is handy to observe the gait motion in the field study.

From the standpoint of health/medical research area. Gage [1] proposed brain paralysis gait
analysis using gait video data. Kadaba et al. [2] discussed importance of lower limb in the
human gait using gait video data too. Many gait analysis have recently analyzing using video
analysis software (e.g. Dartfish, Contemplas, Silicon Coach). For example, Borel et al. [3] and
Grunt et al. [4] proposed infantile paralysis gait analysis using lateral view gait video data.

From the standpoint of statistics, Olshen et al. [5] proposed the bootstrap estimation for
confidence intervals of the functional data with application to the gait cycle data observed by
the motion capture system.
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However, most studies have not focused on frontal view gait analysis, because such data has
many restrictions on analysis based on the filming conditions.

The video data filmed from the frontal view is difficult to analyze, because the subject getting
close in to the camera, and data includes the scale-changing parameters [6, 7]. To cope with this,
Okusa et al. [8] and Okusa & Kamakura [9] proposed a registration for scales of moving object
using the method of nonlinear least squares, but Okusa et al. [8] and Okusa & Kamakura [9]
did not focus on the human leg swing. Okusa & Kamakura [10] focus on the gait analysis using
arm and leg swing model with estimated parameters and application to the normal/abnormal
gait analysis. However, their models have many of parameters, and it raise calculation cost and
instability of parameter estimation.

On the other hand, from the stand point of biometrics, many of this area’s researchers mainly
using human silhouette shape for the gait authentication. However, they did not focus on the
scale registration in the frontal view gait analysis case. In this area, just normalize the human
silhouette and it apply to the gait authentication. It is reasonable to suppose that the normalize
of the human silhouette lost a lot of gait information.

In this study, we focus on the scale changing of human shape in the frontal view gait analysis,
we estimate scale parameters using the statistical registration and modeling on a video data.
To demonstrate the effectiveness of our method, we apply our model to the frontal view gait
authentication. As a result, our model shows good performance for the scale estimation and
gait authentication.

The organization of the rest of the paper is as follows. In section 2, we discuss the advan-
tage and problem of frontal view gait analysis. In section 3, primarily, we describe archetype
model proposed in Okusa & Kamakura [11]. Next, we discuss the modified model for the shape
scale registration. In section 4, we validate our modified model using the frontal view gait
authentication. We conclude with a summary in section 5.

2 Frontal View Gait Data

In this section, we describe an overview of frontal view gait data. Many of gait analysis using
lateral view gait data ( e.g. Borel et al. [3], Grunt et al. [4], Barnich & Droogenbroeck [6], Lee
et al. [7]), because observed data not includes the scale-changing parameters, it is easy to detect
the human gait features. In a corridor like structure, the subject is approaching a camera. Such
case is difficult observe lateral view gait.

Figure 1: Frontal view gait data

In a lateral view gait, at least two cycles or four steps are needed. For more robust estimation
of the period of walking, about 8m is recommended. To capture this movement, the camera
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distance required is about 9m. Practically, having such a wide space is difficult. On the other
hand, frontal view gait video is easy to observe 8m (or more) gait steps [7].

Figure 1 is an example of frontal view gait data recorded by Figure 2 situation. Figure 1
illustrates difficulty of frontal view gait analysis. This figure indicates the subjects getting close
in to the camera and the subjects scaling is changing. The frontal view gait analysis requires
registration of scale-changing component. Figure 3 shows subject’s width time-series behavior of
frontal view gait data. This figure illustrates frontal view gait data contains many of time-series
components.

Figure 2: Filming situation of frontal view gait
data
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Figure 3: Time-series behavior of frontal view
subject width

3 Modeling of frontal view gait data

Preprocessing

The raw video data is difficult to observe subject width and height time-series behavior, because
data contains background. We separate subject from background using inter-frame subtraction
method (Eq. 1).

∆(T ) = |I(T+1) − I(T )|, T = 1, ..., (n− 1),

∆(T )(p, q) =

{
1 (∆(T )(p, q) > 0)

0 (Otherwise).
(1)

Here, ∆(T ) is an inter-frame subtraction image, I(T ) is grey scaled video data image at frame
T , (p, q) is the pixel coordinate.

Generally, this method is difficult to apply to the field study data (e.g. security camera),
because the all background pixels are not static. However, in the experimental environment case,
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background pixels are tunable. We can assume that inter-frame subtraction method is reason-
able. In the field study data, many of researchers are using “dynamic background subtraction”
method (see Tamersoy [12]).

Subject Width/Height Calculation Inter-frame subtraction method can separate the sub-
ject and background. However, it is difficult to measure the time-series behavior of the subject
width and height. In this section, we describe the subject width and height calculation method
using inter-frame subtraction data.

Let us suppose that inter-frame subtraction image is binary matrix. We can measure the
subject height and width by integration calculation of row and column at each frame. In this
study, we focus on the human gait arm and leg swing of the frontal view gait. We assume that
subject width and height time-series behavior consist of the arm and leg swing behavior.

Relationship between camera and subject

In this section, we describe archetype model proposed in Okusa & Kamakura [11]. Figure 4
shows a relationship between camera and subject. From figure 4, width and height model has
same structure. In this section, we describe the subject’s width modeling. We can assume simple
camera structure. We consider the virtual screen exists between observation point and subject,
and we define xi as subject width on the virtual screen at i-th frame (i = 1, ..., n).

i 1O

vi

zs
zn zi

d

n

xi

xn

Top View

Lxi

θxi1

θxi2
θxn2

θxn1

i 1O

vi
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zn zi
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n
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Lateral View

Lyi

θyi1

θyi2 θyn2

θyn1

Figure 4: Relationship between camera and subject

Here we define zi, zj as distance between observation point and subject at i-th, j-th frame,
zs as distance between observation point and virtual screen, θxi1 , θxi2 as subject angle of view
from observation point at i-th frame, d as distance between observation point and 1st frame, vi
as subject speed at i-th frame. Okusa et al. [8] defined the subject length L was constant. We
assume that L has the time-series behavior and we define Li is the subject length at i-th frame.

xi at i-th frame depends on θxi1 , θxi2 as shown in Figure 4.

xi = zs(tan θxi1 + tan θxi2). (2)

Similarly, the subject length at i-th frame is

Lxi = zi(tan θxi1 + tan θxi2). (3)

COMPSTAT 2014 Proceedings



Kosuke Okusa and Toshinari Kamakura 415

From Eq.(2), Eq.(3), ratio between xn and xi is

xn
xi

=
Lxnzi
Lxizn

(4)

Frame interval is equally-spaced (15 fps). Okusa et al. [8] assumed the average speed is
constant. We can assume that average speed from i-th frame is (n− i) = (zi − zn)/v̄ , therefore
zi is zi = zn + v̄(n− i). We substitute zi to Eq.(4)

xi =
Mxiγ

γ + (n− i)xn + εi, (5)

where γ is zn/v̄, Mxi is Lxi/Lxn , εi is noise. From Eq.(5), predicted value x̂
(n)
i is registration

from i-th frame’s scale to n-th frame’s scale

x̂
(n)
i =

γ + (n− i)
Mxiγ

xi. (6)

Next, we discuss the modified model for the shape scale registration.

Modified model for the shape scale registration

Let us consider the scale of shape, it seems that subject’s width and height’s has same relation-
ships.

From Eq.(5), we can define subject height as

yi =
Myiγ

γ + (n− i)yn + εi, (7)

where Myi is Lyi/Lyn .
We can assume that subject’s width and height are same scale changing components γ, we

can estimate common scale parameter γ from the following nonlinear least squares equation.

S(γ,Mx,My) =
n∑
i=1

{
xi −

Mxγ

γ + (n− 1)
xn
}2

+
n∑
i=1

{
yi −

Myγ

γ + (n− 1)
yn
}2
→ min . (8)

We set the initial value γ as 1
2

{
1
n

∑N
i=1

xi(n−i)
xi−Mxxn

+ 1
n

∑N
i=1

yi(n−i)
yi−Myyn

}
where mean value of solve

Eq.(5), Eq.(7) for γ, and Mx,My as 1 (Okusa et al. [8]).
In next session, we validate the effectiveness of our model.

4 Experiments and Results

In this section, we validates our modified model using the frontal view gait authentication. To
validate the effectiveness of our model, we observes frontal view walking video data (10 steps,
Male, average height: 176.4cm, sd: 3.07cm) and apply to our proposed model.

Figure 5 is plot of the one of the 10 subjects width(pixel) time-series behavior. Here, con-
tinuous line represent fitted value of Eq.5. Similarly, Figure 6 is plot of subject height(pixel)
time-series behavior. Here, continuous line represent fitted value of Eq.7. From Figure 5, Figure
6, proposed model is good fitting for frontal view gait data.
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Figure 6: Fitted value of subject’s height

Figure 7: Scale-corrected result of circumscribed quadrangle of human gait silhouette (left side),
non-corrected result (right side)

Figure 7 is plot of the scale-corrected result of circumscribed quadrangle of human gait
silhouette based on the proposed method. Left side picture and right side picture are scale-
corrected and non-corrected results, respectively. From Figure 7, proposed model is able to
correct the scale changing components. Proposed method keeps arm and leg swing components
after the registration.

Frontal View Gait Authentication

In this section, we validates our modified model using the frontal view gait authentication using
CASIA gait dataset [13]. We compared our method with Barnich & Droogenbroeck [6] method
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and “compendium method”.

Barnich & Droogenbroeck [6] is focus on the frontal view gait authentication, but they did
not focus on the scale registration. This method is focus on the temporal evolution of the walking
human silhouette. First, they normalize the human gait silhouette and calculate the integrated
value of row and column at each frame. Secondly, they make a authentication classifier using
random forests and apply to the gait authentication. We modifies Barnich & Droogenbroeck [6]
method’s gait silhouette normalization using our proposed method. Our method is not required
the normalization, it is able to correct the scale-changing components.

Additionally, we compared another method and our method. We named this method as
“compendium method”. This method is simply scaling gait silhouettes to have the same fixed
height, the silhouette will be re-scaled to have the fixed height = Y and the width = x × Y/y.
We modifies Barnich & Droogenbroeck [6] method’s gait silhouette normalization using this
compendium method. It is seems to be low calculation cost.

To evaluate these methods, we apply these parameters to leave-one-out cross-validation test.

Table 1: Average authentication rate (%) and calculation time

Authentication Rate (%) Calc. Time (sec)

Proposed method 88.46 3.24

Compendium method 83.84 < 1

Barnich & Droogenbroeck [6] 81.5 < 1

Table 1 is average authentication rate (%) and calculation time of proposed method, com-
pendium method and Barnich & Droogenbroeck [6] method. This result indicates our model
shows good performance for the scale estimation and human gait authentication. Compendium
method has higher authentication rate than Barnich & Droogenbroeck method, but proposed
method shows more good performance for gait authentication. It is probable that low authen-
tication rate of compendium method is caused by invalidation of the time-series behavior of
subject’s height.

On the other hand, Barnich & Droogenbroeck [6] method and compendium method calcula-
tion cost is faster than proposed method. It is reasonable to think that it caused by parameter
estimation step. We need to speed up the calculation cost in next step.

5 Conclusion

In this article, we focus on the shape scale changing in the frontal view human gait, we estimate
scale parameters using the statistical registration and modeling on a video data. To demonstrate
the effectiveness of our method, we apply our model for the frontal view human gait authenti-
cation. As a result, we also show that our method may be used for the frontal view human gait
authentication.

In next phase, we need to speed up the calculation cost of our method. Additionally, we need
to implement the gait authentication system based on the proposed method and demonstrate it.
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Application of Kalman Filter with
alpha-stable distribution

Pavel Mozgunov, National Research University Higher School of Economics, pmozgunov@gmail.com16

Abstract. In this paper we consider the behavior of Kalman Filter state estimates in the
case of distribution with heavy tails .The simulated linear state space models with Gaussian
measurement noises were used. Gaussian noises in state equation are replaced by components
with alpha-stable distribution with different parameters alpha and beta. We consider the case
when ”all parameters are known” and two methods of parameters estimation are compared: the
maximum likelihood estimator (MLE) and the expectation- maximization algorithm (EM). It
was shown that in cases of large deviation from Gaussian distribution the total error of states
estimation rises dramatically. We conjecture that it can be explained by underestimation of
the state equation noises covariance matrix that can be taken into account through the EM
parameters estimation and ignored in the case of ML estimation.

Keywords. Kalman Filter, alpha-stable distribution, MLE, EM-algorithm

1 Introduction

State-space model (SSM) is convenient way for expressing dynamic systems that involve unob-
served variables. If the model is linear and noises are Gaussian, the technique of Kalman Filter
(KF) [1] can be applied. However, the condition of Gaussian noises in SSM is a strong enough
and can significantly restrict the area of application of Kalman Filter. Some modification of
Kalman Filter in cases of non-Gaussian noises was proposed in [7], but the case of non-Gaussian
disturbances in measurement equation is considered, and the question of parameters estimation
is still open. In this paper we used the KF technique in case of non-Gaussian state noises,
and studied the behaviour of KF and methods of estimation and find some useful properties of
EM-estimation that allows in process of parameters estimation (with out any additional com-
putations) get acceptable results.

16This study (research grant No 14-05-0007) was supported by The National Research University Higher School
of Economicsâ Academic Fund Program in 2014.
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In Section 2 we consider linear SSM in general, and suppose a case of alpha-stable distur-
bances in state-equation. In Section 3, we overview two methods of SSM parameters estimation:
MLE and EM. In section 4, we present the results of Kalman Filter estimation for different
parameters of alpha-stable distribution and demonstrate useful properties of EM-algorithm that
were found out in this research. We make conclusion in Section 5.

2 State-Space Model and Kalman Filter.

State-space model

Consider linear state-space model

Xk+1 = AkXk + Vk+1 ∈ Rm, k = 0, 1, ... (1)

Yk = CkXk +Wk ∈ Rd, k = 0, 1, ... (2)

Where (1) is called state equation and (2) is measurement equation. Ak - matrix m×m,

Vk - state noise, Ck - matrix d ×m, Wk - measurement noise. To be the Kalman Filter
optimal estimator in the least squares sense [1], it is necessary that noises and initial state vector
should be Gaussian. It means that, Vk ∼ N(0, δklQk); Wk ∼ N(0, δklRk) and X0 ∼ N(µ,Σ)

Alpha -stable distribution.

We replace the Gaussian noises in equation (1) by disturbances with alpha-stable distribution
and consider one-dimensional case. α - stable distribution is fully determined by its characteristic
function [6]:

logφ(t) = −σα|t|α{1− iβsign(t)tan
πα

2
}+ iµt;α 6= 1 (3)

logφ(t) = −σ|t|{1 + iβsign(t)
2

π
log|t|}+ iµt;α = 1 (4)

where α ∈ (0; 2], β ∈ [−1, 1], σ > 0, µ ∈ R, and α - characteristic exponent (refer to heavy
tails of distribution); µ - location parameter; σ - scale parameter; β - skewness parameter. We
denote the random variable with α - stable distribution in the following way: X ∼ Sα(σ, β, µ)

Class of α -stable distributions was chosen because the case of α = 2 and β = 0 (S2(σ, 0, µ)
corresponds to the Gaussian random variable N(µ, 2σ2). It means that it can be studied, how
deviations in α from 2, affects the sum of Kalman Filter prediction error.

Moreover, we put the distribution of initial state vector to be α-stable, with the same pa-
rameter α as in the state noise. Due to the property that the sum of two alpha-stable variables
with the same parameter α is a alpha-stable variable again with parameter α, we get that the
state vector has α stable distribution with the same α in all moments of time.

To simulate one-dimension alpha-stable distribution we used the same method as in Weron(1996)[5].

For α 6= 1

X = Sα,β(
sinα(V +Bα,β)

(cosV )1/α
)(
cos(V − α(V +Bα,β))

W
)(1−α)/α (5)
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Sα,β = [1 + β2tan2πα

2
]1/(2α)

Bα,β =
arctan(βtanπα2 )

α

And for α = 1

X =
2

π
[(π/2 + βV )tanV − βlog(

π
2WcosV

(π/2) + βV
)] (6)

Where V is uniformly distributed in interval [−π/2;π/2] (V ∼ U [−π/2;π/2]) and W expo-
nentially distributed with parameter 1 (W ∼ Exp(1)).

So the model that will be considered and simulated in this paper can be expressed in the
following way:

xk+1 = Axk + εk+1 ; εk ∼ Sα(σ, β, µ); x0 ∼ Sα(σ2, β, µ)
yk = Cxk + µk ; µk ∼ N (0, R)

Kalman Filter

To get the Kalman Filter equations first, assuming that vector of parameters θk= [µ,Σ, Ak, Ck, Qk, Rk]
is known for all k. The aim is to estimate state variable at time k, based on available information
at time k and the error of this estimation. It can be formulated the following way:

X̂k|k=E[Xk|Yk];
Σk|k= E[(Xk − X̂k|k)(Xk − X̂k|k)

∗|Yk], k=0,1,2,...,N, where
Yk = σ{Y0, ..., Yk} -sigma-algebra generated by Y0,...,Yk.,k=0,1,2,...,N.
Suppose that on the iteration k one has X̂k|k and Σk|k, and it is necessary to find X̂k+1|k+1

and Σk+1|k+1. Before receiving a new observation Yk+1 one makes a prediction based on (1).
Then when new observation received, the correction is started. Gk (Kalman Gain) is coefficient
that shows the measure of uncertainly in new observation. All equations of Kalman Filter are
received in assumption of Gaussian noises.

Prediction:
X̂k+1|k=AkX̂k|k
Σk+1|k=AkΣk|kAk

∗ +Qk+1

Innovations:
νk+1 = Yk+1 − Ck+1X̂k+1|k
Hk+1|k = Ck+1Σk+1|kCk+1

∗ +Rk+1

Kalman Gain:
Gk+1 = Σk+1|kCk+1

∗Hk+1|k
−1

Correction:
X̂k+1|k+1 = X̂k+1|k +Gk+1νk+1

Σk+1|k+1=(I −Gk+1Ck+1)Σk+1|k
Given X̂k|k and Σk|k for all k, results can be improved by and find smoothed estimates of

states: X̂k|N and Σk|N for k=0,1,2,...,N (all formulas can be found in [4])

3 Methods of parameters estimation

All equations above make sense only when all parameters are known. Assume that parameters
are independent on time: θ= [µ,Σ, A,C,Q,R], and the aim is to estimate this vector based only
on realisation y1, ..., yk.

To obtain the MLE [2], it is necessary to maximize the likelihood function of innovations by
numerical technique (e.g. quasi-Newton-Raphson). The likelihood function of innovations:

LY (θ) =
N∏
k=1

1

(2π)n/2
|Hk|k−1(θ)|−1/2exp(−1

2
νk(θ)

∗H−1
k|k−1νk(θ)) (7)
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The idea to use EM-algorithm was proposed in [3]. At E-step it is necessary to find the
conditional expectation of the following function:

Q(θ, θ′) = Eθ′ [log
dPθ
dPθ′
|YN ], ;log

dPθ
dPθ′

=
N∑
l=0

logλ̄l + constant

where λ̄k =
|Q|−1/2φ(Q−1/2(Xk −AXk−1)

φ(Xk)
.
|R|−1/2ψ(R−1/2(Yk − CXk))

ψ(Yk)
and Xk ∼ N (0, In); Yk ∼ N (0, Im); ψ(x) and ψ(y) is probability density function of standard

Gaussian random variable.

At the M-step, (at j + 1 step), one maximises Q(θ, θ′): θj+1 = argmax(θ) Q(θ, θ′). The
update recursive equations for all parameters can be found in [4] except matrix C, so we give it
here.

C =
N∑
k=0

YkX̂
∗
k|N (

N∑
k=0

[Σk|N + X̂k|NX̂
∗
k|N ])−1

4 Simulation results and findings

The following parameters were chosen for simulation:

xk+1 = xk + εk+1 ; εk ∼ Sα(20, β, 0)

yk = 1.2xk + µk ; µk ∼ N (0, 150)

x0 ∼ Sα(50, β, 100)

Each sample contents 1000 observations. For all parameters α and β under consideration
the mean values of Z simulations are used. To apply the Kalman Filter, we used that α -
stable distribution with α = 2 and β = 0 (S2(σ, 0, µ) corresponds to Gaussian random variable
N(µ, 2σ2), and we simply replaced each α to α = 2. It means that we ignore true heavy tails.

All parameters are known. Consider how α and β influence total error of prediction of
unobserved states. Firstly, we studied the case of all parameters are known.

Figure 1 demonstrates the mean error of estimation that was calculated as

Error =
1

Z

Z∑
m=0

N∑
k=0

(X(m) − ˆX(m)
k|k)

2 (8)

It can be seen from the Figure 1, that in cases of large deviation from α = 2 (refer to Gaussian
distribution) the total error is rising dramatically, and by decreasing α error continues to rise,
e.g. for α = 1.1 the total error was 4000 times higher then in Gaussian case (error displayed
as a constant on the first picture because of great mistake for small α, so ”zoomed” graphs are
provided). Moreover, the Kalman Smoother gives more accurate state estimates only for α in
near [1.85;2]. Note that in the interval [1.85;2] the KF and KS are not so sensitive to deviation
in α (for α=1.85, the total error increases by 20%) - then the slopes of both curves only rise.

The only parameter that was not set to true values is distribution of state equation noise
and initial state vector. So it is logical to assume that such large total error of predictions is
strongly connected with the non-observance of Gaussian assumption of state equation noise.To
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Figure 1: Mean error (10000 simulation) of KF (red) and KS (blue) estimation. α ∈ [0.05; 2],
step=0.05, β = 0

be more precise, we conjecture that it can be explained by underestimation of the state
equation noises covariance matrix (matrix Q = 2σ2 in our model set up).

It is enough to compare α - stable distribution and Gaussian distribution with the same
covariance matrix, to understand it17:

Figure 2: Kernel densities of α - stable distribution(blue)(σ = 20;β = 0) and Gaussian(red)
distribution with same covariance matrix.

The consequences of the assumption of Gaussian noise when it truly alpha-stable is shown
on Figure 2. To obtain KF estimates we substitute true distribution (that corresponds to blue
line) by Gaussian distribution with the same covariance matrix (that corresponds to red lines).
However, it is seen that long tails of blue graphs are not covered by red ones, so as a result
algorithm can not cannot ”detect” jumps in a process that are appearing because of heavy
tail distribution of disturbances. It is obvious that with α closer to zero, the tails become longer
and the underestimation becomes larger and we met larger total error (when α is close to 2, the
difference is not so dramatic). In terms of Kalman filter, algorithm consider state equation as
not so noisy how it is truly is, and it assign small weight (Kalman Gain) to received observation.

The same mean total error as before for different β and same α is plotted in Figure 3.

17Gaussian variables were simulated by Box-Muller, and α-stable were as in [5]
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Figure 3: Mean error (10000 simulations) of KF (red) and KS (blue) estimation. β ∈ [−1; 1]
step=0.05 α = 1.75

There is probably no dependence between total error and parameter β. The case of symmetric
tails (β = 0) do not refer to the least total error. Moreover, the fluctuations of the total error
are not so large. The deviation in heavy tails (α) is more significant for state estimates than in
β, so we switch to different α only in estimation methods.

Parameters estimation. We consider the behaviour of two estimation procedures. Initial
values were set to true ones, and the following results were found.18

Figure 4: Mean error (1000 simulations). Parameters estimation by MLE (red) and by EM
(blue).α ∈ [0.1; 2], step=0.1 β = 0

Figure 4 shows that the total error of estimation by MLE is increasing sharp, and as expected
MLE is extremely sensitive to deviation from Gaussian distribution. Because of different ranges
of scale, we plot the error of EM estimation separately (Figure 5).

18Because of numerical optimization of likelihood function in ML estimation, the number of simulations was
reduced.
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Figure 5: Mean error (1000 simulations). EM (blue) parameters estimation. α ∈ [0.1; 2],
step=0.1 β = 0

Figure 5 shows that total error of KF prediction when parameters are estimated by EM
increases slowly in the interval of [1.3;2],e.g. for α = 1.4 error increases only by 14% (in average),
against near 622% when ”all parameters are known” and it is more satisfying result than before.
But out of this interval the total error is large but less than in case of MLE estimation. To
understand the nature of such good behaviour of EM we turn to figures of parameters estimation
(Figure 6).

Figure 6: Mean (1000 simulation) MLE (red) and EM (blue) parameters estimation.α ∈ [0.1; 2],
step=0.1 β = 0

It is obvious that results of EM-estimation are more accurate that MLE ones. The parame-
ters of A and C are estimated correctly by EM-algorithm. But EM-algorithm overestimate the
covariance matrix Q(compare to real value). However this over estimation allows to take
into account heavy tails. The overestimation of matrix Q tends to larger Kalman Gain. It
means that in a moment of correction we assign larger weight to observation we received
than to our prediction (because of large covariance matrix). It is important to mention, that
received results were confirmed when EM estimation was used only for Q, and all other parame-
ters were true, so the cause of little increase in prediction error is overestimation of Q. Of course,
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we increase the confidence interval of our state prediction, but it seems to be quite acceptable
cost for considerable error decreasing. In our simulation example we decrease (e.g. for α = 1.3
the total error 140 times while Sigmak|k increase only by 1.28). Unfortunately, overestimation
of Q is not enough in cases of larger deviation in α. But in cases when it is necessary to estimate
parameters and α ∈ [1.3; 2] it is acceptable not to complicate KF, and use only EM.

5 Conclusion

By simulation it was shown that in spite of the heavy tails of state equation noise, EM and ML
estimate parameter A properly. EM-algorithm can overestimate covariance matrix of state
noise in such way that the total error of prediction increases a little (compared to the Gaussian
case) in the interval [1.3; 2]. It was confirmed that exactly due to the overestimation of covariance
matrix Q, it is possible to prevent large prediction error. Without any additional computations,
only in process of parameters estimation by EM and if α ∈ [1.3; 2], we can get approximately
true values of unobserved states. ML estimation does not demonstrate such good properties, and
more likely gives wrong estimates of states. It is a possible evidence of unacceptable application
MLE for KF estimation, because it can lead to incorrect results. Although it is evidence of
useful properties of EM that can allow to apply standard KF procedure in cases of α-stable
distribution. The detecting how proposed method can reduce the prediction error comparing to
modification of KF in [7], and how to estimate all parameters in this modification are questions
for our further research.

Bibliography

[1] Bucy, R.S., Kalman, R.E. (1961). New Results in Linear Filtering and Prediction Theory.
Trans. ASME J. of Basic Engineering. 83, 95-108

[2] Gupta, N.K., R.K.Mehra. (1974). Computational Aspects of Maximum Likelihood Estima-
tion and Reduction in Sensitivity Function Calculation. IEEE Trans. Aut.Cont. AC-19 774-
783

[3] Shumway , R.H., Stoffer, D.S. (1982). An approach to time series smoothing and forecasting
using the EM algorithm. Journal of Time Series Analysis 3(4): 253-264.

[4] Shumway, R.H. and Stoffer, D.S. (2006). Time Series Analysis and Its Applications (with
R Examples). Springer.

[5] Weron, R.(1996) . On the Chambers-Mallows-Stuck method for simulating skewed stable
random variables., Statist. Probab. Lett. 28, 165-171

[6] Zolotarev, V. (1986) One dimensional Stable Distributions. American Mathematical Society,
Providence, RI. Russian original, 1983

[7] Xu Sun, Jinqiao Duan, Xiaofan Li, Xiangjun Wang (2013). State estimation under non-
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Combining sub(up)-approximations
of different type to improve a
solution

Bernard Fichet, Aix-Marseille University, bernard.fichet@lif.univ-mrs.fr

Abstract. This paper deals with the ultrametric approximation of a given dissimilarity accord-
ing to the supremum norm. It has been established that the solution set is the finite union of
some ultrametric intervals. In order to improve the homogeneity of such a solution interval, we
want the bounds of it to share some constraints, such as to have same tree structure or common
compatible order. We solve here those new problems. Besides, many results are presented in a
general framework, where the concepts of subdominant (updominated) or submaximal (upmin-
imal) approximations play a key role.

Keywords. subdominant, updominated, submaximal, upminimal, supremum norm, ultramet-
ric, compatible order.

1 Introduction

Hierarchical classification is a very important part of clustering. The famous one-to-one corre-
spondence between indexed hierarchies and ultrametric spaces, see [7], highlights the role played
by ultrametricity. Indeed, given a dissimilarity d on some finite set I, producing a dendrogram
as visual display of I, turns out to realise an approximation of d by an ultrametric d̂.

L1-norm and L2-norm approximations lead to NP-hard problems, see [1] and [8]. A contrario,
polynomial algorithms have been developed for the L∞-norm approximation, see [4]. In [2], the
authors emphasise the link between the L∞-norm approximation and the subdominant approx-
imation, so obtaining a simple algorithm and nice mathematical properties on these concepts.
Later on, the previous link has been extended through upminimal approximations, leading to a
characterisation of the L∞-norm solutions, as a finite number of ultrametric intervals.

All these concepts are recalled, developed and sometimes extended in the next two sections.
This is done in a general framework where a particular structure is simply a reference set in a
vector space, the set of ultrametrics being nothing but a subset of the space of dissimilarities. In
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particular, the characterisation of the solution set in terms of intervals is here extended, while
there is no subdominant and no updominated approximation.

The last section is devoted to the improvement of an utrametric interval solution, by adding
some constraint to ultrametricity, while preserving the ultrametric optimal error. De facto,
that turns out to intersect the ultrametric structure to another one, leading in a general case to
new challenging problems about intersecting two structures. How does the intersection structure
inherit from the two original structures? This is first treated in our general framework, where we
propose an algorithm about subdominants, then secondly for ultrametricity under a constraint
of tree structure or compatibility with a fixed order.

2 The framework

Here we use the general setup as developed in [2]. The basic set is a real vector space E with
finite dimension p. For a fixed basis, a vector u of E has coordinates u1, · · · , up. The space is
endowed with the supremum norm, simply denoted by ||.||, so that ||u|| = maxj |uj |. We also
note 1l the vector with unit coordinates, generating the main diagonal L of E , i.e. the set of
vectors c.1l, c ∈ R.

With respect to the fixed basis of E , a partial order between vectors is defined by a pairwise
comparison of the coordinates: u 4 v if and only if uj ≤ vj , for all j = 1, · · · , p. Then, every
nonempty bounded subset A of E has a least upper bound and a greatest lowerbound with
j-coordinates sup{uj : u ∈ A} and inf{uj : u ∈ A}, respectively. In other words, (E ,4) is a
(conditionally) complete lattice. Again, for every nonempty subset A of E and every u ∈ E , we
note A4(u) := {x ∈ A : x 4 u}, and A<(u) := {x ∈ A : x < u}. Of course, such sets may be
empty.

Now, we go further by considering a fixed nonempty subset K in E . It corresponds to a
fixed classification structure under consideration and will be the approximating reference set.
So, given u in E , we define the following problem (P ):

(P) : inf{||u− x|| : x ∈ K}. The optimal error which always exists will be denoted by ε̂.
Of course, our ability to treat the problem (P ), in particular to prove the existence of a

solution and to compute it, will strongly depend on some geometrical, algebraical and topological
properties of K. Here are a few some of them. We say that K obeys the cylinder condition if
it is invariant under translation along the line L, i.e. x ∈ K implies (x + c.1l ∈ K) for every
c ∈ R. K obeys the half positive or the half negative cylinder condition if it is invariant under
translation along the half line L+ or L−, i.e. x ∈ K implies (x + c.1l ∈ K) for every c ∈ R+, or
c ∈ R−, respectively. Topological closeness of K makes sure the existence of a solution. If K is
convex and z, z′ are solutions of (P ), any vector of the segment [z,z’] is a solution, a property
which is valid for any norm defining (P ). Again, due to the choice of the L∞-norm, any vector
of the interval (z,z’) of K is a solution, whenever z, z′ are solutions satisfying z 4 z′.

Examples We give here relevant examples of data analysis and classification, where approxi-
mation problems can be treated within this scheme.

• Isotonic regressions. (X,4) is a finite poset or a subset of the partially ordered set Rp. E
is the space RX of numerical functions on X, endowed with its canonical basis and K is
the set of all isotonic functions on X: f ∈ K iff x, y ∈ X and x 4 y implies f(x) 5 f(y).
The set K obeys the cylinder condition and is a closed convex polyhedral cone.
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• Dissimilarities. I is a finite set. E is the set D of pre-dissimilarities, i.e. the subset
of functions d of RI×I such that: ∀i, j ∈ I, d(i, j) = d(j, i), d(i, i) = 0. According to
the canonical basis of D, a dissimilarity is an element of D+. We still note 1l, the unit
dissimilarity.

– semi-metric spaces. K is the set Dm of semi-distances of D, i.e. dissimilarities obeying
∀i, j, k ∈ I, d(i, j) ≤ d(i, k) + d(j, k). The set Dm is a closed convex polyhedral cone
of D. It obeys the half positive cylinder condition.

– semi-ultrametric spaces. K is the set Du of semi-ultrametrics of D, i.e. dissimilarities
obeying ∀i, j, k ∈ I, d(i, j) ≤ max[d(i, k), d(j, k)]. The set Du is a closed cone of D.
Extended to pre-ultrametrics with negative values, it obeys the cylinder condition.

– θ-compatible dissimilarities . Given a fixed total order θ on I, those are dissimilarities
which are θ-compatible, i.e. obeying: (iθjθk) implies d(i, k) ≥ max[d(i, j), d(j, k)],
see [3], for example. The corresponging set Dθ forms a closed convex polyhedral cone.
Extended to pre-dissimilarities, it obeys the cylinder condition.

3 Lower and greater approximations

This section is devoted to L∞-norm approximations, as introduced in the general setup of Section
2, see the problem (P ). We mainly study the link between approximating an element u of E by
a vector of K and approximating u by a vector of K less (or greater) than u, if any. Thus, with
the problem (P ), we associate two new problems:

(P′) : inf{||u− x|| : x ∈ K4(u)}; (P′′) : inf{||u− x|| : x ∈ K<(u)}.
The problems are well-defined whenever K4(u) and K<(u) are nonempty. In that case, the

optimal errors which always exist will be denoted by ε∗ and ε∗, respectively.

Subdominant and updominated approximations We recall here some basic notions.

Definition 1.
Given the structure K in the vector space E,

i) K is said to admit a subdominant (updominated), if for every u ∈ E such that K4(u)
(K<(u)) is non empty, the latter set has a greatest (lowest) element, the K-subdominant ( K-
updominated) u∗ (u∗ of u).

ii)K is said to be sup-closed (inf-closed) if for every subset M of K, bounded from above
(below), sup{x ∈M} ∈ K (inf{x ∈M} ∈ K).

Actually, the two definitions are equivalent. The proof is almost obvious. This is:

Proposition 1.
The two definitions coincide.

Clearly, the concepts of sup-closeness and inf-closeness are dual. Thus, any statement, prop-
erty or any formula admits a dual formulation in this paragraph. We leave to the reader the
transposition of any of them. For instance, if K is sup-closed, u∗ is the greatest solution of
problem (P ′).

The following proposition highlights two main hypothesis on K, see proposition 1 of [2].

Proposition 2.
Let K be sup-closed and obey the cylinder condition. Then:
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i) ε∗ = ||u− u∗|| = 2.ε̂, and u∗ + ε̂.1l is the greatest solution of problem (P ).
ii) ε∗ = ε∗, and u∗ + ε∗.1l is the greatest solution of problem (P ′′).

Let us observe that if K is both sup-closed and inf-closed, then the three problems (P ),(P ′)
and (P ′′) have an interval as set of solutions, the extreme values of them deriving from the
subdominant and the updominated approximations of u, after translation along with the main
diagonal.

Thus, under the hypothesis of proposition 2 the computation of the greatest solutions of
problems (P ),(P ′) or (P ′′) strongly depends on our ability to compute a subdominant. We here
give some examples.

• isotonic regressions. This is a very simple example, where there are both a subdominant
and an updominated approximation. Besides, there are analytic solutions for those ap-
proximations, hence an easy interval solution with the cylinder condition clearly fulfilled.

Let us note that θ-compatible dissimilarities can be treated by this way. Indeed, the con-
ditions of θ-compatibility define a partial order between pairs of I, so that a θ-compatible
dissimilarity turns out to be isotonic on the poset of pairs.

• semi-ultrametrics. The set Du of semi-ultrametrics on I is clearly sup-closed and obeys
the cylinder condition, provided that we accept negative values. So, any dissimilarity d
admits a subdominant d∗. Moreover, many efficient procedures have been developed to
compute d∗. The single linkage algorithm builds an indexed hierarchy which is nothing but
the one associated with d∗. Again, the subdominant is the ultrametric associated with a
spanning tree derived from the complete graph defined by (I, d), see [6]. A greedy method
by shrinking the triangles works well too [7]. Thus we get the greatest L∞-approximation
in a simple way [2], compared with the algorithmical way previously obtained by [4].

• semi-metrics. The set Dm of semi-metrics on I also is sup-closed, but it only obeys the half
positive cylinder condition. So, proposition 2 does not apply. Yes, there is still a metric
subdominant, with some efficient procedures to compute it, but it infers only results along
the positive direction of the main diagonal. We only deduce that ε̂ is less than ε∗/2.

Submaximal and upminimal approximations. The previous paragraph highlights the key
role played by the subdominant when it is associated with the cylinder condition. When the
subdominant does not exist, it may be replaced by a weaker concept, intensively developed
for ultrametricity, through upminimal approximations. Before going back to ultrametricity, we
introduce this concept in our general framework, in order to establish conditions for general
results. Of course, there is still a perfect duality, and we leave the reader free to transpose
concepts and properties.

Definition 3.1. Given u in E and the reference set K of E, a submaximal or upminimal element
of u, is any maximal element u∗ or minimal element u∗ of K4(u) or K<(u), if any, respectively.

In the sequel, we will note S(u) and U(u) the sets of submaximal elements and upminimal
elements of u respectively.

Proposition 3.
If K is (topologically) closed and K4(u) is nonempty, then S(u) is nonempty. Moreover, each
element of K4(u) is bounded by an element of S(u).
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Proof. Let x be any element of K4(u). Since K is closed, so is the non-empty set A :=
K4(u)

⋂K<(x). Whence, A is compact. Endowing here E with the L1-norm, the problem:
sup{||y−x||1 : y ∈ A} has a solution in A, say u∗. We claim that u∗ is maximal in K4(u). Let z
be in the latter set and obey : u∗ 4 z. Then: x 4 u∗ 4 z. Thus, z ∈ A and ||u∗−x||1 5 ||z−x||1,
so that z = u∗.

Corollary 3.2. Under the assumptions of proposition 3,
ε∗ = inf{||u− u∗|| : u∗ ∈ S(u)}.

Proof. Immediate.

Let us note that one may have infinitely many submaximal or upminimal elements. As an
example, consider the reference set Dm of semi-metrics on I. Let d be the dissimilarity on
I = {i, j, k} with d(i, j) = d(j, k) = 1; d(i, k) = 3. It exists a metric subdominant d∗. One has:
d∗(i, j) = d∗(j, k) = 1; d∗(i, k) = 2. But it is quite easy to see that the upminimal elements of
d are of the type: d∗(i, j) = 1 + a, d∗(j, k) = 2 − a, d∗(i, k) = 3, 0 ≤ a ≤ 1. Observe that this
example remains valid for star-metrics or tree-metrics which are equivalent to metrics on three
points.

However, we may sometimes guarantee finiteness of those optimal approximations. This is
the case, somewhat usual, where there are bounding elements of K4(u) having coordinates in a
fixed finite pool of numerical values, noted V(u), the set of distinct coordinates of u for example.

Proposition 4.
Let u be in E, and suppose K4(u) 6= ∅. Assume that for every x in K4(u), there is y of K4(u)
and greater than x, with coordinates in a fixed finite pool set V(u). Then, S(u) is finite and
nonempty, and each element of K4(u) is bounded by an element of S(u).

Proof. Clearly, sub-maximal elements of K4(u) are those of the finite subset of vectors of K4(u)
with coordinates in V(u).

Observe that, unlike proposition 3, the latter proposition does not require closeness of K.
The following corollaries connect sub-maximal or up-minimal elements with the L∞-norm

approximations of u in K. Their proofs are somewhat easy. They depict the set of solutions in
terms of union of intervals, sensu the partial order on E , as evoked in Section 2.

Corollary 1.
Assume that K obeys the cylinder condition, S(u) is finite, each vector of K4(u) being covered
by an element of S(u).

Then, the set of L∞-norm approximations has finitely many maximal elements, all of them
being written as û = u∗ + ε̂.1l, where u∗ is in S∗(u) := {u∗ ∈ S(u) : ||u − u∗|| = ε∗}. Any
L∞-norm solution is bounded by a maximal solution.

Corollary 2.
Assume that K obeys hypotheses of corollary 1 and in addition the dual condition: U(u) is finite,
each vector of K<(u) covering an element of U(u).

Then, the set of L∞-norm approximations is the finite union of some intervals, each of them
being of the type (û′, û), where û′, û are the minimal and maximal elements of the set of L∞-norm
solutions, respectively, satisfying û′ 4 û.
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Corollary 3.
Assume that K obeys hypotheses of corollary 1 and in addition: K is inf-closed.

Then, the set of L∞-norm approximations is the finite union of the intervals of the type :
(u∗ − ε̂.1l, u∗ + ε̂.1l), where u∗ is the up-dominated of u, and u∗ is in S∗(u).

4 Intersecting structures

In this section, we mainly focus on ultrametric approximations. Corollary 3 of Section 3 applies,
so that the set of solutions in approximating a dissimilarity d, is the finite union of the intervals
of the type : (d∗ − ε̂.1l, d∗ + ε̂.1l), where d∗ are the up-minimal ultrametrics at an optimal norm
ε∗ of d and d∗ is the subdominant of d. Of course, we need here an algorithm to compute an
optimal up-minimal ultrametric, and we may use the one mentioned in [5], which extends a
procedure developed by [9] to compute any up-minimal ultrametric.

Now, we are going to introduce some new constraints, as an help in choosing an interval solu-
tion. The aim is to get an interval with bounds sharing some common features, such as a similar
tree hierarchical structure or a common compatible order. Although ultrametricity remains here
the key concept through optimal ultrametric approximations, adding new constraints to select
a solution may somewhere appears as intersecting two structures. If there is no privileged one,
a new challenge occurs: in terms of mathematical properties or algorithms, what is the impact
of the intersection. Before going back to ultrametricity, we now give a few results in this way.
Still, there are established in our general framework of Section 2.

Assume we are given two reference sets K′ and K′′ in E . Define K := K′⋂K′′ and suppose
K 6= ∅. The set K clearly inherits some simple properties, provided that K′ and K′′ fulfill these
properties, such as the cylinder condition. But the most basic and obvious property is the
following:

Proposition 5.
If K′ and K′′ admit a subdominant (updominated), then K does.

If u in E has subdominants u∗, u
′
∗ and u′′∗, leading to optimal errors ε∗, ε

′
∗ and ε′′∗, with respect

to K, K′ and K′′, respectively, then ε∗ ≥ max[ε′∗, ε
′′
∗]. Suppose now we have efficient algorithms

to compute u′∗ and u′′∗. One may think of the following algorithm for u∗:

Algorithm 4.1.
Initialization: v0 := u.

Step r Having vr, compute vr+1 := min[v′r∗ , v
′′r
∗ ]. If vr = vr+1, then stop.

The following proposition justifies the algorithm.

Proposition 6.
The sequence {vr} is convergent. Its limit is u∗, the subdominant in K, provided that one of the
following two conditions is satisfied:

i) {vr} converges in a finite number of steps.
ii) K′ and K′′ are closed.

Proof. Since u∗ is in both K′ and K′′, u∗ is inductively less than vr. Besides, {vr} is clearly
non-increasing, whence the convergence to a limit say w, with w 3 u∗. Moreover, if vr+1 =
min[v′r∗ , v

′′r
∗ ] = vr, then v′r∗ = v′′r∗ = vr, so that vr is in K. Condition i) is proven. When K′ and

K′′ are closed, the sub-sequences {v′r∗ } and {v′′r∗ } which lie between vr and vr+1, converge to the
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same limit w. Therefore, w is in both K′ and K′′, hence in K. Thus, w 2 u∗ and condition ii) is
proven.

For the computational aspect, let us note that we could use an alternative and more tractable
procedure, by alternatingly taking the subdominant in K′, then in K′′, and so on.

Corollary 4.
If the subdominants of u in K′ and K′′ have coordinates with values in a finite set V(u), the
sequence {vr} converges to u∗ in a finite number of steps.

Now, let us go back to ultrametricity, with the aim to select an ultrametric interval solution,
by adding some new constraints, as written in the beginning of this section. We wish the bounds
to satisfy a fixed constraint, such as to produce a fixed tree hierarchical structure τ or to have
a fixed compatible order θ. Recall that a hierarchy on I is a class H of nonempty subsets, the
clusters, satisfying the following axioms: i) I ∈ H, ii) H,H ′ ∈ H implies H ∩ H ′ ∈ {H,H ′, ∅}
(nestedness axiom), iii) the minimal elements of H cover I. By a tree hierarchical structure τ ,
we mean the poset (H,⊆) or its covering graph which is a tree due to the nestedness condition.
A so-called level index (in the broad sense) f on H may be viewed as an isotonic non-negative
function vanishing on the minimal clusters. In the 1-1 correspondence with an ultrametric d,
for a pair (i, j) of I, one has d(i, j) = f(Hij), where Hij is the smallest cluster containing i and
j. For a fixed tree structure τ , i.e. a fixed poset (H,⊆), we note Dτ the set of ultrametrics
defined by all level indices (in the broad sense) f on H. Adding also the set Dθ of θ-compatible
dissimilarities, we confront two intersecting stuctures: Dτ

⋂Du = Dτ and Dθ
⋂Du. The sets Dτ ,

Dθ have nice properties: they obey the cylinder condition and they admit a subdominant and
an updominated. However, to preserve the ultrametic optimality, that is to preserve the optimal
error ε̂, we choose the tree structure and the compatible order to be associated with a bound of
an optimal ultrametric interval solution. Then, whatever the intersecting structure is involved,
this bound will be preserved, producing the same optimal error. It remains to compute the new
second bound according to the intersecting set in consideration. The problem is quite easy for
Dτ . We treat now this problem, while preserving the upper bound of the optimal solution with
respect to Du.

Proposition 7.
Let (d∗ − ε̂.1l, d∗ + ε̂.1l) be an optimal ultrametric interval solution with respect to Du. Let τ be
the hierarchical structure associated with the subdominant d∗. Let d+ be the updominated in Dτ .

Then, (d+ − ε̂.1l, d∗ + ε̂.1l) is an optimal interval solution in Dτ .

Proof. By definition, d∗ is in Dτ which is included in Du, so that it is both less and greater than
the subdominant in Dτ , hence equal to it. Whence the interval solution in Dτ , as given in the
proposition, with ε̂ as optimal error in Dτ .

Observe that d+ dominates some optimal upminimal d∗, showing that the interval solution
in Dτ , is included in an interval solution in Du.

The problem is much more complicated with compatible orders, if we try to preserve the
upper bound of the interval solutions derived from the subdominant d∗. Indeed, we will have
then to compute some upminimal element in Du

⋂Dθ, and we have no algorithm for this task,
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less again to compute an optimal one! Fortunately, the opposite way is possible. It is based on
an easy computation of the subdominant in Du

⋂Dθ.
Lemma 4.1. Let a dissimilarity be θ-compatible. Then its ultrametric subdominant is too.

Proof. The chain defined the linear order θ, is clearly a minimum spanning tree of the graph
associated with the dissimilarity: apply Prim’s algorithm to see this. Then, the ultrametric
defined by this chain fulfills θ-compatibility.

Corollary 5.
Let d be in D, d− be its subdominant in Dθ. Then, its subdominant in Du

⋂Dθ is (d−)∗.

Proposition 8.
Let (d∗ − ε̂.1l, d∗ + ε̂.1l) be an optimal ultrametric interval solution with respect to Du. Let θ be
a linear order compatible with the updominated ultrametric d∗. Let (d−)∗ be the subdominant in
Du
⋂Dθ.
Then, (d∗ − ε̂.1l, (d−)∗ + ε̂.1l) is an optimal interval solution in Du

⋂Dθ .

The proof is similar to the one of the proposition 7. Observe that (d−)∗ is less than d∗, so
that the interval solution in Du

⋂Dθ is included in the original interval solution in Du.
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Abstract. The traditional capture-recapture method assumes homogeneity of the capture prob-
abilities. However, differences of character or behaviour between individuals may occur and
models that allow for varying susceptibility to capture over individuals and unequal catchabil-
ity have been proposed and psychometric models, such as the Rasch model, were successfully
applied. In the present work, we propose the use of the multidimensional Rasch model in the
capture-recapture context. We assume that lists may be divided into two or more subgroups,
such that they can be viewed as indicators of the latent variables which account for correlations
among lists. We show how to express the probability of a generic capture profile in terms of
log-linear multidimensional Rasch model and apply the methodology to a real data set.

Keywords. Rasch model, capture-recapture, heterogeneity, log-linear model, EM algorithm

1 Introduction

The capture-recapture method is a statistical method originally used to estimate the size of
wildlife populations [1] based on a sequence of trapping experiments where individual trapping
histories are used to estimate the population size.
The capture-recapture method has been successful applied to other contexts, like human popu-
lations, where the common labels are multiple-recapture, multiple-records systems and multiple-
records systems method [2]. In general, it can be applied to any situation in which two or more
lists are available. Here, the estimation of the population size uses two or more incomplete but
overlapping lists. Each list is regarded as a capture sample and data are usually arranged in an
incomplete 2s contingency table where the missing cell corresponds to absence in all s lists; then
log-linear models are used to analyse the data [3].
The traditional capture-recapture method assumes that the S registrations are independent. If
we allow possible dependencies between registrations, this results in interaction terms in log-
linear models [4].
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Another central assumption in the traditional capture-recapture approach is the homogeneity
of the capture probability. However, differences of character or behaviour between individuals
may cause indirect dependence between lists. Models that allow for varying susceptibility to
capture through individuals and unequal catchability have been proposed either in the case of
human populations [5] or in animal population studies [6] and psychometric models, such as the
Rasch model, were successfully applied.

In applying the dichotomous Rasch model to the capture-recapture context, correct or in-
correct answers to an item are replaced by ”being observed” or ”not being observed” in a list
and, if all lists are supposed to be of the same kind, it is possible to treat heterogeneity in terms
of constant apparent dependence between lists (Darroch [5], Agresti [6], International Working
Group for Disease Monitoring and Forecasting [2]). Bartolucci and Forcina [7], shown how to re-
lax the basic assumptions of the Rasch model (conditional independence and unidimensionality)
by adding some suitable columns to the design matrix of the model. Bartolucci and Pennoni [8]
proposed an extension of the latent class model for behaviour effects in which the latent class of
a subject follows a Markov chain with transition probabilities depending on the previous capture
history.

In the present work, we propose the use of the multidimensional Rasch model in the capture-
recapture context. In particular, we assume that lists may be divided into two or more subgroups,
such that they can be viewed as indicators of the latent variables which account for correlations
among lists. To do so, the extension of the Dutch Identity for the multidimensional partial
credit model (Hessen [9]) can be utilized. The Dutch Identity is a tool proposed by Holland
[10], useful in the study of the structure of item response models, used by psychometricians to
explain the characteristics and performance of a test. We use the results of Hessen [9], typically
used in psychometric context, in the capture-recapture framework to express the probability of
a generic capture profile in terms of log-linear multidimensional Rasch model.

We proceed as follows: in Section 2 we discuss the situation with three lists and two latent
variables. In Section 3 we present the model that allows for the presence of a stratifying variable.
In Section 4 we describe the method for a more general situation with S lists and J strata. In
Section 5 we apply the methodology proposed to a real data set on children born with a neural
tube defect (NTD’s) in the Netherlands.

2 Three lists

Consider a situation in which three lists R1, R2 and R3 are available. Let ni1i2i3 denote the
observed frequencies of the data, where is = (0, 1), i = 1, 2, 3 and is = 0 denotes ”not observed”
and is = 1 denotes ”observed”. n000 is the number of individuals ”not observed” in any list that
has to be estimated in order to estimate the total unknown population size N . Data can be
arranged in a 23 contingency table with a missing cell corresponding to absence in all the three
lists (see Table 1).

Let Is, s = 1, 2, 3 be the random variables denoting the presence or absence of an individual in
the corresponding list. Assume that there are two latent variables which explain the correlation
among lists, and suppose that I1, I2 and I3 are conditionally independent given the two latent
variables. Let Θ = (Θ1,Θ2) denotes the vector of latent variables and θ = (θ1, θ2) denotes a
realization.
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R3
Observed Not Observed

R2 R2
Observed Not Observed Observed Not Observed

R1
Observed n111 n101 n110 n100

Not Observed n011 n001 n010 0∗

∗ Missing cell is treated as structurally zero cell

Table 1: Contingency table for three lists

We are interested in analysing a log-linear model that allows the presence of the two latent
variables.

Let π0s , s = 1, 2, 3 be the probability of not being observed in the s−th list and let π1s =
1− π0s be the probability of being observed in the s−th list. The probability of inclusion in list
s given the vector of latent variables may be expressed in a logistic form in the following way:

π1s|θ =
eu
′
sθ−δs

1 + eu′sθ−δs
(1)

where δs is the parameter for the list s, θr is the parameter for the r−th latent variable and
u′s is the row vector of the (3 × 2) full column rank matrix U = [usr] of weights for the latent
variables, where

usr =

{
1 if the list Rs is indicator of the r−th latent variable

0 otherwise

Let t = (t1, t2) be the vector of total scores, where the total scores are given by t1 =
u11i1 + u21i2 + u31i3 and t2 = u12i1 + u22i2 + u32i3.

Let i = (i1, i2, i3) denotes a generic capture profile for an individual. According to standard
probability theory, the probability of a generic capture profile (πi1i2i3) may be written as

πi1i2i3 =

ˆ
. . .

ˆ
πi1i2i3|θf (θ) dθ (2)

where πi1i2i3|θ is the probability of a generic capture profile conditional to θ and f (θ) is the
multivariate density of θ. Under the assumption that the posterior distribution of the vector
of latent variables conditional to the capture profile i1i2i3 = 000 follows a multivariate normal
distribution, we have

πi1i2i3 = π000 exp

{
3∑
s=1

isδs + t1µ1 + t2µ2 +
1

2
t21γ11 +

1

2
t22γ22 + t1t2γ12

}

= π000 exp

{
3∑
s=1

isδs + t′µ+
1

2
t′Γt

}
(3)

where t = (t1, t2)′ = i′U, µ is the mean vector and Γ = [γir] is symmetric.

Let n the number of individuals observed in all lists. Since the probability of a generic
capture profile i1i2i3 has multinomial distribution, we can express the expected frequencies of
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ni1i2i3 as
mi1i2i3 = nπi1i2i3 (4)

Substituting (4) in (3) and taking the logarithm we obtain:

lnmi1i2i3 = δ +
3∑
s=1

isδs + t′µ+
1

2
t
′
Γt (5)

where δ = ln(nπ000).
The model in equation (5) is not identified. Setting µ = 0 for identification, the log-linear

multidimensional Rasch model can be rewritten as:

lnmi1i2i3 = δ +
3∑
s=1

isδs +
1

2
t
′
Γt

= δ + i1δ1 + i2δ2 + i3δ3 +
1

2
t21γ11 +

1

2
t22γ22 + t1t2γ12 (6)

Note that there are 2(2 + 1)/2 = 3 parameters to account for the two latent variables θ1 and
θ2. In particular, γ11 and γ22 represent, respectively, the variance of the first latent variable and
the variance of the second latent variable, given the total scores t1 and t2 , while γ12 represents
the covariance between the two latent variables, given the total scores t1 and t2. In general, to
account for q latent variables, we need q(q + 1)/2 parameters.

3 Model with a stratifying variable

Suppose now that a stratifying variable is available. Let ni1i2i3j and πi1i2i3j denote the ob-
served frequencies and the probabilities for strata j, respectively. In this case, n000j indicates
the frequency of individuals not observed in any lists in the j-th strata. With two strata the
contingency table has two missing cells, as shown in Table 2.

R3
Observed Not Observed

R2 R2
Year R1 Observed Not Observed Observed Not Observed

1
Observed n1111 n1011 n1101 n1001

Not Observed n0111 n0011 n0101 0∗

2
Observed n1112 n1012 n1102 n1002

Not Observed n0112 n0012 n0102 0∗

∗ Missing cell are treated as structurally zero cells

Table 2: Contingency table for three lists and two strata

We assume that lists are indicators of the latent variables which explain correlations among
lists and the posterior distribution of the latent variables (given the capture profile of not ob-
served) follows a multivariate normal distribution; similarly to the previous case, we have

lnmi1i2i3j = δj +
3∑
s=1

isδsj +
1

2
t′Γjt (7)
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where δj = ln(nπ000j), Γj is a symmetric matrix, t is the vector of total scores and the mean
vector for the j-th strata µj is set equal to zero for identification.

If parameters are equal across the strata δsj = δs, ∀j, that is the assumption of measurement
invariance holds, we can test whether µj = µ = 0 and Γj = Γ for all j.

If the simultaneous hypothesis holds, then the model in (7) becomes

lnmi1i2i3j = δj +
3∑
s=1

isδs +
1

2
t′Γt. (8)

4 Generalization

The extension to a more general situation with S registrations and J strata is straightforward.
Let ni1...isj and πi1...isj be the observed frequencies and the probabilities, respectively, where

the index is, s = 1, 2, . . . , S denotes the cross-classification of S lists and j = (1, 2, . . . , J) is the
index denoting the strata. The resulting contingency table has J structural zeros (one for each
stratum).

Suppose now that the covariances between the random variables I1, . . . , IS can be explained
by q latent variables. Let u′s denotes the s−th row of the SJ × q full column rank matrix
U = [usr], where usr = 1 if list RS is indicator of the r−th latent variable and 0 otherwise, and
let t = (t1, . . . , tq) be the vector of the total scores of the latent variables, that is tr =

∑S
s=1 usris.

Under the assumption of a multivariate normal distribution of the posterior distribution of
the latent variables (conditional to the capture profile of individuals not observed in any list)
the log-linear multidimensional Rasch model takes the form:

lnmi1...isj = δj +
S∑
s=1

isδsj + t′µj +
1

2
t′Γjt (9)

where µj is the mean vector for the j-th strata, t is the vector of total scores and Γj is a
symmetric matrix.

Without any additional constraints the model is not identified. If we set µj equal to 0 for
identification we have:

lnmi1...isj = δj +
S∑
s=1

isδsj +
1

2
t′Γjt (10)

The model in (10) can be treated as a traditional log-linear model. Thus, to estimate the
parameters of the model it is possible to follow the approach proposed by Sanathanan [11]
which consists of maximizing the conditional likelihood given the distribution of the observed
frequencies (for more details see Sanathanan [11] and Bishop et al. [4]). Once the parameters
have been estimated they can be used to obtain the estimate of the portion of population missed
by all lists and thus the total unknown population size N .

5 Application

We apply the methodology described in the preceding Sections to the data set of five lists
described by Zwane et al. [12] on children born with a NTD’s in the Netherlands. Data cover
a period of 11 years (from 1988 through 1998) and Year (denoted by Ycat) is treated as a
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stratifying variable. Since the five lists cover different but overlapping periods of time, we use
the EM algorithm proposed by Zwane et al. [12] to estimate the missing cells resulting from the
fact that lists partially overlap. None of these lists record all cases of NTD’s in the Netherlands,
and the scope of this application is to estimate the total unknown number of children affected
by NTD’s.

We assume that the five lists R1, R2, R3, R4 and R5 may be divided into two subgroups
such that they can be view as indicators of the latent variables which account for correlations
among lists. In particular, we consider two multidimensional Rasch models obtained using the
methodology described above and compare them with other log-linear models. In total, we take
into account five models.

Table 3 summarizes the results of these models fitted to the data; for each model we report
the number of parameters, the degrees of freedom, the deviance, the value of AIC, the value of
BIC and the estimated total population size N̂ . Table 4 presents the yearly estimates N̂j , j =
1988, . . . , 1998 for each model.

Model Design matrix Par df∗ Dev AIC BIC N̂

1 R1+R2+R3+R4+R5+Ycat 16 213 400 432 487 2229
2 1+(R1R2+. . .+R4R5) 26 203 298 350 439 3077
3 1+H1 17 212 349 383 441 3009
4 1+θ1 + θ2 19 210 324 362 427 2793
5 1+θ3 + θ4 19 210 311 349 414 3041

Table 3: Selected models with deviance, AIC and BIC

Model N̂88 N̂89 N̂90 N̂91 N̂92 N̂93 N̂94 N̂95 N̂96 N̂97 N̂98

1 199 224 234 206 222 186 189 202 178 210 179
2 275 309 323 285 302 258 261 280 246 290 248
3 272 305 319 281 303 249 252 271 238 280 239
4 251 282 295 260 280 232 235 252 222 261 223
5 271 305 318 281 300 255 258 277 244 287 245

∗ There are 229 observed cells
SH1 is the first-order heterogeneity term
†θ1 = R1 +R2 and θ2 = R3 +R4 +R5
‡θ3 = R1 +R2 +R4 and θ4 = R3 +R4 +R5

Table 4: Selected models with yearly estimates

Note that the model with only the main-effect parameters does not fit the data well, as it
has a high deviance. The model with the first-order heterogeneity parameter improves the fit,
while adding all two-factor interaction parameters to Model 1 results in a smaller deviance.

Both of the multidimensional Rasch models fit the data well and Model 5, in which lists R1,
R2 and R4 are assumed to be indicators of the first latent variable (θ3) and lists R3, R4 and R5
are supposed to be indicators of the second latent variable (θ4), is the best model, since it has
the smallest value of AIC and BIC; thus, it is the selected model.
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6 Conclusion

In this manuscript we proposed the use of the multidimensional Rasch model in the capture-
recapture framework.

We assumed that lists may be divided into two or more subgroups (not necessarily disjoint)
which constitute the latent variables accounting for correlations among lists. As consequence,
the random variables denoting the presence or absence of an individual into a list are assumed
to be conditionally independent, given the latent variable.

Under the assumption that the posterior distribution of the latent variables follows a multi-
variate normal distribution, we used the extension of the Dutch Identity proposed by Hessen [9]
in a psychometric context to the capture-recapture framework and we showed that it is possible
to re-express the probability of a generic capture-profile in terms of the log-linear multidimen-
sional Rasch model.

Finally, we applied the methodology we proposed to a dataset on NTD’s in the Netherlands
from 1988 through 1998. Since lists did not cover the same time periods, we used the EM
algorithm proposed by Zwane et. al [12] to estimate the missing entry in the data set. The
results showed that the selected model for inference is one of the log-linear multidimensional
Rasch models obtained by applying the methodology proposed. In fact, it was preferable among
the other log-linear model, as it presented the smallest value of both AIC and BIC.
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Abstract. In real situations the evaluation of the global quality of either a product or a
service depends on more than one quality characteristic. In order to monitor the variability of
multivariate processes and identify the variables responsible for changes in the process, we will
use the STATIS (Structuration des Tableaux A Trois Indices de la Statistique) methodology,
a three-way data analysis method. For this purpose we consider a control chart based on
a similarity measure between two positive semi-definite matrices, the RV coefficient, and we
evaluate the performance of this control chart for monitoring multivariate normal data.

Keywords. Control chart, Monte Carlo simulation, Process monitoring, RV coefficient, STATIS,
Statistical Quality Control.

1 Introduction

The evaluation of the global quality of either a product or a service in real situations depends
on several quality characteristics. Often the quality characteristics of interest are correlated and
so multivariate techniques of process control are more appropriate than univariate methods for
monitoring the individual characteristics. In a multivariate quality control procedure it is crucial
to identify the out-of-control variables when the control chart gives an out-of-control signal. The
control charts are the tools commonly used for process monitoring in Statistical Quality Control
(SQC). The control charts were introduced by Shewhart at Bell Laboratories in 1924 and they
initially emerged for monitoring industrial processes, but nowadays they are currently applied in
several areas, including Health, Medicine, Genetics, Environment and Finance. The purpose of
these graphical representations (control charts) is to help make decisions about the state of the
process that is being monitored, whether it is in-control or out-of-control. Whenever a control
chart triggers an out-of-control signal, which may possibly be a false alarm, it is necessary to
investigate the causes responsible for the emission of such signal so that appropriate corrective
actions are taken. Most of the multivariate control schemes are based on the Hotelling T 2 statistic
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and are implemented under the assumption of multivariate normal data. These schemes consist
of simultaneously monitoring the mean vector and the covariance matrix of the process or,
separately monitor the mean vector and the covariance matrix. Several control charts have been
proposed for monitoring the mean vector of a multivariate process such as a control chart based
on the Hotelling statistic (1947) and refinements of this control chart, among others. Control
charts for controlling the variability (covariance matrix) of a process have also been proposed
based on the generalized variance and its refinements (Alt, 1985), and control charts based on
the maximum of the sample variances or on the maximum of the ranges of the p characteristics
under study (Costa and Machado, 2008a, 2008b), among other charts. Additionally several
control schemes have appeared in the literature to monitor both the mean vector and covariance
matrix of the process (Chen et al., 2005, Zhang and Chang, 2008, etc).
The STATIS (Structuration des Tableaux a Trois Indices de la Statistique) methodology was
introduced by L′Hermier des Plantes (1976) and later developed by Lavit (1988) and Lavit et al.
(1994). STATIS enables us to analyse simultaneously several data tables measured on the same
individuals or variables for different circumstances or time instants. If the individuals are the
same in all tables, we compare the structure of individuals in all tables and this analysis is called
STATIS method. If the variables are the same in all tables, we compare the relations between
variables in all tables and this analysis is called Dual STATIS method. If the individuals and
variables are the same in all tables, we can apply both methods.
The STATIS methodology involves three steps. In the first step, termed interstructure, we
globally compare the data tables. In STATIS we compare the structure of individuals through
the scalar product matrices and, in Dual STATIS, we compare the relations between variables
through the covariance matrices. In the second step, termed intrastructure, we describe the
common structure in all data tables through the determination of the compromise and the
respective euclidean image. In the last step, we identify which individuals or variables contribute
the most to the observed differences among the data tables. We represent the individuals’ or va-
riables’ trajectories on the compromise Euclidean image. These trajectories enable us to identify
the individuals (STATIS) or variables (Dual STATIS) which most contribute for the differences
among the data tables. In this step, we also do the decomposition of the squared distances
between any two pairs of tables into contributions of individuals or variables to identify which
individuals (variables) more contribute to the differences among the tables.
STATIS methodology has been applied in various areas, and in particular in statistical quality
control to monitor batch processes by several authors. For instance, Scepi (2002) focus on the
non parametric control schemes both for simple data as well as for batch and time dependent
data, Gourvénec et al. (2005) applied STATIS to batch process data to monitor the evolution in
time of batches, Niang et al. (2009) proposed a non parametric quality control strategy based
on STATIS and convex hull peeling for monitoring batch processes with constant or variable
duration.
Our aim in this study is to apply the STATIS methodology for monitoring the covariance matrix
of p quality characteristics, and beyond that, through this methodology, identify which variables
are responsible for the emission of an out-of-control signal. In Section 2 we propose a control
chart based on RV coefficient (Escoufier, 1973) between the compromise covariance matrix
obtained from a set of reference samples and the covariance matrix of a new sample. In Section
3 we evaluate the performance of the RV -chart for monitoring a multivariate normal process.
In Section 4 we present an illustrative example.
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2 Control chart based on STATIS

We consider K reference samples of size n measured on p variables taken in K different time
instants, when the process is in the in-control state, and we represent these matrices by their
covariance matrices Vk

′s.
The RV coefficient (Escoufier, 1973) between Vk and Vk′ is defined by

RV (Vk, Vk′) =
Tr(VkQVk′Q)»

Tr (VkQ)2 Tr (Vk′Q)2
,

where Tr denotes the trace operator of a matrix and Q is the metric in the individuals space,
defined by the identity matrix or by a diagonal matrix whose main elements are equal to the
reciprocal of the variances of the variables. The RV coefficient varies between 0 and 1. The
closer the RV coefficient is to 1, the more similar the two covariance matrices Vk and Vk′ are.
We determine the compromise covariance matrix, V , which is defined as a weighted mean of the
K covariance matrices Vk

′s:

V =
K∑
k=1

αkVk,

where αk are the weights representing the agreement between the K tables and the compromise.
These weights are the elements of the eigenvector associated with the largest eigenvalue of the
following matrix Z containing the RV coefficients between the Vk

′s:

Z =

à
1 RV (V1, V2) · · · RV (V1, VK)

RV (V2, V1) 1 · · · RV (V2, VK)
...

...
. . .

...
RV (VK , V1) RV (VK , V2) · · · 1

í
The control chart here proposed, denoted RV -chart, is implemented as follows. For a new

time instant k + 1, we compare its covariance matrix Vk+1 with the compromise covariance
matrix V through the RV coefficient. Denoting CL the control limit of the chart, we consider
the following decision criterion:

• If RV (V, Vk+1) ≥ CL we consider that the process is in-control.

• Otherwise, we decide that the process is out-of-control. In this case we identify which
variables are responsible for this situation, through the decomposition of the distance
between V and Vk+1 into percentages of variables’ contributions.

The exact distribution of the RV coefficient is unknown, and thus we fix CL at an empirical
percentile of the sampling distribution of the RV coefficient.
When the process is declared to be in the out-of-control state, for identifying the variables
which contribute the most for the differences between V and Vk+1, we decompose the squared
Hilbert Schmidt distance between V and Vk+1, defined by d2

HS (V, Vk+1) = Tr [(V − Vk+1)Q]2

into percentages of variables’ contributions. The percentage of contribution of variable i for d2
HS

is given by:

cvar i, d2
HS

=

qii
p∑
j=1

qij
Ä
V ij − V ij

k+1

ä2
d2
HS (V, Vk+1)

,
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where qii is the ith diagonal element of Q, V ij is the ij-element of V and V ij
k+1 is the ij-element

of Vk+1.

3 Performance of the control chart

For evaluating the efficiency of the proposed RV -chart, we computed by simulation the Average
Run Length (ARL), the most commonly used measure of performance of control charts. We ge-
nerated multivariate normal processes Np (µ,Σ), for p=2,3 assuming different structures for the
covariance matrices when the process is in-control and out-of-control. In each case, we obtained
the compromise covariance matrix based on 4 reference samples generated when the process is
in-control. For α=0.005, we determined the control limit of the chart, i.e., the percentile 0.5% of
the distribution of the RV coefficient, obtained through a Monte Carlo simulation experiment
of size 100000 and we calculated the in-control and out-of-control ARL values through 10000
replicates for the different structures of the covariance matrix.
More precisely, we generated samples from a bivariate normal distribution N2 (µ,Σ), with mean

vector µ = (0, 0)′ and covariance matrix Σ =

Ç
1 σ12

σ12 1

å
. Note that we could consider an-

other mean vector because we will work with centered data. The unit variances in Σ imply that
the covariance is equal to the correlation coefficient. Some obtained results are presented in Ta-
bles 1 and 2. We also generated samples from a multivariate normal distribution N3 (µ,Σ) with

mean vector µ = (0, 0, 0)′ and covariance matrix Σ =

Ö
1 σ12 σ13

σ12 1 σ23

σ13 σ23 1

è
. As previously we

could use another mean vector and the unit variances imply covariances equal to the correlation
coefficients. Some obtained results are indicated in Tables 3 and 4.

σ12= 0 in-control σ12= 0.75 in-control

n 5 10 15 n 5 10 15

CL 0.360 0.593 0.698 CL 0.390 0.747 0.863

σ12 ARL σ12 ARL

0 198.55 188.31 193.35 0.75 178.42 204.85 180.29

0.3 161.88 105.72 66.85 0.5 39.69 16.64 9.43

0.5 121.79 48.75 22.59 0.3 18.10 5.57 3.09

0.75 67.95 15.84 5.96 0.1 9.68 2.78 1.63

0.95 31.87 6.26 2.50 0 7.24 2.12 1.37

-0.3 168.65 105.71 66.88 -0.3 3.53 1.27 1.05

-0.5 122.25 48.17 22.40 -0.5 2.28 1.08 1.01

-0.95 31.24 6.26 2.46 -0.75 1.42 1.00 1.00

Table 1: Control limit and ARL for n=5,10,15 being σ12= 0 or σ12= 0.75 when the process is
in-control. The in-control ARL values are underlined.

From the Tables 1-4, the control limit of the chart and the ARL depend on the sample size
n and on the in-control correlation matrix. When the process is in-control the ARL is large
and approximately equal to 200, and when the process is out-of-control, the ARL is smaller and
decreases as the sample size increases.
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σ12= 0.5 in-control σ12= −0.5 in-control

n 5 10 15 n 5 10 15

CL 0.338 0.581 0.721 CL 0.338 0.607 0.740

σ12 ARL σ12 ARL

0.5 191.55 202.53 185.43 -0.5 191.55 206.25 188.17

0.3 85.65 47.43 29.62 0 31.94 9.95 4.99

0 32.94 10.14 4.96 0.5 8.06 1.83 1.20

-0.3 14.03 3.25 1.76 0.75 3.96 1.16 1.01

-0.75 3.95 1.16 1.01 0.95 1.99 1.01 1..00

Table 2: Control limit and ARL for n=5,10,15 being σ12= 0.5 or σ12= −0.5 when the process is
in-control. The in-control ARL values are underlined.

σij = 0, i 6= j, in-control σij = 0.5, i 6= j, in-control

n 5 10 15 n 5 10 15

CL 0.325 0.561 0.671 CL 0.300 0.607 0.740

σ12, σ13, σ23 ARL σ12, σ13, σ23 ARL

0,0,0 202.34 194.99 201.12 0.5,0.5,0.5 189.35 197.09 190.17

0.5,0.5,0.5 77.78 18.30 6.85 0.3,0.3,0.3 71.61 32.84 20.27

0.7,0.7,0.7 40.00 6.43 2.39 0.1,0.1,0.1 30.24 8.33 4.16

0.5,0.2,0.9 43.42 9.19 3.52 0,0,0 19.80 4.57 2.25

0.9,0.75,0.9 21.07 3.19 1.42 0,1,0.3,0.9 70.41 27.47 13.15

Table 3: Control limit and ARL for n=5,10,15 being σij = 0, i 6= j and σij = 0.5, i 6= j when
the process is in-control. The in-control ARL values are underlined.

n 5 10 15

CL 0.340 0.561 0.671

σ12, σ13, σ23 ARL

0.75,0.75,0.75 199.36 202.22 193.50

0.5,0.5,0.5 36.85 11.92 6.59

0.3,0.3,0.3 14.58 3.47 1.95

0.1,0.1,0.1 6.75 2.49 1.14

0,0,0 4.52 1.75 1.05

0.9,0.5,0.1 24.53 7.62 2.74

0.1,0.9,0.3 18.94 4.06 2.11

Table 4: Control limit and ARL for n=5,10,15 being σij = 0.75, i 6= j when the process is
in-control. The in-control ARL values are underlined.

If the correlations are very small when the process is in-control, the chart detects the existence
of positive or negative correlations, being the large correlations (positive or negative) easily de-
tected.
If the correlations are large and positive (negative) when the process is in-control, the chart
detects decreases in the correlations, negative (positive) correlations and also absence of corre-
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lation. In this case the chart does not detect increases in positive (negative) correlations. The
chart is more sensible to detect large negative (positive) correlations.
Thus, the control chart enables us to detect changes in the correlations between variables and
it detects such a change as fast as we move away from the in-control covariance matrix.

4 Illustrative example of a multivariate normal process

The following example is based on the example given in Hawkins and Maboudou-Tchao (2008).
Suppose a process with 4 quality characteristics X1, X2, X3, X4 with normal multivariate
distribution N4 (µ,Σ). Assume that when the process is in-control, the mean vector and the
covariance matrix are given by

µ0 =

á
126. 61
77. 48
80. 95
97. 97

ë
and Σ0 =

á
15.04
8.66 5.83
10.51 5.56 15.17
12.04 7.5 8.79 10.57

ë
,

respectively. Consider that the compromise matrix is obtained from 10 reference samples of size
n=15 generated when the process is in-control, and given by

V =

á
17.85
9.94 6.56
12.10 6.14 16.16
14.14 8.55 9.81 12.14

ë
.

To illustrate the performance of the RV -chart, we consider the following three out-of-control
situations and shifts of magnitude θ=5%, 10%, 15%, 20%, 25%, 50%, 75%, 100%.

1. Increase of θ in the variances, decrease of θ in the covariances and no change in the mean
vector.

2. Decrease of θ in the covariances and no changes in the variances nor in the mean vector.

3. Increase of θ in the variances and no changes in the covariances nor in the mean vector.

The control limit of the chart for a false alarm rate α=0.005, computed by simulation based on
100000 samples of size 15 generated when the process is in-control is 0.852. The corresponding
in-control ARL, also obtained by simulation using 10000 samples generated when the process is
in-control is equal 184.65 (a bit smaller than the nominal ARL value equal to 200).
The out-of-control ARL values obtained with 10000 samples generated in the three situations and
shifts of magnitude θ is indicated in Table 5. From this table we observe that the out-of-control
ARL decreases as fast as θ increases.

Next we exemplify how to determine the variables responsible for the out-of-control situation.
Suppose the following two samples taken from the process, that have lead us to conclude for an
out-of-control state. The covariance matrices associated to these samples are given by

V1 =

á
17.80
1.53 15.2
3.98 3.43 18
−0.29 9.5 1.56 14.3

ë
and V2 =

á
7.61
0.39 3.32
2.55 −0.31 19.63
−0.33 2.38 −5.1 6.89

ë
,
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Shift θ 5% 10% 15% 20% 25% 50% 75% 100%

Situation 1 65.3 27.7 13.5 7.7 4.8 1.4 1.1 1.0

Situation 2 105.2 62.1 37.9 23.4 13.8 2.6 1.2 1.0

Situation 3 110.0 70.2 47.0 32.8 23.7 7.7 4.1 2.7

Table 5: ARL for the three out-of-control situations for each θ

respectively. Computing the coefficients RV (V , V1) and RV (V , V2), we obtained the values
0.745 and 0.506, respectively, and consequently, we conclude in both cases that the process is
out-of-control. For identifying the variables that contributed the most for the out-of-control
state, we decomposed d2(V, V1) and d2(V, V2) into percentage of variables’ contributions (see
Table 6). We usually retain the variables’ contributions higher than the mean (in our case,
> 100%�4 = 25%) and then we select the corresponding variables as the ones responsible for
the out-of-control signal.

Variables Contribution (%) Contribution (%)

d2(V, V1) d2(V, V2)

X1 32.9 17.9

X2 22.2 7.2

X3 14.8 44.8

X4 30.1 30.1

Table 6: Percentages of variables’ contributions

From Table 6 we conclude that the variables X1 and X4 contributed the most for the out-of-
control signal for the first given sample and X3 and X4 contributed the most for the out-of-control
signal associated with the second sample.
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Estimation of Lévy CARMA models
in the yuima package: application on
the financial time series
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Abstract. In this work we show how to use the R package yuima available on CRAN for
the estimation of a Continuous Autoregressive Moving Average (CARMA) model on the real
data. When dealing with the CARMA model, one of the advantages of the yuima package is
the possibility of recovering the increments of the underlying noise and choosing the appropriate
Lévy model. The estimation of the parameters for the underlying Lévy process makes yuima

package appealing for modeling financial time series. Indeed, identifying the appropriate noise
for a CARMA model allows to capture asymmetry and heavy tails observed in the real data.

Keywords. yuima package, CARMA model, financial time series

1 Introduction

The aim of the developers of the yuima package is to build an environment based on S4 classes
and methods for the R language. The package allows the user to deal with a broad class of
stochastic differential equations containing unidimensional or multidimensional diffusion pro-
cesses, fractional Brownian motions, jump and jump diffusion processes. The main class is
called yuima-class and it is composed by slots.
In particular, the slot data contains an object of class yuima-data where it is possible to store
the empirical or simulated data. Slot model is an object of class yuima.model and gives a math-
ematical description of the chosen stochastic differential equation while the slot sampling gives
information on how the data have been collected or generated. The slot characteristic gives
additional information about the statistical model. The slot functional is used to specify func-
tionals of the chosen model and the expected values can be approximated through asymptotic
expansion formulas. This last slot is useful for option pricing purpose.

In this note we show how to apply the R package yuima for the identification and the
estimation of a CARMA model driven by a general Lévy process. The Continuous Autoregressive
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Moving Average (CARMA) model driven by a standard Brownian Motion was first introduced in
literature by [7] as a continuous counterpart of the discrete-time ARMA process. [2] considers a
CARMA model driven by a Lévy process with finite second order moments where the gaussianity
assumption is relaxed. In this way the marginal distribution of a CARMA process is allowed to
be asymmetric and heavy-tailed making it appealing for applications in financial econometrics.

We use the results described in [9] to fit a real market dataset in order to recover the
underlying Lévy process by means of the yuima package once the estimation of the coefficients
is done. The existing R packages available on CRAN deal only with CARMA(p,q) models
driven by a standard Brownian Motion [12] or Gaussian CAR(p) models [16] while we are able
to consider Lévy distributions of a general form.

2 CARMA model in the yuima package

In this Section we review the functions available in the yuima package for the estimation of a
CARMA model driven by a Lévy process19. Let Lt be a Lévy process with E

(
L2

1

)
< +∞.

The CARMA(p,q) model Yt as in [2] is defined as a stationary solution of the following linear
differential equation:

a (D)Yt = b (D)DLt (1)

where D denotes the differentiation with respect to time and the polynomials a (z) and b (z) are
defined as:

a (z) = zp + a1z
p−1 + · · ·+ ap

b (z) = b0 + b1z
1 + · · ·+ bp−1z

p−1

where a1, . . . , ap are the autoregressive parameters and b0, . . . , bp−1 are the moving average
parameters such that bq 6= 0 and bj = 0, ∀ j > q.
We remark that the representation in (1) is not useful since higher order derivatives for the Lévy
are not well defined so we use the state space representation is:

Yt = b′Xt

dXt = AXtdt+ edLt
(2)

where the state variable Xt = [X0,t, . . . , Xp−1,t]
′ is a vector process of dimension p and

e =


0
...
0
1

 , b =


b0
...
0

bp−1

 , A =


0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
−ap −ap−1 . . . −a1


The yuima package contains several S4 classes and methods for simulation, estimation and
inference of stochastic differential equations that have the following general form:

dXt = b (t,Xt) dt+ σ (t,Xt) dWH
t + c (t,Xt) dZt.

where b (t,Xt), σ (t,Xt) and c (t,Xt) are coefficients defined by the user. WH
t is a fractional

Brownian motion (by default the Hurst index is fixed to 1
2) and Zt is a pure jump Lévy process.

19A detailed discussion of the methodologies and routines implemeted in the yuima package for CARMA models
is reported in [9]
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In such a context, the estimation of a Lévy CARMA model can be done using two methods
implemented in yuima: setCarma and qmle.

The setCarma function returns an object of class yuima.carma20 that contains a mathemat-
ical description of the CARMA model based on the state space representation. For this function
necessary arguments are the orders of autoregressive p and moving average q parameters. By
default the underlying noise is a standard Brownian motion and other Lévy measures can be
specified using the arguments measure and meaure.type (See [3] for more details).

The qmle function requires as arguments a list with the inital values for the parameters and
an object of class yuima where the slot data contains the observed time series, the slot model

is filled with an object of class yuima.carma and the slot sampling indicates the frequency of
observed data. The algorithm behind the function performs a three-step estimation procedure
described below:

• The autoregressive a1, . . . , ap and the moving average b0, . . . , bq parameters are obtained
using the quasi-maximum likelihood method where the unbservable state variable Xt is
estimated using the Kalman Filter algorithm.

• Given the CARMA parameters, the increments of the underlying noise are obtained fol-
lowing the approach developed in [4]

• The parameters of the choosen Lévy measure are estimated using the increments obtained
in the previous step. In this case, if the density has not an analytical form, the likelihood
function is computed by Fourier Transform.

3 Application on a real dataset

In this Section we use the yuima package for the estimation of a CARMA model on the VIX
data. The VIX, introduced by the Chicago Board Options Exchange [5] in 1993 and modified
in 2003, measures the 30-day expected volatility of the S&P 500 index. As a first step, we
need to load the quantmod package [11] for downloading financial data and TSA package [6] for
a standard time series analysis. Our dataset is composed by the closing daily VIX values from
October 24-th 2008 to April 30-th 2014. Table 1 reports the main statistics of the dataset.

VIX DATA VIX.Close

1 1st Qu.: 01-03-2010 1st Qu.: 15.79%
2 Median: 19-07-2011 Median: 19.08%
3 3rd Qu.: 06-12-2012 3rd Qu.: 25.95%

Table 1: Statistics for the VIX data from October 24-th 2008 to April 30-th 2014.

The VIX time series is obtained from the yahoo-finance page using the code listed below.

> getSymbols("^VIX",src="yahoo")

> daysInYear<-252

20The class yuima.carma extends the yuima.model since contains additional informations related to the
CARMA model

@ COMPSTAT 2014



454 CARMA model in yuima package

> Years<-6

> end.day<-dim(VIX)[1]

> start.day<-end.day-daysInYear*Years

> VIX.df<-data.frame(index(VIX),coredata(VIX),stringsAsFactors=FALSE)

> colnames(VIX.df)<-c("date","Open","High","Low","Close","Vol","Adj")

In our empirical analysis we decide to estimate a CARMA model on the logarithm of the squared
VIX values and we use the following command lines in order to store the new time series.

> VIX.returns1<-(VIX.df$Close/100)^2

> dataForAnalysis<-ts((log(VIX.returns1[start.day:end.day])),frequency=daysInYear)

We conduct a preliminary qualitative analysis for identifying a possible pair of autoregressive and
moving average parameters. This result is achieved using the Autocorrelation function (ACF)
for detecting the linear dependence on time series and the Extended Autocorrelation function
(EACF) developed in [14] for recognizing the (p,q) orders of an ARMA model.
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Figure 1: Time series from October 24-th 2008 to April 30-th 2014 (left side) and Autocorrelation
function (right side) of the close VIX Index

AR - MA 0 1 2 3 4

0 X X X X X
1 X X X O O
2 X O O O O
3 X X O O O
4 X X X O O

Table 2: Shape of the Extended Autocorrelation Function obtained using VIX data. We have
X for absolute values of the corresponding EACF greater than or equal to 2√

T
and O for lower

values. The bound 2√
T

is twice the asymptotic standard error of the EACF with T being the

number of observations.
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The shape of the EACF in Table 2 suggests that the most appropriate model is the CARMA(2,1)
since the upper vertex of the O’s triangle coincides with the pair (p=2,q=1) (see [13] for a com-
plete treatment).
In order to estimate the parameters of a CARMA(2,1) with location parameter21 µ, we need to
build an object of class yuima that contains the observed time series stored in an object of class
yuima.data and a mathematical description of the model in an object of class yuima.carma.

> mydata<-setData(dataForAnalysis)

> mymodel<-setCarma(p=2,q=1,loc.par="mu")

We remark that, by default the setCarma builds a model driven by a standard Brownian motion.
Using the following code we fill the slots data and model in an object of class yuima that is used
as an input in the estimation algorithm implemented in the yuima package.

> samp <- setSampling(Terminal=Years,n=Years*daysInYear)

> myCARMA<-setYuima(data=mydata,model=mymodel,sampling=samp)

We run the qmle function that returns an object of class yuima.carma.qmle containing the
estimated parameters and the increments of the underlying noise (see [9] and [3] for further
details).

> myParm0<-list(a1=36,a2=56,b0=21,b1=1,mu=0)

> myRes<-qmle(yuima=myCARMA,start=myParm0)

The results we get with the qmle function are reported in Table 3.

a1 a2 b0 b1 µ

Est. 80.37 26.06 94.55 2.37 -2.75
Std. 21.35 30.79 33.98 0.06 1.09

−2 × logL -1575.13

Table 3: Estimates of the CARMA(2,1) model driven by a standard Brownian motion .

We check whether the residuals are independent and normally distributed. The independence
assumption is studied by the means of the ACF and quantitative instruments such as Ljung-Box
and Box-Pierce tests (we refer to [13] for more details). The shape of the ACF reported in
Figure 2 seems to confirm the absence of correlation in the increments. Moreover, in Table 4
the p-values for both tests are greater than 0.05.

Test D.F. p-value

Ljung-Box 14.89 10 13.59%
Box-Pierce 14.80 10 13.96%

Table 4: Results of the Ljung-Box and Box-Pierce tests on the estimated increments

21The setCarma is able to define a more general CARMA model with location and scale parameters, see [9] for
more details.
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Figure 2: Estimated Increments (left side) and corresponding Autocorrelation (right side).

Looking at Figure 3 we observe a departure from the normality assumption for the distri-
bution of the increments. In particular, the shape of the qq-plot indicates the presence of
heavy tails. We use two different Lévy processes as underlying noise for the CARMA model:

value

D
e

n
s
it
y

−0.2 −0.1 0.0 0.1 0.2 0.3 0.4

0
2

4
6

8
1

0

N dens.

−3 −2 −1 0 1 2 3

−
0

.2
0

.0
0

.1
0

.2
0

.3
0

.4

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s

Figure 3: Empirical density (left side) and qq-plot (right side) of the estimated increments

the Variance Gamma [10] and the Normal Inverse Gaussian [1]. The advantage of the yuima

package is the possibility of dealing with different processes for the underlying noise term.
We specify the Lévy measure through the setCarma function:

> mymodel.VG<-setCarma(p=2, q=1,loc.par="mu",

measure=list("rngamma(z,lambda,alpha,beta,mu0)"),

measure.type="code")

> mymodel.NIG<-setCarma(p=2, q=1,loc.par="mu",

measure=list(df=list("rNIG(z, alpha, beta, delta1, mu0)")),

measure.type="code")
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Figure 4: Empirical, Variance Gamma, Normal Inverse Gaussian and Normal densities fitted to
the increments obtained applying the qmle function to the VIX time series.

We build two yuima objects that contain the VIX time series and the mathematical description
of the considered Lévy CARMA models:

> myCARMA.VG<-setYuima(data=mydata,model=mymodel.VG, sampling=samp)

> myCARMA.NIG<-setYuima(data=mydata,model=mymodel.NIG sampling=samp)

The qmle function returns the autoregressive, the moving average and the underlying Lévy
parameters22.

> myParm0.VG<-list(a1=36,a2=56,b0=21,b1=1,mu=0,lambda=1,alpha=1,beta=0,mu0=0)

> myParm0.NIG<-list(a1=36,a2=56,b0=21,b1=1,mu=0,alpha=2,beta=1,delta1=1,mu0=0)

> myRes.VG<-qmle(yuima=myCARMA.VG,start=myParm0.VG,aggregation=FALSE)

> myRes.NIG<-qmle(yuima=myCARMA.NIG,start=myParm0.NIG,aggregation=FALSE)

The estimated parameters are reported in Table 5. Figure 4 shows a comparison of the em-
pirical and estimated densities on the Lévy increments. It is worth noting that, since we set
aggregation=FALSE, the Lévy parameters are estimated using increments on intervals with time
length ∆t = 1

252 and the qmle function computes the parameters defined on intervals of unitary
length (annual basis in our case).

Distr. α β δ1 λ µ0 −2 × logL

NIG 17.67 (1.90) 6.87 (1.20) 12.43 (0.86) · · · (· · · ) -6.71 (0.64) -4215.21
VG 29.66 (1.94) 7.65 (1.01) · · · (· · · ) 307.63 (30.71) -7.19 (0.50) -4212.70

Table 5: Estimated Parameters of Lévy measure. The standard errors are rreported in the
brackets.

22See [8] for a complete discussion on the meaning of the Variance Gamma and Normal Inverse Gaussian
parameters
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CARMA Processes. Journal of Business, 29 250–259.

[5] Chicago Board Options Exchange (20030) Vix-cboe volatility index. URL
http://www.cboe.com/micro/vix/vixwhite.pdf.

[6] Chan, K. S. and Ripley B. (2012). TSA: Time Series Analysis. R package version 1.01. URL
http://CRAN.R-project.org/package=TSA.

[7] Doob, J.I. (1944) The elementary gaussian process. Ann. Math. Stat., 15 229–282.

[8] Iacus, M. S. (2011) Option Pricing and Estimation of Financial Models with R. Wiley Series.

[9] Iacus, M. S. and Mercuri L. (2014) Implementation of Lévy CARMA model in yuima pack-
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Modelling multivariate time series
by structural equations modelling
and segmentation approach

Christian Derquenne, Electricité de France - R&D, christian.derquenne@edf.fr

Abstract. We propose a method to build a complex model for irregular and multivariate time
series. First, to take into account non-linearity, break, volatility, we chose to segment these
series as linear trends to eliminate non-stationarity, standardizing the raw series with equation
regression and standard error of each segment. Then, we used an exploratory approach using
free structural equation modelling to establish links between these standardized variables. The
latter allows building blocks (groups) of homogeneous time series, and then remove ones with la-
tent variables, to seek significant links between them and finally apply the Partial Least Squares
Approach on to the proposed free model. In the application, we compared the results of two
models, the first on differentiated series, the second on the standardized series using segmenta-
tion. This has shown a greater consistency of results in terms of coefficients stability, significant
relationships and business aspects for the model in standardized series using segmentation. Our
future work will involve comparison with other methods to exhibit drawbacks and advantages
of our method, including state-space models and forecasting time series contained in the target
or with the free model approach or with the model set by the expert approach.

Keywords. Time series, cointegration, structural equations modelling, segmentation

1 Context and issues

In many applications in finance, environment, energy management, reliability, etc., the data
can be observed as a univariate or multivariate time series. Usually, the first ones former
(univariate) are stationarized by differentiation, then an ARMA model or a cointegration model
on these pre-processed data can be applied. In the multivariate case, a state-space model or a
multivariate cointegration model can be used. When there are predictors for modelling univariate
or multivariate response, a structural model using link variables can be assessed by the expert.
This structure is represented as a graph corresponding to the equations of the chosen model.
These graphical models are also used for non-temporal data and are named: structural equations
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modelling (SEM) (cf. fig. 1(a) & (b)). They consist of an outer model (or measurement model)
that links the observable variables to unobservable latent variables and secondly, an inner model
(or structural model) linking some latent variables between them.

Two statistical approaches are generally used to estimate these models. The LISREL method
(LInear Structural RELationships) [7] which is based on the covariance matrix between endoge-
nous and exogenous variables, depends on the structure imposed by the domain’s expert. The
maximum likelihood estimator is usually used. The second method is the PLS approach (Partial
Least Squares) introduced in [9]. This approach is based on the observed variables starting from
the structure of the individual, using the least squares estimator. Whatever the type of data:
static, dynamic, univariate, multivariate, these theoretical models are proposed by an expert
and the two previous methods aim to confirm or disprove their hypotheses. In contrast, when
the model is not known a priori, it is necessary to discover the groups of observed variables
(outer model), the relationships between latent variables and their orientations (inner model).
In this case, the model is said to ”free” [1] because it is built by a non-supervised approach.
Furthermore, the relationships between the observed variables that can be static or dynamic
are not always linear. Therefore, the previous approaches (state space model, cointegration,
LISREL, PLS) are no longer valid in a reasonable manner.

Indeed, in the case of time series, the relationships between data may be non-linear, linear but
with a non-constant variability, with breakpoints, etc. To overcome this problem, it is possible
to use segmentation methods [2, 3, 4, 6, 8]. These ones allow to capture linear local trends of the
time series. In the other words, the time-domain is partitioned into a few time-intervals on which
the series exhibits a linear trend. Cutting can be very fruitful in the search for links between
time series. The time series can then be stationarized by piecewise regression in normalizing
using information provided by the segmentation [5]. Then, the relationships between these
transformed variables can be analyzed and used to build of the state space models or structural
equations models. Indeed, this process allows to obtain stationarized time series, but also it
provides either a linear relationship or either a lack of relationship.

In this paper, we present briefly the segmentation method, then we formalize the structural
equations model (fixed by expert and free model) based on segmentation, finally we apply this
approach to a real example of application, but with anonymized data. We conclude on inputs,
limits and perspectives of this work.

Times series modelling: SEM and segmentation

We have introduced a segmentation method of time series [2] completely unsupervised which
allows to reduce the complexity compared with respect to the other methods, but above all pro-
poses solutions segmentation of the series containing constant segments, increasing or decreasing
slopes and with different levels of dispersion. Our method is original because it offers a decision
support for time series, step by step. It contains two main phases: data preparation to obtain a
first segmentation of data and modelling of segments based on a Gaussian heteroskedastic linear
model by successive adaptations. Each of the two phases is repeated a few times depending on
the degree of smoothing applied to the data. The degree of smoothing can vary from 2 to T
theory. It corresponds to the number of observations included in moving median used in the
phase of data preparation. The empirical complexity is O(T

√
T ) and the theoretical complexity

is O(T 2). To improve this method, we introduced a preliminary phase, better consideration of
variance components of the series by means of an appropriate transformation of the data [3] and
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an approach of meta-segmentation [4] which consists of aggregation the better segmentations.
This method has been tested on many series and has provided encouraging results on both sim-
ulated data to assess the quality of reconstruction of the series: detection of break points and
modeling segments, but mainly on real data, especially in the area of price formation energy
market [5].

Let (X1, ..., Xp) be, p time series of size T , where Xj = (Xj(t))j=1,p;t=1,T and (X̃1, ..., X̃p) their

transformations in segments. Each X̃j has mj segments of respective sizes Tjk, with
∑mj
k=1 Tjk =

T . Then with aid of the segmentation, each estimation of Xj(t) is as follows: X̃j(t) =
∑mj
k=1(α

(0)
jk +

α
(1)
jk t).1[t∈τjk] where τjk corresponds to a segment number k of the segmentation of Xj . Lastly,

we denote to (X∗1 , ..., X
∗
p ), the stationarized time series with aid of associated segmentations,

such as X∗j(t) = ((Xj(t) − X̃j(t))/sjk).1[t∈τjk], where sjk =
√∑

t∈τjk(Xj(t) − X̃j(t))2/Tjk.

Structural equations modelling for times series

Let (Y1, ..., Yk, ..., Yq) be, q time series responses and let (X1, ...Xj , ..., Xp) be, p time series
predictors. ∆Xi denotes, the first differentiated times series of Xi. For instance, a multivariate
cointegration model is: ∆Y1,t = α11∆X1,t−1 +α12∆X1,t+ε1,t et ∆Y2,t = β1∆Y1,t+α21∆X2,t−1 +
α22∆X2,t + ε2,t, where α’s are linking coefficients between predictors and responses, β1 links the
both responses Y1 and Y2, and the ε’s are independent white noises. Its graphical model is given
in figure 1(a). Another approach is to use structural equations modelling. The measurement
model links the observable variables (X,Y ) to the unobservable variables (latent variables) (Z,U)
; the inner model links them some latent variables (see fig. 1(b)). In the following example,
the outer model is as follows: ∆X1,t = λ11Z1 + δ11,t ; ∆X1,t−1 = λ12Z1 + δ12,t−1 ; ∆X2,t =
λ21Z2 +δ21,t ; ∆X2,t−1 = λ22Z2 +δ22,t−1 ; ∆Y1,t = λ31U1 + ε11,t ; ∆Y2,t = λ32U1 + ε12,t, while the
structural model is: U1 = γ1Z1 + γ2Z2 + ζ1. In this case, each time series (manifest variable) is
a reflection of its latent variable Z1, Z2 or U1. The unidimensionality of each block of manifest
variables assumption is therefore required. In other words, these are dependent variables and
complementary to each other. Loadings λ’s are used to model the manifest variables with their
associated latent variable, the ε’s and δs correspond to the measurement errors, the coefficients
γ’s link the endogenous latent variable U1 to its exogenous latent variables Z1 and Z2. Finally, ζ1

is the prediction error of U1. The adjustment is made by LISREL method or by PLS approach.

One of the major problems in modeling time series, with predictors is that they are strongly
linked together to explain one or more event(s). It appears then multicollinearity between
explanatory variables and this can make artificially high variance coefficients, causing a decrease
in statistical t-test, and therefore the statistical are not significant then the predictor variable
does not explained the response. In this case, the cointegration models become unusable if the
expert wants to keep the all predictors selected in order to understand the formation of the
response.

The use of standardized series then allows the use of models for cointegration but simpler than
those possible in structural equations modelling configurations. Two approaches are reasonable
for a finer statistical analysis, expert establishes his theoretical model, then the estimation SEM
method aims to confirm or disprove their hypotheses. In contrast, it happens in many cases that
then the relationships between variables are not completely known then an exploratory approach
is preferred. It will then construct a ”free” model using information available in the data.
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Figure 1: (a) Cointegration model (b) Structural equations model

The building principle of this type of model involves five steps: (i) building blocks of vari-
ables, (ii) estimation of latent variables, (iii) establishing statistical relationships between these
latent variables, (iv) orientation links between latent variables and (v) application of the LISREL
method or PLS approach to estimate the proposed free model. The first step returns to cluster
time series standardized or differentiated using exploratory factor analysis (Principal Compo-
nents Analysis with oblique rotation, for example). This provides several one-dimensional groups
of variables (usually all the eigenvalues are smaller than one, except the largest). The estimation
of latent variables is to select for each block of variables, the first principal component. The
relationships between the set of first principal components are constructed using partial linear
correlation coefficients. A link between two latent variables will be considered significant if the
p-value of the statistical test is less than a threshold (eg, 0.01). Then, the orientation of links is
generally left to the expert, although it is possible to optimize a structural model by maximizing,
for example, a global R2. Finally, the proposed free model is estimated by LISREL method or
PLS approach.

2 Application

We have 7 predictors (X1, ..., X7) and 7 responses (Y1, ..., Y7), time series (blue curve on fig.
2(a)). Each them has its segmented version (red curve on fig. 2 (a)). For instance, X1 appears
on row 4 and column 1, whereas Y1 is given on row 1 and column 2. Many treatments have been
performed on the actual anonymized data such as cointegration models, structural equations
models fixed by an expert and free models. We only present the results of two free models. The
first ones is built on differentiated series ; the second ones is applied on the standardized curves
by segmentation. The figure 2(b) provides the scatter plots of X ′s (in column) and Y ′s (in row)
deflated on other regressors. For instance, the link betweenX7 and Y7 (row 1 - col. 7) is disturbed
by two ouliers corresponding to two common breakpoints (t = 140 and t = 231), whereas there
is a quite linear trend between X4 and Y3 (row 5 - col. 4). The scatter plots on differentiated
data and on standardized data with segmentation are given on figures 3(a) and 3(b). Obviously
we can see that the problem of disturbance due to the outliers stays for the differentiated data
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with respect to the standardized data by segmentation. The latter transformation has the great
advantage to capture better linear trend because it takes into account the breakpoint in the time
series. For instance, there is a partial linear trend between X7 and Y7.
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Figure 2: (a) Original and segmented data (b) Scatter plots on original data
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Figure 3: (a) Scatter plots on differentiated data (b) Scatter plots on standardized data

In addition, we have added to these, 14 time series, their delayed t− 1 series. However, this
work is not limited to 1-lag series. It can be straightforwardly extended to p-lag series without
altering anything in the method. The advantage is that AR(p) processes can thus be modeled.
Besides, it is not really necessary to know the autoregression order of each series involved (and
indeed, original series may have different autoregression orders): one of the interests of the SEM-
based methodology is to be able to deal with too many variables (current series, lagged series)
and yet draw a regularized and robust model. For each model, the clustering of variables was

applied separately on all of X
(t)
j , X

(t−1)
j and Y

(t)
k , Y

(t−1)
k , for j, k = 1, 7 to keep an explanatory

structure between predictors and responses. For both models, the same number of groups for
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the X’s and Y ’s were obtained, 6 and 8, respectively (see table 1). We note that the contents
of the groups of the two models are quite similar, both for the X’s and for the Y ’s. The only

difference is the series grouping with their delayed for segmentation model series: G
(X)
5 and G

(Y )
1 .

Indeed G
(X)
5 = {X(t−1)

2 ;X
(t)
2 } and G

(Y )
1 = {Y (t−1)

4 ;Y
(t)

4 } for normalized data by segmentation,

whereas G
(X)
3 = {X(t−1)

2 , X
(t−1)
6 , X

(t−1)
7 } and G

(X)
4 = {X(t)

2 , X
(t)
6 , X

(t)
7 } on the one hand and

G
(Y )
3 = {Y (t−1)

2 , Y
(t−1)

4 } and G
(Y )
4 = {Y (t)

2 , Y
(t)

4 }, on the other hand for differentiated data.
Each group is framed in red on the figures 4(a), 4(b), 5(a) and 5(b).

 
 

Figure 4: (a) Clustering of differentiated data on X (b) Clustering differentiated data on Y

  

Figure 5: (a) Clustering on standardized data on X (b) clustering on standardized data on Y

Figures 6(a) and 6(b) show two free structural equations models constructed using the PLS
approach. For differentiated data model, the latent variables associated with groups of predic-
tors and responses are respectively named Vg and Wg, where g is the number of the associated
group ; for the second model, we have Zg and Ug. The links between latent variables were
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established only if p-value of the test of partial correlation coefficient was less than 0.01 in order
to avoid overly complex models. 27 and 23 edges, respectively, were obtained for differentiated
and standardized series. In addition, the latent variables W7, W8 and U5 have no signifi-
cant relationship with others. This corresponds to the series Y6 delayed. In the first model
W2,W3,W4,W5 are targets (they point to any other latent variable), whereas in the standard
model on segmentation series, only two targets were found: U3 and U8 (the R2 are framed).

Two targets are common to both models: W5 and U3 summarizing Y
(t)

5 and Y
(t)

7 . These
correspond to very important business variables. However, the latent variables that explain

(Student’s t on the arrows) in the two models do not contain the same variable: X
(t−1)
1 , X

(t)
1

and X
(t)
2 for the diffentiated series and X

(t)
3 , X

(t)
4 and X

(t)
5 for the standardized series. These last

three appeared more consistent than the first in terms of business. Target W4 and U8 are also

carriers of information with their variables Y
(t)

2 , Y
(t)

4 and Y
(t)

2 , respectively. This is not the case
for the target W2. The structural model of differentiated data tends to over-estimate Student’s t
and R2 higher links between latent variables from the model using standard segmentation series,
which can be symptomatic example of poor consideration of nonlinear relationships or a non
taken into account of breakdown in multivariate time series for the first free model based on the
differentiated data while this is not the case for the segmentation approach.

Grp. X SEM diff. (V) SEM segm. (Z) Grp. Y SEM diff. (W) SEM segm. (U)
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1 X
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(t−1)
5 G

(Y )
1 Y

(t−1)
5 , Y

(t−1)
7 Y
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4
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6 X
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1 X
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6 Y
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3 Y
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1 , Y
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7 Y

(t−1)
6 Y

(t−1)
2

n.a. n.a. n.a. G
(Y )
8 Y

(t)
6 Y

(t)
2

Table 1: Clusters of the both models

3 Concluding remarks, application and further research

In this paper, we built a model to understand how the connections formed between predictors
and multivariate responses for irregular time series. First, to take into account non-linearity,
break point, volatility between variables, we chose to segment these series as linear segments
to eliminate the non-stationarity, standardizing the raw series. Then, we used an exploratory
approach to build a free structural equation modelling to establish links between these stan-
dardized variables. The latter allows building blocks (groups) of homogeneous variables, then to
summarize with latent variables, to research significant links between them and finally to apply
the PLS approach on the proposed free model. In the application, the comparison of the results
of the two models (differentiated vs standardized series) has shown a greater consistency of re-
sults in terms of stability coefficients, significant relationships and business aspects for the model
with normalized series by segmentation. Our future work will involve to extend our method on
the forecasting of multivariate time series. We will use the two approaches: non parametric
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Figure 6: (a) Free model on differentiated data (b) Free model on standardized data

forecasting with detection of similar linear trends (segments) and Markov chains to estimate the
probability of transition from one segment to another.
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Abstract. We adopt the Peak Over Threshold (POT) method with a non-stationary threshold
to estimate high quantiles. We use a linear regression quantile as a time-dependent threshold,
assuming that a linear trend is present in the data. Using Monte Carlo simulations we try to
find the threshold (regression quantile) which would be optimal with respect to the reliability of
the estimates of high quantiles. The reliability is measured by the coverage probability of the
confidence interval. We investigate how the choice of the optimal threshold changes if we change
the sample size, estimated quantile or the estimate itself. We give particular recommendation in
case of underlying Gumbel distribution specifying how the threshold should be decreased with
decreasing sample size or increasing confidence of the confidence interval. Besides we conclude
that the heavier the tails of the distribution, the lower the threshold should be.

Keywords. Monte Carlo simulation, Peak Over Threshold model, regression quantiles, return
level.

1 Introduction

The Peak Over Threshold (POT) model, see e.g. Coles (2001), is frequently used and represents
a very important branch of extreme value modelling. It is based on the Pickands-Balkema-de
Haan theorem, see Balkema and de Haan (1974) and Pickands (1975), which says that for a
large class of underlying distribution functions excesses over a given (sufficiently high) threshold
are approximately distributed according to a generalized Pareto distribution (GPD), given that
the threshold is exceeded.

We wish to estimate the m-year return level (quantile of a distribution) from a data sample
using the POT method. The purpose of this work is to find the optimal threshold. We assume
that the data comes from the following model (i.i.d. with linear trend):

• data y1, . . . , yn follow a model yi = ei + β0 + β1i, i = 1, . . . , n, where ei is a random
sample with a distribution function F (x) (density function f(x)).
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• m-year return level (line) is

F−1
Å

1− 1

m

ã
+ β1i, 1 ≤ i ≤ n

which is the population (1− 1
m)-th regression quantile line.

In a usual model a certain ordinary quantile is taken as the threshold. Here the natural choice
for the threshold is thus an α-th regression quantile (β̂0(α), β̂1(α))T which is a solution of the
following minimization problem:

min
(t0,t1)∈R2

n∑
i=1

ρα(yi − t0 − t1i), where

ρα(u) = |u|{(1 − α)I[u < 0] + αI[u > 0]}, u ∈ R, α ∈ (0, 1). The first component of
the solution β̂0(α) estimates β0 + F−1(α) and the second component β̂1(α) estimates β1. The
symbol I denotes the indicator function.

This minimization is in fact a linear programming problem, so it can be solved by some
modification of the simplex algorithm, which is described in Koenker and Bassett (1978). If
the sample size n is very large, it can be advantageous to use alternative computation methods
described in Koenker and Portnoy (1997). As stated by Koenker and Bassett (1978), the set of
the α-th regression quantiles has at least one element (β̂0(α), β̂1(α))T defining such a regression
hyperplane so that at least two elements of {(i, yi); i = 1, . . . , n} lie on it. These two elements
identify the regression quantile uniquely. Portnoy (1991) showed that, if we consider this element
of the solution (β̂0(α), β̂1(α))T as a function of α (0 < α < 1), the number of such distinct
elements is proportional to n log n as n increases to infinity.

The regression quantile procedures is (compared to e.g. least square line) more robust and
resistant against deviations in the response variable and also more flexible tool for estimation of
threshold compared to taking e.g. an ordinary quantile of residuals from the least square line.

The aim is to find α such that the α-th regression quantile line β̂0(α)+β̂1(α)i is the“optimal”
threshold for the POT method, where the criterion for the threshold to be “optimal” is taken to
be the maximization of the probability that a confidence band covers the real return level.

Maximum likelihood estimation is used to compute the GPD parameters, followed by the
delta method to construct the confidence intervals (bands) for return levels. Although superior
methods for constructing confidence intervals (e.g. bootstrap) exist, we have chosen the delta
method because of its computational feasibility. The bootstrap method is used for similar study
in Kyselý (2010). Moreover, Arcones (2003), Cheung and Lee (2005) and Lee (1999) describe
the ways how to construct a bootstrap confidence interval in such a situation. Nevertheless,
bootstrap is not used in this study due to the computational hardness.

2 Simulation setting

We have used Monte Carlo simulations to assess the optimal threshold for a POT model. As
applications of the POT method in climatology are of our interest, we want the data we simulate
to mimic typical datasets of summer maximum daily temperature or rainfall but at the same
time to have a relatively simple structure. Since this kind of data has mostly distribution with
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exponential tails and maxima from such distribution converge asymptotically to the Gumbel
distribution, we have chosen the underlying distribution to be the standard Gumbel. So as the
first step, we have used the following setting of parameters in this study:

• Choice of F (x): standard Gumbel distribution

• Sample size n = (20, 40, 80, 160) years× 90 (90 corresponds to the length of season)

• We set trend β1 = 0.05/90 (this parameter is not important due to equivariancy of regres-
sion quantiles)

• We wish to estimate (20, 50, 100, 200)-year return levels

• We use (75, 80, 85, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98)% regression quantile as threshold

• We compute (80, 85, 90, 95, 99, 99.9)% confidence bands to estimate the return levels

• For every setting of the parameters we generate 6600 sets of data.

The results of the simulations are described by plots in figure 1 that show the estimates of
the probability that the estimated confidence interval (band) covers the return level (line) with
respect to the regression quantile threshold used.
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Figure 1: Average coverage probability for different sample sizes. Return level: 100 years

In figure 1 the different solid curves represent different sample sizes (in years). The vertical
dashed lines always depicts the optimal regression quantile threshold, i.e. the threshold for which
the maximum coverage probability is achieved.
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3 Results

On the plots in figure 2 the optimal regression quantile with respect to sample size (in years)
can be seen. The plots in figure 3 show the coverage probability for the optimal regression
quantile threshold with respect to sample size (in years). In all the figures the different plots
stand for different confidence intervals (bands) or return periods (levels). Moreover, the coverage
probabilities for the optimal regression quantiles are summarized in table 1.
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Figure 2: Optimal regression quantile wrt. sample size

It is quite clear from the figures that the optimal threshold is usually lower than the 95%
regression quantile (see e.g. figure 2). The optimal threshold is approximately equal to the
90% regression quantile, unless low confidence for interval is used and very large sample size
is available. If sample size decreases, the optimal regression quantile threshold decreases as
well. If confidence of the confidence interval increases, the optimal regression quantile threshold
decreases.

Figure 1 also shows that the real coverage probability is lower than expected and decreases
(at least for the optimal threshold) with decreasing sample size. It can be seen that lowering
threshold to the 75% regression quantile causes that the increasing bias of the estimate decreases
the coverage probability (and this effect of bias is stronger for larger sample sizes). On the
other hand, with increasing threshold, the increasing variance of the estimate causes decreasing
coverage probability (and the smaller sample size, the more evident this effect of variance is).
This is probably the reason for the fact that the optimal regression quantile threshold rises with
increasing sample size.

The negative effect of bias is also the more striking the lower the confidence of interval is (see
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Figure 3: Average coverage probability for optimal regression quantile wrt. sample size.

return period = 20 return period = 50

confid. int. 0.8 0.85 0.9 0.95 0.99 0.999 0.8 0.85 0.9 0.95 0.99 0.999

sample size
20 0.763 0.806 0.841 0.884 0.937 0.970 0.763 0.803 0.839 0.877 0.928 0.961
50 0.773 0.820 0.867 0.908 0.959 0.984 0.780 0.816 0.857 0.900 0.950 0.977

100 0.780 0.831 0.878 0.922 0.969 0.989 0.782 0.830 0.869 0.917 0.961 0.985
200 0.785 0.833 0.882 0.929 0.975 0.994 0.783 0.841 0.881 0.930 0.971 0.992

return period= 100 return period= 200

confid. int. 0.8 0.85 0.9 0.95 0.99 0.999 0.8 0.85 0.9 0.95 0.99 0.999

sample size
20 0.757 0.793 0.828 0.865 0.919 0.957 0.763 0.796 0.826 0.860 0.917 0.955
50 0.776 0.816 0.850 0.891 0.943 0.974 0.772 0.817 0.850 0.891 0.938 0.971

100 0.778 0.826 0.868 0.912 0.959 0.985 0.782 0.821 0.864 0.905 0.956 0.982
200 0.788 0.841 0.878 0.922 0.970 0.990 0.792 0.829 0.881 0.919 0.968 0.989

Table 1: Average coverage probability for optimal regression quantile

figure 1). This is probably due to the fact that the lower confidence means narrower interval
(band) and so higher vulnerability to bias. This seems to explain why the optimal threshold
declines with increasing confidence.

So figures 1 and 2 suggest that for i.i.d. observations from Gumbel distribution the 95%
regression quantile could be the optimal threshold if sample size were 160 years (7200 obser-
vations) and if 80% confidence interval (band) were used. Then for twice smaller sample size
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the threshold should be decreased by 2% points and when confidence of the interval rises from
(1 − α)100% to (1 − α

3 )100% the threshold should be decreased by 1% point. These recom-
mendations were based on the assumption that the optimal choice of the threshold more or less
does not depend on the return period (level) estimated. This assumption can be made upon
inspection of figure 2.

The next notable fact is that the real coverage probability of confidence intervals (bands)
is much lower than expected. This is visible particularly in figure 3 and table 1. For real 95%
confidence (estimated by the coverage probability) we would need to construct approximately
99% confidence interval. Moreover, with decreasing sample size or increasing return period
the real confidence goes down. Interesting feature is that the highest deviation from expected
confidence occurs for 95% confidence interval.

Simulations also imply (not presented) that confidence interval is biased downwards, i.e.
return level is too often higher than the confidence interval indicates. This is a striking fact that
can be very dangerous in practice, and illustrates an important limitation of the delta method.

4 Effect of the underlying distribution

Let X be the design matrix of our linear model and denote the sample regression quantile by
β̂n(α) = (β̂0(α), β̂1(α))T . If limn→∞ n

−1X′X = Q is a positive definite matrix, then it can be
shown, see Koenker and Bassett (1978), that

√
n(β̂n(α) − β(α)) converges in distribution to

two-variate Gaussian with mean zero and covariance matrix α(1−α)
f2(F−1(α))

Q−1.

Thus the variance of the intercept as well as of the slope of the estimated regression quantile
depends on the underlying distribution, more precisely is proportional to α(1−α)

f2(F−1(α))
. It is easy

to show that for F standard Gumbel distribution α(1−α)
f2(F−1(α))

.
= 1

1−α for α in the vicinity of 1.

For F standard normal distribution (light-tailed distribution) α(1−α)
f2(F−1(α))

.
= 1√

1−α . On the other

hand, if F is GEV distribution with shape parameter 0.8 (heavy-tailed distribution) this term
can be approximated by 1

(1−α)2.6 . So the variance of the regression quantile increases faster

as α increases to 1 which results in faster increase of non-coverage of the confidence belt, for
heavy-tailed distribution. This is the main reason why the optimal regression threshold is lower
for heavy-tailed distribution, see figure 4.
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Figure 4: Optimal regression quantile wrt. sample size. Confidence interval: 95%
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5 Conclusions

We have shown that the usual 95% regression quantile does not always have to be the best
choice for a threshold in a POT model. In our model a 90% regression quantile seems to be
a better choice for moderate sample sizes and 95% confidence interval. The simulation study
also suggested that the threshold should be decreased with decreasing sample size or increasing
confidence of the confidence interval (band) that is used. Very unfavourable fact is that the
actual coverage of the confidence intervals (bands) is much lower than expected. Solution,
although only partial, can be using e.g. bootstrap confidence intervals.

It was also shown that the underlying distribution also influence the optimal choice of the
threshold. For light-tailed distribution (e.g. normal) the optimal regression quantile as threshold
is higher (usually around 95%) than for the Gumbel distribution. Contrary, for heavy-tailed
distribution (e.g. GEV with shape parameter 0.8) the optimal threshold is lower (usually around
85%) than for the Gumbel distribution.

All the results presented were derived under simplified assumptions (e.g. the i.i.d. assump-
tion). To be of more practical use we should probably look at data with a different structure,
e.g. autocorrelated data. But that would be already a subject of a further research.
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Reduced K-means with sparse
loadings
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Abstract. For a data matrix of objects by variables, De Soete and Carrollâs (1994) reduced
K-means (RKM) clustering is formulated as simultaneously clustering the objects into a smaller
number of clusters and finding the principal components summarizing the variables. In this
paper, we propose a modified RKM procedure which produces a sparse loading matrix including
a number of zero elements. Such a sparse matrix facilitates interpreting the relationships of
variables to components, as they can be captured only by focusing on nonzero loadings. In
our proposed method, the RKM loss function is minimized over membership, cluster center and
loading matrices subject to the following two constraints; [1] the one constraining the cardinality
of loadings to be a specified integer, and [2] an orthonormality condition for components. A key
property of the procedure is that its loss function is decomposed as the sum of a term irrelevant
to loadings and their function being easily minimized under the cardinality constraint. Using
this property, we present an efficient alternating least-squares algorithm. The proposed new
RKM is illustrated with a real data set.

Keywords. Cluster analysis, Sparse PCA, Dimension reduction, Perfect simple structure

1 Introduction

Let X be an n-objects × p-variables data matrix. De Soete & Carroll (1994) proposed a method
simultaneously partitioning the n objects in X into K clusters and finding the q components
that summarizes p variables, with K < n and q < p. This method, called âReduced K–meansâ
(RKM), is formulated by combining the loss function of the K–means clustering and that for
principal component analysis (PCA) into a single criterion to be optimized. Therefore, RKM
could identify the low-dimensional space that keeps the information about the cluster structure
underlying a data set X. The model of RKM is written as

fRKM (U,C,A) =
∥∥∥X−UCA′

∥∥∥2
, (1)

where U is an n×K binary indicator matrix, C is a K × q matrix of cluster centroids, and A
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is a p× q loading matrix. The constraint A′A = I is imposed on the loading matrix.
The purpose of this paper is to modify RKM so that loadings matrix A is easier to interpret.

If the matrix is sparse, i.e., includes a number of zero elements, its interpretation is facilitated.
That is, we propose a new RKM procedure that constrains the loading matrix to be sparse. In
the proposed method, the cardinality constraint on the loading matrix is introduced that controls
the number of zero elements in the loading matrix. Furthermore, an effective alternating least–
squares algorithm is also presented. A key property of the algorithm is that the loss function is
decomposed as the sum of a term irrelevant to loadings and their function being easily minimized
under the cardinality constraint.

2 Notation

For the convenience for readers, the notation common to all sections is listed here.

• n, p · · · number of objects and variables respectively;

• K · · · number of clusters;

• q · · · number of principle components (q ≤ p);

• X · · · (n×p) data matriẍı¼If the variables are expressed by different units of measurement
they are standardized to have mean zero and unit variance;

• U · · · (n×K) binary object membership matrix specifying for each objects the membership
to each clusters, i.e., uij = 1 if the ith object belongs to the jth cluster, uij = 0 otherwise;

• C · · · (K × q) cluster centroid matriẍı¼The kth row of C corresponds to the coordinate of
the kth cluster centroid in a reduced space;

• A · · · (p × q) loading matrix, where ajl are the coefficients of the linear combinations of
the observed variables;

• m · · · number of cardinality on the loading matrix A (m < p× q);

• F · · · (n × q) component score matrix. The fil is the score of the ith object for the lth
component;

• Iq · · · (q × q) identity matrix;

3 Proposed Model

The proposed model is mathematically specified as

X = UCA′ + E , (2)

where E contains error. The model (2) is of the same form as the RKM model, but we introduce
the following constraints:
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C′U′UC = nIq , (3)

Card(A) = m . (4)

In (3), we use the multiplier n for obtaining standardized score. The constraint (4) is the
cardinality constraint on the loading matrix A, which controls the number of non-zero elements
of A. The cardinality parameter m must be prespecified by users. The squared norm of E in (2)
is minimized with the constraints (3) and (4). That is, the proposed procedure is formulated as

MinU.C,A

∥∥∥X−UCA′
∥∥∥2

s.t. C′U′UC = nI, Card(A) = m (5)

over U,C and A.

4 Algorithm

The constrained minimization problem of (5) can be solved by the following alternating least-
squares algorithm.

Update U

First, we present how to update the membership matrix U with C and A being kept fixed.

For each i = 1, · · · , n and each k = 1, · · · ,K, we update U = (uik) by

U = (uik) =

1 iff
∥∥∥xi − ckA

′
∥∥∥2

= min{
∥∥∥xi − csA

′
∥∥∥2

: s = 1, · · · ,K; s 6= k}
0 otherwise

, (6)

where xi (i = 1, · · · , n) is the ith row vector of X, and ck (k = 1, · · · ,K) is the kth row vector
of C. The equation (6) implies that each objects should be assigned to the single cluster such
that the Euclidean distances between the objects and the cluster centroids to which they belong
is minimal.

Update C

We next propose the way to update C with U and A being fixed. Due to the constraint (3), we
should not take the way using by the conventional K–means algorithms. Instead, we adopt the
following procedure.

Firstly, we define the matrix C† by

C† = M
1
2 C , (7)

where the matrix M is constructed by M = n−1U′U. Hence, C† is a columnwise orthonormal
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matrix. By using C†, the loss function (5) can be rewritten as follow:

f(C†|U,A) =
∥∥∥X−UM− 1

2 C†A′
∥∥∥2

= trX′X− 2trA′X′UM− 1
2 C† + trA′A

(8)

In the expansion of (8), the first and third term is constant for C†. So we can solve this opti-

mization problem by finding C† which maximize the second term: trA′X′UM− 1
2 C†. Since C† is

columnwise orthonormal, this can be solved by using the following singular value decomposition
(SVD).

A′X′UM− 1
2 = KΛL′ (9)

with K′K = Iq, L′L = IK , and Λ is a q × q diagonal matrix.. Then, the optimal C† can be
obtained by

C† = LK′ . (10)

Thus, the optimal C is defined as follows.

C = M− 1
2 LK′ (11)

Update A

The loss function (5) can be decomposed as follows:

∥∥∥X−UCA′
∥∥∥2

=
∥∥∥(X−UCB′) + (UCB′ −UCA′)

∥∥∥2

=
∥∥∥X−UCB′

∥∥∥2
+ n

∥∥∥B−A
∥∥∥2

(12)

where B = n−1X′UC (see Adachi & Trendafilov, 2014). The last identity follows from the
orthogonality of (X−UCB′) and (UCB′ −UCA′), or equivalently

(X−UCB′)′(UCB′ −UCA′) = X′UCB′ −X′UCA′ −BC′U′UCB′ + BC′U′UCA′

= nBB′ − nBA′ − nBB′ + nBA′ = pOq
(13)

with pOq the p× q matrix of zeros. For updating the loading matrix A, we use the decomposed
loss function (12), instead of (5). In (12), A is only related to the second term of the right-hand
side. Thus, the optimal A can be obtained by minimizing the following function with the con-
straint (18).

MinA

∥∥∥B−A
∥∥∥2

s.t. Card(A) = m (14)
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The matrix B is given by B = n−1X′UC. Since U and C are fixed, B is also fixed. Then, we
can solve the minimization problem (14) in the following manner:

ajl =

{
bjl iff |bjl| is the mth largest absolute value in B

0 otherwise
, (15)

where ajl and bjl is the (j, l)th element of A and B, respectively.

We described the artificial example of this process below.

Example.1: For given B, the optimal loading matrix A with Card(A) = 5 is follow (p = 4, q =
2).

B =


-0.8 0.2
0.6 −0.1
0.3 -0.7

-0.4 0.5

 =⇒


-0.8 0
0.6 0

0 -0.7
-0.4 0.5

 = A

In this example, the m(= 5)th largest absolute value in B is 0.4 (= |b14|). Thus, if |bjl| < 0.4
(j = 1, · · · , p; l = 1, · · · , q), the corresponding elements of A are set to be zero.

Initialization

In this algorithm, we need to set the initial values of U and C, preliminarily.

The initial value of U can be chosen randomly or in a rational way. If U has an empty
column, we should restart this step.

Due to the constraint (3), the initial value of C can not be given straightforwardly. Thus,
we choose the initial C by the following steps.

Step1 : Draw the element of a K × q matrix Craw from the uniform distribution U(−1, 1).

Step2 : Calculate Ccent = Craw −Cmean. Cmean is defined as follows:

Cmean = n−1
î

1′nUCraw , · · · , 1′nUCraw

ó′
(16)

where 1n is n× 1 unit vector.

Step3 : Perform the eigenvalue decomposition defined as C′centU
′UCcent = ΓΥ2Γ′.

Then, the initial value of C satisfying the constraint (3) is

C = n
1
2 CcentΓΥ−1 . (17)

Iteration

For a given data matrix X, loss function (5) can be minimized simply by iterating the updates
of U, C, and A. The whole of this iterative algorithm follows such steps :

Step1 : Initialize U and C by (17).
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Step2 : Compute B = n−1X′UC and update A with (15).

Step3 : Update U with (6).

Step4 : Perform SVD in (9) and update C with (11).

Step5 : Compute the function value for the present U, C, and A. If the updates of U, C, and A
have decreased the function value, back to Step2. Otherwise, the process has converged.

This algorithm monotonically decreases the loss function value. Because of the binary constraint
on U, this procedure can be expected to be rather sensitive to local optima. Thus, we recommend
to use many randomly started runs to decrease the chance of missing the global optima.

5 Perfect Simple Structure Loadings

The cardinality constraint (4) can be easily extended to the following row–wise constraint.

Card(aj) = mj (j = 1, · · · , p) (18)

where aj (j = 1, · · · , p) represents the jth row vector of A.
In this case, the equation (14) can be rewritten as follows;

p∑
j=1

∥∥∥bj − aj
∥∥∥2

s.t. Card(aj) = mj (j = 1, · · · , p) (19)

Then, we should replace the updating manner (15) by following process;

ajl =

{
bjl iff |bjl| is the mjth largest absolute value in the jth row of B

0 otherwise
, (20)

Particularly, if we set mj = 1 for all j = 1, · · · , p, the loading matrix A is said to have perfect
simple structure.

Example.2: The following loading matrix (6 variables × 3 components) is one of the perfect
simple structured matrix (where # means non-zero values).

# 0 0
0 0 #
0 # 0
0 # 0
# 0 0
0 0 #


The perfect simple structured loadings is the simplest and easiest to interpret the relationships of
the observed variables to principal components. Browne (2001) refers to this structure as ”perfect
cluster solution”. From this point of view, the proposed method achieves the partitioning of the
objects into K classes and the variables into q classes, simultaneously.From this point forward,
we refer this case (mj = 1 : j = 1, · · · , p) as m = PS (Perfect Simple structure).
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Table 1: The loading matrix A obtained by the proposed method (m = 5, PS) and RKM.

Proposed method (m = 5) Proposed method (PS) RKM

Component 1 Component 2 Component 1 Component 2 Component 1 Component 2

GDP 0 0.406 0 0.408 -0.116 0.787
LI 0 0 0.235 0 0.230 0.087
UR 0 0.530 0 0.530 0.163 0.410
IR -0.718 0 -0.718 0 -0.653 0.102
TB 0.699 0 0.699 0 0.652 -0.049
NNS 0 -0.825 0 -0.824 -0.235 -0.438

6 Real Data Example

The short–term scenario (September 1999) on microeconomic performance of national economies
of twenty countries, member of OECD, has been analyzed in Vichi & Kiers (2001) and Vichi
& Saporta (2009). Vichi & Kiers (2001) have used this data to evaluate the ability of their
proposed method in identifying groups of similar economic conditions and help to interpret the
relationships among the observed variables. This data set has six variables: Gross Domestic
Product (GDP), Leading Indicator (LI), Unemployment Rate (UR), Interest Rate (IR), Trade
Balance (TB), and Net National Savings (NNS). These variables were standardized such that
they have mean 0.00 and variance 1.00. For convenience, we used the first two principal com-
ponents (q = 2). For comparison, we carried out the proposed method (m = 5, PS) and the
RKM.

We should denoted that each method is sensitive to local optima, therefore we run each
algorithm from 500 different initial values. Then, the solution that most minimizes the objective
function was defined as the optimal solution.

The loading matrices obtained by the proposed method (m = 5, PS) and the RKM are shown
in Table.1. Due to some exactly zero loadings, our proposed model enjoyed quite interpretable
loadings, whereas the many intermediate values occurred in the loadings of the RKM. Especially,
in case of m = 5, the variable ”LI” was eliminated from the extracted space. It implies that the
proposed method has the role as the variable selection in some cases.

The plot of the countries in the first two components extracted by the proposed method
(m = 5) is shown in Fig .1. Each class of variables is highlighted by a dotted axis. Obviously,
the cardinality of A and the information for clustering are related to the transactions. However,
the proposed method shows homogeneous clusters (between cluster deviance of the proposed
method is 74.67% of total deviance, while between cluster deviance of the tandem clustering is
about 40% of the total deviance).

7 Conclusion

In this paper, we propose a new RKM procedure that aims at simultaneously grouping the objects
and finding the interpretable low-dimensional space of variables.The proposed method in which
the cardinality constraint is used provides the loading matrix including a number of exactly zero
elements. Thus, it becomes easier to interpret the relationships between the variables and the
principal components. Furthermore, the cardinality of a loading matrix can also be constrained
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Figure 1: The clustering result of the proposed method (m = 5): Clusters of countries are
highlighted by ellipse.

row–wise. In this case, the resulting loading matrix has perfect simple structure with only one
non-zero element in each rows.

In the proposed method, how many loadings should be zero must be specified by users. A
method for specifying it remains for future studies. One candidate may be to use information
criteria.
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Abstract. This paper proposes a strategy for monitoring spatial dependence in multiple, spa-
tially located, data streams. The interest on this topic is motivated by the number of real world
applications in which data collected by sensor network depends on the geographic location of
each sensing device. For instance, surface air temperatures streams are more likely to be simi-
lar when measured at nearby locations rather than if they are detected in distant places. The
strategy we propose for addressing this challenge is based on distributed processing. At each
sensor, it is performed a summarization of the data by means of a micro-clustering strategy for
histogram data. At the central processing node, it is measured the spatial dependence and it is
evaluated its evolution over time introducing a new tool: the variogram for histogram data.

Keywords. Data Stream Mining, Histogram Data, Variogram

1 Introduction

Massive datasets having the form of continuous streams with no fixed length are becoming very
common due to the availability of sensor networks which can perform, at a very high frequency,
repeated measurements of some variable.

The knowledge extraction from such data must consider the technological characteristics of
the tools for data acquisition as well as the nature of the monitored phenomenon. Often, data
acquisition is performed by sensors having some limited storage and processing resources. More-
over, the communication among sensors is constrained by the physical distribution or by limited
bandwidths. Finally, the recorded data often concerns highly evolving phenomena requiring
algorithms able to adapt the knowledge as new observations arrive.

The prevailing paradigm for the analysis of data in this context is the centralized data stream
analysis. Observations, recorded by sensors, are organized and processed by a single unit which
provides the results of queries. In this case, the single processing unit should guarantee space and
time efficiency so that data has to be processed on the fly, at the speed in which it is recorded,
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and algorithms need to adapt their behavior over time, consistently with the dynamic nature of
data.

More recently, the literature is moving toward distributed stream processing in which each
sensor can perform a local processing of data, within its resource constraints, and communicate
efficiently with other processing units. In this case, in addition to space and time efficiency,
algorithms should account for the communication load imposed by the network infrastructure.
Usually, this is carried out limiting the communication between processing units to the simple
transmission and reception of synthetic synopsis of data.

In the framework of distributed stream processing, this paper deals with the task of moni-
toring the evolution of spatial dependence among data streams.

The interest in this topic is motivated by the number of real world applications in which data,
collected by a sensor network, depends on the geographic location of each sensing device. The
First Law of Geography, also frequently known as simply Toblers Law[8], states: “Everything
is related to everything else, but near things are more related than distant things”. This law,
which finds its major developments in Geostatistics, is still valid in the framework of data
stream mining, when data is collected by spatially located sensors. For instance, surface air
temperatures streams, are more likely to be similar when measured at nearby locations rather
than if they are detected in distant places.

Due to the high evolving nature of streaming data and to their potentially unbounded size,
the spatial dependence can evolve itself over time, thus, the main challenges are to measure,
on-line, the spatial dependence and to keep track of its evolution.

To our knowledge, these challenges have not been dealt in the data stream mining literature.
Methods for analyzing spatial data streams focus, mainly, on traditional data mining tasks
(clustering, classification, summarization) on streams recording the position of moving objects
[5][7]. Our challenge is, instead, the analysis of data produced by sensors having a fixed, known,
spatial location.

The strategy we propose has the following features: 1) It is based on a new tool for measur-
ing the spatial dependence, named Variogram for Histogram data, which extends the classical
Variogram to histogram data; 2) It allows to update, on-line, the Variogram for Histogram data;
3) The statistics needed for the computation and updating of the Variogram for Histogram data
can be computed on distributed processing units, using a low network load.

The paper is organized as follows: Section 2 introduces the data definition and the process-
ing scheme; Section 3 describes our strategy for summarizing the parallel arriving data streams
through histograms; Section 4 provides the details of our proposal for spatial dependence mon-
itoring; Section 5 provides some experimental results.

2 Data definition and processing setup

Let Yi =
¶

(y1
i , t1), ..., (yji , tj), ...,

©
be a data stream made by real valued observations yji on a

discrete time grid T = {t1, ..., tj , ...}, with tj ⊆ < and tj > tj−1. The data stream Yi is made by
observations recorded by a sensor located at si ∈ S, with S ⊆ <2 be the geographic space.

Our aim is to measure and monitor the spatial dependence in a set of n data streams
Y = {Y1, ..., Yi, ..., Yn} assuming that the time grid T is common to all the data streams.

To reach this aim, the data recorded by each sensor over time is split into non overlapping
windows whose identifier is w = 1, . . . ,∞. A window, which is an ordered subset of T having
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size b, frames a subsequence Y w
i =

¶
(yji , tj), . . . , (y

j+b
i , tj+b)

©
for each Yi.

A subsequence Y w
i is summarized by a histogram Hw

i =
¶

(Iwi,l, π
w
i,l), . . . , (I

w
i,L, π

w
i,L)
©

made by
L weighted intervals (bins). Each histogram partitions the support Dw

i = [y
i
; yi] of a subsequence

Y w
i into a set of non overlapping intervals, or bins, so that:

Dw
i =

¶
Iwi,1, . . . , I

w
i,l, . . . , I

w
i,L

©
, where Iwi,l =

[
y
i,l
, yi,l

)
(for l = 1, . . . , L)

The use of histograms as tool for describing the empirical distribution of the data in a
window is motivated by their capability of collecting information such as the location of data,
the variability, the symmetry, the curtosis, etc. Histograms are fast to compute and there are
efficient methods for computing the distance between them.

In particular, in [4] the authors develop a `2 version of the Wasserstein distance for histogram
data. The `2 Wasserstein distance introduced in [6] can be interpreted as the Euclidean distance
between quantile functions:

Let F and G the distribution functions of two random variables Y1 and Y2 and F−1 and G−1

the corresponding quantile functions. The `2 Wasserstein can be expressed as follows:

dW (Y1, Y2) :=

Œ
1ˆ

0

(F−1(t)−G−1(t))2dt

Its main issue is related to the inverse of the distribution functions which is impossible to do
analytically for most distributions. The authors in [4][9], address this problem, by introducing
an exact and efficient way to compute this distance when data are histograms.

Given a histogram description Hw
i , the quantities τwi,l can be defined in order to represent

the cumulative weights associated with the elementary intervals of Hw
i :

τwi,l =

 0 l = 0∑
h=1,...,l

πwi,h l = 1, . . . , L . (1)

Using (1), and assuming a uniform density for each Iwi,l, the inverse distribution function is a
piecewise function defined as follows:

Fwi
−1(t) = y

i,l
+

t− τwi,l−1

τwi,l − τwi,l−1

(
yi,l − y i,l

)
τwi,l−1 ≤ t < τwi,l.

To compute the distance between two histogram descriptions Hw
i and Hw

j it is needed to identify
a set of common uniformly dense intervals. Let τw be the set of the cumulated weights of the
two distributions τw =

î
τw0 , ..., τ

w
l , ...., τ

w
q

ó
, where: τw0 = 0 τwq = 1 and πwl = τwl − τwl−1. To solve

the problem of finding a common set τw of cumulated weights associated with the quantiles of
the two distributions, we consider equi-depth histograms. In this case, histograms Hw

i and Hw
j ,

involved in the distance computation, are characterized by the same set of weights πwi,l = πwj,l = 1
L

and q = L .

For each interval (bin) of the histogram, it is possible to compute the centers and radii, as
follows:

ci,l = (Fwi
−1(τwl ) + Fwi

−1(τwl−1))/2 ri,l = (Fwi
−1(Fwl )− Fwi −1(τwl−1))/2.
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Because intervals are uniformly distributed, it is possible to express them as a function of
their centers and radii, and to rewrite the distance as follows:

d2
W (Hw

i , H
w
j ) =

q∑
l=1

πwl

ï
(ci,l − cj,l)2 +

1

3
(ri,l − rj,l)2

ò
. (2)

The analysis of the incoming data is performed keeping a part of the processing at the single
sensors and a part at a centralized computation node. The former, performs an analysis, window
by window, of a single data stream in order to provide a summarization of the data. A set of
outcomes of the processing at the sensor, is sent to the centralized node for the computation of
the spatial dependence.

In the next section we provide the details of the processing at a sensor.

3 On-line summarization of a data stream through CluStream
for Histogram data

The analysis of the data recorded by a sensor is performed through the CluStream algorithm for
Histogram data [1]. Every time a new window of data becomes available and the corresponding
histogram is built, the CluStream updates a summarization of the stream consisting in a set of
histograms.

CluStream for Histogram data provides the summarization of the stream Yi by keeping up-
dated a set µCi of synopsis data structures named micro-clusters. Basically, a micro-cluster µCki ,

with k = 1, . . . ,K, records a Histogram centroid Hk
i and the number of allocated histograms

nki .

The incoming histogram Hw
i is allocated to the micro-cluster µCki such that d2

W (Hw
i , H

k
i ) <

d2
W (Hw

i , H
k′
i ) (with k 6= k′ and k = 1, . . . ,K), if d2

W (Hw
i , H

k
i ) < u. The threshold value u

controls the size of each micro-cluster ensuring the representativity of the centroid.

The allocation of a histogram to a micro-cluster causes the need to update nki by nki =
nki + 1 and the micro-cluster centroid Hk

i . The latter can be performed keeping into account a
further implication of the Wasserstein distance for histogram data: the average histogram is the
histogram having as center of each bin, the average of the centers and as radii, the average of the
radii. Thus, the updating can be performed by using the information stored in the micro-cluster
and the new allocated histogram.

If the condition d2
W (Hw

i , H
k
i ) < u is not satisfied for any micro-cluster, a new one is started

setting the allocated histogram as centroid and nki = 1. This procedure, can bring the number of
micro-clusters K to grow so much to exceed the available memory resources at the computation
node. We propose, in this case, to merge the two nearest micro-clusters into one.

The proposed procedure, performed in a parallel way on all the streams, permits to keep,
at each time instant, a snapshot of the data behavior. This is due to availability of the set of
histograms used as representatives.

As we will see in the next section, the evaluation of the spatial dependence is performed
keeping into account the behavior of the data of each stream. Thus, we need to send a set of
statistics to the central computation node which contemporary guarantee a low network load and
a high quality of the result. To reach this aim, the communication between the processing node
at the sensor and the centralized processing unit is made by two tasks. The first task, which
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is performed at predefined time stamps (for example, every 20 windows), consists in sending
a snapshot of the micro-cluster centroids to the central computation node. The second task,
which is performed at every time window, consists in sending the identifier of the micro-cluster
to which the histogram of the window has been allocated.

The idea is to summarize the data in a window with the centroid to which it has been
allocated so that, if an updated set of centroids is kept by the central node (task 1), it is
sufficient to send the identifier of the micro-cluster rather than its data (task 2).

4 Spatial dependence monitoring

In this section, we introduce the analysis performed at the central node for measuring and
monitoring the spatial dependence. With this aim we introduce a new tool named variogram
for histogram data, which extends the classical variogram to histogram data.

The variogram function

In the traditional geostatistics literature, a widely used tool for evaluating the spatial dependence
is the variogram. Given a random process Y , it is defined as the variance of the difference between
process values at two locations, across realizations of the process [3]. If the process is stationary
and isotropic, the variogram γ can be represented as a function of the distance h = ‖si − sj‖
between spatial locations. An unbiased estimator of the variogram, for a set of observations yi,
i = 1, . . . , k located at si is the empirical variogram whose formal expression is the following:

γ̂(h) =
1

|N(h)|
∑

i,j∈N(h)

(yi − yj)2 (3)

where N(h) is the set of observations such that ‖si − sj‖ = h and |N(h)| is the number of pairs
in the set.

In spatially dependent data, the value of the variogram function increases with the lag
distance h until a limit is reached. This limit permits to identify the level beyond which the
variability is no longer dependent on the spatial distance.

The variogram estimator cannot be computed at every lag distance h, due to the reduced
availability of observations. This involves that the empirical variogram is not ensured to be
valid so that in applied geostatistics, the empirical variograms are often approximated by model
function ensuring validity [2].

The empirical variogram introduced above, can be still used as a pure exploratory tool for
investigating spatial dependence in the data. In this sense, there is a distinction between the
variogram model, estimated using the empirical variogram and than some fitting model function,
and the experimental variogram which corresponds to the empirical variogram computed on the
data without making formal assumptions on the process generating the data.

We are interested in this second use of the variogram function, in order to monitor the
evolution of the spatial dependence among the data streams.

Since the input data streams are represented as sequences of histograms, the next section
will introduce the variogram for histogram data.
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Experimental variogram for histogram data

According to the processing setup introduced above, at the central computation node it is
kept a snapshot of micro-cluster centroids of each stream. Every time a new window becomes
available, it is possible to measure the spatial dependence by receiving, for each data stream,
the identifier of the micro-cluster to which the histogram of the window has been allocated.
This approach, allows to measure the spatial dependence of the data in a window using the
micro-cluster centroids rather than the raw sensor data.

Starting from this assumption, we define the experimental variogram for histogram data con-
sistently with the `2 Wasserstein metric introduced above and with its expression for histogram
data in 2:

γH(h) =
1

|N(h)|
∑

i,j∈N(h)

(d2
W (Hk

i , H
k′
j )) (4)

where:
N(h) is the set of observations such that ‖si − sj‖ = h
|N(h)| is the number of pairs in the set N(h).

Hk
i and Hk′

j are the micro-cluster centroids to which, respectively, the histograms Hw
i and Hw

j

of the stream Y w
i , Y w

j have been allocated.
The variogram γH(h) is nonnegative since it is the average of squared distances and shares

the characteristics of the experimental variogram for traditional scalar data.
For irregularly spaced data where there are not enough observations exactly separated by h,

N(h) is modified to (si, sj) : ‖si − sj‖ ∈ (h− ε, h− ε), with ε > 0. This involves that γH(0) ≥ 0
(nugget effect).

According to the provided definition of variogram for histogram data, we can measure the
spatial dependence between distributions (histograms) into a time window. If there is spatial
dependence, we expect that near sensors tend to have lower values of average distances while
far sensors tend to be more different so that γH(h) is an increasing function.

Our strategy is to update the variogram every time a new set of identifiers is received at the
central computation node. We still record a snapshot of the computed and updated variogram,
at predefined time stamps, in order to keep track of the data behavior over a time.

The variogram is obtained by computing the average of pairwise distances at each lag distance
h, thus, to obtain a variogram γwH(h) for the window w starting from the variogram γw−1

H (h) at
the window w − 1, we have to update such average values:

γwH(h) =
1

2 |Nw(h)|

Ñ
γw−1
H (h) |N(h)|+

∑
i,j∈N(h)

(d2
W (Hk

i , H
k′
j ))

é
(5)

where Nw(h) = Nw−1(h) is the set of observations such that ‖si − sj‖ = h and |Nw(h)| is the
number of pairs in the set.

It should be noted that the set of pairs i, j involved in the average computation depends
only on the spatial location of the sensors which record the data. Such locations are fixed and
known apriori so that at each window, always the same pairs participate to the computation
of the variogram value. Moreover, due to our processing setup, the histogram centroids are
available at the central processing node. This involves that the computation of the variogram
for histogram data can be carried out faster if the distances between micro-clusters are stored
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into a lookup table. Such lookup table is only updated when the sensor send new histogram
centroids. This occurs only at predefined time instants, as stated above.

In order to evaluate the evolutions in spatial dependence, we still propose a measure which
is computed on the variograms of two time periods:

EV O =
 ∑

h

(γwH(h)− γw−kH (h))2 (6)

The computation of the measure EV O is feasible since the data streams have a fixed spatial
location so that the compared experimental variograms are computed for the same values of the
lag h

5 Experimental results on real data

We have made some preliminary test for evaluating the performance of the proposed strategy in
keeping track of the spatial dependence among sensor data using a public dataset of real data,
available at http : //db.csail.mit.edu/labdata/labdata.html.

The dataset collects the records of 54 sensors placed at the Intel Berkeley Research lab
between February 28th and April 5th, 2004. Mica2Dot sensors with weather boards collected
timestamped topology information, along with humidity, temperature, light and voltage values
once every 31 seconds. Data was collected using the TinyDB in-network query processing system,
built on the TinyOS platform. The dataset includes the x and y coordinates of sensors (in meters
relative to the upper right corner of the lab).

We have analyzed the temperature records of each sensor so that we have a set of 54 time
series each one made by 65000 observations.

In order to run the test, we have set the size of each window to s = 200 and the number
of bins for each histogram to L = 10. In fig.1a and in fig.1b we have plotted the variogram
for histogram data obtained by processing, respectively, the first 32500 time stamps and the
latest 32500 time stamps. Looking at the plots, we can note a change in the spatial dependence
between the first batch of data and the second one, however both highlight the presence of a
spatial dependence since the two plots tend to increase with the lag distance h.

Figure 1: Variogram function for histogram data computed on the first 32500 time stamps (a)
and on the latest 32500 time stamps (b)
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6 Conclusions

In this paper we have introduced a strategy for monitoring the spatial dependence of data
recorded by spatially located sensors. To reach this aim, we have proposed to summarize the
incoming data streams through sets of histograms, then, we have introduced the variogram for
histogram data for measuring the spatial dependence. The proposed processing setup allows to
make a part of the computation at distributed nodes using a low communication load. Prelim-
inary results confirm the effectiveness of the method, however, in future works, we will explore
the possibility to reduce the computational effort required for keeping an updated variogram
over time.
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Abstract. Missing data occur in almost all the surveys and may create serious problems because
restricting the analysis to complete cases leads to loss of precision and invalid inferences. Hence,
missing data are commonly treated by imputation, that is, they are filled in with plausible values.
In a previous work we proposed a copula-based method that allows to impute by accounting for
both the (complex) dependence structure underlying the data and the shape of the margins. The
method employs the conditional density functions of the missing variables given the observed
ones. These functions are derived analytically once parametric models for the margins and the
copula are specified. In this paper, we extend our method in a semiparametric fashion in that
the margins are estimated non-parametrically through local likelihood methods. We compare
the performance of the two versions of the imputation method in terms of the preservation of
both the dependence structure and the microdata in different simulated scenarios by varying
copula, marginal distributions and the level of the dependence parameter. The method has a
wide range of applicability and has been implemented in the R software package CoImp.

Keywords. Conditional copula function, Dependence structure, Imputation method, Missing
data.

1 Introduction

The problem of missing data arises in many applied fields. For example, in large surveys, a
unit that does not respond either to a particular question or to the entire survey creates a
missing item or a missing record, respectively. From the point of view of statistical analysis
this is a serious issue because incomplete data sets are generally challenging. If there are only
few missing values, it is possible to restrict the analysis to the complete cases but, in many
applications deleting incomplete cases leads to a reduction of the sample size so that proper
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inferences are precluded. Hence, it is customary to resort to imputation methods that fill in the
missing as to create a complete data set.

Imputation of missing data is one of the major tasks of data analysis in many areas and
different techniques have been developed to tackle the problem (see [9]). Here, we focus on
stochastic single imputation, that is, the imputation is performed by filling in a random value
for each missing data until a complete data set is obtained. In brief, an appropriate stochastic
model is fitted to the available data and imputed values are simulated from it. In this context,
one of the main goals is to perform imputation by preserving the dependence structure of the
data.

Di Lascio et al. [3], [4] proposed an imputation method based on copula function [10]. The
theory of copula [2] provides a flexible and powerful approach to construct multivariate distri-
butions by separating marginal distributions from the joint dependence structure of the data
generating process, which is described by the copula. Hence, the margins can have any kind of
distribution and the copula represents the multivariate dependence between variables and is able
to account for many different dependence structures, such as asymmetry, heavy-tail and so on.
The method proposed in [4] employs the conditional density functions of the missing variables
given the observed ones to impute complex dependent data. The conditional density functions
are defined through the joint copula model so that the imputation takes into account the multi-
variate structure of the data generating process. An alternative approach available in literature
is the so-called fully conditional specification [11], [12] that builds the multivariate model by a
series of conditional models, one for each incomplete variable. Such a method is flexible but its
statistical properties are difficult to establish and the implied joint distribution may not exist
theoretically due to the incompatibility of conditionals [1]. This problem is overcome by Di
Lascio et al. [4] who derive the conditional densities starting from a multivariate model defined
via copula. Their approach is fully-parametric since it specifies a (possibly different) parametric
model for each univariate margins and for the copula; then, the conditional densities are derived
analytically and estimation is carried out through the two-step maximum likelihood due to Joe
and Xu [6]. In this paper we extend the method in Di Lascio et al. [4] so that the margins are
modelled non-parametrically by means of local likelihood estimators. The extension allows us
to avoid the analytical problems that might arise in the derivation of the conditional densities
for specific combinations of copula and margins. The resulting method is powerful, flexible and
easy to use also when the missing data are high-dimensional and the dependence is complex.
We compare the performance of the novel semiparametric copula-based imputation method with
the fully parametric version in a simulation study.

The paper is organized as follows. In Section 2 we present the rationale of the semiparametric
imputation method based on copula function. In Section 3 we describe the simulation study and
discuss the results, whereas Section 4 contains a brief discussion.

2 Copula-based Imputation method

The basic idea of the method proposed by Di Lascio et al. [4] is to derive the conditional density
functions of the missing variables given the observed ones through the corresponding conditional
copulas. Once the conditional densities are available the missing values are imputed by drawing
observations from them. This idea is motivated from practical problems that arise frequently: i)
modeling multivariate distributions with different margins and complex dependence structures
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and ii) imputing missing values by preserving the dependence underlying the data. Our pro-
posal allows to accomplish both tasks; moreover, it can be easily used independently from the
dimension and the kind (monotone or non monotone) of the missing patterns. We describe the
proposal by focusing on bivariate distributions defined via the three copula models belonging
to the Archimedean family: the Clayton, the Gumbel and the Frank copula. For an extended
review of copula models see [8].

Suppose we have two continuous random variables X1 and X2 with distribution functions
F1, F2 and densities f1 and f2, such that their probability integral transforms are U1 ∼ F1(X1)
and U2 ∼ F2(X2), respectively. Further, assume that for some records X1 is missing whereas X2

is always observed. We derive the conditional density function f(x1|x2) through i) the canonical
representation of the joint density via the density copula c(·) (see also [2]):

f(x1, x2) = c(F1(x1), F2(x2))
2∏
j=1

fj(xj) (1)

and ii) the conditional copula density c(u1|u2) defined by using Bayes’ rule (see [13], p.89) so
that:

f(x1|x2) = c(u1|u2)f1(x1). (2)

In order to impute missing observations, we perform the following steps:

1. estimate the margins on the available data through the local log-likelihood function (see [7])

l(fj , x) =
n∑
i=1

W

Å
Xi − x
h

ã
log fj(Xi)− n

ˆ
Xj
W

Å
z − x
h

ã
exp (fj(z)) dz (3)

where W is a suitable nonnegative weight function, h the bandwidth parameter, Xj is the
domain of the variable Xj with j = 1, 2 and log fj(z) with j = 1, 2 is modeled by a local
polynomial (for technical details see [5] and [7]);

2. estimate the dependence parameter θ of the copula model c on the available data by the
pseudo-maximum log-likelihood method

θ̂ = argmax
θ

n∑
i=1

log c
Ä
Ûi1, Ûi2; θ

ä
(4)

where Ûij = Rij/(n+ 1) with j = 1, 2 and Rij being the rank of Xij among X1j , . . . , Xnj

are the pseudo-observations of the two margins;

3. derive the conditional density functions in eq. (2);

4. impute missing observations by drawing observations from the conditional densities com-
puted at the previous step by means of the Hit or Miss Monte Carlo method as described
in [4].

Note that the method does not depend on the kind of missing pattern. Moreover, the scheme
in its multivariate version has been implemented in the R package CoImp.
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3 A simulation study

In this section we compare the performance of the semiparametric copula-based imputation
method with the fully parametric approach introduced in Di Lascio et al. [4]. In order to
perform the comparison we reproduce their scenarios as summarized in Table 1.

Table 1: The 3 scenarios of the simulation study. Notes: (δ, γ) are the shape and rate parameters of
a Gamma distribution; ν is the degrees of freedom parameter of a Chi-square distribution; λ is the rate
parameter of an Exponential distribution.

Scenario Copula Margin X1 Margin X2

1 Clayton Gamma: X1 ∼ G(δ = 3, γ = 3) Chi-Square: X2 ∼ χ2(ν = 4)

2 Gumbel Uniform: X1 ∼ U(0, 1) Exponential: X2 ∼ Exp(λ = 1/3)

3 Frank Chi-Square: X1 ∼ χ2(ν = 2) Chi-Square: X2 ∼ χ2(ν = 4)

Figure 1 shows the contour plots of the three bivariate distributions described in Table 1 for the
two levels of the dependence parameter θ corresponding to the Kendall’s correlation coefficient
τ = 0.35 (upper panel) and τ = 0.7 (lower panel). Note the different scale of the central upper
plot due to the asymmetry. The Monte Carlo study consists of the following steps:

i) generate a sample of n = 200 observations from bivariate random vectors (X1, X2) as in
Table 1 by varying the dependence parameter θ such that Kendall’s correlation results
τ = 0.35 and τ = 0.70;

ii) introduce 40% of (artificial) missing values completely at random into the original data
set;

iii) apply the semiparametric version of the copula-based imputation method to the raw data
set as to obtain the imputed observations xim

m with m = 1, . . . ,M , where M is the total
number of missing values;

iv) repeat steps ii) and iii) K = 50 times in order to take into account the source of variability
deriving from the randomness of the mechanism generating the missing data;

v) assess the goodness of the imputation methods in terms of the preservation of both the
microdata and the strength of the dependence by using

1. the mean absolute relative error (MARE) between imputed (xim
m ) and original (xob

m )
values:

MARE =
1

K

K∑
k=1

[
1

M

M∑
m=1

∣∣∣∣∣xim
m − xob

m

xob
m

∣∣∣∣∣
]

(5)

2. the relative bias (RB) and the relative root mean squared error (RRMSE) of the
dependence parameter θ of the copula:

RB =
1

K

K∑
k=1

(
θ̂k − θ0

θ0

)
; RRMSE =

Ã
1

K

K∑
k=1

(
θ̂k − θ0

θ0

)2

(6)
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Figure 1: Contour plots of the three bivariate distributions described in Table 1 and defined
via Clayton copula (left panel), Gumbel copula (middle panel) and Frank copula (right panel).
The dependence parameter θ is such that Kendall’s correlation coefficient is τ = 0.35 (mild
dependence, upper panel) and τ = 0.7 (high dependence, lower panel).

where θ0 is the true value of the dependence parameter and θ̂k is the estimated θ for
the k-th simulated sample.

The results are shown in Table 2. The copula-based imputation method in its semiparametric
version shows a performance very similar to the analytical version. Slight differences between
the two versions of the method emerge for the MARE. The biggest discrepancy occurs when
the data generating process is defined through a Gumbel copula with a high level of dependence
(τ = 0.7). Apart from such a case which would require more detailed investigations, the relative
bias and the relative root mean squared error have a similar value for the two versions of the
method in all the scenarios. By comparing the above results with those in [4] it is clear that the
performance of the new semiparametric version overcomes that of classical imputation methods
(the donor and the EM). We can conclude with confidence that the slight performance loss that
occurs when passing from the parametric to the semiparametric version of the copula-based
imputation method is by far compensated by the gain in flexibility and practical applicability.
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496 Imputation of complex dependent data by conditional copulas

Table 2: Comparison between the copula-based imputation method in its analytical version and
in its semiparametric version.

Copula Performance Kendall’s Analytical Semiparametric
Model Measures τ Method Method

Clayton
MARE

0.35 1.09 1.09
0.7 1.28 1.31

RB
0.35 -0.44 -0.43
0.7 -0.71 -0.72

RRMSE
0.35 0.45 0.45
0.7 0.71 0.72

Gumbel
MARE

0.35 2.50 2.56
0.7 0.78 1.58

RB
0.35 0.045 -0.103
0.7 0.061 -0.382

RRMSE
0.35 0.08 0.112
0.7 0.092 0.386

Frank
MARE

0.35 6.03 6.66
0.7 4.03 5.05

RB
0.35 0.017 -0.018
0.7 -0.012 0.001

RRMSE
0.35 0.129 0.157
0.7 0.072 0.072

4 Discussion

In this paper we have proposed a semiparametric imputation method based on copula function
that extends the framework in Di Lascio et al. [4]. Being based on copula functions, the method
allows to model complex multivariate distributions by separating the influence of the margins
from that of the multivariate dependence. For these reasons the imputation of missing data
preserves the joint structure of the data generating process. Moreover, by employing local
polynomials to fit the marginal distributions, it avoids any assumptions on the margins and
overcomes the difficulties arising from the analytical derivations of the conditional densities.

The alternative approach based on the fully conditional specification due to [11] is semipara-
metric and flexible too but, since it specifies a conditional model for each incomplete variable
there can be theoretical compatibility problems and the stationary distribution of the Gibbs
sampler may not exist. On the contrary, the theoretical framework of copula functions coupled
with non-parametric density estimation allows to derive conditional distributions of potentially
any complex multivariate model without any incompatibility of conditionals [1]. The Monte
Carlo study shows that the semiparametric version is very similar to the parametric version in
terms of goodness of the imputed data as well as of preservation of the dependence level.
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Abstract. In this paper we propose two efficient cyclic coordinate algorithms to estimate
structured concentration matrix in penalized Gaussian graphical models. Symmetry restrictions
on the concentration matrix are particularly useful to reduce the number of parameters to be
estimated and to create specific structured graphs. The penalized Gaussian graphical models
are suitable for high-dimensional data.

Keywords. Factorial dynamic Gaussian graphical models, Gaussian graphical models, graphi-
cal lasso, cyclic coordinate descent methods.

1 Introduction

In recent years research has been focused on estimating the concentration matrix of Gaussian
graphical models (GGMs) in high-dimensional setting [4, 7, 13]. GGMs are used to estimate
conditional independence structures among a set of p random variables X = (X1, . . . , Xp)

′

under the assumption that X follows a multivariate normal distribution. These conditional
independences are represented by a graph which is defined as a pair G = (V,E), where V
is a finite set of vertices (vertex-set), and E is a subset of cartesian product V × V (edge-
set). In particular, we shall consider undirected graphs. An undirected graph is a graph with
only undirected edges. Edge (i, j) ∈ E is called undirected if also (j, i) ∈ E otherwise it
is called directed. The problem of drawing edges in the graph is equivalent to the problem
of identifying non zero entries in the concentration matrix which is the inverse of the variance-
covariance matrix. A structured concentration matrix is a concentration matrix with constraints
on the parameters. Imposing constraints is equivalent to impose structures on the conditional
independence graph. Examples of GGMs with structured precision matrix are given in [9] and
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[1]. In the former paper the authors worked on maximum likelihood approaches and impose
structures on the concentration matrix. In the latter paper the authors worked on `1-penalized
maximum likelihood models applied to longitudinal high-dimensional data. Adding symmetry
restriction to the concentration matrix is useful when parsimony is needed since it reduces the
number of parameters to be estimated. Using `1-penalty to penalized the likelihood function
has the advantage of avoiding problem with multiple statistical tests since it selects a subset
of important variables in the optimization step. It becomes important to have both parsimony
and regularization when estimating covariance matrix of large dimensions with relatively few
observations. This paper introduces two efficient cyclic coordinate algorithms in order to deal
with new types of GGMs which have structured concentration matrices. The sglasso package,
available under general public license (GPL≥ 2) from the Comprehensive R Archive Network at
http://CRAN.R-project.org/package=sglasso, implements the proposed algorithms.

2 Preliminary and Notation

Assume N independent and identically distributed random variableX, whereX ∼ N (0,Σ). Let
K = Σ−1 be the concentration matrix. The log-likelihood function, up to an additive constant,
is:

2`(K) = N{log det K− tr(RK)},
where R = N−1∑N

i=1XiX
′
i is an estimator of the covariance matrix. Since R is a singular

matrix, in the high-dimensional setting, this estimator cannot be used to obtain K̂. Whereas,
the graphical lasso (glasso) estimator is suitable for high-dimensional data (see [7]). The estimate
is obtained by optimizing the following objective function:

K̂ = arg max
K

`(K)− ρ
∑
i,j

|kij |
 , (1)

where ρ is a tuning parameter used to control the amount of shrinkage.
Several algorithms have been proposed to solve the optimization problem in (1). A block

coordinate descent algorithm was proposed in [7]. This algorithm is based on the original
approach proposed in [4] which uses the dual of the maximization problem (1). The interested
reader is refereed to [11, 16]. The glasso estimator is one of the most important estimator,
proposed in the literature, to make sparse inference in high-dimensional GGMs. However, there
are several important applications in which structured concentration matrix can improve data
analysis. Two motivating examples are given in [9]. Next, we illustrate a motivating example.
Suppose that we have collected longitudinal data at T time points. Let Xt = (X1t, . . . , Xpt)

′

be the p-dimensional random variable at time t. Assume that X = (X ′1, . . . ,X
′
T )′ follows a

multivariate normal distribution, the concentration matrix has the following block structure

K =


K1,1 K1,2 . . . K1,T

K′1,2 K2,2 . . . K2,T
...

...
. . .

...
K′1,T K′2,T . . . KT,T

 ,
where Kt,t = (kit,jt) gives information about the conditional independence structure among the
p random variables at time t, and Kt,t+h = (kit,j(t+h)) gives information about the conditional
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i. kit,i(t+h) = θsh constant effect i. kit,j(t+h) = θnh constant effect

ii. kit,i(t+h) = θsht time effect ii. kit,j(t+h) = θnht time effect

iii. kit,i(t+h) = θshi unit effect iii. kit,j(t+h) = θnhij unit effect

iv. kit,i(t+h) = θshi,t interaction effect iv. kit,j(t+h) = θnhij,t interaction effect

Table 1: Equality constrains on the entries of St,h and Nt,h.

independence structure between Xt and Xt+h. An interpretation of the elements of the sub-
matrices Kt,t+h brings to the notion of natural structure, i.e:

Kt,t+h =


k1t,1(t+h) 0 . . . 0

0 k2t,2(t+h) . . . 0
...

...
. . .

...
0 0 . . . kpt,p(t+h)

+


0 k1t,2(t+h) . . . k1t,p(t+h)

k2t,1(t+h) 0 . . . k2t,p(t+h)
...

...
. . .

...
kpt,1(t+h) kpt,2(t+h) . . . 0


= St,h + Nt,h,

where the entries of the matrix St,h are called self-self conditional dependences at temporal lag
h and represent the (negative) self-similarity of a given random variable across different time
points. The entries of the matrix Nt,h are the conditional dependencies among the p random
variables with time lag h. Equality constraints reported in Table 1 can be imposed for each lag
h (see [1]) to reduce the number of the parameters and to make interpretation of the results
more relevant. This is similar to ANOVA models. The flexibility of this new class of models
allows the user to take into account time dynamics, to known present or absent links, and to
impose particular autoregressive structures. We call this new class of Gaussian graphical models
penalized RCON(V, E) model.

3 The weighted `1-penalized RCON(V , E) model

We use coloured graphs to impose structure on the graph. Specifically, colouring the vertices
with R ≤ |V | different colours induce a partition of V in V1, . . . ,VR disjoint sets which we call
vertex colour classes. All vertices belonging to the same vertex colour class have the same colour.
Similarly, there is a partition of the edge-set into S ≤ |E| disjoint subsets E1, . . . , ES , which we
call edge colour classes. All the undirected edges belonging to the same edge colour class are
labeled with the same colour. We shall call V = {V1, . . . ,VR} vertex colouring, E = {E1, . . . , ES}
edge colouring and the pair (V, E) a coloured graph. This is implicitly referred to the undirected
graph G = (V,E) with partitions V = V1 ∪ . . . ∪ VR and E = E1 ∪ . . . ∪ ES . The RCON(V, E)
model is a GGM obtained using a coloured graph to specify equalities constraints among the
elements of the concentration matrix.

Let us consider the coloured graph (V, E), than the RCON(V, E) is specified by the following
restrictions

i) kii = ηn for any i ∈ Vn, ii)kij = θm for any (i, j) ∈ Em.
The concentration matrix can be specified as

K(ψ) =
R∑
n=1

ηn Dn +
S∑

m=1

θm Tm, (2)
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where ψ = (η′,θ′)′, Dn is a diagonal matrix with entries Dn
ii = 1 if i ∈ Vn and zero otherwise,

Tm is a symmetric matrix with entries Tmij = 1 if the undirected edge (i, j) belongs to the edge
colour class Em and zero otherwise. The objective function is

ψ̂ = arg max
ψ∈R(R+S)

log det K(ψ)− tr{RK(ψ)} − ρ
S∑

m=1

wm|θm|, (3)

where wm are positive weights used to improve the edge selection behavior of the proposed
estimator.

4 Two cyclic coordinate algorithms

In this section we give some details of the proposed cyclic coordinate algorithms to solve the
optimization problem in (3). The first algorithm is a cyclic coordinate minimization (CCM)
algorithm which is based on the idea to compute ψ̂ by cycling maximizing the objective function
`p(ψ) = log det K(ψ) − tr{RK(ψ)} − ρ

∑S
m=1wm|θm|. This algorithm is described by the

pseudo-code reported in Algorithm 4.1. The second algorithm is a cyclic coordinate descent
(CCD) algorithm obtained substituting the objective function `p(ψ) with an one-dimensional
approximation. The second algorithm can be useful for higher-dimensional problems since it
reduces the computational burden. The main idea underlying this family of algorithms is to
choose, at each iteration, an index and then to optimize the objective function with respect to
the corresponding parameter keeping all the remaining indexes fixed. The index of the parameter
that will be updated can be selected by several rules. For example, a greedy rule is proposed in
[17]. This rule consists of updating the parameter with the most negative directional derivative.
The simpler cycling rule is used in [6] to define a cyclic coordinate descent (CCD) method for
the lasso estimator [15]. The CCD algorithm was also extended to generalized linear models in
[8] and to Cox’s proportional hazard model in [14]. Next, we denote `(θm) the log-likelihood
function which is a function of the parameter θm. The same meaning is used to `(ηn).

Algorithm 4.1.
Pseudo-code of the proposed CCM algorithm

Step 1 initialize ψ to a starting value

Step 2 repeat

Step 3 for m = 1 to S

Step 4 maximize `p(ψ) with respect to θm keeping all the remaining parameter fixed

Step 5 end for

Step 6 for n = 1 to R

Step 7 maximize `p(ψ) with respect to ηn keeping all the remaining parameter fixed

Step 8 end for

Step 9 until a convergence criterion is met
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Suppose that we have computed the estimator ψ̂ for a given value of the tuning parameter,
say ρ′, and we want to compute a new estimate for a value of the tuning parameter, say ρ,
with ρ < ρ′. If ρ is close enough to ρ′, the one-dimensional log-likelihood function `(θm) can
be approximated by standard Taylor expansion, with respect to θm, around the old estimate ψ̂.
By straightforward algebra, it is easy to see that `p(θm) can be approximated as follows

`p(θm) ≈ `(ψ̂)− ρ
S∑

n6=m
wn|θ̂n|+

∂`(ψ̂)

∂θm
(θm − θ̂m) +

1

2

∂2`(ψ̂)

∂θ2
m

(θm − θ̂m)2 − ρwm|θm| =

= C(ψ̂) +
1

2

∂2`(ψ̂)

∂θ2
m

(θm − ϑ̂m)2 − ρwm|θm|, (4)

where C(ψ̂) = `(ψ̂)− ρ∑S
n6=mwn|θ̂n| − 1

2{∂2`(ψ̂)/∂θ2
m}−1∂m`(ψ̂)2 is a constant with respect to

θm and ϑ̂m = θ̂m−{∂2`(ψ̂)/∂θ2
m}−1∂m`(ψ̂). Using approximation (4), the original maximization

problem specified in Step 4 can be locally substituted by the simpler problem

min
θm∈R

1

2
Im(ψ̂)(θm − ϑ̂m)2 + ρwm|θm|, (5)

where Im(ψ̂) = −∂2`(ψ̂)/∂θ2
m is the Fisher information for θm evaluated at ψ̂. Problem (5) can

be solved in closed form (see [6]), i.e. θ̂m = S(ϑ̂m;wmI
−1
m (θ̂)ρ), where S(x;λ) = sign(x)(|x|−λ)+

is the soft-thresholding operator. The proposed CCD algorithm is summarized in the pseudo-
code reported in Algorithm 4.2.

Algorithm 4.2.
Pseudo-code of the second proposed CCD algorithm

Step 1 initialize ψ̂ = (η̂T , θ̂
T

)T to a given starting value

Step 2 K(ψ̂)←∑R
n=1 η̂nDn +

∑S
m=1 θ̂mTm

Step 3 Σ(ψ̂)← K−1(ψ̂)

Step 4 repeat

Step 5 for m = 1 to S

Step 6 ∂m`(ψ̂)← tr{Tm(Σ(ψ̂)−R)}

Step 7 Im(ψ̂)← tr{TmΣ(ψ̂)TmΣ(ψ̂)}

Step 8 ϑm ← θ̂m + I−1
m (ψ̂)∂m`(ψ̂)

Step 9 θ̂m ← S(ϑm;wmI
−1
m (θ̂)ρ)

Step 10 Σ(ψ̂)← (K(ψ̂) + θ̂mTm)−1

Step 11 end for

Step 12 for n = 1 to R

Step 13 ∂n`(ψ̂)← tr{Dn(Σ(ψ̂)−R)}
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Step 14 In(ψ̂)← tr{DnΣ(ψ̂)DnΣ(ψ̂)}

Step 15 η̂n ← η̂n + I−1
n (ψ̂)∂n`(ψ̂)

Step 16 Σ(ψ̂)← (K(ψ̂) + η̂nDn)−1

Step 17 end for

Step 18 until a convergence criterion is met

At each inner loop O(p3) operations are needed to compute the inverse of the structured con-
centration matrix. We use the iterative algorithm proposed in [12] to reduce the computational
burden. This involves step 10 and 16 which require the inversion of the sum of two matrices and
requires O(p2) operations.

Pathway solution and definition of the weights of sglasso

The algorithms proposed in the previous section are developed for a fixed value of the tuning
parameter. However, we seldom know the optimal value of ρ. Usually, the optimal value of ρ is
found by computing the solution for a path of its decreasing values. Then, every fitted model is
evaluated by a measure of goodness-of-fit. Warm-start or continuation methods use the solution
found at the previous step as initial guess for the solution corresponding to the new value of
the tuning parameter. Firstly, we begin with a value of the tuning parameter sufficiently large
to ensure that all the penalized parameters are set to zero. Secondly, we decrease ρ, using a
multiplicative grid, until we arrive next to the unconstrained solution. The largest value of the
parameter ρ can be found as consequence of the following Karush-Kuhn-Tucker conditions:

∂`(ψ̂)

∂ηn
= tr{Dn(Σ(ψ̂)−R)} = 0,

∂`(ψ̂)

∂θm
= tr{Tm(Σ(ψ̂)−R)} = ρwm γ̂m,

where γ̂m = sign(θ̂m), if θ̂m 6= 0, and γ̂m ∈ (−1, 1) if θ̂m = 0. Since at the starting point each
θ̂m is equal to zero, it is easy to see that ρmax = maxm |tr{TmR}|, and consequently, the index
of the first θ̂m that will become different from zero is

arg max
m
|tr(TmR)|.

The previous result shows that the variable selection behavior of the proposed estimator can be
compromised if the S elements of the score vector, corresponding to the `1-penalized parameters,
are not comparable in terms of variability. This problem, that also affects the classical lasso
estimator, was solved in [2] introducing the notion of dglars estimator, which is an extension
of the least angle regression method [5] for regression models based on the exponential family.
Using the differential geometrical structure of a generalized linear model, the authors relate the
variable selection behavior of the dglars estimator to the well known Rao score test statistics,
which are defined as the elements of the score vector divided by the corresponding asymptotic
estimates of the variances. Similarly to the approach proposed in [2], in this paper we propose
to use the weights wm = tr(TmRTmR) which are the asymptotic estimates of the variance of
the elements of the score vector evaluated at the starting point.
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5 Conclusions

In this paper we have introduced a new estimator to make sparse inference on a high-dimensional
RCON(V, E) model, which is based on the idea to use a weighted `1-norm defined on the param-
eters of a structured concentration matrix. Moreover, we have proposed two cyclic coordinate
algorithms, which are suitable for large data sets, to compute the proposed estimator. The
sglasso estimator and the two proposed algorithms are implemented in the R package sglasso

which is available at http://CRAN.R-project.org/package=sglasso.
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Abstract. The variogram plays an important role in spatial data analysis. Geostatistical spatial
data are analyzed in three stages: estimation of the variogram, model fitting for the estimated
variogram, and fitting the chosen model to the estimated variogram model parameters. The
proper estimate of the variogram is important since it affects the next two stages.

To estimate the variogram, we must first decide on the ‘number of lags k ’. Semivariogram
estimation is strongly influenced by number of lags k, which serves as a smoothing parameter.
This means that k could significantly influence the least square estimator and kriging predictor.
However, there is no established rule for selecting the number of lags when estimating variograms.
The selection of a proper k value is important, but few studies have been done in this regard. In
this paper, we propose a method for choosing the optimal number of lags based on leave-one-out
cross-validation (LOOCV) and the Akaike information criterion (AIC).

Keywords. Akaike information criterion, lag increment, leave-one-out cross-validation

1 Introduction

The variogram plays a central role when analyzing spatial data. A valid variogram model must
first be selected, and the parameters of the model estimated before kriging (spatial prediction)
is performed.

In general, the variogram is estimated with a method of moment estimator [6], and the lag
increment or number of lags must be chosen as it is being estimated. In practical simulation
analysis, a data analyst estimates the variogram using several different numbers of lags, and
then selects the best number of lags value among them. This method is subjective and can
sometimes result in preposterous variogram estimation values. This paper proposes a method
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for choosing the optimal number of lags when estimating variograms based on the given spatial
data.

We conduct a simulation study to demonstrate our procedure. For simplicity, we assume
that the underlying process of the observed spatial data is stationary and isotropic. In all data
analyses, we used the environment of R.

We describe the spatial statistics approach used in Section 2. In Section 3, we present our
simulation results showing the optimal number of lags in variogram estimation. We present our
concluding remarks in Section 4.

2 Spatial prediction

Spatial data can be considered to be a realization of a stochastic process Z(s), i.e.,¶
Z(s) : s ∈ D ⊂ Rd

©
, (1)

where s indicates a location in D and Rd (d = 1,2,3) is a d -dimensional Euclidean space. The
basic form of spatial data is expressed as (zi, si), i = 1, . . . , n, where zi is the i-th observation of
a phenomenon of interest at location si.
Assume that this process satisfies the hypothesis of intrinsic stationarity:

(a)E (Z (s)) = µ, for all s ∈ D,
(b)Cov (Z (si) , Z(sj)) = C(h) = C (si − sj) <∞, for all si, sj ∈ D,
(c)V ar (Z (si)− Z(sj)) = 2γ (si − sj) = 2γ (h) , for all si, sj ∈ D,

where 2γ(h) is the variogram, and C(h) is the covariance for pairs of points separated by Eu-
clidean distance h (the covariogram). In this paper, we suppose that 2γ̂(h) is a variogram
estimator for a given lag h, based on a sample {Z(s1), . . . , Z(sn)} of the spatial process; let
h1, . . . , hk be the vector lags defined by hi = ih/ ‖h‖ , i = 1, . . . , k, where 1 ≤ k ≤ K, and K is
the maximum possible distance between data in the direction h divided by ‖h‖. [3]

Estimation of the variogram

The first step in spatial analysis is estimating the variogram γ(h) using the observed data. When
we assume the variogram to be isotropic, we can calculate an estimator for the variogram, called
the sample variogram [6], using

γ̂(h) =
1

2 |N(h)|
∑
N(h)

(z(si)− z(sj))2 , (2)

where N(h) is the set of all pairwise Euclidean distances si − sj = h and |N(h)| is the number
of the distinct pairs in N(h). z(si) and z(sj) are the data values at spatial locations si and sj ,
respectively. In this formulation, h represents a distance measure with only magnitude.

When the variogram is isotropic, we can compute the directional sample variogram using the
same formula by replacing h with vector h. In practice, to calculate the variogram values using
Eq. (2), we first select the lag distances h, then calculate the variogram values by regarding pairs
with distance within h ± lag tolerance as the pairs in N(h). The lag tolerance, which establishes
distance bins for the lag increments, accommodates for unevenly spaced observations. The
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lag increment defines the distances at which the variogram is calculated, and the number of
lags in conjunction with the size of the lag increment will define the total distance over which
the variogram is being calculated. To estimate the variogram, we next have to choose the lag
increment or the number of lags.

Variogram model fitting

The next stage in spatial analysis is fitting a model that gives the best dependence (auto-
correlation structure) in the underlying stochastic process. Most variogram models contain
three parameters sill, range, and nugget (or nugget effect). Sill is a variogram threshold for lag
distances. Range is the lag distance at which the variogram reaches the sill value. The nugget
represents the variability at distances smaller than the typical sample spacing, including the
measurement error. In theory, the variogram value at the origin (0 lag) should be zero. Thus
far, several variogram models have been proposed according to their forms; for example, gaus-
sian, exponential, and spherical models as bounded and power and linear models as unbounded
variogram models. In this paper, we describe only the two models used in our study the expo-
nential and spherical [1].
The exponential model is as follows:

γexp(h; θ) =

{
0, h = 0,

cn + cs
{

1− exp
(
− ‖h‖cr

)}
, h > 0,

(3)

for θ = (cn, cs, cr)
′, cn ≥ 0, cs ≥ 0, and cr ≥ 0.

The spherical model is

γsph(h; θ) =


0, h = 0,

cn + cs

ß
3
2

(
‖h‖
cr

)
− 1

2

(
‖h‖
cr

)3
™
, 0 < h ≤ cr,

cn + cs, h > cr,

(4)

for θ = (cn, cs, cr)
′, cn ≥ 0, cs ≥ 0, and cr ≥ 0.

Kriging

Kriging is a linear interpolation method that allows predictions of unknown values in a random
function from observations at known locations. There are a few type of kriging for spatial
prediction problems in spatial statistics, including simple kriging, ordinary kriging, and universal
kriging. In our simulation, we perform only ordinary kriging, which is often associated with the
best linear unbiased estimator (BLUE). Ordinary kriging is based on a random function model of
spatial correlation for calculating a weighted linear combination of available samples to predict
a nearby unsampled location. Weights are chosen to ensure zero average error for the model and
to minimize the model’s error variance [4]. Ordinary kriging [5, 7] refers to spatial prediction
under the following two assumptions. First, the model assumption is as follows:

Z(s) = µ+ δ(s), s ∈ D, µ ∈ R, (5)
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where µ is unknown. The second is the predictor assumption:

Z∗OK(s0) =
n∑

α=1

wαZ(sα). (6)

To minimize the error variance under the constraint
∑n
α=1wα = 1, we set up a system that

minimizes Q, comprising the error variance and an additional term involving the Lagrange
parameter, µOK :

Q = E
[(
Z∗(s0)− Z(s0)

)2 ]
+ 2µOK

(
1−

n∑
α=1

wα

)
. (7)

This minimization with respect to the Lagrange parameter forces the constraint to be obeyed:
∂Q
∂wβ

= −2
∑n
α=1wαγ (sα − sβ) + 2γ (sβ − s0)− 2µ = 0,

β = 1, . . . , n,
∂Q
∂µ = 1−∑n

α=1wα = 0.

In this case, the system of equations for the kriging weights is
∑n
β=1w

OK
β γ (sα − sβ) + µOK = γ

(
sα − s0

)
,

α = 1, . . . , n,∑n
β=1w

OK
β = 1,

(8)

where γ(·) is the covariance function for the residual component of the variable.
Once the kriging weights (and the Lagrange parameter) are obtained, the error variance for the
ordinary kriging is given by

σ2
OK = µOK − γ

(
s0 − s0

)
+

n∑
α=1

wOKα γ
(
sα − s0

)
. (9)

3 Simulation study

The selection of lag size has significant effects on the sample semivariogram. For example, if
the lag size is too large, short-range autocorrelation may be masked. If the lag size is too small,
there may be many empty bins, and sample sizes within the bins will be too small to determine
the bins representative averages. However, if the data are acquired using an irregular or random
sampling scheme, a suitable lag size selection is not at all straightforward.

[5] suggests the following two practical rules for choosing the lag increment and number of
lags: (i) the sample variogram should only be considered for distances h for which the number
of pairs is greater than 30, and (ii) the distance of reliability for a sample variogram is h < D/2,
where D is the maximum distance over the field of data. However, in practice, these rules are
ambiguous when choosing the number of lags or the lag increment. In this paper, we focus on
the number of lags denoted by symbol k because the above two rules are mutually reciprocal.
Our main interest thus becomes finding the optimal number of lags among possible k values.
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Model Exponential Spherical

Number Sample size Number Sample size
of lags 100 200 300 of lags 100 200 300

2 1.0801 1.0188 0.9065 2 2.3746 1.7157 1.7523
3 1.0193 0.9930 0.9105 3 2.2646 1.5523 1.4381
4 0.8970 0.8377 0.7439 4 2.1245 1.3444 1.1612
5 0.7079 0.6566 0.7001 5 1.9845 1.1996 1.0182
6 0.6611 0.6010 0.4275 6 1.9038 1.1152 0.7815
7 0.6497 0.5720 0.4102 7 1.8287 1.0637 0.7447
8 0.6322 0.5529 0.3983 8 1.8060 1.0291 0.7147
9 0.6297 0.5390 0.3892 9 1.7799 0.9971 0.6954
10 0.6174 0.5322 0.3829 10 1.7733 0.9780 0.6815
11 0.6113 0.5080 0.3777 11 1.4172 0.7637 0.5648
12 0.6107 0.5024 0.3733 12 1.4109 0.7489 0.5521
13 0.6097 0.4972 0.3698 13 1.3893 0.7390 0.5435
14 0.6062 0.4928 0.3672 14 1.4171 0.7361 0.5383
15 0.6064 0.4867 0.3652 15 1.3775 0.7329 0.5324
16 0.6044 0.4883 0.3629 16 1.3841 0.7234 0.5257
17 0.6043 0.4851 0.3622 17 1.3824 0.7200 0.5229
18 0.6043 0.4838 0.3618 18 1.3724 0.7145 0.5210
19 0.6041 0.4821 0.3614 19 1.3581 0.7158 0.5203
20 0.6040 0.4819 0.3607 20 1.3511 0.7120 0.5181

Table 1: Results of using LOOCV for choosing the optimal number of lags.

The optimal number of lags for LOOCV

In this paper, we consider the exponential and spherical models, which each contain three pa-
rameters (sill, range, and nugget), and we restrict the scope of the number of lags to be from 2
to 20 when selecting the optimal k.

As mentioned above, the simulation data are fixed in the two models and their three parame-
ters, and the generated datasets (with sample sizes of 100, 200, and 300) include positions as well
as the data values. When a theoretical variogram model is fitted to the number of lags k from
2 to 20, the optimal k can be selected on the basis of leave-one-out cross-validation (LOOCV).
The selection of the optimal k can be explained as below.

Step 1 For a fixed lag k (2 ≤ k ≤ 20), estimate the variogram using n - 1 observations except-
ing the i-th one and obtain the predicted value Ẑ(s−i) at the i-th location based on the
estimated variogram.

Step 2 For every i (i = 1, . . . , n), calculate Z(si)− Ẑ(s−i) based on the Step 1 from 1 to n (n
= 100, 200, and 300).

Step 3 For the fixed lag k (2 ≤ k ≤ 20), calculate the LOOCV statistic 1
n

∑n
i=1

∣∣∣ÄZ(si)− Ẑ(s−i)
ä∣∣∣2.

Step 4 Calculate the LOOCV for every k (2 ≤ k ≤ 20), and select the optimal k which mini-
mizes the LOOCV.
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The LOOCV result for given numbers of lags is presented in Table 1. The LOOCV [2] values
in Eq. (10), are calculated as follows. The LOOCV uses a single observation from the original
sample as the validation data, and the remaining observations as the training data. This is
repeated such that each observation in the sample is used once as the validation data:

1

n

n∑
i=1

∣∣∣ÄZ(si)− Ẑ(s−i)
ä∣∣∣2 , (10)

where Z(si) and Ẑ(s−i) represent the observed and predicted values, respectively.

From Table 1, we can see that the results based on the sample sizes of 100, 200, and 300
in the exponential variogram model show similar values from k = 6 to k = 20, respectively.
In addition, we can see that the results based on the sample sizes of 100, 200, and 300 in the
spherical variogram model show similar values from k = 11 to k = 20, respectively.

The optimal number of lags for AIC

A satisfactory compromise between goodness of fit and complexity of the model can be achieved
by applying the Akaike information criterion (AIC). For a given set of data, the variable part of
the AIC is estimated by

Â = −2nlnR̂+ 2p, (11)

where n is the number of variogram cloud, R̂ is the value of R which maximizes the likelihood
(R is a vector of m parameters of covariogram model), and p is the number of parameters in the
variogram model. The model to choose is the one for which Â is least.

Similarly, when applying the AIC, the simulation data are fixed in the two models and their
three parameters, and the generated datasets (with sample sizes of 100, 200, and 300) include
positions and the data values. When a theoretical variogram model is fitted to the number of
lags k from 2 to 20, the optimal number of lags k can be selected on the basis of the AIC. The
optimal k is defined to be the value that minimizes AIC. The selection of the optimal k can be
explained as below.

Step 1 Calculate the R̂ with the given data Z (Z = Z(s1), Z(s2), . . . , Z(sn)) and parameters
of covariogram model R.

Step 2 Calculate the AIC for variogram model for every k (2 ≤ k ≤ 20).

Step 3 Select the optimal k which minimizes the AIC.

From Table 2, for the sample size of 100 in the exponential variogram model, the minimum
AIC value is achieved at k = 5. For sample sizes of 200 and 300, the minimum AIC values are
achieved at k = 7. For the sample size of 100 in the spherical variogram model, the minimum
value of AIC is achieved at k = 5; for sample sizes of 200 and 300, the minimum values of AIC
are achieved at k = 6 and k = 7, respectively.
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Model Exponential Spherical

Number Sample size Number Sample size
of lags 100 200 300 of lags 100 200 300

2 871.93 1504.93 2148.32 2 871.79 1500.28 2152.07
3 867.50 1479.62 2108.39 3 862.63 1474.49 2110.97
4 865.26 1476.76 2100.05 4 860.67 1470.30 2094.99
5 865.13 1475.28 2094.52 5 859.89 1469.23 2096.20
6 866.57 1474.24 2094.13 6 861.22 1468.11 2095.40
7 868.43 1473.09 2092.02 7 862.79 1468.42 2092.13
8 868.83 1475.09 2092.87 8 864.56 1468.15 2093.30
9 870.19 1477.29 2093.34 9 865.90 1470.65 2096.14
10 871.16 1477.72 2093.41 10 866.52 1472.52 2095.69
11 874.27 1479.66 2093.56 11 868.29 1471.98 2097.30
12 875.17 1481.74 2095.99 12 869.97 1474.22 2098.08
13 875.76 1482.48 2096.34 13 871.39 1476.40 2099.62
14 877.40 1483.90 2098.17 14 872.74 1476.99 2099.43
15 878.95 1483.82 2099.03 15 874.47 1478.59 2102.89
16 881.18 1485.92 2101.32 16 874.30 1480.46 2102.77
17 881.78 1488.60 2102.84 17 878.09 1481.32 2105.35
18 882.28 1489.51 2104.42 18 878.13 1482.73 2105.40
19 882.47 1490.40 2105.34 19 879.42 1484.28 2107.99
20 887.59 1491.95 2107.46 20 880.95 1486.11 2109.07

Table 2: Results of applying the AIC for choosing the optimal number of lags.

4 Conclusion

In this paper, we examined the performance of a variogram estimator in spatial models, focusing
on a piecewise constant estimator for an isotropic variogram. We proposed a method for selecting
the optimal number for the estimator using LOOCV and AIC in the spatial data analysis. The
proposed method’s usefulness is established through a simulation study. In the future, to validate
our proposed procedure’s usefulness in detail, we have to perform various simulation studies. In
addition, we have to apply our method for finding the optimal number of lag to many real spatial
data analysis.
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Abstract. Given a nonparametric regression model, we assume that the number of covariates
may increase infinitely but only some of these covariates are relevant for the model. Our goal is to
identify the relevant covariates and to obtain some information about the structure of the model.
We propose a new nonparametric procedure, called GRID, having the following features: (a) it
automatically identifies the relevant covariates of the regression model, also distinguishing the
nonlinear from the linear ones (a covariate is defined linear/nonlinear depending on the marginal
relation between the response variable and such a covariate); (b) the interactions between the
covariates (mixed effect terms) are automatically identified, without the necessity of considering
some kind of stepwise selection method. In particular, our procedure can identify the mixed
terms of any order (two way, three way, ...) without increasing the computational complexity
of the algorithm; (c) it is completely data-driven, so being easily implementable for the analysis
of real datasets. In particular, it does not depend on the selection of crucial regularization
parameters, nor it requires the estimation of the nuisance parameter σ2 (self-scaling). The
acronym GRID derives from Gradient Relevant Identification Derivatives, meaning that the
procedure is based on testing the significance of a partial derivative estimator.

Keywords. Variable selection, model selection, high dimension, nonparametric regression.

1 Introduction

Much work has been made in the context of variable selection. There are two main approaches
to this problem. The first one is based on the idea of LASSO, which uses a penalized regression
with additive models (see [7], [10] and [8] among others). The appeal of this approach is the
fast rate of convergence, which essentially derives from the imposition of an additive model. On
the other side, a serious drawback is given by the difficulty of implementation on real datasets
given the necessity of setting crucial regularization parameters. The second approach, which has
inspired this work, is based on a general regression function of dimension d, without imposing any
additive restriction on the model (see [4]). The main advantage of this approach is its flexibility
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and simplicity of implementation on real datasets (there are not regularization parameters). At
the same time, it suffers from a low rate of convergence that makes it unsuitable for the analysis
of high dimensional datasets. Our aim here is to deal with the last drawback. We propose a new
procedure based on a variant of the local linear estimator which remarkably improves the rate
of convergence of the selection procedure and makes it suitable for high dimensional cases, in
particular when the dimension p is greater than the sample size n. This improvement is pursued
by taking separated the stage of variable selection from the stage of function estimation.

We assume that the number of covariates p of the regression model may tend to infinity but
only some of these covariates are relevant. Given that the function is completely unknown, our
goal is to identify the relevant covariates and to obtain some information about the structure
of model (1). In particular, we want to classify the covariates into disjoint sets: 1) the set of
nonlinear covariates, which includes those variables having a nonlinear effect on the dependent
variable (i.e., with not constant gradient); 2) the set of linear covariates, which includes the
variables having a linear effect on the response variable (i.e., with constant gradient); 3) the
set of irrelevant covariates, collecting the variables with gradient equal to zero. Denote with C,
A and U the correspondent index sets and let Ξ = C ∪ A ∪ U represent the set of regressors
{1, . . . , d}. Secondly, we want to detect the interactions among the covariates, identifying the
mixed effects. More specifically, the information on the interaction terms is given in the following
way. Let Ij be the set of covariates mixed with the j-th covariate, for j ∈ Ξ. A convention
used here is that j /∈ Ij , which means that self-interaction is ignored in practice. We propose a
procedure called GRID that gives a consistent estimation of the sets C, A and Ij , for j ∈ C ∪A.
Other sets can be derived easily by known relationships. In particular, IjC = Ij ∩ C is the

set of nonlinear covariates which are mixed with the j-th covariate and IjA = Ij ∩ A is the

set of linear covariates mixed with the j-th covariate. Then Ij = IjC ∪ I
j
A. Moreover, the

set Cc = ∪j∈CIjC (or Ca = ∪j∈AIjC) collects the nonlinear covariates which are mixed with

nonlinear (or linear) covariates. Similarly, we have Ac = ∪j∈CIjA (or Aa = ∪j∈AIjA). Finally, the
sets Cp = C\(Cc ∪ Ca) and Ap = A\(Ac ∪ Aa) include the pure (i.e., not mixed) nonlinear and
linear covariates, respectively.

Given the short length of this paper, in the following sections we only present the main results
and the basic structure of the GRID procedure. The acronym GRID derives from Gradient
Relevant Identification Derivatives, because the procedure is based on testing the significance of
a partial derivative estimator. Section 2 introduces the estimator and gives the notation used
in this paper. In section 3 we present the theoretical foundations of the selection procedure.
The GRID procedure is briefly described in section 4. Finally, section 5 reports the results of a
simulation study and some final comments.

2 The estimator

In this paper we consider the following nonparametric regression model

Yt = m(Xt) + εt, (1)

where Xt represents the Rd-valued covariate and εt is the error term with zero mean and variance
σ2. Both Xt and εt are assumed i.i.d., and the errors εt are supposed to be independent from
Xt. Here m(Xt) = E(Yt|Xt) : Rd → R is the multivariate conditional mean function. We use the
notation X(j) to refer to the univariate covariates, for j = 1 . . . , d. We indicate with fX(·) the
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multivariate density function of Xt, having support supp(fX) ⊆ Rd, and with fε(·) the density of
the error term. In order to improve the rate of convergence, we propose to base our identification
procedure on a variant of the local linear estimator. In fact, the local linear estimator used in the
RODEO is not well defined when d > n, given the necessity of inverting the regression matrix.
To overcome this, we propose the estimator

M(x;H) =
1

n
diag(1, H−2)ΓTWΥ ≡

Ç
M0(x;H)
M1(x;H)

å
, (2)

where H is the diagonal strictly positive bandwidth matrix (of dimension d× d) and

Υ =

Ö
Y1
...
Yn

è
, Γ =

Ö
1 (X1 − x)T

...
...

1 (Xn − x)T

è
, W =

Ö
KH(X1 − x) . . . 0

...
. . .

...
0 . . . KH(Xn − x)

è
,

for some multivariate Kernel function K(·). Note that M0(x;H) is a scalar while M1(x;H) is a
vector of length d. Our selection method is based on the derivatives of (2) w.r.t. the different
bandwidths. So,

Ṁ0j =
∂M0(x;H)

∂hj
j = 1, . . . , d

Ṁ1j =
∂M1(x;H)

∂hj
≡ {Ṁ (i)

1j }i=1,...,d, (3)

whose explicit expressions derive from

∂M(x;H)

∂hj
=

∂

∂hj

ñ
1

n

Ç
1 0
0 H−2

å
ΓTWΥ

ô
=

1

n
OjΓ

TWΥ +
1

n

Ç
1 0
0 H−2

å
ΓT

∂

∂hj
WΥ,

where Oj is a matrix with d + 1 rows and d + 1 columns, with all zeros except the element in
position (j + 1, j + 1) which is equal to − 2

h3
j
.

Since W is a diagonal matrix with elements

KH (Xt − x) =
1

|H|
d∏

k=1

K

Å
Xtk − xk

hk

ã
,

its derivative with respect to hj is

∂

∂hj
KH (Xt − x) = KH (Xt − x)

Ç
− 1

hj
+

∂

∂hj
logK

Ç
Xtj − xj

hj

åå
.

So
∂

∂hj
W = WLj

where Lj = diag
(
∂ logK((X1j−xj)/hj)

∂hj
− 1

hj
, . . . ,

∂ logK((Xnj−xj)/hj)
∂hj

− 1
hj

)
. Finally, we propose the

following estimator

∂M(x;H)

∂hj
=

1

n

ñ
OjΓ

TW +

Ç
1 0
0 H−2

å
ΓTWLj

ô
Υ ≡

Ç
Ṁ0j

Ṁ1j

å
. (4)
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3 Theoretical foundations

In this paper, we consider the following assumptions.

A1) The bandwidth H is a diagonal and strictly positive definite matrix, H = diag(h1, . . . , hd),
with hj = O(1) for j = 1, . . . , d.

A2) The d-variate Kernel function K is a product kernel, with compact support and zero odd
moments. Therefore, the following moments exist bounded (we assume that µ0 = 1)

µr =

ˆ
ur1K(u1)du1, νr =

ˆ
ur1K

2(u1)du1 r = 0, 1, . . . , 4.

Moreover, we assume that K ∈ C1[−a, a] for some a > 0.

A3) All the partial derivatives of the function m(x) up to and including fifth order are bounded.

A4) The density fX is uniform on the unit cube.

The rationale of our selection procedure is based on the following result (see [3] for a proof).

Theorem 3.1. Under model (1) and assumptions (A1)-(A4), the following result holds

E
¶
Ṁ0j

©
=

®
θm0j 6= 0 if and only if j ∈ C
θm0j = 0 otherwise;

(5)

E
{
Ṁ

(i)
1j , i 6= j

}
=

®
θmij 6= 0 if and only if i ∈ Ij , j ∈ C
θmij = 0 otherwise.

(6)

Remark 3.1 : Theorem 3.1 can be used to detect the nonlinear effects in model (1). In fact, basing
on the (5), the derivatives Ṁ0j can be used in order to identify the nonlinear covariates, obtaining

C. Basing on the (6), the derivatives Ṁ
(i)
1j can be used in order to identify the interactions for

the nonlinear covariates, obtaining Ij , for j ∈ C.

Remark 3.2 : The values of the bandwidths are not crucial in our procedure, because at this
stage we are not interested in the estimation of the function m(x), but only in variable selection.
Note that our identification procedure is based on evaluating the bias of the estimator (2) (i.e.,
the values θij), which is zero for linear and irrelevant covariates. Therefore, we suggest to use a
bandwidth matrix that produces a very high bias. This means to take very large bandwidths,
for example h = 0.9, also improving the efficiency of the estimator.

Using Theorem 3.1, we cannot identify the linear covariates in Au = Aa ∪ Ap and the

linear mixed effects in IjA, for j ∈ A. Anyway, a convenient solution is to consider an auxiliary
regression with some of the covariates transformed, so that the linear covariates of the original
model become nonlinear in the auxiliary model. In particular, if we consider model (1) under
the partition {C,Ac, Au, U}, with U including the not relevant covariates, it must necessarily be

m(x) = m1(xC , xAc) +m2(xAu).
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Now, let us define a transformation z = φ(x) and its inverse x = φ−1(z) as follows (component-
wise)

z = φ(x) = (xC , x
1/2
Ac
, x

1/2
Au
, x

1/2
U ), x = φ−1(z) = (xC , z

2
Ac , z

2
Au , z

2
U ). (7)

We can consider the following auxiliary regression

Yt = m(φ−1(Zt)) + εt = g(Zt) + εt, t = 1, . . . , n,

where the new regression function can be written as

g(z) = g1(xC , zAc) + g2(zAu).

Note once again that we use the same index partition considered in the first regression. Thanks
to the transformation in (7), it appears immediately that the function g2(·) depends only on the
covariates in Au in a nonlinear manner.

Given that we are not interested in the exact estimation of the function g(z) but only in
variable selection, we can exclude the nonlinear covariates in C from the auxiliary regression.
Note that, when we consider the auxiliary regression with the transformed covariates Zt = φ(Xt),
the density fZ does not satisfy the assumption A4, so Theorem 3.1 cannot be applied. The
following theorem covers this case.

Theorem 3.2. Using model (1), assumptions (A1)-(A4) and the transformed random variables

Zt = {φ(X(s)), s ∈ C}

with φ defined in (7), the following result holds for the estimator defined in (2)

E
¶
Ṁ0j

©
=

®
θg0j 6= 0 if and only if j ∈ A
θg0j = 0 otherwise

(8)

E
{
Ṁ

(i)
1j , i 6= j

}
=

®
θgij 6= 0 if i ∈ Ij , j ∈ A
θgij = 0 if j ∈ U. (9)

Remark 3.3 : Given the (8), the derivatives Ṁ0j = ∂M0(z;H)/∂hj calculated with the trans-
formed covariates Z can be used in order to identify the linear covariates, obtaining the set A.
Moreover, we can use the (9) in order to identify the linear mixed effects in Ij , for j ∈ A.

4 The GRID procedure

Here we present the algorithm for estimating and testing the values of θij , in order to classify the
covariates of model (1). Let X(j) represent a uniform covariate while Z(j) stands for the same
covariate after applying the transformation (7). For brevity, we report only the first stage of the
GRID procedure, useful to identify the relevant covariates. A second stage can be organized in
a similar way in order to identify the mixed terms (both the stages of the procedure have been
implemented in the simulation study).

O. Set the bandwidth matrix to a high value (for example, H = 0.9Id). Let R = C ∪A denote the set
of relevant covariates. Initialize all the sets (C,A,R,RX , RZ , . . .) to the empty set ∅.
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I. First stage (identifying the relevant covariates):

• For j = 1, . . . , d, do:

– using the covariates X(j), j ∈ Ξ, compute the (univariate) statistic Ṁ0j defined in (4)

– using the Empirical Likelihood technique, compute the threshold γ0

– if Ṁ0j > γ0 then (relevant covariate)

– insert the index j in the set RX

– using the covariates Z(j), j ∈ Ξ, compute the (univariate) statistic Ṁ0j defined in (4)

– using the Empirical Likelihood technique, compute the threshold γ0

– if Ṁ0j > γ0 then (relevant covariate)

– insert the index j in the set RZ

• R = RX ∪RZ .

• For j ∈ R, do:

– using the covariates X(j), j ∈ R, compute the (univariate) statistic Ṁ0j defined in (4)

– using the Empirical Likelihood technique, compute the threshold γ1

– if Ṁ0j > γ1 then (nonlinear covariate) then insert the index j in the set C

– otherwise (linear covariate) insert the index j in the set A.

• Output C, A

Remark 3.4 : the Empirical Likelihood is used in order to test the relevance of the covariates.
This nonparametric inferential technique has several advantages, among which the self-scaling
property. Therefore, it is not necessary to estimate any nuisance parameter in order to do the
test. Refer to [3] for more details on this aspect.

5 Simulation results

We evaluate the finite dimension performance of our procedure by means of a simulation
study. We consider two different models, and for each one we simulate 200 Monte Carlo
replications under different configuration of settings. In particular, we use three sample sizes
n = (300, 500, 1000) and three dimensions d = (20, n/2, 2n). Therefore, the last value of d is such
that d > n. Following the suggestion in [7], the additive terms in each model are standardized
so that no one of them dominates the variance of the model.

As a first example, we consider the following model 1:

Y = X3
(6)X

3
(7) +X(10) + ε, ε ∼ N(0, 1)

where there are two nonlinear covariates, with a mixed term, and one pure linear covariate. In
table 1, we report the rates of classification of a given covariate in the sets: R, as a relevant
covariate; C, as a nonlinear covariate; I(6, 7), as an interaction term between the two covariates
6 and 7. We can derive the percentages for the set A as a difference between the values of R and
C. All the values less than 0.025 are not shown, and they are reported with the symbol “*”.

As a second example, we use the following model 2:

Y = X(1)X(2) +X(1)X
3
(7) + ε, ε ∼ N(0, 1)
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d = 20 d = n/2 d = 2n
n R C I(6, 7) R C I(6, 7) R C I(6, 7)

X6 300 0.975 0.330 0.900 0.855 0.335 0.720 0.630 0.330 0.365
500 1.000 0.610 1.000 0.990 0.595 0.985 0.810 0.480 0.620

1000 1.000 0.910 1.000 1.000 0.915 1.000 0.910 0.835 0.815
X7 300 0.940 0.325 - 0.875 0.335 - 0.580 0.250 -

500 1.000 0.370 - 0.995 0.635 - 0.765 0.515 -
1000 1.000 0.935 - 1.000 0.890 - 0.835 0.815 -

X10 300 1.000 * - 1.000 * - 0.995 0.035 -
500 1.000 * - 1.000 * - 1.000 * -

1000 1.000 * - 1.000 * - 1.000 * -

Table 1: Results for model 1. The values show the rates of classification of a given covariate
in the sets R, as a relevant covariate, and C, as a nonlinear covariate. The column I(6, 7)
reports the observed rates for the interaction term between the two covariates X(6) and X(7).
The symbol “∗” means that the value is ≤ 0.025 while “−” is used for “Not applied”.

d = 20 d = n/2 d = 2n
n R C I(1, 2) I(1, 7) R C I(1, 2) I(1, 7) R C I(1, 2) I(1, 7)

X1 300 1.000 * 0.365 0.675 1.000 * 0.305 0.700 0.995 * 0.165 0.705
500 1.000 * 0.635 0.910 1.000 * 0.555 0.905 1.000 * 0.475 0.930

1000 1.000 * 0.945 1.000 1.000 * 0.925 1.000 1.000 * 0.860 1.000
X2 300 0.945 * - - 0.855 * - - 0.560 * - -

500 1.000 * - - 0.985 * - - 0.795 * - -
1000 1.000 * - - 0.995 * - - 0.905 * - -

X7 300 1.000 0.645 - - 1.000 0.665 - - 0.970 0.645 - -
500 1.000 0.910 - - 1.000 0.880 - - 0.990 0.875 - -

1000 1.000 1.000 - - 1.000 0.995 - - 1.000 0.995 - -

Table 2: Results for model 2. The values show the rates of classification of a given covariate in
the sets R, as a relevant covariate, and C, as a nonlinear covariate. The column I(1, 2) reports
the observed rates for the interaction term between the two covariates X(1) and X(6). The same
is made for column I(1, 7). The symbol “∗” means that the result is ≤ 0.025 while “−” is used
for “Not applied”.

where there is a nonlinear covariate mixed with a linear covariate and one linear covariate mixed
with another linear covariate. Table 2 reports the results for this model.

From tables 1 and 2, we can note that all the values increase for increasing sample sizes,
showing the consistency of our selection procedure. Of course, the performance is worse in the
last column, where the dimension is remarkably greater than the sample size. Anyway, even in
this case the performance is quite satisfactory for the nonlinear variable identification, whereas
there is some difficulty in identifying the linear mixed effects.

In conclusion, we want to stress here that our selection procedure does not need any regulari-
zation parameter. Under this point of view, the implementation of the procedure is very simple.
Moreover, the procedure gives a simultaneous classification of the relevant covariates between
linear/nonlinear and pure/mixed, without the necessity of imposing an additive structure in
the model and without using any stepwise selection method. Comparing the GRID procedure
with the LASSO based procedures or the RODEO procedure, our procedure shows a very good
performance notwithstanding the generality of the model (the results are available in [3]). On
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the other side, this good performance is paid in terms of function estimation, because the GRID
procedure does not give a simultaneous estimation of the regression function, like the LASSO
based procedures. Anyway, the model structure identified through the GRID procedure can be
used with a GAM estimator in order to obtain the final estimation of the regression function.
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Abstract. Gaussian Mixture Copula Models (GMCM) use Gaussian mixtures to model the
dependence structure in data. They are useful in modeling heterogeneous multimodal data with
complex dependence structures common in many real-world datasets. In this paper, we present
a modified Expectation-Maximization algorithm for estimating the number of components and
the parameters of a GMCM, along with a proof of its convergence. We demonstrate the efficacy
of our algorithm, in clustering and unsupervised classification tasks, on a variety of simulated
and real datasets.

Keywords. Gaussian Mixture Copula, Expectation Maximization, Clustering

1 Introduction

The Gaussian copula is widely used but is found to be of limited use in multimodal datasets with
dependence across different modes. This was the motivation for proposing Gaussian mixture
copulas [9] wherein the dependence is obtained from a Gaussian Mixture Model (GMM):

C(ϑ,yi) =

∑G
g=1 πgφ(yi | µg,Σg)∏p

j=1 ψj(yij)
.

Here we assume there are n observations X = (x1,x2, ...,xn) with p dimensions each from a G
component Gaussian Mixture Copula; yij = Ψ−1

j (uij), are the inverse cumulative distribution
values, where uij = Fj(xij) and Fj is the unknown marginal distribution for the j-th dimension,
ψj is the marginal density of the GMM along the j-th dimension, φ is a multivariate Gaussian
density and ϑ = (π1, ...πG,µ1, ...,µG,Σ1, ...,ΣG) is the (unknown) parameter set representing
mixing proportions (π), mean vectors (µ) and covariance matrices (Σ). Note that the log-
likelihood of ϑ given (u1, ...,un) is logL(ϑ | u1, ...,un) =

∑n
i=1 log C(ϑ,yi). The authors in [9]

present a gradient–descent based heuristic to obtain a maximum–likelihood estimate of ϑ which
lacks theoretical justification and does not estimate the number of components in the mixture.

We present a novel Expectation Maximization (EM) based algorithm, along with a proof of its
convergence, to estimate the parameters and number of components of GMCM. We demonstrate



524 Unsupervised Learning using Gaussian Mixture Copula Model

the efficacy of our algorithm on a wide variety of simulated and real datasets. The algorithm
significantly outperforms not only the previous gradient descent based method (for GMCM) but
also other clustering methods such as K-Means, Spectral clustering and GMM-based clustering.

We refer the reader to [6] and [8] for more details on copulas and to [3] and [4] for extensive
reviews on GMMs.

2 An Algorithm for Estimating the Parameters of GMCM

To design an EM Algorithm for a GMCM with the dataset X = (x1,x2, ...,xn), we have to
estimate the parameter set ϑ that maximizes the log likelihood:

logL (ϑ | u1,u2, ...,un) =
n∑
i=1

log

∑G
g=1 πgφ(yi | µg,Σg)∏p

j=1 ψj(yij)
=

n∑
i=1

log C(ϑ,yi) (1)

where the notations are defined as in Section 1. Note that the copula mixture in the equation
is defined in terms of the inverse distribution values (yij = Ψ−1

j (uij)) and not the inputs (as
in GMM). The conventional EM algorithm of a GMM, where the inputs remain fixed in each
iteration, cannot be directly used here as the inverse distribution values change in every iteration.

Our method, called EM-GMCM, is presented below. Superscript (t) on the parameters
denotes values in the t-th iteration. The algorithm runs iteratively with the standard Expectation
(E ) and Maximization (M ) steps and an additional step in each iteration. In this additional step,
the inverse distribution values (yij) are estimated from the current parameter values. We derive
an approximate expression for yij in terms of the CDF uij (in lemma 1 below). In addition,
we apply another crucial condition on the inverse distribution values: in any iteration, if the
computed yij value is greater than a predefined value Γij (defined below), we set the value of
yij to Γij , as shown in the algorithm. This step is added to ensure that the log likelihood does
not decrease at any step: the proof of convergence clarifies this choice of Γij .

• Initialize: Standardize the matrix X = (x1,x2, ...,xp).

Set ϑ(0) randomly or by K-means clustering under the constraints that π
(0)
g > 0,

∑G
g=1 π

(0)
g = 1 and

Σ(0)
g is positive definite, and set δi = Min

g,j
| y(0)ij − 2κ(0)

(î
Σ(0)
g + I

ó−1
Σ(0)
g 1

)
j
| . Set uij = Fj(xij).

• Repeat the following steps until || L(t+1) − L(t) ||< γ.

– Set y
(t)
ij = min

(
Λ
(t)
ij ,Γ

(t)
ij

)
where Λ

(t)
ij =

Å∑G
g=1

π(t)
g

σ
(t)
g,jj

ã−1 ï
uij + 1√

2π

∑G
g=1

π(t)
g µ

(t)
gj

σ
(t)
g,jj

− 1
2

ò
,

Γ
(t)
ij = κ(t)

(î
S
(t)
i + I

ó−1
S
(t)
i 1

)
j
− δi

2 (3 − p

m
(t)
i

+p
), κ(t) = max
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(µ

(t)
gj ), S

(t)
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∑G
g=1 z

(t−1)
ig Σ(t)

g ,

and m
(t)
i is the sum of all elements of S

(t)
i .

– E-Step: z
(t)
ig =

π(t)
g φ(y

(t)
i
|µ(t)

g ,Σ(t)
g )∑G

g=1
π
(t)
g φ(y

(t)
i
|µ(t)

g ,Σ
(t)
g )

.

– M-Step: π
(t+1)
g =

∑n

i=1
z
(t)
ig

n ,µ
(t+1)
g =

∑n

i=1
z
(t)
ig

y
(t)
i∑n
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z
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– Likelihood:
L(t+1) =

∏n
i=1

∑G
g=1 π

(t+1)
g

1√
det(2πΣ

(t+1)
g )

× exp− 1
2 (y

(t)
i − µ

(t+1)
g )TΣ(t+1)

g

−1
(y

(t)
i − µ

(t+1)
g )

Note that, since Fj is unknown, it is generally estimated via non-parametric methods (see
[9]), if necessary for the application. The running time, in addition to the standard E and
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M steps is mainly due to the matrix inversion required to compute the value of Γ, thus a
cubic order computation in each iteration. To reduce the computational cost of the estimation,
special families of covariance structures have been introduced that impose constraints upon
the constituent parts of the decomposition of the component covariance matrices such as the
Parsimonious Gaussian Mixture (PGMM) family [5], which we use in this work. Once the general
covariance matrix is estimated, as shown in the algorithm, noise and factor loading matrices for
the corresponding PGMM family can be estimated as described in [5]. For a family of mixture
models, we select the model having the maximum Bayesian Information Criteria ([7]), given by
BIC = 2 logL(ϑ̂ | u1,u2, ...,un) − ρ log n. Note that this criterion is approximate because the
parameter values used are from the final iteration of the EM-GMCM algorithm.

3 Theoretical Analysis

In this section we derive the approximation to the inverse distribution values that is used in our
algorithm and discuss the accuracy of the approximation (lemma 1). We then analyze and prove
the convergence of our algorithm (theorem 1).

Lemma 1.
For each i and j, with probability more than 0.9975, yij can be approximated as

yij ≈
Ñ

G∑
g=1

πg√
σg,jj

é−1 uij +
1√
2π

G∑
g=1

πgµgj√
σg,jj

− 1

2

 .
Proof Sketch. Using the definition of yij , we have uij = Ψj(yij) =

∑G
g=1 πgΦ(yij | µgj , σg,jj).

Using Taylor series expansion around the mean upto the second derivative, we have Ψj(yij) =∑G
g=1 πgΦ(z | µgj , σg,jj) ≈

∑G
g=1 πg

∑∞
k=0(yij − µgj)k/k! ∂kΦ(x | µgj , σg,jj)/∂xk |x=µgj . It is to

be noted that the above Taylor series expansion consists upto the fourth term, because all the
subsequent terms are 0. Let us denote the fourth term as λ. Mathematical calculations and use

of the 3-σ rule show that, with probability 0.9975, | λ |≤ κ1
∑G
g=1 πgσ

−1/2
g,jj where κ1 = 1.7948.

Using the update π
(t)
g and σ

(t)
g,jj as shown in the M-step of our algorithm, we conclude that at

each iteration, with probability 0.9975, | λ |≤ κ1
∑G
g=1

∑n
i=1 z

(t)
ig

2
/n2 → 0 as n → ∞, since

this is of order n−1. Note the main idea behind this approximation: even when two means are
far from each other, and any point is distant from either of them, after dividing by the standard
deviation, the distance is bounded with very high probability.

We only keep the remaining terms until the first derivative because the second derivative of
the above Taylor series is 0 owing to the fact that a Gaussian distribution has equal mean, median
and mode. Thus we have Ψj(yij) = 1/2 +

∑G
g=1 πg [(yij − µgj)φ(µgj | µgj , σg,jj)]. From this

expression, and using the fact that φ(µgj | µgj , σg,jj) = (2πσg,jj)
−1/2, the lemma is proved.

Proof of Convergence

We first prove a technical lemma that is used in the final proof of convergence. In the following,
zi is the i-th latent variable; zig = 1 if the i-th observation belongs to the g-th cluster, and 0
otherwise. We use superscript t to denote the t-th iteration of our algorithm.
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Lemma 2.
If Max

j
| y(t+1)

ij − y(t)
ij |≤ δi, then

log C(ϑ(t+1),y
(t+1)
i | z(t)

i ) ≥ log C(ϑ(t+1),y
(t)
i | z

(t)
i ). (2)

Proof Sketch. Since zig is not known we use the update of zi as stated in our algorithm. Thus

the complete-likelihood of ϑ(t) at the t-th iteration (i.e. with y(t)) is∏n
i=1
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g=1

[
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g φ(y
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i | µ

(t+1)
g ,Σ(t+1)

g )/
∏p
j=1 ψj(y

(t)
ij )
]z(t)
ij

and similarly for ϑ(t) with y(t+1) .

First, note that for any two real numbers x and y, y2−x2 = (y−x)2 +2x(y−x) ≥ 2x(y−x).
So, if | y − x |≤ ε, y2 − x2 ≥ −2xε. We shall use this inequality in the following. For notational
simplicity, we shall use ε instead of εi.

Suppose | y(t+1)
ij − y(t)

ij |≤ ε for all j. We can set ε = Max
j
| y(t+1)

ij − y(t)
ij |. In such a case,
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≥ −ε21T
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i 1− 2ε1T (S
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i + I)y

(t)
i + 2εκ(t+1)1TS

(t+1)
i 1 (since

G∑
g=1

zig = 1).

Equating the above to zero and rearranging the terms, we note that to satisfy inequality 2, we

must have ε ≤ T where T = 2κ(t+1)1TS
(t+1)
i 1− 21T (S

(t+1)
i + I)y

(t+1)
i /31TS

(t+1)
i 1 + 2p. From

the lower bound (Γij) we set for yij in our algorithm, we obtain a bound on the numerator of T :

κ(t+1)1TS
(t+1)
i 1− 1T (S

(t+1)
i + I)y

(t+1)
i ≥ (3m

(t+1)
i + 2p)δi. We also know that the denominator,

31TS
(t+1)
i 1+2p = 3m

(t+1)
i +2p. From the above two expressions, we see that δi is lesser than T .

Thus, the condition ε ≤ δi is sufficient for inequality 2 to hold. This completes the proof.

We now prove that in our algorithm the likelihood increases at each iteration after a spe-
cific iteration t0. Convergence of our algorithm then follows from the convergence of the EM
algorithm.

Theorem 1.
There exists t0 such that L(ϑ(t+1) | u1, ...,un) ≥ L(ϑ(t) | u1, ...,un) for t ≥ t0.

Proof Sketch. We compare the complete data log-likelihoods taking into account both the ob-
served y values and the latent variables zig which is 1 when the i-th observation belongs to

group g and 0 otherwise. We know that, if log C(ϑ(t+1),y
(t+1)
i | z

(t)
i ) ≥ log C(ϑ(t),y

(t)
i | z

(t)
i ),

then, marginalizing over the latent variables and summing over all the observations, we obtain

logL(ϑ(t+1) | u1, ...,un) =
∑n
i=1

∑
z

(t)
i

log C(ϑ(t+1),y
(t+1)
i | z

(t)
i ) ≥ ∑n

i=1

∑
z

(t)
i

log C(ϑ(t),y
(t)
i |

z
(t)
i ) = logL(ϑ(t) | u1, ...,un).

First, note that our approximation for yij is a uniformly continuous function of µgj for
each g as evident from lemma 1. Also, from the convergence of EM algorithm we know that

as t→∞, | µ(t+1)
gj − µ(t)

gj |→ 0. This fact, coupled with uniform continuity leads to the property

that for a given ε and for each i, ∃t0i | ∀t ≥ t0i , Max
j
| y(t+1)

ij −y(t)
ij |≤ ε. So, for ε ≤ δi, we obtain
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a t0i that satisfies the above property. But Lemma 2 shows that if ε ≤ δi then Equation 2 holds.

Thus by choosing t0 = Max
i

(t0i) we claim that, for all t ≥ t0,
∑n
i=1 log C(ϑ(t+1),y

(t+1)
i | z(t)

i ) ≥∑n
i=1 log C(ϑ(t+1),y

(t)
i | z

(t)
i ). This fact, and the convergence properties of the conventional EM

algorithm, after marginalizing over the latent variables, show that for all t ≥ t0, logL(ϑ(t+1) |
u1, ...,un) ≥∑n

i=1 log C(ϑ(t+1),y(t)) ≥ logL(ϑ(t) | u1, ...,un) which completes the proof.

4 Simulation Studies

We empirically evaluate the performance of our estimation algorithm, in terms of its ability to
estimate the number of clusters and classify the data into meaningful clusters. We generate 200
simulations, each with 2-dimensional data points in four clusters. The clusters are chosen such
that there is dependency within each cluster and data for each cluster is chosen from different
distributions.

Each data point is a product of a sample from a Multivariate Normal (MVN) distribution and
another distribution as outlined in table 1. We intentionally choose the same MVN parameters
in clusters 1 and 4, to study whether our algorithm can accurately distinguish the two clusters.
In each simulation we generate the clusters by sampling from the distributions, fi. Note that
in the case of f3, the full covariance matrix ∆ needs to be estimated by EM-GMM and EM-
GMCM. In the full covariance matrix ∆, autocorrelation is taken to be 0.9 in order to have a
strong linear dependence structure between the features.

f1 = MVN(−5.5, I2/2)×Unif(0, 1)
f2 = MVN(2, D2)× t(df = 9)

f3 = MVN(3,∆)× C(loc = 0, sc = 1)
f4 = MVN(−5.5, I2/2)× Γ(sh = 0.5, rt = 1)

Table 1: Parameter settings in each clus-
ter; fi: distribution in cluster i = 1, 2, 3, 4,
I2: 2 × 2 Identity matrix with, D2: 2 × 2
diagonal matrix with unequal diagonal ele-
ments and ∆: matrix with (i, j)-th element
0.9|i−j|. Abbreviations – C: Cauchy, loc:
location, sc: scale, sh: shape, rt: rate.

Sim |c1| |c2| |c3| |c4| Data size
I 400 300 300 500 1500
II 300 500 300 400 1500
III 300 300 500 400 1500
IV 500 400 300 300 1500

V 1200 900 900 1500 4500
VI 900 1500 900 1200 4500
VII 900 900 1500 1200 4500
VIII 1500 1200 900 900 4500

Table 2: Parameter settings for each simu-
lation set: |ci| denotes size of cluster ci for
i = 1, 2, 3, 4.

We vary the data size (the total number of data points) as well as the relative sizes of
the clusters as shown in table 2 and generate 25 simulations for each set of parameter values
(simulation sets I through VIII). In each simulation set, the ratio of cluster sizes (e.g. 4:3:3:5
in set I) are chosen such that the proportion of data points is higher in two clusters and the
remaining data is equally divided in the other two clusters. This is done to generate different
variance-covariance structures on varying sample sizes.

We denote our new algorithm by EM-GMCM, the EM algorithm for GMMs by EM-GMM
and the previous gradient descent based method of Tewari et al [9] by HEU-T. Figure 1 shows
the accuracy of both EM-GMCM and EM-GMM in determining the right number of clusters
(G = 4). We assume the range of G (the number of clusters) to be (2, 3, 4, 5) for both the
mixture models. Accuracy is measured as the proportion of the total number of times (25),
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the algorithm detects the right number of clusters. We observe that our algorithm outperforms
EM-GMM in every run. Notice that in simulation sets III and VII, the performance of both the
algorithms deteriorates. This is because in these two settings (see tables 1 and 2) the component
corresponding to distribution f3 (with full covariance matrix ∆) contains the maximum number
of datapoints. With limited data size and the “curse” of a large number of parameters, BIC
tends to prefer smaller number of clusters where the number of parameters is low.

Figure 1: Left: Accuracy (in percentage) over 25 runs in determining the right number of clusters
(G = 4) of EM-GMCM and EM-GMM for each simulation set. Right: Average classification
accuracy (in percentage) over 25 runs for EM-GMCM, EM-GMM, HEU-T, Spectral and K-
means clustering for each simulation set. The error bars indicate respective standard deviations.

Figure 1 also shows the classification accuracy of our algorithm in comparison with EM-
GMM, HEU-T, Spectral clustering and K-means. Classification accuracy is measured by the
proportion of the data points accurately identified in the right clusters. Note that the number
of clusters (G = 4) is provided as input to HEU-T, Spectral and K-means algorithms. To make
a fair comparison, we average the results over those simulations where both EM-GMCM and
EM-GMM algorithms correctly identify the number of clusters.

Algorithm EM-GMCM has the lowest variance and outperforms K-means in six out of the
eight settings. In seven out of eight settings it is better than EM-GMM, which in general
performs poorly. The worst performer is HEU-T, which produces the lowest accuracy in most of
the datasets we tested. As discussed earlier, EM-GMCM deteriorates in cases III and VII where
the average accuracy is surpassed by K-means by a considerable margin.

5 Experiments with Real Data

We test our new algorithm, comparing it with other algorithms, on binary classification tasks
in two datasets from different domains. One is an image dataset from physical sciences and
another is a clinical dataset from healthcare, both from the UCI repository [1]. We measure the
accuracy of the classification as the proportion of datapoints correctly predicted in the cluster:
we choose the label of an estimated cluster to be the label of the majority of its constituent data
points.
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The first dataset used is the Cleveland Heart Disease dataset from the UCI repository [1]. We
extract five numerical features (age, resting blood pressure, serum cholesterol, maximum heart
rate, ST depression induced by exercise relative to rest) for 297 individuals in the dataset. The
task is to classify the individuals into two groups: those with and those without heart disease.
To initialize EM-GMCM and EM-GMM algorithms, we set the range of G (the number of
clusters) and q (number of latent factors as defined in [5]) in the algorithms to (1, 2, 3) and (1, 2)
respectively. For algorithms which do not estimate the number of clusters, such as K-means,
Spectral clustering and HEU-T, we provide the correct number of clusters (2) as input.

While EM-GMCM detects the correct number of clusters, G = 2, with the CCU dependency
structure and q = 1, EM-GMM incorrectly predicts 3 clusters with UCU dependence structure
and q = 2 where the dependency structures are defined as in [5]. The accuracy achieved by five
algorithms tested and the corresponding classification tables are shown in table 3. EM-GMCM
shows the best results, outperforming the second best method, K-Means, by 13% in accuracy.

Algorithm EM-GMCM EM-GMM K-Means Spectral HEU-T

Accuracy 70% 15% 57% 35% 50%

EM-GMCM EM-GMM K-Means Spectral HEU-T
A B A B C A B A B A B

A 137 23 A 19 69 72 A 110 50 A 64 96 A 114 46
B 67 70 B 12 26 99 B 76 61 B 98 39 B 103 34

Table 3: Above: Classification accuracy of the algorithms tested on the Cleveland Heart Disease
Data. Below: Classification tables of the best models chosen by EM-GMCM and EM-GMM and
of K-means, Spectral clustering and HEU-T for the Cleveland Heart data. A: group without
heart disease, B: group with heart disease. EM-GMM erroneously estimates a third group C.
True labels: horizontal, Estimated labels: vertical.

Algorithm EM-GMCM EM-GMM K-Means Spectral HEU-T

Accuracy 72% 59% 57% 54% 51%

EM-GMCM EM-GMM K-Means Spectral HEU-T
A B A B A B A B A B

A 814 186 A 731 269 A 857 143 A 1000 0 A 668 332
B 370 630 B 542 458 B 712 288 B 993 7 B 645 355

Table 4: Above: Classification accuracy of the algorithms tested on the Gamma Telescope Data.
Below: Classification tables of the best models chosen by EM-GMCM and EM-GMM and of
K-means, Spectral clustering and HEU-T. A: gamma signal, B: hadron showers (background).
True labels: horizontal, Estimated labels: vertical.

The second dataset consists of features extracted from a preprocessed image of reconstructed
radiation showers. Cherenkov radiation (of visible to UV wavelengths) leaks through the atmo-
sphere and gets recorded in a detector, allowing reconstruction of the gamma signal. The task
is to statistically discriminate between two signals within the image: the primary gamma signal
in Cherenkov radiation and background hadronic shower signal from cosmic rays in the upper
atmosphere. The signals on the detector are processed to form the final image which is typically
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elliptical in shape. Ten numerical geometric features of the image are used. We select 2000
labeled samples from the dataset where 1000 samples belong to the gamma signal and 1000
belong to the background hadronic showers. We set the range of G (the number of clusters) and
q (number of latent factors) in the algorithms to (1, 2, 3) and (1, 2, 3, 4) respectively.

Both EM-GMCM and EM-GMM detect the correct number of clusters G = 2 with the
CCC dependency structure and number of latent factors, q = 3. The accuracy achieved by
five algorithms tested and the corresponding classification tables shown in table 4. Here also,
EM-GMCM outperforms all the other clustering methods with a difference in accuracy of at
least 13%.

6 Concluding Remarks

We present a new algorithm, EM-GMCM, for estimating the parameters of a Gaussian Mixture
Copula Model, and a proof of its convergence. Our algorithm works well with clusters that are not
well separated, when the components are not Gaussian and when there are dependencies between
the components: cases where GMM-based methods often fail. We demonstrate its efficacy in
discovering the number of clusters and in unsupervised classification. In our experiments EM-
GMCM significantly outperforms EM-GMM, K-Means, Spectral clustering and the previous
GMCM-based heuristic. An implementation of our algorithm in R is available upon request.

Two limitations of our method, that are also limitations in the case of GMMs, are its in-
ability to efficiently deal with non-numerical and high dimensional data. In the future we would
like to address these limitations. The use of penalized log-likelihood that leads to consistent
model selection criteria for high-dimensional cases would be worth exploring. Using Lasso-based
penalization and its variants leading to an Oracle-proof criterion [2] could also be investigated.
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Abstract. We compare different estimation methods for latent Markov models with covariates.
These models represent a powerful tool for the analysis of longitudinal categorical data when
the interest is to represent the evolution of a latent characteristic of a sample of units over time.
In applications to complex data, with a large number of observed response variables and latent
states, estimation of these models may present some critical aspects. These are mainly due to
the presence of many local maxima of the model log-likelihood and to the slowness to converge
of the Expectation-Maximization algorithm, which is typically used for parameter estimation.
In such a context, alternative methods which allow us to overcome the drawbacks of the full
maximum likelihood approach, with an advantage also in terms of computational cost, are of
interest. In particular, we focus on estimation methods which may be seen as modified versions
of the three-step approach for the latent class model with covariates. The behavior of these
alternative approaches is investigated by means of a Monte Carlo simulation study on the basis
of a wide set of model specifications.

Keywords. Expectation-Maximization algorithm, hidden Markov models, latent class models

1 Introduction

Latent Markov (LM) models [1] represent a powerful tool for the analysis of longitudinal cat-
egorical data. These models have a great potential of application in several fields, such as
psychology, economics, and medicine, where the characteristic of interest is not directly observ-
able (e.g., quality-of-life, health conditions, etc.). Under these models, occasion specific response
variables are assumed to depend only on a discrete latent variable which follows a first order
Markov chain. LM models are also related to the latent class (LC) model, which is typically
used to cluster subjects on the basis of a series of categorical response variables. In particular,
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an LM model may be seen as an extension of the LC model in which the subjects are allowed
to move between the latent classes during the period of observation. An important extension
of this class of models consists in the inclusion of individual covariates so that they affect the
distribution of the latent process. Under this formulation, we assume that the response variables
measure and depend on a latent trait, which may evolve over time. Then, we are interested in
modeling the effect of the covariates on the latent trait distribution.

In such a context, and in application to complex and high-dimensional data characterized by a
large number of response variables and latent states, estimation of these models may present some
critical aspects. In particular, the model likelihood may present many local maxima, requiring
an excessive number of different starting values to find the global maximum. This problem is
very similar to that discussed by [6] in the context of finite mixture models. Moreover, the full
maximum likelihood estimation process, typically based on the Expectation-Maximization (EM)
algorithm [3, 5], may be particularly slow to converge, as observed in real applications.

Aim of the paper is to investigate the behavior of alternative estimation methods for this
class of models, which may be useful when the full maximum-likelihood (FML) approach is
difficult to implement. All these methods may be seen as modified versions of the three-step
estimation method for the LC model with covariates of [7]. When applied to LM models, the
first step consists of a preliminary fitting of the basic LC model, in which the responses of the
same unit to different time occasions are considered as coming from separate units. Since the
latent state to which every sample unit is assigned may change across time, it is also possible
to estimate the parameters of the latent Markov process. Then, the alternative methods under
comparison are based on different specifications of the steps beyond the first. In particular, we
compare the performance of the three-step estimation (3S) method and its improved version
(3S-IMP) introduced by [2]. We also propose to extend, to LM models, the modified three-step
approach based on the method proposed by [4] (named BCH approach) which is aimed at taking
into account the classification error introduced in the allocation of the units to latent classes;
see also [7]. We finally consider a direct two-step (2S) approach which is based on performing
a standard EM algorithm while keeping the estimated conditional response probabilities fixed
from the first step. These methods may be seen as a stable alternative of the FML approach,
since they allow us to decompose the maximization problem into simpler subproblems for which
there is a higher chance to find the global maximum. The discussed estimation methods are also
typically faster than the FML approach.

In the following sections we review the estimation methods under comparison and we evaluate
their performance on the basis of a Monte Carlo simulation study.

2 Latent Markov model with individual covariates

Let consider the multivariate case, in which we observe a vector Y (t) of r categorical response

variables, Y
(t)
j , with cj categories, labeled from 0 to cj − 1, j = 1, . . . , r, which are available at

the t-th time occasion, t = 1, . . . , T . Let also Ỹ be the vector made up of the union of the vectors
Y (t) which has rT elements. When available, we also denote by X(t) the vector of individual
covariates at the t-th time occasion and by X̃ the vector of all covariates obtained by stacking
the vectors X(1), . . . ,X(T ).

The general formulation of the model assumes the existence of a latent process, denoted by
U = (U (1), . . . , U (T )), which affects the distribution of the response variables. Such a process is
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assumed to follow a first-order Markov chain with state space {1, . . . , k}, where k is the number
of latent states. Under the local independence assumption, the response vectors Y (1), . . . ,Y (T )

are assumed to be conditional independent given the latent process U . Moreover, the elements

Y
(t)
j within Y (t), t = 1, . . . , T , are conditionally independent given U (t). Parameters of the

measurement model, that is, the distribution of the response variables given the latent process,
are the conditional response probabilities

φjy|u = p(Y
(t)
j = y|U (t) = u), j = 1, . . . , r, y = 0, . . . , cj − 1, u = 1, . . . , k, t = 1, . . . , T.

Note that we assume the hypothesis that the measurement model is time-homogeneous, that is,

φ
(t)
jy|u = φjy|u, t = 1, . . . , T , according to which the distribution of the responses depends only on

the corresponding latent variable and there is no dependence on time. These probabilities are
equal for all subjects and are collected in the matrix Φj of dimension cj × k, for j = 1, . . . , r.

In this paper, we consider the case in which the covariates are included in the latent model. In
this context, the assumption of local independence and the assumption that the latent process is
of first order still hold. Moreover, the initial and transition probabilities depend on the individual
covariates through a multinomial logit parametrization

log
p(U (1) = u|X(1) = x)

p(U (1) = 1|X(1) = x)
= β0u + x′β1u, u ≥ 2, (1)

log
p(U (t) = u|U (t−1) = ū,X(t) = x)

p(U (t) = ū|U (t−1) = ū,X(t) = x)
= γ0ūu + x′γ1ūu, t ≥ 2, ū 6= u. (2)

In the above expressions, βu = (β0u,β
′
1u)′ and γūu = (γ0ūu,γ

′
1ūu)′ are parameter vectors to be

estimated which are collected in the vector β and in the matrix Γ.

When we deal with individual covariates, the manifest distribution of the response variables
corresponds to the conditional distribution of Ỹ given X̃, which we denote by p(ỹ|x̃). It
is important to note that computing p(ỹ|x̃) involves a sum extended to all the possible kT

configurations of the vector u; this typically requires a considerable computational effort. In
order to efficiently compute such a probability, we can use a forward recursion as in [3]; see [1]
for details.

3 Estimation of latent Markov models with covariates

In the presence of individual covariates, the observed data correspond to the vectors x̃i and
ỹi, for i = 1, . . . , n. The vector of covariates x̃i may be decomposed into the time-specific

subvectors x
(1)
i , . . . ,x

(T )
i , whereas ỹi is made up of the subvectors y

(1)
i , . . . ,y

(T )
i . Then, the

model log-likelihood assumes the following expression

`(θ) =
n∑
i=1

log p(ỹi|x̃i),

where θ is the vector of all free parameters affecting p(ỹi|x̃i). In the following, we briefly
introduce the estimation methods under comparison.
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FML estimation method

The log-likelihood function can be maximized through the FML estimation method which is
typically performed by means of the EM algorithm [5]. The latter is based on the complete data
log-likelihood that, for the multivariate categorical data, has the following expression

`∗(θ) =
n∑
i=1

[
r∑
j=1

T∑
t=1

k∑
u=1

cj−1∑
y=0

a
(t)
ijuy log φjy|u +

k∑
u=1

b
(1)
iu log p(U (1) = u|x(1)

i )

+
T∑
t=2

k∑
ū=1

k∑
u=1

b
(t)
iūu log p(U

(t)
i = u|U (t−1)

i = ū,x
(t)
i )

]
, (3)

where a
(t)
ijuy is the indicator variable for subject i responding by y at occasion t to response

variable j and belonging to latent state u at the same occasion, b
(t)
iu is the indicator variable

for subject i being in latent state u at occasion t, whereas b
(t)
iūu is the indicator variable for the

transition from state ū at occasion t− 1 to state u at occasion t. The EM algorithm alternates
the following two steps until convergence:

• E-step: compute the posterior expected value of each indicator variable involved in (3)
by suitable forward-backward recursions [3];

• M-step: maximize the complete data log-likelihood expressed as in (3), with each indicator
variable substituted by the corresponding expected value. How to maximize this function
depends on the specific formulation of the model.

Even if the EM algorithm is typically used to estimate LM models, in applications involving
complex data the FML approach may have some drawbacks, as illustrated in Section 1.

3S and 3S-IMP estimation methods

The 3S approach proposed by [2] represents an extended version of the three-step approach for
LC model with covariates [7], and it is based on the following steps:

• Step 1: fit a basic LC model for the set of response variables in which the responses
provided by the same sample unit at different occasions are considered as coming from
separate units. On the basis of this preliminary fitting, we obtain the final estimates of the
conditional response probabilities, φ̂jy|u, and the “temporary” estimates of the marginal

probabilities of the latent states, ρ̂u = p̂(U
(t)
i = u).

• Step 2: for each subject i, compute the posterior expected value of b
(t)
iu and b

(t)
iūu (see

equation (3)) only on the basis of the results of the first step as

b̃
(t)
iu ∝ ρ̂u p̂(Y

(t)
i = y

(t)
i |U

(t)
i = u) = ρ̂u

∏
j

φ̂
jy

(t)
ij |u

, t = 1, . . . , T, u = 1, . . . , k,

b̃
(t)
iūu = b̃

(t−1)
iū b̃

(t)
iu , t = 2, . . . , T, ū, u = 1 . . . , k.
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• Step 3: maximize the components of the complete data log-likelihood involving the latent
structure parameters

˜̀∗
1(β) =

∑
i

∑
u

b̃
(1)
iu log p(U

(1)
i = u|x(1)

i ), (4)

˜̀∗
2(Γ) =

∑
i

∑
t≥2

∑
ū

∑
u

b̃
(t)
iūu log p(U

(t)
i = u|U (t−1)

i = ū,x
(t)
i ). (5)

Note that the second step of the procedure estimates the joint probabilities from the marginal,
assuming independence. As a consequence, if we suppose that the estimated posterior probabil-
ities are very concentrated on a given latent state, so that they are very close to 1 for a given
state and to 0 otherwise, the product of these posterior probabilities will be close to 1 for a
certain transition between states and to 0 otherwise. Moreover, when we deal with the extended
LM model with covariates, the last step consists of estimating β and Γ, defined in (1) and (2),
by fitting multinomial logit models based on a weighed likelihood as defined in (4) and (5); the
corresponding estimates are denoted by β̃ and Γ̃, respectively.

In order to overcome some limitations in the estimation of the parameters of the latent
process, [2] proposed an improved version of the 3S approach, termed as 3S-IMP, in which the
second and the third steps are iterated until convergence, while keeping the results from the first
step fixed; see [2] for further details.

The 3S and 3S-IMP approaches produce consistent estimates of the conditional response
probabilities. Moreover, since the first step is based on fitting a basic LC model, several starting
values may be easily tried and the global maximum of its likelihood may be found with a
reasonable effort. With respect to the FML approach, estimation of the parameters in β and
Γ is fast and there are no problems of multiple solutions. Finally, as already illustrated in [2],
the behavior of the estimators of the latent structure parameters improves as the number of
response variables increases.

The extended BCH estimation method

As demonstrated by [4], the standard three-step approach for LC model underestimates the
relationship between covariates and class membership. In practice, this means that the larger
the amount of classification error introduced in the second step of the three-step approach, the
larger the size of the bias in the parameter estimates. In order to overcome this drawback, the
authors developed a bias-corrected method, based on this classification error, termed as BCH
approach. [7] also proposed a modified BCH procedure to overcome some limitations of the
original approach. Here, we propose to extend this modified approach to the case of LM models
with covariates.

More in detail, in the second step the sample units are assigned to latent classes on the

basis of the posterior class membership probabilities estimated during the first step, p̂(U
(t)
i =

u|Y (t)
i = y

(t)
i ). The assigned class membership of subject i at time t is denoted by W

(t)
i . Let

d
(t)
uv = p(W

(t)
i = v|U (t)

i = u) denote the amount of classification error which is based on the

conditional probability of the estimated value given the true assignment. Let the elements d
(t)
uv

be collected in the matrix D(t). Let also denote by d
(t)†
uv the elements of the inverse of matrix

D(t). Accordingly, the third step of the proposed extended BCH approach consists of maximizing
the components of the complete data log-likelihood involving the latent structure parameters,
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expressed by (4) and (5), by replacing b̃
(1)
iu and b̃

(t)
iūu with b̃

(1)†
iu and b̃

(t)†
iūu , where b̃

(t)†
iūu = b̃

(t−1)†
iū b̃

(t)†
iu

and b̃
(t)†
iu =

∑
s b̃

(t)
is d

(t)†
su . This allows us to take into account the classification error and to reduce

the bias in the estimates of the parameters in β and Γ.

2S estimation method

We also consider the 2S estimation method, based on a more direct two-step approach which
allows for a maximum likelihood estimation of the parameters of the latent process. More in
detail, after implementing the first step, aimed at estimating the conditional response probabil-
ities, we propose to perform the second step by estimating an LM model with covariates with
known measurement model. This can be directly done through the EM algorithm, while keeping
the estimated conditional response probabilities fixed from the first step. It can be proven that
this method produces efficient estimates of the parameters of the latent process, even with a
few observed response variables. Moreover, it can be easily implemented in software for LM
estimation which allows for parameters restriction.

4 Simulation study

We rely on a Monte Carlo simulation study aimed at evaluating the behavior of the FML, 3S,
3S-IMP, BCH, and 2S estimation algorithms under different scenarios. In particular, we generate
sample data with certain population parameters and evaluate the performance of the estimation
methods in terms of bias, standard error (se), root mean square error (rmse), and relative effi-
ciency (eff), compared to the FML approach. The latter is computed as eff=rmse(3S)/rmse(FML).

We simulate 100 random samples according to a variety of settings: n = 500, 1000, T = 5, 8,
cj = 2, r = 5, 10, 30, and k = 2, 3. For every sample unit, we also consider two covariates,
which are generated from an AR(1) process with autoregressive parameter equal to 0.5 and a
Gaussian noise process with variance equal to 1. For the parameters affecting the distribution
of the initial probabilities, we let β0u = 0 and β1u = (0.5, 1)′ for u ≥ 2 . Moreover, we evaluate
the behavior of the estimation algorithms under different levels of uncertainty in the allocation
of units to the latent states, by considering different structures of the matrix Φj . When k = 2,
we let

ΦA
j =

Ç
0.92 0.08
0.08 0.92

å
, ΦB

j =

Ç
0.75 0.25
0.25 0.75

å
,

so as to allow more or less separated states. Furthermore, when k = 3, we let

Φj =

Ç
0.92 0.08 0.75
0.08 0.92 0.25

å
.

We also assume different degrees of persistence of the Markov chain, by letting the parameters
in Γ to be equal to γ0ūu = log(0.1/0.9), so as to include a high level of persistence in the latent
Markov chain, and γ0ūu = log(0.4/0.6), so as to allow a lower persistence of the chain. In both
cases we fix γ1ūu = (0.5, 1)′, for ū, u = 1 . . . , k with ū 6= u and k = 2, 3.

From the estimation results we observe that the conditional response probabilities are con-
sistently estimated by the alternative approaches under all scenarios, as already demonstrated
by [2]. Moreover, the bias of the 3S, 3S-IMP, and BCH estimators of β is always negligible
and their root mean square errors decrease as the number of response variables increases. This
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behavior is little affected by the level of persistence of the chain or by the degree of separation of
the states. The 2S estimator of β performs quite well in almost all scenarios. As also showed by
[2], estimation of parameters affecting the transition probabilities presents the most challenging
issues. In this respect, for reason of space, we report here summary results for the most sensible
scenarios, computed as the median value among the elements of the estimated matrix Γ̃ (for
the bias we consider the median of the absolute value). We also report the computing time (in
seconds) required to run the algorithms.

From the results reported in Table 1 we observe that the behavior, in terms of bias and
root mean square error, of the 3S, 3S-IMP, and BCH estimators improves with: (i) number
of response variables, (ii) separation between latent states, and (iii) as the level of persistence
of the latent Markov chain decreases. In these contexts, the efficiency of the estimators tends
to that of the FML approach. In terms of computational cost, we note that the computing
time of the 3S and BCH algorithms is always significantly lower than that required by the FML
approach. Overall, taking into account the computational cost, the BCH method outperforms
the 3S and the 3S-IMP approaches. The 2S approach performs very well in all scenarios, even
with a few response variables, with a negligible bias and an efficiency almost identical to that of
the FML approach. However, in these simplified scenarios the computational cost is similar to
that required by the FML algorithm.

In summary, according to our empirical evidence, these methods may represent a valid alter-
native to the FML approach when applied to complex real data, since they allow us to deal with
the problem of multimodality of the model likelihood in a simplified framework, and to reach
very similar performance in terms of parameter estimates with a lower computational effort.
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median(| bias(Γ̃) |) median(se(Γ̃)) median(rmse(Γ̃)) median(eff(Γ̃)) time

k = 2, cj = 3, ΦA
j , γ0ūu = log(0.1/0.9)

r = 5

FML 0.004 0.101 0.102 - 8.079
3S 0.134 0.087 0.159 1.566 1.530
3S-IMP 0.049 0.096 0.108 1.066 16.083
BCH 0.010 0.104 0.104 1.067 1.616
2S 0.004 0.101 0.102 1.000 7.350

r = 30

FML 0.005 0.104 0.104 - 6.928
3S 0.005 0.104 0.104 1.000 1.946
3S-IMP 0.005 0.104 0.104 1.000 4.128
BCH 0.004 0.104 0.104 1.001 2.046
2S 0.005 0.104 0.104 1.000 6.676

k = 2, cj = 3, ΦB
j , γ0ūu = log(0.1/0.9)

r = 5

FML 0.008 0.151 0.151 - 13.387
3S 0.785 0.047 0.786 5.203 1.506
3S-IMP 0.510 0.088 0.518 3.426 53.391
BCH 0.013 0.215 0.215 1.483 1.690
2S 0.003 0.150 0.150 0.993 11.995

r = 30

FML 0.019 0.113 0.115 - 7.870
3S 0.025 0.106 0.111 0.970 2.198
3S-IMP 0.006 0.111 0.111 0.977 13.345
BCH 0.019 0.116 0.117 1.008 2.252
2S 0.019 0.113 0.114 1.000 7.744

k = 2, cj = 3, ΦB
j , γ0ūu = log(0.4/0.6)

r = 5

FML 0.010 0.103 0.103 - 8.073
3S 0.319 0.048 0.322 3.516 0.755
3S-IMP 0.190 0.080 0.202 2.205 22.367
BCH 0.016 0.129 0.137 1.221 0.810
2S 0.007 0.103 0.103 0.993 5.991

r = 30

FML 0.007 0.078 0.079 - 4.151
3S 0.010 0.077 0.078 0.986 1.253
3S-IMP 0.004 0.078 0.079 0.997 6.772
BCH 0.009 0.080 0.080 1.014 1.280
2S 0.007 0.078 0.079 1.000 4.121

k = 3, cj = 2, Φj , γ0ūu = log(0.4/0.6)

r = 5

FML 0.066 0.293 0.300 - 54.150
3S 0.255 0.068 0.271 1.063 1.908
3S-IMP 0.192 0.131 0.228 0.892 224.636
BCH 0.079 0.253 0.290 0.929 2.056
2S 0.050 0.224 0.225 0.781 24.361

r = 30

FML 0.008 0.125 0.126 - 6.678
3S 0.138 0.093 0.160 1.452 2.278
3S-IMP 0.076 0.105 0.137 1.084 49.337
BCH 0.017 0.132 0.132 1.052 2.321
2S 0.007 0.124 0.126 0.995 5.324

Table 1: Estimation results for parameters in Γ under different scenarios, with n = 500, and
T = 5, together with the median, among the simulated sample, of the computing time (in
seconds) required to run the algorithms
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Abstract. This paper addresses the problem of functional estimation of spatially correlated
ocean temperature curves depending on depth. Specifically, a least-squares regression frame-
work for the estimation of the scaling function coefficients is considered to approximate their
functional trend. While a Bayesian inference approach for the estimation of the wavelet coeffi-
cients, approximating their local variation properties at different resolution levels, is adopted in a
hierachical model context. Spatial functional covariates are incorporated through depth depen-
dent regression coefficients in the spatial functional linear model studied. A real-data example
is considered for illustration of the derived results, in terms of spatial functional prediction of
ocean temperature curves to detect global warming effects.

Keywords. Bayesian framework, covariates, spatially correlated depth-dependent curves, spa-
tial functional regression, wavelet bases

1 Introduction

In the last few decades, statistical modeling, based on long record of observations at different
spatial locations, has gained popularity in atmosphere and temperature ocean studies for the
detection of global warming and climate change effects. Indeed, the application of functional
statistical methodologies allows the identification of key features of the ocean and atmosphere
that often occurred prior to subsequent changes in sea temperature at different depths. In
absence of a proper spatial physical model, based, for example, on the theory of evolution
equations (see, for instance, [10] and [11]), curves located at different weather stations in ocean
are usually assumed to be uncorrelated for simplifications purposes.

The approach presented in this paper allows the statistical analysis of spatially correlated
curve data, incorporating the information of depth dependent functional covariates. Recent
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developments in the field of Spatial Functional Statistics provide useful tools for spatially de-
pendent curve data processing. We refer to a few recent papers in relation to the inference
problem from spatial correlated functional random variables. Specifically, [8] propose a new
class of spatial functional regression models based on bivariate splines, in terms of which the
surface defining the explanatory random variables is approximated. Such an approximation al-
lows the construction of least squares estimators of the regression function with or without a
penalization term. In [1], a fully Bayesian and Markov Chain Monte Carlo based approach is
derived for the analysis of the spatially correlated functional data arising from different loca-
tions of biological structures called colonic crypts. Hierarchical clustering of spatially correlated
functional data is performed in [7]. In the non-parametric context, the statistical properties of
kernel-based density estimators, formulated in the context of spatial functional random variables,
are studied in [2]. Functional statistical tools for the analysis of spatial correlated oceanology
temporal curve data is considered in [13] within the spatial functional linear model context (see
also [12]). Standard co-kriging is applied in terms of the projections of the functional data on
a selected basis in [6]. In the context of spatial functional autoregressive series, we refer to the
reader to the papers by [14] and [15].

On the other hand, for large spatiotemporal data sets new effective analytical tools with
reasonable computational costs are of great interest (see [16]). Smoothing techniques such as
function basis approximations and dynamical Bayesian modeling have been considered by [9]
and [4]. A Bayesian hierarchical spatiotemporal estimation, based on Markov Chain Monte
Carlo (MCMC) methods, which allows the efficient generation of samples from the posterior
distribution is proposed in [5] and [9], in a mixed-effect spatiotemporal context. A space-time
version of a Gaussian predictive process is considered in [4] for Bayesian dynamical modeling of
large spatiotemporal data sets.

This paper proposes the combination of classical (least-squares regression), and Bayesian ap-
proaches in the estimation of spatially correlated ocean temperature curves at different depths,
in a hierachical functional modeling framework. Specifically, the wavelet transform is applied to
discriminate between large scale smoothing (associated with the coarser scale described in terms
of scaling function coefficients), and local smoothing (associated with the detail wavelet coeffi-
cients at different resolution levels). A multiple functional regression model with covariates is
fitted by least-squares in the coarser scale of the wavelet domain, in terms of the scaling function
coefficients. A Bayesian framework is adopted in the estimation of the parameters character-
izing the distribution of wavelet coefficients at high resolution levels. The approach presented
constitutes an alternative to the one presented in [17] for the estimation of spatially correlated
functional responses depending on depth in an Hierachical Bayesian framework, from projection
into Empirical Orthogonal Function bases (EOF bases). Specifically, the proposed estimation
methodology for spatially correlated curves is more flexible than the one considered in [17], since
it allows the fitting of spatially heterogeneous trends, and local variation properties at different
scales, combining classical and Bayesian inference frameworks. Note that the nonparametric ap-
proach adopted in [17] in a hierachical modeling context only contemplates Bayesian estimation,
without possible discrimination between large-scale and small-scale property approximations,
which usually require different hierachical modeling frameworks, respectively.

The wavelet-based spatial functional estimation methodology in this paper is illustrated with
a real-data example in relation to investigation of ocean temperature changes at different depths.
This study is motivated by the detection of possible effects of global warming and climate change,
inducing increasing temperature differences between two closed ocean coastal areas, that could
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produce flows strengthening altering marine biodiversity.

2 The model

Let us consider the following spatial functional linear model inspired in [17]

Y (s; d) =

ˆ
X(s; u)β(u; d)du +

J∑
j=1

Zj(s; d)δj(d) +G(s; d), (1)

where {Y (s; d), s ∈ D ⊂ R2, d ∈ I ⊂ R} is the functional response, {X(s; d), s ∈ D ⊂ R2, d ∈
I ⊂ R} is the functional regressors and {Zj(s; d), s ∈ D ⊂ R2, d ∈ I ⊂ R}, j = 1, . . . , J,
are the functional covariates. Here, D could be a compact domain in R2, but in our case is a
subset of Z2, given by the latitudes and longitudes defining the locations of the studied ocean
weather stations. Set I is continuous, and in our case it represents a real closed finite interval
of depths. The functional variables Y (s; ·), X(s; ·) and Zj(s; ·), j = 1, . . . , J, are assumed to be
in a separable Hilbert space H, for each s ∈ D ⊂ R2. In the subsequent development, we will
consider H = L2(I), the space of square integrable functions on the interval I.

An estimation methodology, based on wavelets, is firstly proposed for the least-squares pro-
jection estimation of functional parameter β(u; d), which is assumed to be a Hilbert-Schimidt
kernel defining the regression operator corresponding to X(s; u). This methodology also provides
the least-squares functional estimator of regression coefficients δj(d), j = 1, . . . , J, respectively
corresponding to covariate curves Zj(s; d), j = 1, . . . , J, at each spatial location s ∈ D. The
spatial functional process G(s; d) is a zero-mean Gaussian H-valued noise in the strong sense,
reflecting small-scale spatial and depth local variation.

Remark 8.
Note that here we have considered spatial functional regressors X(s, ·), s ∈ D, depending on
depth, and a vector of spatial functional depth-dependent covariate vector with H-valued compo-
nents Zj(s; d), j = 1, . . . , J, which is slightly different from the case studied in [17], where they
consider J functional covariates Xj(s; uj), j = 1, . . . , J, with uj = (d,wj) depending on depth
and wavelength, respectively.

Let us denote by Φ∗s, Φ
∗
d, Ψ

∗
s and Ψ∗d the projection operators into the scaling basis in space,

the scaling basis in depth, the wavelet basis in space, and the wavelet basis in depth, respectively.
Hence, Φs, Φd, Ψs and Ψd respectively denote their adjoint and inverse operators such that

Φ∗sΦs = IV s0 , Φ∗dΦd = IV d0
[Ψ∗s]m [Ψs]m = IW s

m
, [Ψ∗d]k[Ψd]k = IW d

k
,

(2)

for m = 0, 1, . . . ,Ms, and k = 0, 1, . . . ,Md, where Ms and Md respectively denote the number
of resolution levels considered in the application of the discrete compactly supported wavelet
transform in space and depth. Here, [Ψ∗s]m denotes projection into the space W s

m generated by
spatial wavelet functions at resolution level m, for m = 0, 1, . . . ,Ms. Similarly, [Ψ∗d]k denotes
projection into the spaceW d

k generated by one-dimensional wavelet functions depending on depth
at resolution level k, for k = 0, 1, . . . ,Md. Note that it is well-known (see, for example, [3]) that
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the wavelet bases considered respectively provide a multiresolution analysis of the spaces L2(D)
and L2(I) as follows:

L2(D) = V s
0

⊕ ∞∑
m=1

W s
m

L2(I) = V d
0

⊕ ∞∑
k=1

W d
k . (3)

Applying Φ∗s to the left-hand side of equation (1) and Φd to the right-hand side, we obtain

Φ∗sYΦd = Φ∗sXΦdΦ
∗
dβΦd +

J∑
j=1

Φ∗sZjΦdδjΦd + Φ∗sGΦd, (4)

which defines our regression model, whose scaling parameter coefficients Φ∗dβΦd and Φ∗dδj are
estimated by applying least-squares methodology.

Additionally, for given multiresolution levels m = 0, 1, . . . ,Ms, and k = 0, 1, . . . ,Md, we
apply [Ψ∗s]m to the left-hand side of equation (1) and [Ψ∗d]k to the right-hand side of equation
(1), leading to

[Ψ∗s]m Y [Ψd]k = [Ψ∗s]m X [Ψd]k [Ψ∗s]m β [Ψd]k

+
J∑
j=1

[Ψ∗s]m Zj [Ψd]k δj [Ψd]k + [Ψ∗s]m G [Ψd]k , (5)

which reflects the small-scale random variations and spatial and depth dependence in our model.
The Bayesian framework is adopted for the estimation of the parameters characterizing the
distribution of Gaussian wavelet coefficients. In particular, conjugate priors for the univariate
Gaussian likelihood are proposed for the estimation of the variance of spatial and depth Gaussian
wavelet coefficients of process G. While MCMC methods are implemented for approximation of
the mean of the posterior, given the proposed multivariate priors for the wavelet coefficients of
β and δj , j = 1, . . . , J, as well as for the covariance matrix of the spatial and depth wavelet
coefficients of Y with associated multivariate Gaussian likelihood.
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On the bootstrap methodology for
the estimation of the tail sample
fraction
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Abstract. In statistics of extremes we are usually interested in the estimation of parameters
of extreme events. Such estimation is usually based on the largest k + 1 order statistics or on
the excesses over a high level u. In this paper, we consider the adaptive estimation of either k or
u through the nonparametric bootstrap methodology. We shall introduce an improved version
of Hall’s bootstrap methodology and compare it with the double bootstrap methodology. The
comparison of such methodologies is performed for simulated data sets.

Keywords. Bootstrap Methodology, Extreme Value Index, Heavy tail, Tail sample fraction.

1 Introduction

Let Xn = (X1, . . . , Xn) denote a sample of either independent, identically distributed (i.i.d.)
or even weakly dependent random variables (r.v.’s) from an underlying distribution function F .
We shall assume that we are in the max-domain of attraction of the Extreme Value distribution
EVξ(x) := exp(−(1 + ξx)−1/ξ), 1 + ξx > 0, where the shape parameter ξ is the well known
extreme value index (EVI). We shall consider ξ > 0, i.e., models with a heavy right tail. Then,
the quantile function U(t) := F←(1 − 1/t) = inf{x : F (x) ≥ 1 − 1/t}, t > 1, is a regularly
varying function with a positive index of regular variation equal to ξ, i.e.,

lim
t→∞

U(tx)

U(t)
= xξ . (1)

For a heavy tailed model, the classic semi-parametric Hill estimator of ξ, introduced in [17], is

H(k) ≡ ξ̂Hn (k) :=
1

k

k∑
i=1

(lnXn−i+1:n − lnXn−k:n) , k = 1, 2, . . . , n− 1, (2)
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the average of the log excesses over the high threshold Xn−k:n, where Xi:n denotes the i-th
ascending order statistic of the sample of size n. Consistency is achieved for intermediate k, i.e.
for sequences of integers k = kn, 1 ≤ k < n, such that

k →∞ and k/n→ 0, as n→∞. (3)

To obtain the asymptotic distributional behaviour of the Hill and other semi-parametric EVI-
estimators, we need to assume a second-order condition, that measures the rate of convergence
in the first-order condition, i.e. the way lnU(tx)− lnU(t) approaches ξ lnx,

lim
t→∞

lnU(tx)− lnU(t)− ξ lnx

A(t)
=

®
(xρ − 1)/ρ, if ρ < 0,

lnx, if ρ = 0,
(4)

for every x > 0, where ρ (≤ 0) is a second-order parameter that rules the rate of convergence
and |A| is compulsory a regular varying function with index ρ. For technical simplicity, we shall
assume ρ < 0. Under the second-order condition in (4) the Hill estimator has usually a high
asymptotic bias and recently several authors have considered different ways of reducing the bias.
A simple class of second-order minimum-variance reduced-bias (MVRB) EVI estimators is the
one in [2], given by

CH(k) ≡ ξ̂CHn (k) := ξ̂Hn (k)
Ä
1− β̂(n/k)ρ̂/(1− ρ̂)

ä
, k = 1, 2, . . . , n− 1, (5)

with (β̂, ρ̂) adequate estimators of the second-order parameters (β, ρ) such that A(t) = γβtρ,
ρ < 0. This estimator has an asymptotic variance equal to that of the Hill EVI-estimator, but
an asymptotic bias of smaller order, and thus beats the classical estimators for all k. For a
reliable estimation of the EVI, some attention should be given to the choice of the number k, or
equivalently to the threshold Xn−k:n. Recent overviews of statistics of univariate extremes were
recently published (see [1, 6, 12], among others).

In section 2 of this paper we present several known results that allow us to compute the
theoretical optimal level of the EVI-estimators in (2) and (5). In Section 3, we discuss the
estimation of the second-order parameters ρ and β. In Section 4 we shall use bootstrap computer-
intensive resampling methods for the choice of k, not only for the use of H(k), but also for the
use of CH(k). We introduce a new bootstrap method, based on Hall’s methodology, and present
the double bootstrap algorithm. Finally, we provide an application to simulated data sets.

2 Asymptotic Properties

If we assume the validity of the second-order framework in (4), ξ̂Hn (k) is asymptotically normal,
provided that

√
kA(n/k)→ λ, finite, as n→∞. Indeed, we have, with Nµ,σ2 denoting a normal

random variable with mean value µ and variance σ2, and b1 = 1/(1− ρ),

√
k
Ä
ξ̂Hn (k)− ξ

ä d
= N0,ξ2 + b1

√
kA(n/k) + op

Ä√
kA(n/k)

ä
, as n→∞. (6)

The bias b1

√
kA(n/k) = ξ β

√
k (n/k)ρ/(1−ρ) can be very large, moderate or small, and increases

as k increases. And since the variance decreases with k, we have usually a very sharp mean square
error (MSE) pattern, as a function of k. Under the same conditions as before,

√
k
Ä
ξ̂CHn (k)− ξ

ä
is asymptotically normal with variance also equal to ξ2 but with a null mean value.
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To obtain information on the bias of MVRB EVI-estimators it is common to slightly restrict
the class of models in (4), further assuming a third-order condition, ruling now the rate of
convergence in the second-order condition in (4). We shall consider the third-order condition
used in [3], which guarantees that for all x > 0,

lim
t→∞

lnU(tx)−lnU(t)−ξ lnx
A(t) − xρ−1

ρ

B(t)
=
xρ+ρ′ − 1

ρ+ ρ′
, (7)

where |B| is a regular varying function with index ρ′. Further details can be found in [11].
The full asymptotic behaviour of ξ̂CHn (k) is provided in the following theorem.

Theorem 2.1. If under the validity of the second-order condition in (4), we estimate β and ρ
consistently through β̂ and ρ̂, in such a way that ρ̂−ρ = op(1/ lnn), the asymptotic distributional

representation
√
k
Ä
ξ̂CHn (k)− ξ

ä d
= N0,ξ2 + op

Ä√
kA(n/k)

ä
holds. Under the validity of equation

(7), we can guarantee

√
k
Ä
ξ̂CHn (k)− ξ

ä d
= N0,ξ2 + b2

√
kA2(n/k) (1 + op(1)), (8)

for adequate k values such that
√
kA2(n/k) → λA, finite and b2 = (ω/(1 − 2ρ) − (1 − ρ)−2)/ξ

with ω = B(n/k)/A(n/k).

Regarding the choice of k, an usual approach is to minimize the MSE of the EVI-estimator.
With AMSE standing for ‘asymptotic MSE’, on the basis of (6) and (8), and with the notation

ξ̂
(1)
n = ξ̂Hn , ξ̂

(2)
n = ξ̂CHn , we get AMSE

Ä
ξ̂

(c)
n (k)

ä
= ξ2/k + b2c A

2c(n/k), c = 1, 2 and

k
(c)
0 (n) := arg min

k
AMSE

Ä
ξ̂(c)
n (k)

ä
=

Ç
n−2cρ

(−2cρ)b2c ξ
2(1−c) β2c

å1/(1−2cρ)

, c = 1, 2. (9)

3 Estimation of the second-order parameters

We have used particular members of the class of estimators of the second-order parameter ρ
proposed in [10]. Such a class of estimators has been first parameterized by a tuning parameter
τ ≥ 0, that can be straightforwardly considered as a real number, and is defined as

ρ̂τ (k) := min

{
0 ,

3(T
(τ)
n (k)− 1)

T
(τ)
n (k)− 3

}
, T (τ)

n (k) :=

Ä
M

(1)
n (k)

äτ − ÄM (2)
n (k)/2

äτ/2Ä
M

(2)
n (k)/2

äτ/2 − ÄM (3)
n (k)/6

äτ/3 , τ ∈ R,

with the notation abτ = b ln a if τ = 0 and where M
(j)
n (k) := 1

k

∑k
i=1 {lnXn−i+1:n − lnXn−k:n}j ,

j = 1, 2, 3. Interesting alternative ρ-estimators have recently been introduced in [5, 8]. Here
we consider the same type of criterion used in [15] for the adaptive estimation of ρ: Consider
a sample with n positive values, compute {ρ̂τ (k)}k∈K, with K = (bn0.995c, bn0.999c), compute

their median, denoted ητ , and compute Iτ :=
∑
k∈K (ρ̂τ (k)− ητ )2, τ = 0, 1. Next choose τ∗ = 0

if I0 ≤ I1; otherwise, choose τ∗ = 1 and compute ρ̂ ≡ ρ̂τ∗ = ρ̂τ∗(k1), with k1 = bn0.995c.
The estimate of the scale second-order parameter β is given by β̂ = β̂ρ̂(k1) with β̂ρ̂(k) the

estimator in [13], given by

β̂ρ̂(k) :=

Å
k

n

ãρ̂ Dρ̂,0(k)D0,1(k)−Dρ̂,1(k)

Dρ̂,0(k)Dρ̂,1(k)−D2ρ̂,1(k)
, Dα1,α2(k) :=

1

k

k∑
i=1

Å
i

k

ã−α1

Uα2
i ,
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with Ui := i(lnXn−i+1:n−lnXn−i:n) the the rescaled log-spacings and dependent on the estimator
ρ̂, suggested before.

4 The bootstrap methodology

A method based on Hall’s single bootstrap

The bootstrap methodology for the selection of the threshold k was first introduced by Hall
([16]). To avoid the underestimation of the bias, it is necessary to use smaller resamples of size
n1 = o(n), where n is the size of the initial sample. Let X∗n1

= {X1, . . . , Xn1} denote a resample
of size n1 = o(n) taken with replacement. Hall’s considered the minimization of the bootstrap
estimate of the MSE of ξ̂Hn1

(k),

MSE(n1, k) = E
[¶
ξ̂Hn1

(k)− ξ̂Hn1
(kaux)

©2 |X∗n1

]
(10)

where kaux is an initial threshold such that ξ̂Hn1
(kaux) is consistent for ξ. Next we choose the

value k∗0(n1) that minimizes (10). The bootstrap estimate of the tail fraction is then

k∗0(n) = k∗0(n1)(n/n1)α.

Hall suggested α = 2/3, which is equivalent to say that our model is under the second-order
condition with ρ = −1. Also, as noticed by [14], the method is very sensitive to the choice of
kaux. Here we shall consider again an auxiliary statistic of the type of the one considered in [14],
directly related to the EVI-estimator under consideration, but going to the known value zero,

T (c)
n (k) := ξ̂(c)

n (bk/2c)− ξ̂(c)
n (k), k = 2, . . . , n− 1, c = 1, 2. (11)

Notice that if c = 1 this approach is equivalent to consider kaux = bk/2c in (10). On the

basis of the results similar to the ones in [14], we can get for T
(c)
n (k), in (11), the asymptotic

distributional representation,

T (c)
n (k)

d
=

ξ2

√
k
Qk + bc(2

cρ − 1)A(n/k)(1 + op(1)),

with Qk asymptotically N0,1, and bc, c = 1, 2 given in Section 2. Then, the AMSE of T
(c)
n (k) is

minimal at a level k
(c)
0|T (n), such that

k
(c)
0 (n) = k

(c)
0|T (n)(2cρ − 1)

2
1−2cρ

Based on Hall’s method we now introduce a new bootstrap algorithm:

Algorithm 4.1.

Let ξ̂
(c)
n (k) denote any of the EVI-estimators in (2) (c = 1) or in (5) (c = 2). We now proceed

with the description of the algorithm for the adaptive estimation of the optimal threshold k
(c)
0 (n)

and the adaptive estimation of ξ.

Step 1 Given a sample (x1, x2, . . . , xn), compute the estimates ρ̂ and β̂ of the second-order
parameters ρ and β as described in Section 3.
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Step 2 Next, consider a sub-sample size n1 = o(n). For l from 1 until B, generate indepen-
dently B bootstrap samples (x∗1, x

∗
2, . . . , x

∗
n1

) of size n1, from the empirical d.f. F ∗n(x) =
1
n

∑n
i=1 I{Xi≤x} associated with the observed sample (x1, x2, . . . , xn).

Step 3 Denoting T
(c)∗
n1 (k) the bootstrap counterpart of T

(c)
n1 (k), defined in (11), obtain t∗n1,l

(k),

1 ≤ l ≤ B, the observed values of T
(c)∗
n1 (k). For k = 2, . . . , n1−1, compute MSE∗(n1, k) =

1
B

B∑
l=1

Ä
t∗n1,l

(k)
ä2
, and obtain k̂∗0|T (n1) := arg min1<k<n1 MSE∗(n1, k).

Step 4 Compute the threshold estimate

k̂∗0(n) ≡
õ
(1− 2cρ̂)

2
1−2cρ̂ k̂∗0|T (n1) (n/n1)

−2cρ̂
1−2cρ̂

û
+ 1.

If k̂∗0(n) > n− 1 go back to Step 2, being careful not to generate the same samples.

Step 5 Obtain ξ̂∗ ≡ ξ̂(c)
n (k̂∗0(n)).

The double bootstrap method

The assumptions in Hall’s methodology were overpassed with the use of a double bootstrap
method. This method was first used in [9] for the general max-domain of attraction and in
[7, 14] for heavy tailed models. More recently, [15] modified the double bootstrap algorithm
for an adaptive choice of the thresholds for second-order corrected-bias estimators. The next
algorithm follows closely the bootstrap method in [15].

Algorithm 4.2.

Let ξ̂
(c)
n (k) denote any of the EVI-estimators in (2) (c = 1) or in (5) (c = 2). We now proceed

with the description of the algorithm for the adaptive estimation of the optimal threshold k
(c)
0 (n)

and the adaptive estimation of ξ.

Step 1 Equal to Step 1 in Algorithm 4.1.

Step 2 Next, consider a sub-sample size n1 = o(n) and n2 = bn2
1/nc+ 1. For l from 1 until B,

generate independently B bootstrap samples (x∗1, . . . , x
∗
n2

) and (x∗1, . . . , x
∗
n2
, x∗n2+1, . . . , x

∗
n1

),
of sizes n2 and n1, respectively, from the empirical d.f. F ∗n(x) = 1

n

∑n
i=1 I{Xi≤x} associated

with the observed sample (x1, x2, . . . , xn).

Step 3 Denoting T
(c)∗
ni (k) the bootstrap counterpart of T

(c)
ni (k), in (11), obtain t∗ni,l(k), 1 ≤ l ≤

B, i = 1, 2 the observed values of T
(c)∗
n (k). For k = 2, . . . , ni − 1, and i = 1, 2 compute

MSE∗(ni, k) = 1
B

B∑
l=1

Ä
t∗n1,l

(k)
ä2

, and obtain k̂∗0|T (ni) := arg min1<k<niMSE∗(ni, k).

Step 4 Compute the threshold estimate

k̂∗0(n) ≡
⌊
(1− 2cρ̂)

2
1−2cρ̂ (k̂∗0|T (n1))2/k̂∗0|T (n2)

⌋
+ 1.

If k̂∗0(n) > n− 1 go back to Step 2, being careful not to generate the same samples.
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Step 5 Obtain ξ̂∗ ≡ ξ̂(c)
n (k̂∗0(n)).

Remarks:

• The use of the sample (x∗1, x
∗
2, . . . , x

∗
n2

), and of the extended sample (x∗1, . . . , x
∗
n2
, . . . , x∗n1

),
n2 < n1, lead us to an increased precision of the result with the same number B of
bootstrap samples generated in Step 2. This is quite similar to the use of the simulation
technique of “Common Random Numbers” in comparison problems.

• Bootstrap confidence intervals are easily obtained, through the replication of this algorithm
r times. The replication can also provide us more precise estimates, if we consider the
estimate given by the mean or the median of the r bootstrap estimates.

• A few practical questions may be raised under the set-up developed: How does the asymp-
totic method work for moderate sample sizes? Is the method strongly dependent on the
choice of n1? Although aware of the theoretical need to have n1 = o(n), what happens if
we choose n1 = n? We will try to answer those questions in the next section.

Applications to Simulated Data Sets

Here we shall present an illustration of the performance of the algorithms to simulated samples,
cases where we know the value of ξ. We have simulated one random sample of size n = 500,
from a Burr model with d.f. F (x) = 1 − (1 + x−ρ/ξ)1/ρ, x > 0, ξ > 0, ρ < 0 with ξ = 0.25 and
ρ = −0.75 and one Student’s-t4 sample of size n = 1000 (ξ = 0.25, ρ = −0.5).

Conclusions: Bootstrap estimates of the optimal sample fractions, k̂∗0(n)/n and of the EVI, ξ̂∗,
as functions of n1, for bn0.85c ≤ n1 ≤ n, are pictured in Figs. 1-2. Since we know the true value
of ξ, and we can easily assess the reliability of the estimates provided by the Algorithms, imme-
diately coming to the conclusion that Algorithm 4.2 provides a quite reliable EVI-estimation,
even with n1 = n. Algorithm 4.2 can be very sensitive to the choice of n1 (see Fig. 1). We
noticed that we can have some volatility in the estimates as function of n1 and such volatility
only decreases substantially with the replication of the algorithm r = 25 times. For the Burr
sample, Algorithm 4.1 is sensitive to the choice of n1. These results claim obviously for a sim-
ulation study of the Algorithms and its application to real data sets. These are however topics
that can only be covered in a full-length paper.
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Figure 1: Adaptive estimates of k̂∗0(n)/n (above) and ξ̂∗ (below), as function of n1, with B = 250 (left),
B = 1000 (center) and mean of r ×B = 25× 250 (right), for the Burr simulated sample.
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Figure 2: Adaptive estimates of k̂∗0(n)/n (above) and ξ̂∗ (below), as function of n1, with B = 250 (left),
B = 1000 (center) and mean of r ×B = 25× 250 (right), for Student’s-t sample.
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Abstract. Our aim is to extend local likelihood methodology to circular density estimation.
The idea lies in optimizing a spatially weighted version of the log-likelihood function, where the
logarithm of the density is approximated by a polynomial.

Advantages of such an approach would amount to more flexibility near the boundary and bias
reduction when the polynomial degree increases, especially for heavy tailed distributions (as it
is often the case for directional models) in higher dimensions. The use of d-fold products (d ≥ 1)
of von Mises densities as weight functions facilitates the computational burden, specifically it
makes possible to avoid numerical integration by exploiting the properties of Bessel functions.

Our findings consist of theoretical reasoning along with simulation experiments.

Keywords. Bessel functions, Circular data, Density estimation, Product kernels, Toroidal data,
von Mises density

1 Introduction

A directional observation can be considered as a point on the circle of unit radius (or a unit vector
in the plane) and represented by an angle in [−π, π) after both an origin and an orientation have
been chosen. Typical examples include flight direction of birds from a point of release, wind, and
ocean current direction. A circular observation is periodic, i.e. the single observation θ ∈ [−π, π)
can be represented by whatever element in the set {2mπ + θ,m ∈ Z}. This sets apart circular
statistical analysis from standard real-line methods.

Multidimensional versions of such data, which lie in spaces like the torus or the sphere, also
occur frequently.

Concerning toroidal data, i.e. data lying in [−π, π)d where d > 1, in the study of wind
directions over a time period, the need to model bivariate circular data naturally arises. In
zoology countless instances arise. For example, [1] considers the orientations of the nests of 50
noisy scrub birds (θ) along the bank of a creek bed, together with the corresponding directions
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(φ) of creek flow at the nearest point to the nest. Here the joint behaviour of the random
variable (φ, θ) is of interest. In evolutionary biology it is of interest to study paired circular
genomes. Data on the (two-dimensional) torus are commonly found in descriptions of protein
structure. Here, the protein backbone is given by a set of atom co-ordinates in R3 which can
then be converted to a sequence of conformation angles.

Basically, when parametric modeling seems too restrictive, a nonparametric approach is
preferred. Nonparametric estimation is also employed for exploratory purposes, as a preliminary
step. Circular, multivariate nonparametric density estimation has been pursued by [3].

In this paper we propose local likelihood for such types of data, as an extension of the method
of [4], who considered euclidean data. The idea lies in optimizing a spatially weighted version of
the log-likelihood function, where the logarithm of the density is approximated by a polynomial.
In the standard theory higher polynomial degrees give smaller order bias. Consequently, it
is showed that the method is equivalent to higher order kernel estimation. Therefore, our
contribution can be regarded also as an attempt to build higher order density estimation for
directional data, a field, until now, almost unexplored. Now observe that, as it is well known,
higher order kernels reduce the bias, whereas a way to represent the curse of dimensionality
in density estimation setting is observing that the classical bias-variance tradeoff is subject to
failure since the optimal bin widths must be large, and are generally too wide to avoid substantial
bias. Therefore, higher order estimation should have the potential of improving the efficiency,
especially in the regions where the bias is severe.

As a byproduct, we also give a method for estimating the derivative of a toroidal density,
recalling that when the interpolating polynomial is p the p-th coefficient of the interpolating
polynomial estimates the p-th derivative. Major issues to be resolved in the implementation are
the choice of the kernel, which has to be a periodic function, and the local approximation of
functions that needs to be specific to the definition domain, in our case the torus.

In Section 2 we give some theory for the case of circular data, whereas in Section 3 we explore
the case of toroidal data, when the approximating polynomial has order 0 or 1. In Section 4 we
argue that some numerical aspects could be greatly simplified if d-fold products (d ≥ 1) of von
Mises densities are used as kernels. Finally, Section 5 is devoted to numerical experiments.

2 Circular densities

Given a random sample of angles θ1, . . . , θn, θi ∈ [−π, π) for i ∈ {1, . . . , n}, from the unknown
density f , the log-likelihood function is defined as

L(f) :=
n∑
i=1

log(f(θi))− n
Çˆ π

−π
f(α)dα− 1

å
. (1)

Letting Kκ be a circular kernel (see [3]) with concentration parameter κ ∈ (0,∞), a local version
of (1), at θ ∈ [−π, π), can be defined as

L(f, θ) :=
n∑
i=1

Kκ(θi − θ) log(f(θi))− n
ˆ π

−π
Kκ(α− θ)f(α)dα. (2)

Now, assume that log(f(θ)) is smooth enough to be approximated, for α in neighborhood of
θ ∈ [−π, π), and p ∈ Z+, as
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log(f(θ)) ≈ Pp(α− θ), (3)

with

Pp(α− θ) :=
p∑
j=0

sin(α− θ)jaj
j!

,

see [2] for details. Hence, a local polynomial approximation of (2) is given by

Lp(f, θ) =
n∑
i=1

Kκ(θi − θ)Pp(θi − θ)− n
ˆ π

−π
Kκ(α− θ) exp(Pp(α− θ))dα. (4)

Denoting as {â0, . . . , âp} the solution of the maximization, over {a0, . . . , ap}, of (4), the local
likelihood density estimator of f at θ ∈ [−π, π) is defined as

f̂(θ) := exp(â0). (5)

If no maximizer exists, then f̂(θ) = 0. Notice that, differently from the standard setting where
if x does not lie in the support of f , then f̂(x) = 0, here, due to the periodic nature of f , we
have f̂(θ) = f̂(θmod(2π)).

Clearly, the âjs have to satisfy

1

n

n∑
i=1

A(θi − θ)Kκ(θi − θ) =

ˆ π

−π
A(α− θ)Kκ(α− θ) exp(Pp(α− θ))dα, (6)

where A(θi − θ) := (1 sin(θi − θ) . . . sin(θi − θ)p)′, for i ∈ {1, . . . , n}.
Then, when p = 0, one has the standard circular kernel density estimator

f̂(θ) =

∑n
i=1Kκ(θi − θ)

n
´ π
−πKκ(α− θ)dα, (7)

while, for p > 0, f̂(θ) does not generally have a closed form.
Notice that this circular local likelihood estimate closely recalls the matching of localized

sample linear moments up to order p (LHS of (6)) with the corresponding localized population
moments when the log-polynomial density approximation is employed.

3 Toroidal densities

Assume that f is a toroidal density, i.e., up to a 2π-periodic behaviour, it is defined on [−π, π)d,
d > 1. Here the local likelihood function has to be defined using a toroidal weight (see [3]), say
K(·;κ1, . . . , κd), which is the d-fold product of circular kernels. If the circular kernels have the
same concentration parameter κ, we have:

K(β;κ1, . . . , κd) =
d∏
j=1

Kκ(β(j)),

where β(j) stands for the j-th co-ordinate of β.
Hence, a local constant fit of f at θ ∈ [−π, π)d is defined as (7) with K in place of Kκ.
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Moreover, a local linear fit is still estimator (5), but now â0 is obtained as solution of

1

n

n∑
i=1

A(θi − θ)Kκ(θi − θ;κ1, . . . , κd)

=

ˆ
[−π,π)d

A(α− θ)Kκ(α− θ;κ1, . . . , κd) exp

Ñ
a0 +

d∑
j=1

a
(j)
1 sin

Ä
α(j) − θ(j)

äé
dα, (8)

where, for a point β, A(β − θ) :=
Ä
1 sin

Ä
β(1) − θ(1)

ä
. . . sin

Ä
β(d) − θ(d)

ää′
.

4 Computational aspects

Clearly, formulas (6) and (8) need to be solved numerically in order to obtain estimates of the

coefficients a0 and a
(j)
1 . This appears to require numerical integration, which would be rather

cumbersome. In this section we indicate a way to avoid numerical integration based on the
properties of Bessel functions when products of von Mises densities are used as kernels. In the
sequel we will treat in detail only the case d = 2, extensions to higher dimensions are easily
feasible.

Estimation of a
(1)
1 and a

(2)
1

When d = 2 and p = 1 equations in (8) are

1

n

n∑
i=1

Kκ

(
θ

(1)
i − θ(1)

)
Kκ

(
θ

(2)
i − θ(2)

)
=

ˆ π

−π

ˆ π

−π
Kκ

Ä
α(1) − θ(1)

ä
Kκ

Ä
α(2) − θ(2)

ä
× exp

(
a0 + a

(1)
1 sin

Ä
α(1) − θ(1)

ä
+ a

(2)
1 sin

Ä
α(2) − θ(2)

ä)
dα(1)dα(2), (9)

1

n

n∑
i=1

Kκ

(
θ

(1)
i − θ(1)

)
Kκ

(
θ

(2)
i − θ(2)

)
sin
(
θ

(1)
i − θ(1)

)
=

ˆ π

−π

ˆ π

−π
Kκ

Ä
α(1) − θ(1)

ä
Kκ

Ä
α(2) − θ(2)

ä
sin
Ä
α(1) − θ(1)

ä
× exp

(
a0 + a

(1)
1 sin

Ä
α(1) − θ(1)

ä
+ a

(2)
1 sin

Ä
α(2) − θ(2)

ä)
dα(1)dα(2) (10)

and

1

n

n∑
i=1

Kκ

(
θ

(1)
i − θ(1)

)
Kκ

(
θ

(2)
i − θ(2)

)
sin
(
θ

(2)
i − θ(2)

)
=

ˆ π

−π

ˆ π

−π
Kκ

Ä
α(1) − θ(1)

ä
Kκ

Ä
α(2) − θ(2)

ä
sin
Ä
α(2) − θ(2)

ä
× exp

(
a0 + a

(1)
1 sin

Ä
α(1) − θ(1)

ä
+ a

(2)
1 sin

Ä
α(2) − θ(2)

ä)
dα(1)dα(2). (11)
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Now, assume that the von Mises kernel is employed, i.e. Kκ(θ) := {2πI0(κ)}−1 exp(κ cos(θ)),
where Is(·) stands for the modified Bessel function of the first kind and order s. Then the RHS
in equation (9) becomes

exp (a0)

ˆ π

−π

1

2πI0(κ)
exp
Ä
κ cos

Ä
α(1) − θ(1)

ää
exp

(
a

(1)
1 sin

Ä
α(1) − θ(1)

ä)
dα(1)

×
ˆ π

−π

1

2πI0(κ)
exp
Ä
κ cos

Ä
α(2) − θ(2)

ää
exp

(
a

(2)
1 sin

Ä
α(2) − θ(2)

ä)
dα(2),

and, expressing the integrals as Bessel functions, this is equal to

exp (a0)

Ç
1

I0(κ)

å2

I0

(∥∥∥(κ a
(1)
1

)∥∥∥) I0

(∥∥∥(κ a
(2)
1

)∥∥∥) .
As for the integral on the RHS of (10), it can be expressed as

exp (a0)

Ç
1

2πI0(κ)

å2 ˆ π

−π
exp
Ä
κ cos

Ä
α(1) − θ(1)

ää
exp

(
a

(1)
1 sin

Ä
α(1) − θ(1)

ä)
× sin

Ä
α(1) − θ(1)

ä
dα(1)

ˆ π

−π
exp
Ä
κ cos

Ä
α(2) − θ(2)

ää
exp

(
a

(2)
1 sin

Ä
α(2) − θ(2)

ä)
dα(2)

and, representing the integrals as Bessel functions, we have

exp (a0)

Ç
1

I0(κ)

å2

I1

(∥∥∥(κ a
(1)
1

)∥∥∥) sin
(
atan2

(
a

(1)
1 , κ

))
I0

(∥∥∥(κ a
(2)
1

)∥∥∥) ,
where atan2(y, x) is the angle in radians between the x-axis and the vector from the origin to
(x, y). In the same way, the RHS of (11) becomes

exp (a0)

Ç
1

I0(κ)

å2

I1

(∥∥∥(κ a
(2)
1

)∥∥∥) sin
(
atan2

(
a

(2)
1 , κ

))
I0

(∥∥∥(κ a
(1)
1

)∥∥∥)
so, the ratio between the integrals in the RHSs of (10) and (9) can be expressed as

I1

(∥∥∥(κ a
(1)
1

)∥∥∥) sin
(
atan2

(
a

(1)
1 , κ

))
I0

(∥∥∥(κ a
(1)
1

)∥∥∥) ,

this quantity, in order to obtain a
(1)
1 , has to be set equal with the ratio between the sums on

the LHSs of (10) and (9). Now, the ratio between the integrals of (11) and (9) is

I1

(∥∥∥(κ a
(2)
1

)∥∥∥) sin
(
atan2

(
a

(2)
1 , κ

))
I0

(∥∥∥(κ a
(2)
1

)∥∥∥)
which, in order to obtain a

(2)
1 , has to be set equal with the ratio between the sums on the LHSs

of (11) and (9). Given the numerical solutions â
(1)
1 and â

(2)
1 obtained on the basis of above

equations, we are finally able to obtain f̂(θ). In particular, from (9) we get

exp (â0) =

1
n

∑n
i=1 exp

(
κ cos

(
θ

(1)
i − θ(1)

))
exp

(
κ cos

(
θ

(2)
i − θ(2)

))
4π2I0

(∥∥∥(κ â
(1)
1

)∥∥∥) I0

(∥∥∥(κ â
(2)
1

)∥∥∥) .
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5 Simulations

We consider the performance of the proposed method in the case d = 1 and d = 2, comparing
the standard kernel density estimate (which corresponds to p = 0) with the solution for p = 1.
The solutions for â1 and â0 were found using the calculations of Section 4.

We simulate 200 samples of n observations from a von Mises density with concentration λ.
Firstly, we report the integrated squared error averaged over the simulations. Figure 1 shows the
estimated log(IMSE) for λ = 1 and n = 100 and n = 500. As expected, a larger κ (corresponding
to less smoothing) is required for larger sample sizes, and it can be seen that the standard case
(p = 0) performs slightly better in this setting.
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Figure 1: log(IMSE) for a range of smoothing parameters κ for p = 0 (continuous) and p = 1
(dashed) for 200 samples of size n = 100 (left) and n = 500 (right).

Given that the polynomial approximation is expected to be useful in the tails of the density,
we also considered the average mean squared error for various values of θ. Here we consider
experiments in d = 1 and d = 2 dimensions, again taking 200 samples — here of size n = 500
— from a von Mises distribution with λ = 1. The results are shown in Figure 2, where it can
be seen that the case p = 1 performs better than the case p = 0 in the tails of the distribution.
This is as expected from the linear setting.

For the case d = 2 we use a bivariate von Mises distribution with independent components,
each with λ = 1. In this case we estimate f at various pairs (θ(1),θ(2)). These results are shown
in Figure 3 in which the improvement in the tails can again be seen.

We note that there are numerical difficulties for some cases when p > 0. Specifically, the

solution(s) for a1 (d = 1) and a
(j)
1 , j = 1, 2 (d = 2) become unstable (due to the computation of

the Bessel functions) in the case that κ is large and n is small.
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Figure 2: log(MSE) for a range of smoothing parameters κ for p = 0 (continuous) and p = 1
(dashed) for 200 samples of size n = 500 computed at various θ.
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Figure 3: log(MSE) for a range of smoothing parameters κ for p = 0 (continuous) and p = 1
(dashed) for 200 samples of size n = 500 from a bivariate von Mises distribution with independent
components and λ1 = λ2 = 1. This is computed at various (θ(1),θ(2)), as shown in the titles.
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Abstract. We address the inference of discrete-state models for tree-structured data. Our
aim is to introduce parametric multitype branching processes that can be efficiently estimated
on the basis of data of limited size. Each generation distribution within this macroscopic model
is modeled by a partially directed acyclic graphical model. The estimation of each graphical
model relies on a greedy algorithm for graph selection. We present an algorithm for discrete
graphical model which is applied on multivariate count data. The proposed modeling approach
is illustrated on plant architecture datasets.

Keywords. Partially directed graphical model, graph selection, multivariate discrete distribu-
tion, tree pattern, branching process, plant architecture, multivariate count data

1 Introduction

We consider discrete-state stochastic processes indexed by a rooted tree. Our aim is to introduce
parametric models that can be efficiently estimated on the basis of data of limited size and that
are easily interpretable. These models rely on local dependency assumptions between parent and
child vertices and belong to the family of multitype branching processes (MTBPs). In our prac-
tical setting of plant architecture analysis, the combinatorics induced by the variable and high
number of child vertices in each state induces an inflation in the number of model parameters.
We thus introduce parametric MTBPs incorporating parsimonious discrete graphical models for
each generation distribution. In order to have interpretable results, we propose to focus on a
family of multivariate discrete generation distributions such that:
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• child states that tend to appear simultaneously or on the contrary to be incompatible can
be identified,

• multivariate parametric distributions can be used since the direct estimation of probability
masses on the basis of multivariate counts is unreliable except for very large data sets.

• these multivariate parametric distributions can have zero-inflated and right-skewed marginals,
so that multivariate Gaussian distributions are not appropriate.

• these multivariate parametric distributions can be easily simulated and probability masses
can be easily computed in order to investigate hypotheses on generation distributions and
long range pattern formation in trees.

To achieve this goal, an approach based on probabilistic graphical models [8] to represent
the conditional independence relationships for each generation distribution is considered. Three
kinds of graphical models are usual: undirected (UG), directed acyclic (DAG), and partially
directed acyclic graphical (PDAG) model.

Methods for graph identification were proposed for UGs, using either frequencies to directly
estimate probability masses (so-called nonparametric estimation) or mutual information – see
[10] and references therein. Under a multivariate Gaussian distribution assumption, an ap-
proach based on a L1 penalization (Lasso) was proposed in [5], with some extension to Poisson
distributions and more generally to GLMs [13].

Specific models and methods were developed for DAGs. Most methods for graph identifica-
tion in DAGs are based on exploring the set of possible graphs using some heuristic (e.g. hill
climbing [1]) and by scoring the visited graphs (e.g. using BIC), the graph with highest score
being selected – see [8] for a review.

PDAGs, which generalize both UGs and DAGs, have been considered less often in the litera-
ture. In such models, both marginal independence relationships and cyclic dependencies between
quadruplets of variables (at least) can be represented. A family of such models was proposed
using conditional Gaussian distributions, but the problem of graph identification was not ad-
dressed [2]. We choose here to use discrete parametric PDAGs to model generation distribution
in MTBPs and present a graph identification procedure for PDAGs.

2 Discrete PDAG modeling of generation distributions in
MTBPs

Data of interest are tree-indexed sets x = (xt)t∈T where T ⊂ N is the set of vertices of a
rooted tree graph τ = (T ,A) and A ⊂ T × T the set of directed edges representing lineage
relationships between vertices. By convention, the root of the tree graph has index 0. Let
xt ∈ V = {0, . . . ,K − 1} denote the label of vertex t. Let pa (.) denote the parent of a vertex,
ch (.) the children set of a vertex, an (.) the ancestor set of a vertex and de (.) the descendant
set of a vertex. These notations also apply to set of vertices – see [8] for graph terminology. We
here assume that xt (resp. x, τ) is the outcome of a discrete random variable Xt (resp. discrete
random vector X, random rooted tree T ).

MTBPs are based on local dependency assumptions between parent and child vertices,
more precisely on the following Markovian property – children are independent of their non-
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descendants given their parent

∀t ∈ T , Xch(t) ⊥⊥XT \de(t)
∣∣∣Xpa(t) ,

and a permutation invariance property – see [6] for details – in order to obtain a more parsimo-
nious model. As a consequence, the joint distribution can be factorized as follows

P (T = (T ,A) ,X = x) ∝ P [X0 = x0]
∏
t∈T

P (N t = nt|Xt = xt) , (1)

where N t|X = xt is the discrete random vector of the number of children of t in each state given
xt. Therefore the outcome to model is a discrete random vector N t for each vertex

nt = (|{s ∈ ch (t)|Xs = k}|)k∈V .

MTBPs are thus specified by K discrete multivariate generation distributions.
We here propose an extension to PDAGs to model these generation distributions. This ex-

tension is based on an enlarged family of discrete parametric distributions incorporating multi-
variate generalizations of the classical univariate discrete parametric distributions: multinomial,
negative multinomial and multivariate Poisson [7] distributions and corresponding regressions.
Since we focus on a single generation distribution, we will omit in the following the tree indexing
and parent state conditioning of each factor in (1). The class of considered PDAGs is such that
the generation distribution factorizes as [9]

P (N = n) =
∏
c∈C

P (N c = nc|Npa(c) = npa(c)), (2)

where C denotes a partition of V such that in each subset, the induced subgraph – so-called
chain component – is a connected undirected graph and each subset is connected – if connected
– by directed edges.

Usually for each c in C, P (N c = nc|Npa(c) = npa(c)) can be factorize as a product of
clique factors [9]. But in the case of multinomial, negative multinomial and multivariate Poisson
distributions or regressions, each chain component is complete. PDAGs where chain components
are not cliques could be introduced using the UG framework [13]. In such UGs, the graph is in
fact a cyclic bidirected graph. This renders far more difficult and less reliable the exploration of
long-range patterns in such models as many normalization constants have to be computed (one
for each predictor value for a given clique). Therefore we chose to consider PDAGs such that
chain components are complete.

Definition 2.1. A clique directed acyclic graph (CDAG) is a PDAG such that:

• each chain component is a clique,

• each vertex of a clique has the same parent set,

• each parent set belongs to the power set of cliques.

A probabilistic PDAG model is defined by a PDAG and a specification of the factors in
(2). Our approach to identify such models relies on efficient methods for CDAG search and for
variable selection in regression. Proposition 2.1 establishes a connection between probabilistic
PDAG, CDAG and regression models.
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Proposition 2.1.
A probabilistic PDAG model such that:

• each source vertex of the graph is associated with some univariate distribution chosen
among the binomial, negative binomial and Poisson distributions and mixtures of such
distributions.

• each non-singleton source component of the graph is associated with some multivariate dis-
tribution chosen among diverse extensions of the multinomial distribution, the multivariate
Poisson distribution and mixtures of such distributions,

• each component of the graph with at least one parent is associated with the corresponding
families of univariate and multivariate regression models defined above in the case of source
components,

has the same distribution as a CDAG associated with the same parametric families such that for
each edge in the CDAG that is not in the PDAG, the corresponding regression coefficient is null.

Proof. Let G = (V, E) be a PDAG and G̃ =
Ä
V, Ẽ
ä

be a CDAG with Ẽ = E ′ ∪ E ′′ – where
E ′ ∩ E ′′ = ∅ – such that

E ′ = {(u, v) ∈ E|(v, u) ∈ E} (3)

and

E ′′ = {
(s, t) ∈ V × V

∣∣∃ (u, v) ∈ ne (s)× ne (t) ∩ E \ E ′} (4)

where ne (.) is denoting the set of neighbors of a vertex. Because of equation (3), G̃ has the same
chain components as G, since E ′ is the set of undirected edges in both E and Ẽ . Equation (4)
implies that the set of directed edges in G is included in Ẽ : only edges from the neighbors of
a parent of a child clique are added to every child clique vertices. As setting the regression
coefficient to 0 does not change the conditional distribution, the two models are equivalent.

As a consequence of proposition 2.1, given a CDAG and using ML estimators combined with
Lasso type estimators [12] for parametric regressions, we select among all PDAGs sharing the
same CDAG a sparse PDAG solution with the previously introduced parametric distributions.
Therefore the PDAG estimation task is performed using a graph search within a CDAG space
which has a cardinal a little bit higher than the DAG space one but far less important than
the PDAG space one (see table 1). This graph search can be achieved as for previous algo-
rithms presented in [8] for DAGs using hill climbing, greedy search, first ascent or simulated
annealing algorithms. For defining such an algorithm, lemma 2.2 specify how DAG operators
(add/remove/reverse directed edges) can be applied to each CDAG. Since the space search graph
is not connected using these 3 operators – chain components remain unchanged – two operators
specific to CDAGs have been added: chain merging and splitting:

• A pair (c, c′) of chain components of C such that[
pa (c) = pa

(
c′
) \ c] ∧ [ch (c) \ c′ = ch

(
c′
)]

will be merged in one chain component c′′ which results from the removal of one chain
component.
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• A vertex from a chain component c can be removed and set to be a parent or a child of c
resulting into the addition of one chain component.

Lemma 2.2. Let M be a vertex set and let DAG(M) (resp. CDAG(M)) denote the set of
DAGs (resp. CDAGs) with vertex setM and Part(M) denote the set of partitions ofM. There
is a one-to-one mapping between CDAG(V) and {DAG(p)| p ∈ Part(V)}.
Proof. For G ∈ CDAG(V), let C(G) ∈ Part(V) be the set of chain components of G. Let σ(G) be
the DAG with vertex set C(G) and such that (c, c′) is an edge if there exists an edge from a ∈ c
to b ∈ c′ in G. It is easily seen that σ is a bijection from CDAG(V) to {DAG(p)| p ∈ Part(V)}
since every chain component c of G ∈ CDAG(V) is a clique, and since all vertices in c have the
same parents.

Proposition 2.2.
Let bK (resp. aK) be the number of labeled CDAGs (resp. DAGs) of K vertices. One have:

bK =
K∑
k=1

®
K
k

´
ak (5)

where

®
K
k

´
denote the Stirling number of second kind.

Proof. Consider a set of K vertices. The Stirling number of second kind gives the number of
ways of partitioning such vertex set into k non-empty cliques. For each of these partitions, a
DAG can be defined (see lemma 2.2) and there are ak such labeled DAGs. We then just need
to consider that the number of cliques can vary from 1 to K for CDAGs of K vertices to prove
proposition 2.2.

aK bK cK K

1 1 1 1
3 4 4 2

25 34 50 3
543 715 1, 688 4

29, 281 35, 381 142, 624 5
3, 781, 503 4, 258, 357 28, 903, 216 6

1, 138, 779, 265 1, 222, 487, 933 13, 663, 125, 680 7
783, 702, 329, 343 816, 625, 721, 787 14, 762, 428, 500, 992 8

Table 1: Number aK of DAGs, bK of CDAGs and cK PDAGs [11] from 1 to 8 vertices (see
proposition 2.2)

3 Characterizing the apple tree irregular bearing phenomenon
using MTBP and CDAG models

Recently, statistical indices have been proposed to characterize alternation in flowering at whole
plant scale with a yearly time step for different apple tree cultivars [4]. A correlation has
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been highlighted between synchronicity of flowering within plants, alternation along axes, and
alternation at whole plant scale. However, little is known about structural factors that may
induce heterogeneity in the fates (vegetative or flowering) of sibling shoots, and thus improve
regularity at whole plant scale despite alternation along axes. Considering the methodology
described in [3], a tree structure (see fig. 1) was built from the apple tree dataset provided by E.
Costes (UMR AGAP, AFEF Team, Inra, Montpellier, France) in order to illustrate the interest
of MTBPs to investigate this phenomenon.

Figure 1: The tree is a formal representation of the plant topological information (drawing issued
from [3]). Each label of this tree is the nature of the annual shoot.

MTBPs are used to model the number of flowering and vegetative shoots for parent shoots
of different natures defined by their length and fate (see table 2). The aim is to identify parent
states associated with homogeneous child fates from parents that may have heterogeneous child
fates. As the dataset is composed of two trees per cultivar the objective is also to compare the
two cultivars Fuji and Braeburn that have different behaviors regarding the irregular bearing
phenomenon.

State Length Fate

0 Long Vegetative
1 Long Flowering
2 Medium Vegetative
3 Medium Flowering
4 Short Vegetative
5 Short Flowering

Table 2: Shoots state space and corresponding lengths and fates

CDAG-based generation distributions better fitted the data than DAG-based generation
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distributions according to BIC. In the worst case, we obtained the same fit with CDAG-based
and DAG-based generation distributions (see fig. 2).

Figure 2: CDAG and DAG selected for the parent states 0 (left hand) and 1 (right hand) for the
Braeburn cultivar. Edges associated with negative (resp. positive) covariances are in red (resp.
black).

We obtained very contrasted graphs for the different parent states of a given cultivar. We
also obtained different graphs for the two cultivars for some parent states. This was very
informative for cultivar comparison (see fig. 2 and 3) The exam of the different graphs for a
given cultivar highlights the more or less regular bearing behavior at the whole plant scale.
Moreover comparing the graphs for the two cultivars leads to a better understanding of the
biological functions underlying bearing behavior. This approach seems therefore promising to
highlight pattern formation such as irregular bearing in tree structure development.

Figure 3: CDAG selected for the parent state 3 for the Braeburn (left hand) and the Fuji cultivar
(right hand). Edges associated with negative (resp. positive) covariances are in red (resp. black).
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ine Trottier, and Evelyne Costes. New insights for estimating the genetic value of segregating
apple progenies for irregular bearing during the first years of tree production. Journal of
experimental botany, 64(16):5099–5113, 2013.

[5] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse inverse covariance estima-
tion with the graphical Lasso. Biostatistics, 9(3):432–441, 2008.

[6] Patsy Haccou, Peter Jagers, and Vladimir A Vatutin. Branching processes: variation,
growth, and extinction of populations. Cambridge University Press, 2005.

[7] D. Karlis. An EM algorithm for multivariate Poisson distribution and related models.
Journal of Applied Statistics, 30(1):63–77, 2003.

[8] D. Koller and N. Friedman. Probabilistic graphical models: principles and techniques. MIT
press, 2009.

[9] S.L. Lauritzen. Graphical models, volume 17. Oxford University Press, USA, 1996.

[10] P.E. Meyer, F. Lafitte, and G. Bontempi. minet: A R/Bioconductor Package for Inferring
Large Transcriptional Networks Using Mutual Information. BMC bioinformatics, 9(1):461,
2008.

[11] Bertran Steinsky. Enumeration of labelled chain graphs and labelled essential directed
acyclic graphs. Discrete Mathematics, 270(1):267–278, 2003.

[12] Robert Tibshirani. Regression shrinkage and selection via the Lasso. Journal of the Royal
Statistical Society. Series B (Methodological), pages 267–288, 1996.

[13] Eunho Yang, Pradeep Ravikumar, Genevera Allen, and Zhandong Liu. Graphical models
via generalized linear models. In Advances in Neural Information Processing Systems 25,
pages 1367–1375, 2012.

COMPSTAT 2014 Proceedings



Statistical modelling in time series
extremes: an overview and new steps

Manuela Neves, University of Lisbon and CEAUL, manela@isa.ulisboa.pt
Clara Cordeiro, University of Algarve and CEAUL, ccordei@ualg.pt

Abstract. Unlike most traditional central statistical theory, which typically examines the usual
(or the average) behaviour of a process, extreme value theory deals with models for describing
unusual behaviour or rare events. The heart of extreme value theory is the reliable extrapolation
of values beyond the observed range of sample data. Modelling rare events of univariate time
series is an area of important research. Dealing with extremes of a time series needs specific
statistical procedures based on the behaviour of extremes. For modelling and forecasting time
series, Boot.EXPOS is a computational procedure built in R environment that has revealed
itself to perform quite well in a large number of forecasting competitions. A modification of that
algorithm is proposed in this work to model time series extreme values. An heuristic study of
that procedure was performed and usual accuracy measures were calculated.

Keywords. Extreme values, modelling, resampling procedures, time series.

1 Introduction, motivation and scope of the paper

Statistical analysis of extreme values was traditionally applied to hydrology and insurance.
Nowadays, there is a quite large variety of fields of application of extreme value theory such as
Climatology, Material Science, Ocean Engineering, Structural Engineering, Material Strength,
Environment and Biology.

Extreme value models were initially obtained through arguments that assumed an under-
lying process consisting of a sequence of independent and identically (i.i.d.) random variables.
However in many situations where extreme value models are of great interest to be applied, tem-
poral independence is unrealistic. The most natural generalization of a sequence of independent
random variables is a stationary setup. In the last decades many progresses have been made
in parameter estimation of extreme values in time series, with relevance to asymptotic results.
However, for finite samples, limiting results provide approximations that can be poor. Computer
intensive methods, among which we refer to Generalized Jackknife and Bootstrap methodologies
[8, 3], have recently shown to improve results in parameter estimation in statistics of extremes
[7]. Regarding modelling and forecasting time series, [1] have developed a computational pro-
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cedure, Boot.EXPOS, built in R environment. It is based on exponential smoothing methods
jointly with the bootstrap methodology. That procedure showed competitive results compared
with the best procedures available, see [2].

The main motivation of this paper is to present some challenging steps for modelling time
series extreme values. The paper is structured as follows. In Section 2 some notations and
main results in extreme value theory both for independent and for dependent sequences are
introduced. Particularly when a stationary sequence verifies some conditions, a new parameter
can appear in the limit law of the maximum of the sequence. Its definition, some classical esti-
mators and a recent reduced bias estimator based on Jackknife methodology are also presented.
Resampling techniques and their application together with exponential smoothing methods for
modelling and prediction a time series are reviewed in Section 3. In this section a modification
of that computational procedure is proposed and an heuristic study is performed. This study
is illustrated through an application to a data set included in the R database. The objective
of the approach here introduced is to go further to improve the performance of the estimators
addressed in Section 2 through more efficient bootstrap procedures. This paper ends with a few
comments and notes on work in progress.

2 Notation and main results in extreme value theory

The classical limiting results in Extreme Value Theory (EVT) were derived for i.i.d. random
variables (X1, ..., Xn) with unknown distribution function (d.f) F . One wants to know the distri-
bution of Mn ≡ Xn:n := max(X1, ...., Xn) or mn ≡ X1:n := min(X1, ...., Xn). Given the “kind of
symmetry” between the maximum and the minimum, min(X1, . . . , Xn) = −max(−X1, . . . Xn),
theory was usually developed for the maxima.

First results for the existence of a non-degenerate limit law for i.i.d. variables date back to
the twenties but were completely established by [4]. However in many practical applications
extreme values often persist over several consecutive observations, i.e. the random variables are
no longer independent. In such a situation it appears a new parameter that needs to be taken
into account in any inferential procedure.

Limiting results in i.i.d. situation

[4] gave necessary and sufficient conditions for the existence of sequences {an} ∈ R+ and {bn} ∈ R
such that,

lim
n→∞

P

Å
Mn − bn

an
≤ x
ã

= lim
n→∞

Fn(anx+ bn) = EVγ(x), ∀x ∈ R. (1)

EVγ is designated by Extreme Value d.f. and given by

EVγ(x) =

®
exp[−(1 + γx)−1/γ ], 1 + γx > 0 if γ 6= 0
exp[− exp(−x)], x ∈ R if γ = 0.

. (2)

The EVγ incorporates the three Fisher-Tippett types: the Gumbel type, Λ(x) ≡ EV0 =
exp(− exp(−x)), x ∈ R, (γ = 0); the Fréchet type, Φα(x) ≡ EV1/α (α(x− 1)) = exp(−x−α),
α > 0, (x > 0, γ = 1/α > 0) and the Weibull type, Ψα(x) ≡ EV−1/α (α(x+ 1)) = exp(−(−x)α),
α > 0 (x < 0, γ = −1/α < 0).
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The shape parameter, γ, determines the tail behaviour of a distribution and is directly related
to the weight of the right tail, F := 1− F , of the underlying model F . Its estimation is then of
primordial importance.

A function F for which limit (1) holds is said to be in the max-domain of attraction of
EVγ , and we write F ∈ DM (EVγ). This means that for large values of n we may consider the
approximation P [Mn ≤ x] = Fn(x) ≈ EVγ((x− an)/bn), for adequate an > 0 and bn ∈ R.

We can further consider location and scale parameters, µ ∈ R and σ > 0, respectively, in the
EVγ d.f., denoting it by EVγ(x;µ, σ) = EVγ((x− µ)/σ).

Whenever the original scheme is no longer identically distributed but it remains independent
the limiting results referred to before may hold true. However, when it is not possible to assume
independence, the limiting results are also verified under adequate dependence conditions, but
a new parameter can appear.

Maxima of stationary sequences

Let us begin with the example 1:

Let us consider the following sequences: {Xn}n≥1 i.i.d. variables from the model F (x) =
(1− exp(−x))2, x ≥ 0 and the two-dependent sequence {Yn}n≥1 defined as Yn = max(Zn+1, Zn),
n ≥ 1, where Zn are exponential i.i.d., i.e, H(z) = 1 − exp(−z), z ≥ 0. The underlying model
for Yn is then given by F (y) = P [Zn+1 ≤ y, Zn ≤ y)] = (1− exp(−y))2 y ≥ 0.

So, the i.i.d. sequence {Xn}n≥1 and the two-dependent sequence {Yn}n≥1 present the same
distribution. Fig. 1 shows the plot of several values obtained from the {Xn} and {Yn} sequences.
Clusters of exceedances of high levels, of size equal to 2, for the {Yn} sequence can be seen.
Actually these clusters size are related with a new parameter, designated as the extremal index .
It can be shown that, in this case, it is equal to 1/2.

Figure 1: Plot of several values of an i.i.d. sequence (in blue) and a dependent sequence with the same distribution (in
red). See clusters of size equal to 2 and the shrinkage of maximum values.

Within dependent situations, stationary series appear as the most natural generalization of
independent sequences. For stationary series the characterization of the extreme behaviour was
done by imposing some conditions on the dependence at extreme levels.

It is usual to assume a condition that limits the extend of long range dependence at ex-
treme levels. Under that condition events {Xi > u} and {Xj > u} are approximately inde-
pendent provided u is high enough and i and j are quite distant. This is expressed in the
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D(un) condition, see [13]. If D(un) condition is satisfied the limit in (1) arises for the max-
ima of dependent data. [13] stated that if {Xn}n≥1 is a stationary sequence with marginal

distribution F , {X̃n}n≥1 an i.i.d. sequence of r.v.’s with the same distribution F , Mn :=

max (X1, · · · , Xn) and M̃n := max
Ä›X1, · · · , X̃n

ä
, then under the D(un) condition, with un =

anx+ bn, Pr
¶

(M̃n − bn)/an ≤ x
©
−→
n→∞

G1(x) as n −→ ∞, for normalizing sequences {an > 0}
and {bn}, where G1(.) is a non degenerate d.f., if and only if, Pr {(Mn − bn)/an ≤ x} −→

n→∞
G2(x)

where G2(x) = Gθ1(x), for a constant θ such that 0 < θ ≤ 1. This constant is the extremal index .

Since the extremal types theorem implies that the only possible non-degenerate limit law
is an EV distribution, we have G2(x) ≡ Gθ1(x), an extreme value distribution with location,
scale and shape parameters (µθ, σθ, γθ) given by µθ = µ − σ(1 − θγ)/γ, σθ = σθγ and γθ = γ,
where (µ, σ, γ) are the location, scale and shape parameters of the extreme value distribution
G1 ≡ EVγ .

The estimation of θ is then important not only by itself but because it affects the estimation
of other parameters.

The Extremal Index: definition and estimators

This parameter, θ, is a measure of dependence related to the clusters of exceedances of high
thresholds. If the sequence {Xn} is independent, then θ = 1, however the reciprocal is not true,
i.e. for certain dependent series one can have θ = 1.

The most common interpretation of θ is as being the reciprocal of the “mean time of
duration of extreme events” what is directly related to the exceedances of high levels, i.e.,
θ = (limiting mean size of clusters)−1, see [12]. To identify clusters of high level exceedances is
then a key issue. One of the easiest way is to identify them by the occurrence of downcrossings
or upcrossings. We can write θ = lim

n→∞
Pr[X2 ≤ un|X1 > un] = lim

n→∞
Pr[X1 ≤ un|X2 > un].

This interpretation suggested the classical estimator of θ, the so-called Up-Crossing estimator
(or Down-Crossing estimator), [14] and [5], defined as:“ΘUC

n :=

∑n−1
i=1 I (Xi ≤ un < Xi+1)∑n

i=1 I(Xi > un)
≡
∑n−1
i=1 I (Xi > un, Xi+1 ≤ un)∑n

i=1 I(Xi > un)
:= “ΘDC

n (3)

where I(A) is the indicator function of A.

Other estimators have appeared in the literature, motivated by other forms of cluster iden-
tification, such as the blocks estimator and the runs estimator . As main references see [10, 16].
Given a normalized level un and defining a cluster as the set of exceedances of the threshold un
that occur in an arbitrary block of length rn, with rn = o(n), given that at least one exceedance
occurs in the block, blocks estimator and runs estimator , [10] and [16], are defined as“ΘB

n :=

∑kn
i=1 I

Ä
max(X(i−1)rn+1, · · · , Xirn) > un

ä
∑n
i=1 I (Xi > un)

; kn = [n/rn], (4)

“ΘR
n :=

∑n
i=1 I

Ä
Xi > un,max

Ä
Xi+1, · · · , Xi+rn−1

ä
≤ un

ä
∑n
i=1 I (Xi > un)

. (5)

Despite of having good asymptotic properties all those estimators present high variance
for high levels, a high bias when the level decreases and a mean squared error (MSE) with a
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very sharp pattern, showing then a strongly dependence on the high threshold un, for finite
samples. Figure 2 shows a graphical display of these characteristics, for the sequence {Yn} given
in Example 1 and for the runs estimator and the blocks estimator .

Figure 2: MSE, Bias2 and Variance of the blocks estimator (left, rn = 10) and the runs estimator (right, rn = 4) for
model in example 1 (θ = 0.5).

Computational procedures have been used in statistics of extremes for dealing with those
difficulties. The Generalized Jackknife methodology has the property of estimating the bias and
the variance of any estimator, helping to build estimators with bias and mean squared error
often smaller than those of an initial set of estimators.

Using Generalized Jackknife methodology [8], a reduced-bias Generalized Jackknife estimator
of order 2, “ΘGJ , was proposed by [6]. It is based on the estimator “ΘUC computed at the three
levels, k, [k/2] + 1 and [k/4] + 1, ([x] denotes, as usual, the integer part of x, and k is now a
deterministic level, such that the upper order statistic Yn−k:n =: un).“ΘGJ(k) := 5“ΘUC([k/2] + 1)− 2

Ä“ΘUC([k/4] + 1) + “ΘUC(k)
ä
. (6)

The estimator “ΘGJ outperforms the associated classical estimator, see [6] among other au-
thors. Figure 3 shows the simulated mean vales for “ΘUC and “ΘGJ estimators (on left) and a
sample path (on right), for the process {Yn} in the Example 1.

Figure 3: Simulated mean values for Θ̂UC and Θ̂GJ estimators in the Example 1 (left) and a sample path (right).

Given a sample one needs to choose the number k of upper order statistics to obtain the
estimate. Recently the use of adequate bootstrap procedures allowed an improvement in the
finite sample behaviour of the estimators, see for example [7].
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3 Bootstrap under dependence

Classical bootstrap methodology, [3], has proven to be a powerful nonparametric tool when
based on i.i.d. observations. But [15] showed that it could be inadequate under dependence.
Nonparametric versions of the Bootstrap and Jackknife applicable to weakly dependent station-
ary sequences have appeared, considering to resample or to delete one-by-one whole blocks of
observations to obtain consistent procedures for estimating a parameter of the stationary series’
distribution. The motivation for this scheme is to preserve the dependence structure of the
underlying model within each block. Several ways of blocking have been meanwhile pointed out,
depending on the way how blocks of observations are defined. However for each procedure it is
necessary to consider a block length b ≡ b(n) to be used to resample. However, the accuracy of
block bootstrap estimators depends critically on the block size for resampling [11].

Modelling and forecasting time series

Based on exponential smoothing methods and on bootstrap methodology, [1] built a computa-
tional procedure for modelling and forecasting time series. That procedure chooses, among a set
of models, the one that best fits the data. Sieve bootstrap principle is applied to the residuals.
A sketch of algorithm steps, in parallel with the sieve bootstrap procedure follows:

Sieve bootstrap

Step 1: Adjust an AR(p) model; AIC criterion;

Step 2: Obtain the residuals, ei;

For B replicates:

Step 3: Resample the centered residuals → e∗i ;

Step 4: Use AR coefficients (step 1) and e∗i for
obtaining a new series by recursion;

Step 5: Fit an AR(p) to the new series;

Step 6: Obtain the predicted values using the
AR(p) model fitted.

Step 0: Select the best EXPOS model to fit the
data by MSE; the residuals, ri are obtained;

Boot.EXPOS

Step 1: Fit an AR(p) to the residuals ri by AIC
criterion;

Step 2: Obtain the residuals, ei;

For B replicates:

Step 3: Resample the centered residuals → e∗i ;

Step 4: Use AR coefficients (step 1) and e∗i for
obtaining a new series by recursion;

Step 5: Use ŷ (step 0) to obtain a bootstrap series
y∗;

Step 6: Forecast using the previous EXPOS
model fitted.

Table 1: Sketch of the computational procedure compared with Sieve bootstrap

Despite good results that Boot.EXPOS has shown, it was designed for modelling and fore-
casting the mean behaviour of the series rather than extremes. Extreme values are hardly
estimated when Boot.EXPOS is applied.

Bootstrapping extremes

To resample the data for approximating the distribution of the k largest observations would
not work because the“pseudo-samples” would never have values greater than the maximum, Mn.
Given a sample of size n, [9] suggested to resample a subsample of size n1 = O(n1−ε) with
0 < ε < 1 and to use the knowledge of the amount by which the two samples differ to estimate
mean square error and to select the optimal smoothing parameter for deriving a bootstrap
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estimator of a functional of {X1, · · · , Xn}. [9] considered several cases: nonparametric density
estimation, nonparametric regression and tail estimation. For example, for estimating k0, the
optimal number of upper ordered statistics to be used in the estimators discussed before he
showed that k0(n) ' cnβ, 0 < β < 1, with β known constant and c unknown. Under certain
conditions and for a given class of models, he proposed k̂0 ' k̂1,0(n/n1)β, with β = 2/3 and k̂1,0

the value chosen in order to minimize the mean square error of the estimator using the sample
of size n1.

We are now exploring that idea in modelling time series extremes, taking advantage of the
good performance of Boot.EXPOS algorithm. The resample procedure consists of drawing sub-
samples of size n1 = [n0.999] of the residuals obtained in Step 2 of the algorithm. Boot.EXPOS is
performed and the final estimated values are multiplied by (n/n1)β. The series UKDriverDeaths,
available in R, is used to show an application of that procedure. Figure 4 shows the resampled
values of the series, calculated on the basis of 1000 replicates and using β = 2/3. Among several
accuracy measures usually calculated, we mention the values of the root mean squared error
(RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE).

The values obtained in this example were RMSE=128.99; MAE=102.97 and MAPE=6.26.

Figure 4: Observed series (in black), bootstrapped series (in red).

4 Concluding remarks

To resample data in a dependent situation needs to preserve the dependence structure and
is a problem not yet completely solved. These are the first steps on extending Boot.EXPOS
procedure to time series extremes in order to obtain “good” resampled extreme values and use
them to improve parameter estimation. The idea is to build bootstrap estimators versions for
parameters of extreme events in order to overcome the difficulties that classical estimators have
shown. Forecasting extreme values is also another topic for future research.
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Abstract. A new approach is presented aimed at evaluating the performance of a classi-
fier in terms of predictive accuracy and difference in distribution between predicted classes and
observed ones. The output of the proposed three steps procedure allows us to consider classi-
fier performance under two different perspectives: accuracy, measured through a cost sensitive
(model-based) index; and similarity in distribution, measured through the Gini index which
compares the cumulative distribution function of observed cases and predicted ones. Both index
are defined in [0, 1] so that their values can be graphically represented in a [0, 1]2 space in order
to allow the user to draw global information about the classifier performance. Results obtained
on simulated data provide evidence about the effectiveness of the proposed approach.

Keywords. Cost-sensitive Classification, Beta Regression, Similarity in distribution, Predictive
accuracy, Visualization.

1 Introduction

In a classification problem it is common practice testing a wide variety of learning algorithms
by varying threshold values and by using different tuning parameters. In that way different
classifiers are obtained which can be compared in order to evaluate their predictive ability. The
comparison could concern different performance metrics: accuracy, sensitivity, specificity, speed,
cost, readability, etc. Notationally, given a classification problem on ` classes observed on n
cases, let Q be a confusion matrix stemmed from a classifier X. In this framework rows of Q
refer to the true classes, and columns of Q to the predicted ones. By checking rows, the elements
cij indicate how many cases with true class xi have been classified in each class. By checking
columns, the elements cij indicate how many cases of each class have been classified in class x̂j .
Starting from the confusion matrix Q several measures and approaches have been proposed to
evaluate classifier performance. Among these, the most known is accuracy. This measure is very
plain, overlooking a lot of information about the costs of different elements of misclassification
[1]. In order to use these information, a new measure based on the concept of entropy is proposed
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in [2] as an index that compares different classifier performances using the misclassification cells.
Many other measures based on confusion matrix were proposed, such as the global performance
index [3], the entropy of a confusion matrix [4], the transmitted information of the classifier [5],
or the relative classifier information [6].

The goal of this paper is to propose a new approach that enables us to compare performances
of several classifiers in the framework of multi-class learning (i.e., when a new observation has to
be classified into one, and only one, of ` non-overlapping classes). The output of the proposed
approach is a bivariate classifier performance index obtained from two measures which refer
to a cost-sensitive weighted classification accuracy index and to another index expressing the
similarity in distribution between the n observations which are classified in one of the ` classes
by a classifier with the original distribution of the n cases among the ` classes. Both indexes are
defined in [0, 1], so that a comparison of different classifier performance can be represented in a
in a [0, 1]2 space.

The rest of the paper is organized as follows. Section 2 presents the main features of the
proposed approach and describes the three steps characterizing it. Section 3 presents the results
of the performance of the proposed approach on artificial data and Section 4 ends the paper
with some concluding remarks.

2 The bivariate classifier performance index

The bivariate classifier performance index derives from a three steps procedure to be carried
out for each candidate classifier. The 3 steps can briefly identified with: 1) the model-based
measurement of classification accuracy; 2) the measurement of the similarity in distribution
between observed classes and predicted ones; 3) the visualization of the results of the previous
steps in order to assess global classifier performance.

2.1 Model-based measurement of classification accuracy

Let π ∈ [0, 1] be a misclassification level, so that 1 − π is the classification accuracy level. If k
different classifiers are considered, k values of π can be observed and those values, defined in
[0, 1], can be modeled on the basis of other information related to each classifier. The model
specified for π allows us to assess classifier performance through a model-based classification
accuracy index.

In a regression modeling framework characterized by a continuous response variable Y defined
in [0, 1], data are usually transformed in order to map the domain of Y in the real line and then
a standard linear regression analysis is applied. This approach has some shortcomings (see
[7]), such as heteroskedasticity and difficulties in the interpretation of estimated parameters,
which are expressed in terms of the transformed variable instead of the original one. Ferrari
and Cribari-Neto [8] proposed a regression model for continuos variables that assumes values
in [0, 1], called Beta Regression Model. The assumption of this model is that the response
variable is beta-distributed, Y ∼ Beta(a, b) with a, b > 0. Authors proposed a particular
parameterization of the beta density in order to obtain a regression structure for the mean of
the response along with a precision parameter. They showed that, through setting µ = a/(a+b)
and φ = a + b, it is possible to express expectation and variance of Y as E(Y ) = µ and
V AR(Y ) = µ(1−µ)/(1 +φ), respectively. The parameter φ conveys a rate of precision because,
for larger φ, V AR(Y ) decreases.
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The beta regression model introduced in [8] is applied in the framework of the present study
in order to estimate π and, indirectly, 1− π. Specifically, the goal is to estimate a specific beta
regression model using a large number of simulated confusion matrices weighted by some proxim-
ity measures and misclassification costs, in order to obtain estimated regression parameters and
associated p values. Weighting is very important in this framework, because it conveys essential
information to the model about the different importance attributed to possible different misclas-
sification levels. Once the model is estimated, it is applied to the confusion matrix stemmed by
each classifier in order to estimate a cost-sensitive (model-based) weighted classification index.
For a classifier k and assuming πk ∼ Beta(µk, φ), the beta regression model is defined as

g(µk) =
∑̀
i=1

∑̀
j=1

βijc
k
ijd(xi, xj) = ηk (1)

where d(xi, xj) is a proximity measure detailed below, ckij are the frequencies of the confusion
matrix stemmed by the classifier k, and βij are the model coefficients that express the contribu-
tion of each confusion matrix cell to global misclassification. Finally, g(·) is a link function: In
Eq. (1) the probit distribution is chosen for specifying the link function g(·), so that the expec-
tation of πk can be defined as µk = g−1(ηk) = Φ(ηk), where Φ(·) is the cumulative distribution
function of a standard normal distribution.

As already mentioned, for estimating the βij in (1) a large number of confusion matrices
are simulated. One-half with π = 0 and non-zero elements in the diagonal only, and the other
half with random assigned non-zero off-diagonal elements, so that π = 1. The simulation of a
random classified confusion matrix is quite simple to obtain. All confusion matrices stemmed by
the classifiers have the same marginal row frequencies. In fact, if they come from the same dataset
the number of true classes is fixed for all matrices. Hence, it is sufficient to simulate matrices
with uniformly distributed rows, and than fix their marginal row frequencies equal to those of
the confusion matrices stemmed by the classifiers. Next step consists in excluding diagonal cells
from simulated matrices, leaving just cells that convey misclassification information.

Next, the cells of the simulated confusion matrices are weighted by some proximity measures,
which are defined, for all entries cij (with i 6= j) corresponding to off-diagonal cells, as

d(xi, xj) =



x` − x1

|xi − xj |
wij if x is numerical

`− 1

|i− j|wij if x is ordinal (2)

wij if x is nominal

where wij is a weight, fixed by the researcher, that specifies the importance in terms of misclassi-
fication cost attributed to the proximity level between xi and xj . As such, weighting is motivated
by the idea of adding information deriving from expert knowledge. Once the simulated matrices
are weighted, the model could be fitted through them in order to derive the estimated value µ̂k
of πk for the k-th classifier as

µ̂ = Φ

Ñ∑̀
i=1

∑̀
j=1

β̂ijc
k
ijd (xi, xj)

é
(3)
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2.1 Similarity in distribution index

One of the main problem in the framework of classifier performance measurement is the choice of
the best classifier once that two (or more) classifiers present the same value of the classification
accuracy 1 − π but the latter derives from different confusion matrices. To define a classifier
performance measure that also considers information about the difference in distribution among
classifier confusion matrices, a normalized similarity in distribution index is considered. It
derives from a dissimilarity index introduced by Gini and used, among others, in [9]. In general,
for a M -class classification problem the Gini index of dissimilarity in distribution D is defined
as

D =

Ã
1

M − 1

M−1∑
m=1

|F xm − F ym|2 (4)

where F xm and F ym are the cumulative frequencies in m of the vectors x and y, whereas
√
M − 1

is equal to the maximum value of this index, and it is used to normalize it. D is defined in [0, 1]
and is susceptible to change in values as long as one or more observations are moved from class
i to class j (i 6= j and i, j ∈M).

To introduce a similarity in distribution index, let us consider two confusion matrices, QW

and QZ , corresponding to classifiers W and Z respectively. They refer to a situation in which the
value of classification accuracy is the same for both classifiers, even if the two confusion matrices
are clearly different. Measuring similarity between QW and QZ requires the comparison of
each element of the two matrices with those of a common reference matrix U. The latter is
the matrix which refers to the situation of maximum accuracy so that all its non-zero elements
are located in the diagonal, i.e., in the cij cells (i = j), and all predicted values correspond to
observed ones. To make such a comparison, the first step consists in disassembling U, QW and
QZ , into a number of elements equal to the row number, as illustrated in Table 1. Next, these
elements have to be placed side by side in an ordered way, as shown in Table 2, and reassembled
to compose vectors u, qW and qZ concerning U, QW and QZ , respectively. To compute the

x̂1 x̂2 · · · x̂`
x1 c11 c12 · · · c1` element 1

x2 c21 c22 · · · c2` element 2

...
...

...
. . .

...
...

x` c`1 c`2 · · · c`` element `

Table 1: Confusion matrix disassembled.

element 1 element 2 · · · element n

c1` c12 · · · c1` c21 c2` · · · c2` · · · c`1 c`2 · · · c``

Table 2: Elements of a confusion matrix reassembled into a vector.

similarity in distribution for QW and QZ , it is necessary to compare the distribution of qW and
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qZ with the distribution of u. Considering the difference 1 − D, where D has been defined in
Eq. (4), for QW and QZ we define a similarity in distribution index whose values are in [0, 1] as

SQW
= 1−

Ã
1

`2 − 1

`2−1∑
m=1

|F qWm − F um|2 and SQZ
= 1−

Ã
1

`2 − 1

m2−1∑
m=1

|F qZm − F um|2 (5)

2.3 Visualization

Once both values of the cost-sensitive (model-based) weighted classification index introduced in
Section 2.1 and the normalized similarity in distribution index introduced in Section 2.2 are
available for each classifier, their values can be projected in a [0, 1]2 space in order to evaluate
their performance from the perspective of both classification accuracy and similarity in distribu-
tion. The possibility of analyzing classifier performance in a two-dimensional space is very useful
since it facilitates the comparison among different classifiers and allows the user to understand
which of the two considered items (weighted classification and similarity in distribution) mostly
influences classifier performance. Of course, the two-dimensional representation is particularly
helpful when the number of considered classifiers is very large.

3 Example

Hereinafter, results obtained for the two-dimensional classification performance index on sim-
ulated data are presented. The simulation setting considers 6 confusion matrices (QA to QF )
deriving from classifiers A to F (see Table 3), with respect to a classification problem involving
4 classes, x1 to x4, of an ordinal response variable. It is possible to note that: a) the classifier

x̂1 x̂2 x̂3 x̂4

x1 20 4 2 22
x2 4 10 1 0
x3 0 3 5 0
x4 11 7 8 3

(a) QA

x̂1 x̂2 x̂3 x̂4

x1 28 3 12 5
x2 3 9 2 1
x3 2 0 4 2
x4 4 4 6 15

(b) QB

x̂1 x̂2 x̂3 x̂4

x1 12 10 12 14
x2 5 5 1 4
x3 1 2 3 2
x4 4 10 8 7

(c) QC

x̂1 x̂2 x̂3 x̂4

x1 48 0 0 0
x2 0 15 0 0
x3 0 0 8 0
x4 0 0 0 29

(d) QD

x̂1 x̂2 x̂3 x̂4

x1 4 23 16 5
x2 3 6 4 2
x3 0 2 2 4
x4 1 10 15 3

(e) QE

x̂1 x̂2 x̂3 x̂4

x1 4 4 16 24
x2 1 6 1 7
x3 6 0 2 0
x4 15 10 1 3

(f) QF

Table 3: Confusion matrices from 6 different classifiers.

D provides a perfect classification (πD = 0); b) the classifiers E and F are characterized by the
same accuracy, i.e., they present the same elements on the diagonal of the confusion matrix, but
they differ with respect to off-diagonal entries; c) the confusion matrix obtained from C has quite
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uniformly distributed rows, as it usually happens in random classification, and d) the confusion
matrices obtained from A and B refer to a situation which can be considered as intermediate
between that concerning C and D.

For each classifier, the proximity measure d(xi, xj) introduced in Section 2.1 has been defined
according to Eq. (2). In this example, we fix wij = 1 in order to refer to a situation in which
the weight depends proportionally from the distance between observed class and predicted ones.
As a result, more weights is attributed to cases which have been classified in class which is far
from the original one (in our example x1 classified as x̂4 or viceversa).

Next step is to simulate a large number of weighted confusion matrices. In this example
1,000 matrices are simulated as follows: 500 matrices refer to classifiers with complete accuracy
(i.e. the best possible classification), so that they present all non-zero elements on the diagonal
and π = 0; 500 matrices refer to cases deriving from random classified elements (i.e. the worst
possible classification), so that they present uniformly distributed row elements and π = 1.

To apply the beta regression model specified in Eq. (1) information deriving from these
confusion matrices has to be conveniently rearranged. Rearranging each simulated matrix in a
row by row manner leads us to the 1, 000× (4× 4) matrix represented in Table 4. It is possible
to note that this matrix has the same row marginal frequencies. This is a common characteristic
of all confusion matrices which can be derived from a classifier trained on the same dataset.
The computation of a cost-sensitive (model-based) classification accuracy index as defined in
Section 2.1 requires the elimination of the diagonal cells from the simulated confusion matrices
since only cells that convey misclassification information are included in the beta regression
model. Following this elimination, the simulated matrices with off-diagonal elements only are
weighted by the proximity measures d(xi, xj) in order to obtain the new (weighted) data matrix
represented in Table 5. It allows us to put into the beta regression model information about the
importance attributed to the possible different misclassifications.

# p c11 c12 c13 c14 c21 c22 c23 c24 c31 c32 c33 c34 c41 c42 c43 c44

1 0 48 0 0 0 0 15 0 0 0 0 8 0 0 0 0 29
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
500 0 48 0 0 0 0 15 0 0 0 0 8 0 0 0 0 29

501 1 11 10 13 14 2 9 3 1 1 2 4 1 3 11 3 12
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
1000 1 16 9 13 10 1 1 7 6 4 1 3 0 7 10 9 3

Table 4: Simulated confusion matrices with the diagonal cells highlighted.

The beta regression model is estimated using the above described weighted simulated matri-
ces. Following the estimation of model parameters, the cost-sensitive (model-based) classification
accuracy index is computed for classifiers A to F after the elimination of the diagonal cells from
their confusion matrices. The index value is obtained by predicting the response value (π̂k, with
k = A, . . . , F ) on the basis of the classifier confusion matrix entries and the estimated βij .

As for the computation of the similarity in distribution index S, the six confusion matrices
have been disassembled in order to form new variables as described described in Section 2.2.
Then, the index S has been computed through the Eq. (5).

Results obtained for the two indexes are shown in Figures 1 and 2. The first plot refers to
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# p c12 c13 c14 c21 c23 c24 c31 c32 c34 c41 c42 c43

1 0 0 0 0 0 0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
500 0 0 0 0 0 0 0 0 0 0 0 0 0

501 1 30 26 14 6 9 2 2 6 3 3 22 9
...

...
...

...
...

...
...

...
...

...
...

...
...

...
1000 1 27 26 10 3 21 12 8 3 0 7 20 27

Table 5: Simulated confusion matrices after weighting.

the representation of the two considered indexes in a [0, 1]2 space. The second plot refers to
the distribution of the predicted classes and the observed ones, and it shows information about
the decomposition of the similarity in distribution index S introduced in Eq. (5). Figure 1
shows that the best classifier is D. This result is not surprising since the considered classifier
is the one providing a perfect classification (πD = 0). As a consequence, for this classifier the
distribution of the predicted classes corresponds to that of the observed ones so that the line
in Figure 2 obtained for D overlaps the dotted one, which refers to the original distribution
of cases among the 16 cells of the confusion matrix. Interesting considerations can be made
about the other classifiers. The second best classifier is B, which presents highest values for the
two considered indexes after D. This result depends on the fact that misclassified observations
are not far from their true classes. Thus, the lower penalization of classifiers presenting extra-
diagonal entries which are close to the diagonal ones is a peculiarity of the proposed bivariate
index which correctly uses the higher cost of misclassified observations whose predicted class is
far from the observed one. This consideration is enforced by the comparison of the performance
of classifiers E and F which, as previously mentioned, have the same elements on the diagonal of
the confusion matrix but they differ in the distribution of the extra-diagonal ones. In particular,
comparing E and F it is possible to note that in the first case extra-diagonal frequencies are more
close to the diagonal ones. The weighting system introduced in Eq. (5) causes the performance
of F to be very poor in comparison to that of E.

4 Conclusion

Cost-sensitive classification is one of mainstream research topics in data mining and machine
learning that induces models from data with an unbalanced class distribution and impacts by
quantifying and tackling the unbalance. In this paper a bivariate index based on a model based
accuracy measure and a similarity in distribution measure has been introduced. Results obtained
on simulated data provide evidence on the effectiveness of our proposal, since the bivariate index
appears as sensitive to misclassifications to which an highest cost is attributed. Future research
efforts will be directed to the assessment of the reliability of the proposed bivariate index, as
well as on the assessment of its performance in multiclass learning problems characterized by
unbalanced distribution of the response classes and/or reduced data size.
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Figure 1: The bivariate cost-sensitive clas-
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Abstract. Clever sampling methods can be used to improve the handling of big data and
increase its usefulness. The subject of this study is remote sensing, specifically airborne laser
scanning point clouds representing different classes of ground cover. The aim is to derive a
supervised learning model for the classification using CARTs. In order to measure the effect
of different sampling methods on the classification accuracy, various experiments with varying
types of sampling methods, sample sizes, and accuracy metrics have been designed. Numerical
results for a subset of a large surveying project covering the lower Rhine area in Germany are
shown. General conclusions regarding sampling design are drawn and presented.
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1 Introduction

In this paper we seek to understand how clever sampling can be used to improve the handling
of big data and increase its usefulness. Our case comes from remote sensing and contains
airborne laser scanning point clouds representing different classes of ground cover. The aim
is to derive a supervised learning model for the classification using CARTs. This paper is
organized as follows. We will first briefly review the state of the art for the fields of airborne
laser scanning, classification trees and stratified sampling. We will then describe our data set
and the experimental setup. In Section 4 we present our results. After discussing them we
conclude with suggestions for further research.
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2 Classification of Airborne Laser Scan Point Clouds

The character of land surveying has changed dramatically in recent decades. The availability of
powerful lasers scanning, surveying the ground from airborne platforms provides very accurate
and timely measurements of ground cover. These airborne laser scans (ALS) produce geo-coded
point clouds of laser return echos with resolutions in a decimeter scale. However, the resulting
massive amounts of data – surveying planes can easily cover vast stretches of land – require
specialized handling. We are now going to discuss the specifics of ALS. Then we review four
sampling procedures in the context of ALS. Finally we explain the usage of the popular CART
algorithm for automatically deriving classifications of ground cover.

Airborne Laser Scanning

Before the advent of ALS, land surveying was very cumbersome and involved traveling target
areas, setting up measurement points. The situation improved somewhat due to the increased
usage of aerial photography. These photos, however, are often ambiguous and it is difficult to
tell three-dimensional structures from them, even when using stereo photography.

Airborne laser scanning, on the other hand offers a number of advantages. An airplane or
helicopter flies over a designated area usually stripwise. A downward looking laser array emits
beams and records the echos. Modern arrays use rotating mirrors to deflect the beam and scan
an area perpendicular to the flight path. Also, these arrays are capable of recording the entire
spectral characteristics of multiple echos.

From these raw return signal characteristics and the GPS coordinates of the plane, every
signal is translated into points on (or above) the ground. Further point features can be com-
puted from the signal using various neighborhood averaging techniques. For an overview and a
systematic organization of available point features, see [9]. From this follows that every point is
described by a high-dimensional feature vector.

These point clouds can be used instantly to compute digital terrain and surface models. In
order to use them for other purposes, e.g. the identification of ground cover, classification models
are needed. We are going to describe them in the next subsection.

Classifying ALS point clouds using CARTs

The deriving of types of ground cover from either aerial photos or ALS point clouds, is essentially
a quite simple but time-consuming task. It involves investigating the aerial photos and use ones
experience to classify a given area. For instance, looking at a certain shape in the point cloud
and cross-referencing it with data from the photo, the human classifier can classify the related
points to be coniferous forest or a road. Processing hundreds of acres in this manner is time
consuming, expensive and error prone. It is therefore the aim of ongoing research to develop
automatic classifiers. There has been some success in that matter. See e.g. [15] for an overview
of current research. A summary of the state of ALS classification needs to point to still rather
high misclassification rates and difficulties in classifying certain types of ground cover.

Automated classification tasks, in general, can be supervised or unsupervised. The latter
works entirely autonomously and draws all information from the available data. The former
requires manually created training data to learn its model from. An example of a supervised
learning algorithm are classification and regression trees (CARTs) [2]. And it is CARTs that
have been used with great success in the past [5, 10, 15]. There, a large number of manually
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classified points are used to train and evaluate the classification of ground cover. For evaluation
purposes, the data set is artificially split into training and test data. In practical applications,
however, the training area needs to be determined using statistical sampling techniques. In the
next subsection we are going to review four different sampling procedures that we find useful in
this context.

Sampling in the ALS context

The most natural way of obtaining a slice of a data set is to simply take the first, say 10,000 cases.
This, however, is not a random sample and it is rather unlikely that it will be representative
enough to train a classifier from it. A better approach and perhaps the second most natural
thing to do is a simple random sample. Since the extent of the entire data set is known when
sampling, every point has the same chance of being included in the sample. The key advantage
of this approach is obtaining a sample that is representative of the data set.

However, there is also a big disadvantage: rare classes that are only found sparingly through-
out the data set might not be sampled at all. Then of course the classifier has no chance of
learning the characteristics of these classes and will not be able to assign any data into these
classes during classification. For instance, consider that a moderately small data set contains
2 million points and a single tree might be made up of as little as 500 points. For being able
to classify this particular kind of tree, enough of its points need to end up in the sample. For
simple random samples this means that large samples are required to ensure sampling of rare
classes with reasonable probabilities.

Another approach originally invented for surveys among humans is stratified sampling [1,
4, 7]. There, a small simple random sample is taken from each class, no matter how rare it is.
Obviously, the resulting sample is not representative of the population anymore. But presence
of points from rare classes is guaranteed. In the ALS context, stratified sampling has been used
numerous times e.g. [6, 12].

When using samples that are not representative of the population they were drawn from, care
must be taken. The canonical method is to compute sampling weights that correct for the altered
composition of the sample. As CARTs actively use the distribution of classes when estimating
class probabilities, the sampling weights are used to compute correct priors. Alternatively,
CARTs’ computation of priors can be circumvented and the true priors be specified.

In order to examine the effect of these sampling plans, we used a data set from a real
surveying project in a series of experiments. Both are being described in the next section.

3 Data & Method

In this section we are going to introduce the data set we used in our analysis as well as the
experimental setup. Our data set is a small subset of a large surveying project covering the
lower Rhine area in Germany. Our subset was selected for its representativeness of the region.23

It contains 2,872,488 points. The data set was manually annotated using photo interpretation
and ALS point clouds. Table 1 contains the distribution of points in the classes that were
observed.

23All computations were done in R [11] using lasr [14] for point cloud processing, rpart [13] for CARTs and
[16] for visualization.
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Class of ground cover Frequency

undefined 959
ground 2401914
gravel 1903
asphalt 20301
decideous forest 175103
building roofs 1383
walls/buildings 13
water 61362
cars and other moving objects 3912
temporary objects 1411
bridges 173774
power poles 231
bridge cables 16240
road protection fence 11169
bridges construction 1819
cement/concrete 936
error class 58

Table 1: Distribution of ground cover classes in the data set

As can be seen from Table 1, the distribution is highly skewed with roughly 85% being
ground. There are also some very rare classes that will be hard to sample and learn, e.g. walls.

In order to measure the effect of sampling methods on the classification accuracy we designed
experiments with varying types of sampling methods, sample sizes, and accuracy metrics. The
two types of sampling methods were simple random samples (without replacement) and stratified
samples. While the first one is straight forward, the second type of sampling method deserves
explanation. The sampling algorithm tried to sample s points from each class. If a class had
less than twice as many points, it would only sample half of those points.

This sampling method then also dictated sample sizes. In total 8 different sample sizes were
used. Table 2 gives an overview of the sample sizes used in the experiments.

Sample Points

S1 84288
S2 72524
S3 57783
S4 39251
S5 18472
S6 4268
S7 906
S8 471

Table 2: Sample sizes used in experiments. The entire data set contains 2.9 million points.

In order to gain an estimate of the variability of our measurements, we drew fifty samples of
each size using each type of sampling method.
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These samples were then used to train a classifier using the CART framework introduced
above. The so obtained classifier was then used to classify the remainder of the data set. When
learning off stratified samples, the CART algorithm was given (a) no further information on class
priors, (b) post-stratification case weights24, and (c) the true class distributions. We therefore
have four (simple random samples and stratified samples in the three fashions outlined above)
different sampling methods to compare.

To gauge the quality of a classification we used three different metrics all based on cross clas-
sification error matrices M . The simplest metric is the total misclassification rate (MCRTotal)
that is defined as

MCRTotal = 1−
∑

diag(M)

N

with N being the total number of points. A distinct property of the total MCR is that the
misclassification of rare classes has only a small influence. Whether this is considered a bug or a
feature depends on the context. In bids to accurately classify even rare classes, the total MCR
can be misleading.

A approach that takes rare classes into account is the class-based MCR (MCRClass). There,
the misclassification is not averaged over the entire data set but per class:

MCRClass =
∑

1− P (a)

with P (a) being the proportion of correctly classified points in that class. Another quality
metric is Kohen’s Kappa (κ) [12]. It is given as

κ =
P (a)− P (e)

1− P (e)

with P (e) is the product of marginal proportions for that class. We computed each of
these metrics for every sample size and sampling method combination. The results of these
computations are given in the next section.

4 Results

In order to assess the effects of sampling methods on the classification accuracy, we conducted
a series of experiments. In the following we will present the results from our computations.
Figure 1 displays the relationships between sample size and classification accuracy for the four
sampling methods. We depicted only the three smallest sample sizes as they—obviously—exhibit
the largest differences, but larger sample sizes confirm the overall trend.

For the overall misclassification rate, simple random samples outperform all other classifica-
tion approaches clearly. It is also notable, that sample size has no significant degrading effect
on simple random samples using this metric.

Class-based misclassification rates reverse this picture. Using that metric, simple random
samples perform very poorly and stratified samples provide better, consistent results. Among
the stratified samples, interestingly, the method of not providing the CART algorithm with any
further information on the priors or sample composition outperforms the other methods.

24Post-stratification was computed using survey [8].
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Finally, turning to κ, simple random samples once again deliver the best performance by
achieving the greatest agreement. Among the stratification methods, post-stratification and
prior specification both perform slightly better than their uninformed brother.

In this section, we presented the results from our experiments. They were 50 times boot-
strapped each. It is remarkable to see that, while simple random sampling beats any other
method by far in two of three metrics, this is not true when using the class-based misclassifica-
tion metric. There, working with stratified samples not correcting for the stratification delivers
best performance. In the next section we are going to discuss these findings in greater detail.

5 Discussion & Conclusion

We have compared the prediction quality using CARTs on land surveying laser scan data, given
different sample sizes and sampling methods. Prediction quality was measured using three
different metrics putting varying degrees of emphasis on overall correctness or correctness per
class. Bootstrapping the results fifty times, we find that simple random samples provide the
best overall classification quality. When using stratified samples in that context, it is important
to specify either post-stratification weights or true class probabilities to achieve better results.

However, when defining classification quality as average per class, we find that stratified
samples achieve much lower misclassification rates. Interestingly, this is even the case when
the CART algorithm is not provided with true or assumed class probabilities. More precisely,
specifying class probabilities or post-stratification weights to undo the stratification process lead
to worse results. This is unexpected, as correcting the altered sample composition introduced
by stratification is thought to be canonical [3] and has been shown to improve classification even
with land surveying data above.

As CART-based analysis is becoming ever more widespread, also in survey contexts, our
findings warrant caution when integrating the sampling design with the CART analysis.
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Figure 1: Quality of the obtained prediction for different sample sizes and sampling methods
measured in three metrics. Results are 50 times bootstrapped each. Sampling methods per panel,
from left to right: simple random sample, stratified sample, stratified with post-stratification
weights, stratified with priors specified.
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Abstract. We introduce the beta model for random hypergraphs in order to represent the
occurrence of multi-way interactions among agents in a social network. This model builds upon
and generalizes the well-studied beta model for random graphs, which instead only considers
pairwise interactions. We provide two algorithms for fitting the model parameters, IPS (iterative
proportional scaling) and fixed point algorithm, prove that both algorithms converge if maximum
likelihood estimator (MLE) exists, and provide algorithmic and geometric ways of dealing the
issue of MLE existence.

Keywords. Beta model, social networks, exponential random hypergraph model, ERGM, fixed
point algorithm, IPS algorithm, likelihood function analysis.

1 Introduction

Social network models [8] are statistical models for the joint occurrence of random edges in a
graph, as a means to model social interactions among agents in a population of interest. These
models typically focus on representing only binary relations between individuals. As a result,
when one is interested in higher-order (k-ary) interactions, statistical models based on graphs
may be ineffective or inadequate. Examples of k-ary relations are plentiful, and include forum
or committee membership, co-authorship on scientific papers, or proximity of groups of people
in photographs. These datasets have been studied by replacing each k-dimensional group with
a number of binary relations (in particular,

(k
2

)
of them, which form a clique), thus extracting

binary information from the data, and then modeling and studying the resulting graph. Such
a process inevitably causes information loss. For instance, let us consider statisticians Adam
(A), Barbara (B), Cassandra (C), and David (D), see Figure 1. Suppose the authors wrote
three papers in following groups: (A,B,C), (A,D), (C,D). Representing this information as a
graph with edges between any two individuals who have co-authored a paper provides a graph
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G with edges {(A,B), (B,C), (C,D), (A,C)}. A hypergraph H representing this information
would instead use the exact groups as hyperedges and, unlike G, would be able to represent
additional properties of such interactions, including how many papers were coauthored by these
four individuals; see Figure 1. If, in addition, A is more likely to write a 3-author paper than
a 2-author paper, this requires modeling separately the probabilities of these collaborations.
Despite the growing needs of practical values, models for random hypergraphs are relatively few
and simple. Random hypergraphs have been studied ([7]) as generalizations of the simple Erdös-
Rényi model [4] for networks; [5] considers an application of random tripartite hypergraphs to
Flickr photo-tag data.

Motivation Higher-order interactions in networks

Example

Reducing the co-authorship data set to a graph would give G the
union of the two triangles ABC, and ACD.

A

B

C

D

B

A

D

C

B

A

D

C

Figure : H1, G, H2

V = {A, B, C, D}
E(H1) = {ABC, AD, CD}.

E(G) = {AB, AC, AD, BC, CD}
E(H2) = {ABC, ACD}.

Q. How many papers gave rise to G? 3? 2? 5?

So how can we model random hypergraphs?

Use the degree sequence;

Despina Stasi (IIT) β-model for hypergraphs CASTA 2014 5 / 18

Figure 1: Distinct hypergraphs H and H ′ reduced to same graph G (left, right, middle).

In this paper we introduce a simple and natural class of statistical models for random hyper-
graphs, which we term hypergraph beta models, that allows one to model directly simultaneous
higher-order (and not only binary) interactions among individuals in a network. As its name
suggests, our model arises as a natural extension of the well-studied beta model for random
graphs, the exponential family for undirected networks which assumes independent edges and
whose minimal sufficient statistics vector is the degree sequence of the graph. It is a special
class of the more general of p1 models [6] which assume independent edges and parametrize the
probability of each edge by the propensity of the two endpoint nodes. This model has been
studied extensively; see [2, 3, 9, 10, 11], which give, among other results, methods for model
fitting. Below we formalize the class of the beta models for hypergraphs. Just like the graph
beta model, these are natural exponential random graph models over hypergraphs which pos-
tulate independent edges and whose sufficient statistics are the (hypergraph) degree sequences.
Our contributions are two-fold: first we formalize three classes of linear exponential families for
random hypergraphs of increasing degree of complexity and derive the corresponding sufficient
statistics and moment equations for obtaining the maximum likelihood estimator (MLE) of the
model parameters. Secondly, we design two iterative algorithms for fitting these models that
do not require evaluating the gradient or Hessian of the likelihood function and can therefore
be applied to large data: a variant of the IPS algorithm and a fixed point iterative algorithm
to compute the MLE of the edge probabilities and of the natural parameters, respectively. We

COMPSTAT 2014 Proceedings



Stasi et al. 595

show that both algorithms will converge if the MLE exists. Finally, we illustrate our results and
methods with some simulations.

As our analysis reveals, the study of the theoretical and asymptotic properties of hypergraph
beta models is especially challenging, more so than with the ordinary beta model. The complex-
ity of the new models, in turn, leads to the problem of optimizing a complex likelihood function.
Indeed, when the MLE does not exist, optimizing the likelihood function becomes highly non-
trivial and, to a large extent, unsolved for our model as well as for many other discrete linear
exponential families. To this end, we describe a geometric way for dealing with the issue of
existence of the MLE for these models and gain further insights into this difficult problem with
simulation experiments.

2 The hypergraph beta model: three variants

A hypergraph H is a pair (V, F ), where V = {v1, . . . , vn} is a set of nodes (vertices) and F is a
family of non-empty subsets of V of cardinality different than 1; the elements of F are called the
hyperedges (or simply edges) of H. In a k-uniform hypergraph, all edges are of size k. We restrict
ourselves to the set Hn of hypergraphs on n nodes, where nodes have a distinctive labeling. Let
E = En be the set of all realizable hyperedges for a hypergraph on n nodes. While E can in
principle be the set of all possible hyperedges, below we will consider more parsimonious models
in which E is restricted to be a structured subset of edges. Thus we may write a hypergraph
x = (V, F ) ∈ Hn as the zero/one vector x = {xe, e ∈ E}, where xe = 1 for e ∈ F and xe = 0 for
e ∈ E \F . The degree of a node in x is the number of edges it belongs to; the degree information
for x is summarized in the degree sequence vector whose ith entry is the degree di(x) of node i
in x.

Hypergraph beta models are families of probability distributions over Hn which postulate
that the hyperedges occur independently. In details, let p = {pe : e ∈ En} be a vector of
probabilities whose eth coordinate indicates the probability of observing the hyperedge e. We
will assume pe ∈ (0, 1). Every such vector p parametrizes a beta-hypergraph model as follows:
the probability of observing the hypergraph x = {xe, e ∈ E} is

P(x) =
∏
e∈E

pxee (1− pe)1−xe . (1)

The graph beta model is a simple instance of this model, with E = {(i, j), 1 ≤ i < j ≤ n}. The(n
2

)
edge probabilities are parametrized as pi,j = eβi+βj/(1 + eβi+βj ), for i < j and some real

vector β = (β1, . . . , βn).
Various social network modeling considerations for node interactions require a flexible class

of models adaptable to those settings. Thus, we introduce three variants of the beta model for
hypergraphs with independent edges in the form of linear exponential families: beta models for
uniform hypergraphs, for general hypergraphs, and for layered uniform hypergraphs. For each, we
provide an exponential family parametrization in minimal form and describe the corresponding
minimal sufficient statistics.

Uniform hypergraphs. The probability of a size-k hyperedge e = i1 . . . ik appearing in the
hypergraph is parametrized by a vector β ∈ Rn as follows:

pi1,...,ik =
eβi1+...+βik

1 + eβi1+...+βik
(2)
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with qi1,...,ik = 1− pi1,...,ik = 1

1+e
βi1

+...+βik
, for all i1 < · · · < in. In terms of odds ratios,

log
pi1,...,ik
qi1,...,ik

= βi1 + . . .+ βik . (3)

In order to write the model in exponential family form, we abuse notation and define for each
hyperedge e ∈ F , β̃e =

∑
i∈e βi. In addition, let

([n]
k

)
be the set of all subsets of size k of the set

{1, . . . , n}. By using (1), we obtain

Pβ(x) =
exp

ß∑
e∈([n]

k ) β̃exe

™
∏
e∈([n]

k ) 1 + eβ̃e
= exp

{∑
i∈V

di(x)βi − ψ(β)

}
,

where di is the degree of the node i in x. Then it is clear that the sufficient statistics for
the k−uniform beta model are the entries of the degree sequence vector of the hypergraph,
(d1(x), . . . , dn(x)), and the normalizing constant is

ψ(β) =
∑
e∈([n]

k ) log(1 + eβ̃e). (4)

Layered uniform hypergraphs. Allowing for various size edges has the advantage of con-
trolling the propensity of each individual to belong to a size-k group independently for distinct
k’s. Let r be the (natural bound for the) maximum size of a hyperedge that appears in x. This
model is then parametrized by r − 1 vectors in Rn as follows:

pi1,i2,...,ik =
e
β

(k)
i1

+β
(k)
i2

+...+β
(k)
ik

1 + e
β

(k)
i1

+β
(k)
i2

+...+β
(k)
ik

where, for each k = 2, . . . , r, β(k) = (β
(k)
1 , . . . , β

(k)
n ). There are (r − 1)n parameters in this

parametrization. By using (1) again, we obtain

Pβ(x) =
r∏

k=2

∏
e∈([n]

k )

eβ̃
(k)
e xe

1 + eβ̃
(k)
e

= exp

{
r∑

k=2

∑
i∈V

d
(k)
i (x)β

(k)
i − ψ(β)

}
,

where d
(k)
i is the number of hyperedges of size k to which node i belongs in x. Notice that the

vector of sufficient statistics in this case is d = (d
(2)
1 (x), . . . , d

(2)
n (x), d

(3)
1 (x), . . . , d

(3)
n (x),

. . . , d
(r)
1 (x), . . . , d

(r)(x)
n ), and the normalizing constant is

ψ(β) =
∑r
k=2

∑
e∈([n]

k ) log(1 + eβ̃
(k)
e ). (5)

General hypergraphs. In the third variant of the model we define one parameter for each
node, controlling the propensity of that node to be in a relation of any size. The probability of
observing a hypergraph x is thus

Pβ(x) =
exp

ß∑r
k=2

∑
e∈([n]

k ) β̃exe

™
∏r
k=2

∏
e∈([n]

k ) 1 + eβ̃e
= exp

{∑
i∈V

di(x)βi − ψ(β)

}
.

The vector of sufficient statistics is then d = (d1(x), . . . dn(x)), where di(x) =
∑r
k=2 d

(k)
i (x), and

the normalizing constant is ψ(β) =
∑r
k=2

∑
e∈([n]

k ) log(1 + eβ̃e).
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3 Parameter estimation

Iterative proportional scaling algorithms. From the theory of exponential families, it is
known that the MLE β̂ satisfies the following system of equations:

∂ψ(β̂)

∂β̂i
= d̄i, for i ∈ {1, . . . , n}, (6)

where d̄ is the average observed degree sequence. By using (4), we then obtain

∑
s∈([n]\{i}

k−1 )

e
ˆ̃
βs+β̂i

1 + e
ˆ̃
βs+β̂i

= d̄i, for i ∈ {1, . . . , n}, (7)

which is itself equivalent to
∑
s∈([n]\{i}

k−1 ) p̂s,i = d̄i, for i ∈ {1, . . . , n}.
Iterative proportional scaling (IPS) algorithms fit the necessary margins of a provided table,

whose elements correspond to the mean-value parameters (in this case probabilities of observing
an edge). We design the following IPS algorithm for computing p̂.

Algorithm 2.
Define A = (ai1,...,ik) to be an n× · · · × n k-way table with margins d̄1, . . . , d̄n for all its layers.
Set the following structural zeros on the table: ai1,...,ik = 0 if ia = ib for at least one pair a 6= b,
1 ≤ a, b ≤ k. (Note that there are n(n−1) . . . (n−(k−1)) non-zero elements in the table.) Place
2ē/(n(n−1) . . . (n−(k−1))) on all other elements of the matrix, where 2ē =

∑n
i=1 d̄i. Then apply

the following iterative (t+ 1)st step for every element ai1,...,ik : a
(t+1)
i1,...,ik

= a
(t)
i1,...,ik

(F
(t)
i1
. . . F

(t)
ik

)1/k,

where Fib(t) = dib/
∑
s∈([n]\{ib}

k−1 ) a
(s)
ib,is

.

IPS algorithms are known to converge to elements of the limiting matrix (p̂i1,...,ik) which
are unique and preserve all the marginals (see e.g. [1]). Solving the system (3) for every 1 ≤
i1 < · · · < ik ≤ n provides β̂. Algorithm 2 can be adjusted for layered uniform and general
hypergraph beta models.

For layered k-uniform hypergraphs, by using (6) and (5) we obtain for i ∈ {1, . . . , n} and
k ∈ {2, . . . , r}, ∑

s∈([n]\{i}
k−1 )

p̂s,i = d̄
(k)
i . (8)

Therefore, we can apply Algorithm 2 to (r − 1) k-way tables similar to those of the k-uniform
case, where k ranges from 2 to r.

For general hypergraphs, we similarly obtain
r∑

k=2

∑
s∈([n]\{i}

k−1 )

p̂s,i = d̄i, for i ∈ {1, . . . , n}. (9)

In this case we apply the IPS algorithm to the following table: Define A = (ai1,...,ik) to be a
k-way table of size (n+1)×(n+1)×· · ·×(n+1) consisting of labels (∅, 1, 2, . . . , n) with margins
d̄∅, d̄1, . . . , d̄n for all its layers, where d̄∅ does not need to be known or calculated. We also set
the following structural zeros in the table: ai1,...,ik = 0 if (1) ia = ib 6= ∅ for at least one pair
a 6= b, 1 ≤ a, b ≤ k; (2) i1 = · · · = ik = ∅ except possibly for one ib. We apply Algorithm 2 as
in the k-uniform case except the fact that we do not fit the d̄∅ margins. We read the elements
of the limiting matrix of from, p̂∅,s as p̂s, which corresponds to a lower dimensional probability.
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Fixed Point Algorithms. An alternative method for computing MLE is based on [3]. In the
k-uniform case, for i ∈ {1, . . . , n}, Equation (7) can be rewritten as

β̂i = log di − log
∑

s∈([n]\{i}
k−1 )

e
ˆ̃
βs

1 + e
ˆ̃
βs+β̂i

:= ϕi
Ä
β̂
ä
. (10)

Therefore, in order to find β̂, it is sufficient to find the fixed point of the function ϕ.

Algorithm 3.
Start from any β̂(0) and define β̂(l+1) = ϕ(β̂(l)) for l = 0, 1, 2, . . . .

Theorem 4.
If the MLE exists, Algorithm 3 converges geometrically fast; if the MLE does not exist there is
a diverging subsequence in {β̂(i)}.

The proof is omitted due to space limitations. For the other models, the above theory can be
easily generalized. For the layered models and general hypergraph models, we apply the same
algorithm to obtain the fixed points of the following functions respectively for i ∈ {1, . . . , n} and
k ∈ {2, . . . , r} and i ∈ {1, . . . , n}.

ϕi(β̂
(k)) := log d

(k)
i − log

∑
s∈([n]\{i}

k−1 )

eβ̂
(k)
s

1 + eβ̂
(k)
s +β̂

(k)
i

; (11)

ϕi(β̂) := log di − log
r∑

k=2

∑
s∈([n]\{i}

k−1 )

e
ˆ̃
βs

1 + e
ˆ̃
βs+β̂i

. (12)

4 Simulations and Analysis

MLE. We use the fixed point algorithm to estimate the natural parameters for hypergraph
beta models, examine non-existence of MLE and compare the layered and general variants of the
model on simulated data. Note that most dense hypergraphs, when reduced to binary relations
give the complete graph, for which the MLE does not exist. In contrast, MLE is expected to
exist for the hypergraph beta model in this case.

Example 1.
We simulate a hypergraph H = (V, F ) drawn from the beta model for 3-uniform hypergraphs on
10 vertices with β = (−5.05,−0.57, 2.87, 4.85, 1.98,−6.69,−3.95,
5.97,−6.61,−4.24). The average simulated degree sequence of hypergraphs drawn from this model
is d̄ = (6.28, 10.70, 17.59, 20.81, 16.55, 4.41, 7.47, 23.02, 4.50, 7.17), and the average simulated den-
sity of the corresponding hypergraph is 0.33. Algorithm 3 provides the following MLE estimate
using d̄ as the sufficient statistic: β̂ = (−4.94,−0.58, 2.81, 4.76,
1.94,−6.55,−3.86, 5.86,−6.48,−4.15). Note that ||β − β̂||∞ = 0.14.

For a larger example, we select a β value giving rise to 3-uniform hypergraphs on 100 vertices
with density 0.44, and obtain a closer estimate: ||β − β̂||∞ = 0.12.

Example 2.
Theorem 4 guarantees that if β̂ is the solution to the ML equations (10), (12), or (6), then the
sequence of β-estimates that the fixed point algorithm produces will converge to β̂; else there
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Figure 2: MLE existence against edge density; top row: 3-uniform beta on 25, 50, 100 vertices; bottom
row: 4- and 2-uniform on 25 vertices, {2,3}-uniform on 50 vertices.

will be a divergent subsequence. To detect a divergent sequence in practice, we either look for a
periodic subsequence, or for a number with large absolute value in the sequence that seems to be
growing, sometimes quite slowly. From (2), since eβik/(1+eβik ) converges to 1 quickly (e10/(1+
e10) > 0.9999), for graphs with small number of nodes (i.e. far from the asymptotic behavior),
it is plausible to conclude that the corresponding mean value parameter is approximately 0 or 1,
and hence the MLE does not exist. Figure 2 demonstrates MLE existence against edge densities
for random hypergraphs with a fixed edge-density. Interestingly, in this restricted class, our
simulations give evidence of a transition from non-existence of the MLE to existence as the
density of the hypergraphs increases. The transition point seems to depend on both the number
of vertices and the edge sizes allowed in the model.

Model fitting: Layered versus general hypergraph beta models. Consider the two
variants of the beta model for non-uniform hypergraphs: the general model, with one parameter

βi per node i, and the layered model, with one parameter β
(k)
i per node i and edge size k. Since

the former can be considered a submodel of the latter by setting certain constraints on β
(k)
i ,

k ∈ {1, . . . , r}, we compare the fit of these two models using the likelihood ratio test with test
statistics λ = 2 logL(β̂layered)−2 logL(β̂general). Our experiments indicate that the layered model
fits significantly better than the general case. Using 100 random sequences on 10 vertices, with
allowed edge-sizes 2 and 3, we obtain the average observed test statistics 53.649, in the critical
region for 0.005 significance level, (25.188,∞), for chi-square with 10 degrees of freedom. The
layered model fits significantly better for significance level 0.05 in all 100 cases, and 97 and 94
times better for significance levels 0.01 and 0.005, respectively.
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Abstract. Abrupt releases of hazardous material into the atmosphere pose a great threat to the
human health and the environment. It is crucial to develop the emergency action support system
which can quickly identify probable location and characteristics of the contamination source, by
measuring concentration of certain substance using the sensors’ network. Bayesian inference is a
powerful tool able to combine observed data with prior knowledge, used to find the most probable
values of the searched parameters. We apply the methodology combining Bayesian inference with
Sequential Monte Carlo (SMC) and Genetic algorithm (GA) to the problem of the atmospheric
contaminant source localization. Presented algorithms scan 5-dimensional parameters’ space
for the contaminant source coordinates (x, y), release strength (Q) and atmospheric transport
dispersion coefficients. In recent years the popularity of the nature inspired algorithms like GA
increased, hence we compare the results given by SMC and GA algorithms. Performed tests
show that both SMC and GA give comparable results, but GA estimates the correct parameters
value faster, which results in the higher estimation probability.

Keywords. Bayesian inference, Event reconstruction, SMC methods, Genetic algorithm, At-
mospheric contamination
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1 Introduction

In the case of a sudden atmospheric release of chemical, radioactive or biological material, emer-
gency responders need to quickly determine the location of dispersed substance’s source. Thus,
it is important to develop the emergency system that can estimate the most probable location of
the atmospheric contamination source by measuring the concentration of dangerous substance
using the network of sensors.

Knowing both gas source and wind field the appropriate atmospheric dispersion model can
be applied to calculate the expected gas concentration for any downwind location. Conversely,
given concentration measurements and knowledge of the wind field and other atmospheric air
parameters, finding the location of the release source and its parameters is most improbable.
This problem has no unique solution and can be considered only in the probabilistic frame-
works. The issue boils down to the creation of the atmospheric dispersion model realistically
reflecting the real situation, based only on a sparse point-concentration data. This task requires
specification of set of model’s parameters. In the framework of Bayesian statistics all quantities
included in the model are modeled as random variables with joint probability distributions. This
randomness can be interpreted as parameter variability, and is reflected in the uncertainty of the
true values expressed in terms of probability distributions. Bayesian methods reformulate the
problem into a search for a solution based on efficient sampling of an ensemble of simulations,
guided by comparisons with data.

The problem of the source term estimation was studied in literature grounded both in the
deterministic and probabilistic approach (e.g. [1]). [2] introduced dynamic Bayesian modeling,
and the Markov Chain Monte Carlo (MCMC) sampling to reconstruct a contaminant source.
The effectiveness of MCMC in the localizing of the atmospheric contamination source based on
the synthetic data experiment was presented in e.g. [3]. The advantage of the Sequential Monte
Carlo over the MCMC in the estimation of the probable values of the source coordinates presents
[4]. The problem of finding the ’best fitting’ model’s parameters, for which a forward atmospheric
dispersion model’s output will reach agreement with real observations, can be considered the
optimization problem. Consequently, metaheuristics, such as genetic algorithms (GA) can be
applied. Since introduction [5] GA has been successfully applied, as an alternative optimization
tool, in a variety of areas (e.g. [6]).

In this paper SMC and GA are applied to the problem of localizing the abrupt atmospheric
contamination source based on point-concentrations reported by the network. Comparison be-
tween the performance of SMC and GA is based on the synthetic experiment data.

2 Bayesian inference

The Bayes’ theorem, as applied to an abrupt release problem, can be stated as follows:

P (M |D) ∝ P (D|M)P (M) (1)

where M represents possible model configuration and D represents observed data. For our
application, Bayes’ theorem describes the conditional probability P (M |D) of certain source
parameters (model configuration M) given observed measurements (D) at sensor locations. This
conditional probability P (M |D) is also known as a posteriori distribution and is related to the
probability of the data conforming to a given model configuration P (D|M), and to the possible
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model configurations P (M), before taking into account the measurements. The probability
P (D|M), for fixed D, is called the likelihood function, while P (M)-a priori distribution [7]. To
estimate the unknown source parameters M using (1), the posteriori distribution P (M |D) must
be sampled. Value of likelihood for a sample is computed by running a forward dispersion model
with the given source parameters M , and comparison of the model predicted concentrations
CMi with actual observations CEi in the points of sensors location. This function compares the
predicted from model with observed data at the sensor locations as:

ln[P (D|M)] = −
N∑
i=1

[log(CMi )− log(CEi )]2. (2)

The closer the predicted values are to the measured ones, the higher is the likelihood of the
sampled source parameters.

To obtain the posterior distribution P (M |D) of the source term parameters, SMC and GA
are used as the parameters sampling procedure. This way we completely replace the Bayesian
formulation with a sampling procedure to explore the model’s parameter space. The posterior
probability distribution (1) is computed directly from the resulting (from SMC or GA) sets of
parameters’ values and is estimated as:

P (M |D) =
1

n

n∑
i=1

δ(Mi −M). (3)

Eq. (3) represents the probability of a particular model configuration M giving results that
match the observations. Thus, δ(Mi − M) = 1 when Mi = M , and 0 otherwise. If, in the
estimated set, numerous models have the same configuration P (M |D) increases through the
summation, increasing the probability of these source parameters.

3 Problem setup

Our goal is to select the efficient algorithm to conduct dynamic inference of an unknown atmo-
spheric release. To test the proposed methods some concentration data are required.To satisfy
this requirement we have performed the simulation using the atmospheric dispersion second-
order Closure Integrated PUFF Model (SCIPUFF) [8]. Correspondingly, a forward model
is necessary to calculate the concentration CMi for the tested set of model parameters M , at
each algorithm iteration. Here, as forward model, we selected the fast-running Gaussian plume
dispersion model (e.g. [9]).

Synthetic data

The algorithms input data were generated by the SCIPUFF model computing the time-dependent
field of expected concentrations. We assumed 10 sensors distributed randomly over 15km x
15km area (Fig. 1). The atmospheric contamination source was located at x = 3km, y = 8km,
H = 25m within the domain. The simulated release was continuous with rate Q = 8000g/s and
started 1 hour before first sensors measurements. The wind was directed along x axis with speed
of 5m/s. Further, in this paper, we assume that the only algorithm input data we have, are
reported every 15 minutes (in subsequent time steps) during 1.5 hour concentrations of dispersed
substance registered by 10 sensors (Fig. 1).
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Sensor
Time interval

T=1 T=2 T=3 T=4 T=5 T=6

S1 0 0 0 0 0 0

S2 0 3.62E-09 4.93E-09 6.98E-09 4.15E-09 6.65E-09

S3 9.15E-09 2.88E-08 1.97E-08 1.88E-08 1.69E-08 1.62E-08

S4 3.83E-12 1.77E-11 4.89E-12 6.53E-12 2.31E-12 7.77E-12

S5 1.14E-08 1.83E-08 1.25E-08 1.20E-08 1.10E-08 1.03E-08

S6 2.91E-06 4.85E-04 4.77E-04 4.71E-04 4.43E-04 4.49E-04

S7 3.28E-05 3.27E-05 3.21E-05 3.13E-05 3.01E-05 2.87E-05

S8 2.29E-11 2.15E-10 1.05E-10 1.17E-10 7.56E-11 1.14E-10

S9 0 0 0 0 0 0

S10 0 0 0 0 0 0

Figure 1: Distribution of the sensors and the release source within the considered domain, and
concentrations [g/m3] reported by sensors in subsequent time intervals.

Forward dispersion model

The Gaussian plume e.g. [9] dispersion model for uniform steady wind conditions can be written
out as follows:

C(x, y, z) =
Q

2πσyσzU
exp

[
−1

2

Ç
y

σy

å2
]
× {exp

ñ
−1

2

Å
z −H
σz

ã2
ô

+ exp

ñ
−1

2

Å
z +H

σz

ã2
ô
} (4)

where C(x, y, z) is the concentration at a particular location, U is the wind speed directed
along x axis, Q is the emission rate and H is the height of the release; y and z are the distances
along horizontal and vertical direction, respectively. In the equation (4) σy and σz are the
standard deviation of concentration distribution in the crosswind and vertical direction. These
two parameters were defined empirically for different stability conditions. In this work we restrict
the diffusion to the stability class C. In scanning algorithm we assumed that we do not know
exact behavior of the plume and consider these coefficients as unknown. Thus, the parameters
σy and σz were taken as: σy = z1 · x · (1 + x · 4 · 10−5)−0.5, σz = z2 · x where values z1 and z2 are
sampled by algorithm within interval [0.001, 0.35].

To summarize, in this paper the scanned model’s parameter space is M = (x, y,Q, z1, z2)
where x and y are spatial coordinates of the source, Q release rate and z1, z2 the stochastic
terms in the turbulent diffusion parametrization.

4 Reconstruction procedure

We run reconstruction algorithm, searching for the source location (x, y), release rate (Q) and
z1 and z2, just after first sensors’ measurements (data in time T = 1, Fig. 1). We assume that
initially we have no priori information about the parameters’ values. So, the initial value of each
parameter is draw randomly from the predefined interval. Then, subsequent sets of parameters
are evaluated by the SMC or GA algorithms, until the termination criterion is met. To reliably
compare results reported by SMC and GA we have fixed the number of likelihood function value
calculation to 6000 in each time step. As consequence, the termination criterion for GA is 40
generations and for the SMC 6 Markov Chains of length 1000. When the termination criterion
is met the posteriori distributions of all parameters are calculated. Obtained a posteriori distri-
butions are considered as the priori distributions in the subsequent time step. Consequently,
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Figure 2: Flow chart of the reconstruction procedure.

in the next time step, when new data from the sensors arrive the initial population is drawn
uniformly from the priori distribution i.e. posteriori distribution from previous time step. The
flow chart or the reconstruction procedure presents Fig. 2.

Sequential Monte Carlo

In [4] we have shown that the SMC is definitely more effective than MCMC, in case of localizing
the atmospheric contamination sources. SMC is designed to sample from dynamic posterior
distributions, both in terms of use the dynamic nature of the model and also in terms of reusing
previous calculations. SMC requires some set of samples to be initialized, thus in the initial
phase the parallel MCMC Metropolis-Hastings procedure is applied. Then, state of all obtained
chains, as a samples with weights, are passed to the SMC resampling procedure. The details of
the applied algorithm are presented in [4].

Genetic algorithm

Algorithm starts with defining the initial population. The population is composed from the
predefined number of chromosomes (here n = 150), P (t) = xt1, . . . , x

t
n, being initially randomly

drawn from the admissible set of values. This set is explicitly defined by the space of explored
parameters. GA chromosome is configured as binary value representing the real value of searched
parameters M . The quality of each chromosome of current population is evaluated based on
the objective/likelihood function (2). The ’improvement’ of the current population is done by
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Figure 3: Resulted from SMC probability distributions of the models parameters x, y, and Q
for the subsequent intervals. Red vertical lines represent the target value, the numbers represent
the highest probabilities.

Figure 4: As in Fig. 3 but resulted from GA.

genetic operators.
Information about the quality of the each population’s chromosome is used to perform se-

lection. The hard tournament selection of size 2 was implemented. As the result, from each
pair of the selected chromosomes one with the better likelihood function (Eq.2) value passes to
the next population. Next, the crossover is performed. Crossover involves replacing parents by
their children. We have applied the multi-point crossover with probability CP = 0.75, with 5
crossover points (corresponding to 5 searched parameters). Procedure begins with testing each
chromosome for being the parent, in accordance with crossover probability CP. From the par-
ents’ population the unexploited pair is chosen, and then one crossover point for each parameter
encoded in the chromosome is drawn. Parents are split, at the crossover points for each encoded
parameter, then (in term of each encoded parameter) bits are swap resulting in two children.
Subsequently, the current population is mutated by changing the chromosome’s features. By
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Figure 5: Resulted from SMC and GA cumulative probability distributions of the models pa-
rameters x, y, and Q. Red vertical lines represent the target value, the numbers represent the
highest parameter probabilities.

giving a chance of altering chromosome’s individual bits, mutation allows to search for the en-
tire solution’s space, and not to converge to local extremes. The number of occurring mutations
is determined by the mutation probability, here MP = 0.02. After performing the selection,
crossover and mutation the new generation (t+1), being subject to the new evaluation, is estab-
lished. After 40 generations the algorithm converges - it is expected that the best chromosome
represents a near-optimum (reasonable) solution. More details of the GA operators can be found
e.g. in [6].

5 Results and conclusions

In the problem presented in this paper the parameters M were limited by the intervals x, y ∈
〈0, 15000m〉, Q ∈ 〈1, 10000g/s〉 and z1, z2 ∈ 〈0.001, 0.350〉. Figs. 3 and 4 presents the marginal
probability distribution for x and y coordinates of source location and release rate Q, obtained
with use of the SMC and GA, at each subsequent time interval. The exact source location and
release rate, set up during creation of the testing synthetic data, is marked by the red vertical line.
Probability distributions presented in Figs. 3 and 4 were obtained according to Eq.( 3) based on
the resampled samples in the case of SMC, and based on the 40th generation of chromosomes,
in case of the GA. The estimated posteriori distributions obtained based on the data in given
time interval were passed, as the priori distribution, to the succeeding reconstruction procedure
iteration. We do not present the probability distributions for the z1 and z2, as far the target
value is not known. However, our previous works proved that ’freeing’ the dispersion coefficients
in some acceptable interval, allows to better fit the Gaussian plum to the ’real’ data.

Comparing Figs. 3 and 4 one can see, that both SMC and GA algorithms finally (in T = 6)
correctly pointed the target values of x and y parameters as the most probable. However,
GA reached the near target value sooner than SMC. At first, in T = 1, the GA returned the
probabilities: P (x = 3075) = 0.45, P (y = 8175) = 0.83 and P (Q = 6520) = 0.07, while the
SMC pointed: P (x = 1170) = 0.071, P (y = 8829) = 0.24 and P (Q = 496) = 0.029. So, the
GA estimations are closer to the target values i.e. x = 3000, y = 8000 and Q = 8000. In the
subsequent reconstruction procedure iterations, the newly arrived data allowed to increase the
performance of both methods, and in T = 6 the following parameters values were pointed as
the most probable, GA : P (x = 2475) = 0.69, P (y = 7725) = 0.51 and P (Q = 3560) = 0.14,
and the SMC: P (x = 3297) = 0.24, P (y = 7978) = 0.65 and P (Q = 8013) = 0.057. One
can see, that SMC estimated the Q value better than GA. However, if we compare cumulative
posteriori probabilities presented in Fig. 5, obtained based on distributions from all time steps,
we observe that GA estimated the most probable Q value closer to the target one i.e. the GA
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returned P (x = 2925) = 0.35, P (y = 7875) = 0.40 and P (Q = 6280) = 0.05, while SMC:
P (x = 3164) = 0.25, P (y = 8020) = 0.73 and P (Q = 2037) = 0.0033 .

We can conclude, that the performed test showed that GA is able to find the correct values
of the contamination source coordinates quicker than SMC. Taking into account, that in the
practical application time of response is crucial, the GA can be considered as more effective,
than SMC which is usually applied in this type of problems.
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Abstract. The semiparametric classification based on single index model is used in several
domains of real life data engineering due to its flexibility. However, it has the same drawback as
parametric classification: It is not suitable for the case where the training sample is derived from
a certain subpopulation and the prediction sample from another one. The aim of this paper is to
use the idea of transfer learning to reduce this drawback. Numerical experiments are performed
and are intended to show the improvements from the prediction point of view.

Keywords. Supervised classification, Transfer learning, Parametric classification, Semipara-
metric classification, Single index model, Credit scoring, Morphometry.

1 Introduction

Classification is a an important statistical field in many experimental sciences and real life
applications. It aims to build predictive models to separate and classify data points in two or
more groups. Here, we are interested in adapting or updating binary classification rules for some
particular structure of data i.e., the training sample and the prediction sample arise from two
different subpopulations.

Classification methods are based on an estimate of E(Y |X = x) or more generally g(E(Y |X =
x)) where g is is a link function. These methods are classified into parametric, nonparametric
and semiparametric.

Parametric methods assume that the function E(Y |X = x) is known up to a set of constant
parameters that can be estimated from data. Several parametric methods have been proposed in
this context such as discriminant analysis, logistic regression, see for instance [7] for a comprehen-
sive review. Parametric methods have the advantage of being easily interpreted by practitioners,
but rarely justified by theoretical or other a priori considerations related to the data design.

Nonparametric methods assume that the function of interest is unknown but smooth. No
other assumptions about its shape or functional form are postulated. Therefore, they will be
more flexible when data at hand does not fit strict classical statistical assumptions. In the
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other hand, these methods have a serious drawbacks. One of them is that the estimation
precision decreases rapidly as the dimension of the the covariate vector X increases (curse of
dimensionality). Another serious drawback is that they don’t provide predictions of E(Y |x) at
points x that are outside the considered support of the random variable X.

Semiparametric methods are a trade off between the parametric and nonparametric ones.
Their assumptions on the form of the function of interest are stronger than those of a nonpara-
metric model but less restrictive than the assumptions of a parametric model, thereby reducing
the possibility of specification error. Semiparametric methods give greater estimation precision
than do nonparametric methods when X is multidimensional (see [11] for a review on semipara-
metric methods).

An approach that is very important in this domain is semiparametric single index models
(SIM) that summarizes the effects of the feature measurements variable X = (X1, . . . , Xp)T

within a single variable called the index or score for some specialists. In these models the
conditional mean function has the form

E(Y |X = x) = G(βTx) , (1)

where β is p−dimensional vector of real parameters and G(R → R) a real function. These
models mean that all the relevant information carried by X is contained in a linear combination
of X components. Having the estimates of β and G(.), we can readily obtain the estimate of
conditional mean from equation (1).

In this work, we deal with the binary classification i.e., Y is a binary group label variable.
The aim is to predict the group label value of a new individual, for which only the feature
measurements x = (x1, . . . , xp)T are known. We use the model

Y = f(X) + ε, ε ⊥⊥ X (2)

where f(X) = E(Y |X) is estimated, using the training sample

ST = {(Y1,X1), ..., (Yn,Xn)}.

This problem is known as supervised classification. Several examples of such a problem are
available such as in credit scoring, where we predict borrowers’s behavior to pay pack loan by
using information related to these customers. Another example in medicine, where we predict
the risk of lung cancer recurrence for a patient previously treated, on the basis of used treatment
for the first occurrence of the cancer and on some clinical and demographic measurements.

A main problem in supervised learning is that we assume that any individual to predict
is supposed to be derived from the same statistical population as the training sample. Un-
fortunately, such assumptions are not realistic. For example, in credit scoring, to predict non
customers behavior we use a training sample of costumers only. Also in medicine, the risk of
lung cancer recurrence is learned from European patients and will be applied to Asian patients.

In order to avoid space limitations due to the available training sample, we use the transfer
learning methodology which aims to transfer the knowledge from a source subpopulation to a
target subpopulation.

This idea has been first proposed by Biernacki et al.[1] in the gaussian context, where they
consider the case of two subpopulations slightly different. They establish that both subpopula-
tions are linked through stochastic linear relationships. Estimation of the allocation rule (to be
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applied on the non-labeled sample) is obtained by estimating parameters of this linear relation-
ship, using several cases of constraints on this relation. They proved that this method is efficient
and exhibits better performances than classical methods. Beninel and Biernacki[2] extended this
approach to the multinomial logistic classification and proposed several additional links model
in the case where the two studied subpopulations are gaussian ones. Beninel et al.[3] went in
deep in the previous results with more tests and simulations in the context of credit scoring.

The semiparametric SIM in classification has a potential superiority over the classical clas-
sification methods. We develop here the idea of transfer learning to be applied in SIM as in the
work of Beninel et al.[3].

This work is organized as follows: Section 2 is devoted to the building of the semi parametric
single index model(SIM). The methodology of transfer learning and links models between source
and target subpopulations are discussed in Section 3. The performance of the proposed method
is assessed by means of a numerical experiments on two real examples in credit scoring and
biology in Section 4.

2 Semiparametric single index model(SIM)

A semiparametric SIM has the form

Y = G(βTX) + ε, β ∈ Rp (3)

where Y is the dependent variable, ε is the error such that E(ε|X) = 0. The term βTX is the
single index or scoring.

For identification purpose on β and G, we suppose that X must include at least one contin-
uously distributed component whose associated β coefficient is non-zero. Also, we suppose that
the model contains no intercept component. Last, we set the β coefficient of one component
of X equal to one. This identification problem has been tackled by several authors. To name
just a few, Manski[12] studied the identification of single index models for the case of binary
response models. Ichimura[8] investigated the general case in which the response variable can
be continue and he described a nonlinear least squares estimator of β. Klein and Spady[9] in-
vestigated the case of binary response models where they studied a semiparametric maximum
likelihood estimator of β. Delecroix et al.[4] generalized the idea of Klein and Spady to arbitrary
distributions for Y . Delecroix et al.[5] analyzed a large class of semiparametric M-estimators for
single-index models, including semiparametric quasi-likelihood and semiparametric maximum
likelihood estimators.

Now, we will review the methods of Ichimura[8] and Klein and Spady[9] to estimate β and
G. These two methods use M-estimation as follows:

β̂ = arg min
β∈Rp

n∑
i=1

ψ(Yi, Ĝ(βTXi;β))τn(Xi) (4)

where

• Ĝ(t;β) is a nonparametric estimator of the regression function E(Y |βTX = t). Here, we
use the Nadaraya-Watson estimator i.e.,

Ĝ(t;β) =
n∑
i=1

YiK( t−β
TXi
h )∑n

j=1K(
t−βTXj

h )
(5)
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where K(.) is a symmetic kernel and h is the smoothing parameter. In order to avoid
degenerate problems, the version leave-one-out is considered to estimate G

Ĝ(−i)(βTXi;β) =
∑
k 6=i

YkK(β
TXi−βTXk

h )∑
j 6=iK(

βTXi−βTXj
h )

(6)

• τn(.) is a trimming function. ψ is the loss function. In Ichimura[8] ψ(y, r) = (y − r)2 and
in Klein and Spady[9] ψ(y, r) = −y log(r)− (1− y) log(1− r).

The estimator of β is very sensitive by the choice of h. Ichimura[8] proved that we can
estimate, simultaneously, β and h form (4). Kong And Xia[10] defined a computational method
that should be more efficient than the ”classical” one, they called it ”separated crossvalidation
method”. Given a threshold s ∈]0, 1[, a new individual x∗ is allocated by Ŷ (s) = 1

Ĝ(β̂
T

x∗)≥s
.

3 Transfer learning

Methodology

We assume that the data consist of tow samples: the first is S = {(Y1, X1), ..., (Yn,Xn)} with n
points drawn from a source subpopulation U and the second is S∗ = {(Y ∗1 ,X∗1), ..., (Y ∗n∗ ,X

∗
n∗)}

with n∗ points drawn from a target subpopulation U∗. Here, the idea of the transfer is to allocate
individuals from target subpopulation using both samples S and S∗.

From the training sample S, we use the single index model to obtain the estimates β̂ and Ĝ.
Then, we allocate individuals of S∗ using

Ê(Y ∗j |X∗j ) = Ĝ(L(X∗j )), j = 1, ..., n∗, (7)

where L(X∗j ) = c+ β̂
T

ΛX∗j , c ∈ R and Λ = diag(λ1, ..., λp).

In order to estimate the (p + 1) real parameters of (c,Λ), we use the maximum likelihood
function

`(c,Λ) =
n∗∑
j=1

Y ∗j log
Ä
P̂ (Y ∗j = 1|X∗j )

ä
+ (1− Y ∗j ) log

Ä
1− P̂ (Y ∗j |X∗j )

ä
(8)

By maximizing ` with respect to c and Λ after substituting Ê(Y ∗j |X∗j ) from (7), we can obtain
transfer parameters. In what follows, we discuss issues where the pairs (c,Λ) are unknown and
based on the following postulated relationships:

Relationships

The estimation of parameters c and Λ can be done through several models depending on several
possible situations for c and Λ that are:

• M0 : No parameter to be estimated: c = 0 and Λ = Ip, where Ip is the identical matrix.

• M1 : Here only c is to be estimated and Λ = Ip.

• M2 : c=0 and Λ = λId, where λ ∈ R.
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• M3 : c is free and Λ = λId i.e., two parameters are to be estimated.

• M4 : c = 0 and Λ = {λ1, ..., λp}, where λ1, ..., λp ∈ R are to be estimated.

• M5 : The most complex model : c is free and Λ = diag(λ1, ..., λp), where λj ∈ R, j = 1, ..., p.

4 Numerical experiments

The semiparametric transfer algorithm

First, we share S∗ into two samples: training sample S∗T and prediction sample S∗P . Here, the
input of the algorithm are S and S∗T , then the main steps of the transfer algorithm are as follow:

1. Calculate

L(X∗j ) = c+ β̂
T

ΛX∗j , j = 1, ..., n∗ (9)

2. Estimate the set of parameters c ∈ R and Λ ∈ Rp according to the chosen relationship by
maximizing the empirical likelihood function given in (8) with respect to c and Λ.

3. Replace the estimated transfer parameters in (9) to obtain L(X∗) and then replace L(X∗)
in (7) to allocate individuals in S∗.

4. We predict the sample test S∗P = S∗ \ S∗T using the obtained estimator.

5. To measure the performance of our method, we calculate the error rate e = 1
n∗P

∑n∗P
j=1 1Y ∗j 6=Ŷ

∗
j
,

where n∗P is the size of S∗P and Ŷ ∗j is the predicted allocation of Y ∗j .

Biology Data

The data consist of three samples of seebirds that come from three subspecies of Calanectris
diomedea species. These samples are: Borealis (n=206, 45% female) live in the Atlantic islands
, Diomeda (n=35, 58% female) live in the Mediterranean islands, and Edwardsii(n=92, 52%
female) live in the Cape Verde Islands.

Five morphological variables were measured to forecast the bird’s sex. These variables are
culmen , wing and tail lengths, tarsus and culmen depth. All simulations are replicated 50 times.

We use the Borealis subspecies as training sample(S) to calculate β̂ and Ĝ which determinate
the SIM estimator. First, We take the Diomedea subspecies as S∗ and the chosen sizes of
samples S∗T are 10, 11, ..., 20. The left subfigure of the figure (1) illustrates the different obtained
results. Second, we take the Edwardsii subspecies as S∗ and the chosen sizes of samples S∗T are
10,15,...,70. The right subfigure of the figure (1) illustrates the different obtained results.

Credit scoring data

We consider a real data example in credit scoring on private loans from a southern German
bank. The data set and the description of the variables are available at the web link http:

//www.stat.uni-muenchen.de/service/datenarchiv/kredit/kreditvar_e.html or see also
for more description [6].
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This data set consists in the description of 1000 consumers. For each consumer the binary
response variable ”creditability”is available (Kredit=1 for creditworthy and Kredit=0 otherwise).
In addition, 20 covariates that are assumed to influence creditability were recorded. Here we are
interested in the following six covariates :

laufkont Balance of current account with the following four categories:
1: no running account; 2: no balance or debit; 3: medium running account (less than 200
Deutsche Mark (DM)); 4: large running account (greater or equal to 200 DM or checking
account for at least one year).

laufzeit: Duration of credit in months; sparkont: Value of savings or stocks;

moral: Payment of previous credits; weitkred: Further running credits.

beszeit: Duration of employment with five categories:
1: unemployed; 2: less than one year; 3: more than one year and less than four years;
4: more than four years and less than seven years; 5: more than seven years.

There are 700 observations with Kredit = 1 and 300 observations for Kredit = 0. For this
experiment, we study the borrowers non customers behavior to pay back loans, we use the
variable Laufkont to separate the available data set in two samples: the customers sample S
when Laufkont > 1 with 726 observations and the non customers sample S∗ when Laufkont = 1
with 274 observations.

We draw at random four training samples S∗T of sizes: n∗ = 50, 100, 150, 200 from the non
costumers S∗. The figure (2) illustrates the different obtained results.

5 Conclusion

From these numerical experiments, we deduce the following conclusions:

First, the approach consisting in learning from the first data, to predict the label of indi-
viduals of another subpopulation (without any adaptation of the allocation rule ie, model M0),
leads to a high error rate. This is in contradiction with the assumptions underlying conventional
methods of supervised classification. Also, this justifies the idea to use a maximum (possible)
of individuals to adapt or update the allocation rule.

Second, the approach consisting in learning without exploiting the first data set is not sat-
isfactory ; the results suffer from the small size of the second data set. Such problem of the size
of the second data set is what generates the problem of transfer learning.

Third, the model (M1) corresponds to existing practice and quite known among biologists
(See Van Franecker and Ter Brack[13]) and credit scoring specialists. This practice consists in
changing, empirically and without theoretical justification, the threshold value (or equivalently,
the intercept of the linear score function or Anderson score) from which one affects to classes.

Finally, it is fairly clear that the best models (in the sense of the empirical error) ie, M2, M3

and M4, are those exploiting the two data sets . The first is used to estimate a first allocation
rule (appropriated to the prediction of individuals from the first sub-population) and the second
to adapt and make it a rule to predict individuals of the second subpopulation.
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Figure 1: Borealis subspecies are training sample. In the left subfigure Diomedea subspecies are
prediction sample while in the right subfigure Edwardsii subspecies are prediction sample.

Figure 2: Customers are training sample and non customers are prediction sample.
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Abstract. We introduce here an extension of CUBT (Clustering using Unsupervised Binary
Trees [1]) to ordinal data. CUBT is a hierarchical clustering method for continuous data inspired
by CART that uses three steps to estimate an optimal partition of the data. The splitting process
is based on a covariance type criterion. The pruning step uses a robust dissimilarity measure with
Euclidean distance. Here, we extend this approach to ordinal data using mutual information
and entropy criteria. Different simulations show the efficiency of our approach.

Keywords. CUBT, Clustering, Binary decision trees, Ordinal data, Mutual information

1 Introduction

CUBT [1] is a top-down hierarchical clustering method inspired by CART [2] that consists of
three stages. The first step grows a “maximal tree” by recursively splitting the dataset into
several subsets of observations and minimizing a heterogeneity criterion, the deviance, within
the final clusters. This heterogeneity criterion is based on the trace of the covariance matrix
within each subset of observations. The second step prunes the tree. For each pair of sibling
terminal nodes (i.e. leaves with the same ascendant node), a measure of dissimilarity between
the two nodes is computed. If this distance measure is lower than a certain threshold mindist,
then the two nodes are aggregated into a single node (i.e. the parent node). The dissimilarity
measure used by CUBT is based on the Euclidean distance. The final step, the joining is also
a step of node aggregation, in which the constraint of node adjacency for aggregated clusters is
not required. For the joining, either the deviance or the dissimilarity measure can be used.

CUBT shares various advantages with the CART method. It is flexible and efficient, i.e.
produces good partitions for a large family of data structures; it is interpretable (because of
the binary splits) and it has good convergence properties. In their original work Fraiman et al.
compared CUBT with several clustering methods and showed that it produced quite satisfactory
performance results.

Several applications of CUBT have been undertaken mainly in medicine and the social sci-
ences; see, for example, [3]. This approach allowed clinicians to improve interpretability and
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decision-making with regard to cut-off scores that define the membership of individuals in dif-
ferent clusters.
One of the limitations of the CUBT method is that the criteria used to grow and prune a tree
(heterogeneity and dissimilarity criteria) are specific to continuous data.

We present here an extension of CUBT to ordinal data. For each step, growing and pruning,
we suggest a new criterion based either on mutual information or on entropy. Section 2 describes
the ordinal version of CUBT. Section 3 suggests certain simulation models and comparisons with
other clustering methods. The final section gives the conclusion and proposes ideas for future
work.

2 CUBT for ordinal data

We describe the three steps of CUBT using the new criteria for ordinal data. The first step grows
the maximal tree, while the second and third steps (pruning and joining) prune the maximal
tree.

Let X ∈ {1, ...,mj}p be a random p-dimensional discrete vector with coordinates X.j , j ∈
{1, ..., p}, and let mj ∈ N be the number of categories of the jth variable. We have a set S of
n random independent variables identically distributed as X, denoted Xi with i ∈ {1, ..., n}.
Finally, Xij is the ith observation of the jth component of X. Similar notations are used with
small letters to denote the realizations of these variables: x, xi, x.j and xij .

For any node t (a set of observations), let X(t) be the restriction of X to node t i.e. X(t) =
{X|X ∈ t }, and we define R(t), the heterogeneity measure of t, also called the deviance, as
follows:

R(t) = trace(MI(X(t)))

=
p∑
j=1

H(X
(t)
.j )

= −
p∑
j=1

∑
i∈t

P (Xi,j) log2 P (Xi,j)

where MI(X(t)) is the mutual information matrix of X(t), and H(X
(t)
.j ) is the Shannon entropy

of X
(t)
.j within node t.

Growing stage

Initially, the primary node (the root) of the tree contains all the observations of S. The sample
will be split recursively into two disjoint samples using binary splits with the form x.j < a, where
j ∈ {1, ..., p} and a is a threshold over x.j . Thus, a split of a node t into two sibling nodes tl and
tr is defined by a pair (j, a). The nodes tl and tr are defined as follows:

tl = {x ∈ {1, ...,mj}p : x.j ≤ a}
tr = {x ∈ {1, ...,mj}p : x.j > a}

Let t be a node of a tree. Then, the best split of t into two sibling nodes tl and tr is defined
by:

argmax(j,a)∈{1,...,p}×{1,...,mj}{∆(t, j, a)}
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with

∆(t, j, a) = R(t)−R(tl)−R(tr)

The stopping rules for growing the maximal tree are determined by two parametersminsize ∈
N and mindev ∈ [0, 1]. A node t having nt observations is split no further whenever one of the
two following criteria are satisfied:

1. nt < minsize

2. ∆(t, j, a) < mindev ×R(S)

Once the algorithm stops, a class label is assigned to each leaf of the maximal tree. A
partition of the initial dataset is obtained and each leaf from the tree corresponds to a cluster.

Pruning stage

If the number of classes of the final partition k is known, the number of leaves of the maximal
tree could be greater than k. Thus, it can be necessary to prune the tree by aggregating certain
leaves. In this stage, a dissimilarity measure between two nodes is defined. Two nodes are
aggregated if their dissimilarity measure is below a threshold ε. We introduce a new pruning
criterion for the dissimilarity measure.

Let tl and tr be two adjacent nodes that share a direct ascendant node t. Let nl (respectively
nr) be the size (number of observations) of the node tl (respectively tr) and α ∈ [0, 1]. For each
Xi ∈ tl and Xj ∈ tl, with i, j ∈ {1, ..., n}, we consider:

d̃i = min
x∈tl

d(x,Xi) and d̃j = min
x∈tr

d(Xj , x)

and their ordered versions di and dj . Note that d(X,Y ) can be either the Manhattan distance
or the mutual information between two random variables X and Y . For δ ∈ [0, 1], we define:

d
δ
l =

1

δnl

δnl∑
i=1

di and d
δ
r =

1

δnr

δnr∑
i=1

dj

. Thus, the empirical dissimilarity measure between tl and tr is computed as follows:

dδ(l, r) = dδ(tl, tr) = max(d
δ
l , d

δ
r).

At each step of the algorithm the leaves tl and tr are aggregated and replaced by their parent
t if dδ(l, r) ≤ ε with ε > 0. The pruning stage requires two parameters, the proportion δ and a
threshold ε corresponding to the minimal distance, called mindist.

Joining stage

The joining stage aggregates pairs of nodes that do not share the same ascendant (not sibling
nodes) as in ascendant hierarchical clustering, successively joining the most similar pairs of
clusters. Two joining criteria may be used for this step.
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1. The first criterion used is the same as in the growing stage. Each pair of nodes tl and tr
(sibling or not) is compared using the following measure (loss of deviance):

∆(tl, tr) = R(tl ∪ tr)−R(tl)−R(tr)

The pairs of nodes with minimal loss of deviance are aggregated.

2. The second criterion is the same as the pruning stage. Pairs of nodes tl and tr are compared
by computing ∆(tl, tr) = dδ(l, r). The pairs of nodes with minimal dissimilarity ∆(tl, tr)
are aggregated.

For either criterion, let NL be the number of leaves of the maximal tree. For each pair of
values (i, j), with i, j ∈ {1, ..., NL} and i 6= j, we have (̃i, j̃) = argmini,j {∆(ti, tj)}. The pair of
nodes t̃i and tj̃ are replaced by their union t̃i ∪ tj̃ and NL = NL − 1.

There are two types of stopping rules depending on whether the number of clusters k is
known or not.

• If k is known: The process is repeated until the number of tree leaves is below or equal to
k. The stopping rule is the a priori number of classes.

• If k is unknown: The leaves are aggregated if ∆(tl, tr) < η where η can be a minimum
threshold for the loss of deviance (mindev) or a minimum distance (mindist).

3 Experiments

In this section, we present certain simulations using different models. We consider only the case
where the number of groups k is known a priori. We compare the results of CUBT with other
methods such as hierarchical clustering using Manhattan distances, k-modes and k-medians.
The misclassification error and the adjusted Rand index are used for these comparisons. We use
the CUBT package [4] with R with the criterion described in the previous section.

Clustering methods

We compare our approach to three classical methods suited for ordinal data where the number
of clusters needs to be known.

k-modes The k-modes algorithm [5] is a clustering method for categorical data that extends
the k-means algorithm [6]. It seeks to partition the observations into k groups such that the
distance from the observations to the cluster modes is minimized. We use the simple-matching
distance to assess the dissimilarity between pairs of observations.

k-medians The k-medians approach is recommended in [7] for dealing with ordinal data. It is
similar to the k-means algorithm except that it uses medians instead of means as centers for the
clusters. We use the Manhattan distance to assess the dissimilarity between the observations
and the cluster medians.
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Hierarchical clustering We consider the classical agglomerative hierarchical cluster-analysis
(HCA) method. We use the complete linkage option to aggregate clusters and the Manhattan
distance as the dissimilarity measure of the observations.

Simulation models for ordinal data

We consider two data simulation models. We fix the number of groups k = 3 and, the dimension
p = 9, and we test different sample sizes n ∈ {100, 300, 500, 1000}. For j ∈ {1, ..., p}, we use the
same number of levels for all the variables, mj = m = 5. Each group has the same number of
observations , E(nk ) where E is the floor function.

Frequentist simulation The first data simulation model uses a simple frequentist approach.
Each variable X.j , j ∈ {1, ..., p} has m = 5 levels. We define three clusters, each characterized
by a high frequency of one level. For observations from cluster 1, P (X.j = 1) = q, and a uniform
probability is used for the other levels i.e. P (X.j = l) = 1−q

m−1 for l 6= 1. For clusters 2 and
3, the frequent levels are 3 and respectively 5, using the same probabilities. We fix q = 0.8.
This simulation model is very difficult for CUBT because

∑p
j=1X.j is a perfectly discriminating

variable for the clusters, especially for high values of q; 1 − q may be regarded as a clusters
overlapping index.

IRT-based simulation The second simulation model uses item response theory (IRT) models.
These models allow us to assess the probability of observing a level for each variable, given a
latent trait factor. The latent trait is an unobservable continuous variable that defines the
individuals’ ability, measured by the observed variables. In the IRT framework, the variables
are ordinal and are called items. The observations can be either binary or polytomous responses
to the items. Here, we introduce a polytomous IRT model that helps us to generate data in a
probabilistic way. The generalized partial credit model [8] (GPCM) is an IRT model that can
address ordinal data. It is an extension of the 2-parameter logistic model for dichotomous data.
The model is defined as follows:

pjx(θ) = P (Xij = x|θ) =
exp

∑x
k=0 αj(θi − βjk)∑mj

r=0 exp
∑r
k=0 αj(θi − βjk)

where θ is the latent trait and θi represents the latent trait level of the ith individual. βjk is a
difficulty threshold parameter for the category k of the item j. For j ∈ {1, ..., p}, βj is a vector of
dimension m−1. αj is a discrimination parameter represented by a scalar. We generate random
datasets using the GPCM by simulating latent trait values for the three groups. For c ∈ {1, 2, 3}
we simulate a vector of latent trait values for each class c using N(µc, σ

2), µ = (−3, 0, 3) and
σ2 = 0.1. For j ∈ {1, ..., p}, we fix αj = 1.2 and βj = (−1,−1

3 ,
1
3 , 1).

Tuning the method

We perform 100 replicates for each model. We compare our results with the results obtained
using HCA, k-modes and k-medians. To apply CUBT, we fix values for the parameters involved
at each stage of the algorithm (see Section 2). For the growing stage we use minsize = E(ln(n))
and mindev = 0.001; for the pruning stage we fix δ = 0.3 and mindist as the fourth quintile
of the distribution of distances between sibling nodes. We choose mutual information as the
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measure of dissimilarity. Finally, the only parameter to be fixed in the joining stage is the
number of classes k = 3.

As the true clusters are known we assess the performance of the different algorithms using the
Adjusted Rand index and the matching error. Let y1, ..., yn be the class labels of each observation,
and let ŷ1, ..., ŷn be the labels assigned to the n observations by a clustering algorithm. We denote
by Σ the set of all possible permutations of the set of labels. The missclassification error rate,
also called the “matching error” is defined as follows:

MCE = min
σ∈Σ

1

n

n∑
i=1

1{yi 6=σ(ŷi)}

Results

Figure 1 shows an example of the trees we obtain for datasets drawn from our simulation
models. Tables 1 and 2 show the results of the simulations. We report the matching error
and the adjusted Rand index obtained for each clustering algorithm, namely HCA, k-modes,
k-medians and CUBT, with four different sample sizes.

|
x1 < 1.5

x1 < 3.5

C1

C2 C3

|
x5 < 2.5

x9 < 4.5

C1

C2 C3

Figure 1: CUBT trees for the two models.

For the first model (frequentist) k-modes exhibits good performance, but it fails in the IRT-
based model. The k-medians approach shows inferior results to k-modes in the first model but
performs better in the second. HCA performs better in the second model, where its results are
between the results of k-modes and k-medians, but fails in the first model. The results obtained
by CUBT were similar to the results of HCA for the first model, but CUBT performs perfectly
for the second model. CUBT yields better results than the other methods over the IRT-based
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model n HCA k-modes k-medians CUBT

Frequentist 100 0.064 0.008 0.084 0.150
300 0.130 0.008 0.120 0.100
500 0.160 0.022 0.074 0.150
1000 0.150 0.005 0.075 0.160

IRT-based 100 0.023 0.062 0.009 0.005
300 0.023 0.078 0.005 0.001
500 0.025 0.062 0.005 0.001
1000 0.024 0.077 0.005 0.001

Table 1: Simulations results: Matching Error for both frequentist and IRT models

model n HCA k-modes k-medians CUBT

Frequentist 100 0.870 0.990 0.880 0.800
300 0.800 0.990 0.840 0.740
500 0.760 0.960 0.900 0.630
1000 0.770 0.990 0.890 0.600

IRT-based 100 0.940 0.850 0.980 0.990
300 0.940 0.820 0.980 1.000
500 0.930 0.840 0.980 1.000
1000 0.940 0.820 0.980 1.000

Table 2: Simulations results: Adjusted Rand Index for both frequentist and IRT models

model for all sample sizes. All these observations and results are retrieved and confirmed with
regard to the Rand Index.

4 Conclusions

We have presented an ordinal version of the CUBT algorithm, which uses new criteria to handle
this type of data. We have defined new criteria to use with ordinal data and compared this
approach to other classical methods using simulations.

The results are quite satisfactory and even when CUBT does not outperform the other
methods in all situations, it produces an interpretable clustering.

An extension of CUBT to nominal data can be performed directly, using the same criteria
we introduce here. The only difference is the set of splits to explore. Continuous and qualitative
data may be mixed using a mixing additive criterion for both types. These extensions are
currently under consideration.
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Abstract. In many biological applications one observes a multivariate mixture of signals, where
both the mixing process and the signals are unknown. Blind source separation can extract such
source signals. Often the data have additional structure, i. e. the variables (e. g. genes) are
linked by an interaction network. Recently, we developed the probabilistic method emGrade

that explicitly uses this network structure as a Bayesian network and thus performs a more
appropriate separation of the data than standard methods. Here, we consider the application
of emGrade to gene expression data together with a literature-derived pathway. Thanks to the
probabilistic modeling, we can use model selection criteria and demonstrate the relevance of the
pathway information for explaining the data. We further use estimates of missing observations
to identify the most appropriate microarray probe sets for two genes that were not uniquely
annotated after standard filtering. Finally, we identify genes relevant for the dynamics underlying
the data; these genes were not detected without the network information.

Keywords. expectation maximization, model selection, gene expression data, gene regulatory
networks

1 Introduction

Blind source separation (BSS) is a widely used method to extract informative signals from a
multivariate observed mixture. In many applications the data have additional structure that can
be exploited to achieve a more appropriate signal separation. Recently, our group developed two
algorithms that explicitly include the network structure – Grade (graph-decorrelation algorithm)
[5] and its probabilistic extension emGrade (expectation maximization graph-decorrelation algo-
rithm) [4]. In the latter the network structure is modeled as a Bayesian network and parameters
and source signals are estimated using expectation maximization. In this manuscript we demon-
strate the application of emGrade to gene expression data where the genes are linked by a gene



626 BSS applied to lymphocyte pathway

regulatory network. In Section 2, we briefly review the emGrade algorithm. As described in
Section 3, we use publicly available microarray data for a lymphocyte pathway. In Section 4, we
analyze the data using emGrade. The probabilistic framework enables us to use model selection
criteria, and we find that the pathway information indeed improves our model. This has only
been shown for synthetic data so far. Furthermore, we estimate missing observation values and
determine the most appropriate microarray probe set for two genes that were not uniquely anno-
tated after standard filtering. Finally, we characterize the estimated signals in terms of relevant
genes and compare the gene sets from different observations. This leads the way to a biological
interpretation of the estimated source signals. Section 5 concludes this paper.

Throughout the paper we use bold symbols to denote random variables and solid symbols
to denote parameters and realizations of random variables, respectively.

2 The blind source separation method emGrade

In this section we shortly review the blind source separation method emGrade introduced in [4].

We assume observed Gaussian random variables X =
Ä
x(i)
äN
i=1

with state space Rm that
are generated by the following linear mixing model:

x(i) = As(i) + µ+ ε(i) , i = 1, . . . , N . (1)

Here, A ∈ Rm×q denotes the mixing matrix, µ ∈ Rm is a common mean vector for all i,

and ε(i) ∼ N (0, σ2I) is additive measurement noise. The latent variables S =
Ä
s(i)
äN
i=1

are
normally distributed with state space Rq (q ≤ m). The components of these variables represent
the source signals we are interested in, i. e. we have a source signal sk = (sk(1), . . . , sk(N)) for
k = 1, . . . , q.

To define the (joint) distribution of the latent variables we assume a weighted directed
acyclic graph G = (V,E,Λ) that is determined a priori. Let V = (v1, . . . , vN ) be the set of
nodes, E ⊂ V × V the set of edges, and let λij ∈ R denote the weight assigned to the edge
(vi, vj) ∈ E. We assume that the latent variables S form a Bayesian network with respect to G,
i. e. the latent variables are associated to the nodes V and the joint distribution decomposes as

(A0) p(S) =
N∏

i=n0

p(s(i) | Pa(i))
n0−1∏
i=1

p(s(i)) .

Here, Pa(i) denotes the vector of all latent variables associated to the parent nodes of vi, and
we assume that v1, . . . , vn0 are root nodes. We then make the following stationarity and scaling
assumptions where vi and vj are adjacent nodes:

(A1) E[s(i)] = 0q ,

(A2) Cov(s(i), s(i)) = Iq ,

(A3) Cov(s(i), s(j)) = λij D .

We denote D as graph-delayed covariance, and we assume that it is diagonal. The assumptions
(A0)-(A4) define a unique distribution of S which is characterized by the conditional distribu-
tions in (A0). The parameter D occurs in (A0) as different rational terms.
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Figure 1: Bayesian network for emGrade. a) Graphical representation of the Bayesian
network for emGrade with latent variables in red and observed variables in purple. The depen-
dence between the latent variables is with respect to a known network structure, for instance
a gene regulatory network. b) The pathway “lymphocyte activation” (net1) derived from the
Genomatix database.

We now expand the Bayesian network and add nodes w1, . . . , wN that represent the observed
variables (Figure 1a). For all i = 1, . . . , N we insert an edge (vi, wi), and the conditional
distribution of the associated random variables is given as x(i) | s(i) ∼ N (As(i) + µ, σ2I). In
the resulting Bayesian network we can estimate the latent variables S and the model parameter
θ = (A,µ, σ2, D) using expectation maximization. For the expectation step we use the Bayes
net toolbox [6] and estimate the latent variables from their posterior distribution. If data points
are missing (i. e. some variables x(i) are unobserved) we can simply treat them as additional
latent variables. For the maximization step we derive explicit updates rules for A, µ and σ2

and use numerical maximization for D. All (diagonal) entries of D can be estimated separately,
and the domain depends on the network structure. Both steps are repeated alternately until
convergence. Here we assume convergence if the change for all parameter entries is less than
10−8, or if a maximum number of 10 000 iterations is achieved. The resulting values for the
parameters and source signals then define the emGrade estimate.

3 The data

For the application of emGrade we consider gene expression data that are accessible online, and
we use the Genomatix database [3] to derive a network structure for the gene interactions.

Gene expression data and pre-processing

In Calvano et al. [1] four healthy humans were treated with intravenous endotoxin, and gene
expression measurements of blood leukocytes were taken at time points 0, 2, 4, 6, 9, and 24h
after endotoxin administration. In a control study the leukocytes of four non-treated humans
were taken at the same time points. After quantile normalization and filtering with the limma

R-package [7] we get normalized expression values for 12 683 human genes. For source separa-
tion we consider a subset of N ∼ 100 genes that are associated with a specific pathway. The
derivation of the pathway is discussed in the next paragraph. We further divide the data into
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the measurements for each individual. We thus have observations LPS1-4 from the four treated
persons and observations PT1-4 from the non-treated persons. Each selected gene corresponds
to an observed random variable, and since the measurements are taken at six time points we
have m = 6 as the dimension of the observed variables.

In simulations we found that the performance of emGrade increases if the variance of the
observed variables has a similar range compared to the variance of the unobserved variables.
Since we assume s(i) ∼ N (0, I) in (A2) we scale the variance of the components of x(i) to 1,
accordingly.

Literature-derived pathways

In our BSS method we assume an initially known network that describes the dependencies
between the variables (genes). To derive such a network structure we use pathway information
from the Genomatix Pathway System (GePS) [3]. Based on the expression data from [1] the
database provides (amongst others) biological processes that are associated with changes between
treatment and control group. One highly significant pathway is “lymphocyte activation” (net1)
which consists of 91 genes and 138 edges (Figure 1b). For comparison we also investigate the
less significant sub-pathway “cell proliferation” (net2). Since no further information about the
strenght of interaction is available, we fix all egde weights at λij = 1/#{parents of vj}.

4 Results

In the following, we apply emGrade to the gene expression data and pathways from the previous
section and present our main findings.

Comparison of different networks

In a first investigation we apply emGrade to all patients LPS1-4 and PL1-4 separately. As
network structures we consider net1 and net2 and for comparison a network without any edges
(net0). If we fix one data set, we can compare the BIC values for different network structures
and different numbers of source signals q = 1, 2, 3, 4. Figure 2 indicates that for all data sets
the informative net1 is more appropriate compared to net0 (lower BIC values). Furthermore,
we find that for the treatment groups LPS1-4 a higher number of source signals is preferred.

Missing observation values

We now investigate the predictive power of our model for missing observation values. As already
stated in Section 2, we can easily treat missing observations as additional latent variables in our
Bayesian network. We therefore leave out the observation value for one gene in the data LPS1
and compare the estimate x̂(i) = Âŝ(i) + µ̂ to the true observation x(i). We assume net1 to
be the underlying network and use genes that are highly connected as well as genes that are
not connected. Figure 3 shows the Euclidean distances ‖x(i) − x̂(i)‖2 for 10 different missing
genes and for q = 1, 2, 3, 4 estimated source signals. For comparison we estimate parameters
and source signals from the complete data set. As expected, we find a better agreement of x̂(i)
with x(i) in this case.
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Figure 2: Comparison of different networks. The plots show the BIC values for patients
LPS1-4 (left) and PL1-4 (right) in case of q = 1, 2, 3 and 4 source signals. As network structures
we consider net0 and net1 and for LPS1-2 also net2. The different patients are coded in different
colors and the dots indicate the value for q with the lowest BIC value.
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Figure 3: Reconstruction of missing observation values. We consider data LPS1 where
we leave out the measurements of one gene, and we use net1 as network structures. We then
apply emGrade with q = 1, 2, 3, 4 sources (left to right). The stars illustrate the Euclidean
distances between the estimates x̂(i) = Âŝ(i) + µ̂ and the true observation values x(i) where we
consider different missing genes with high and low connectivity (degree). The solid lines show
the corresponding distances when x̂(i) is estimated from the complete data set.

The estimation of missing observations provides a useful feature in the present data situation:
The genes HLA-DRB1 and HLA-DRB3 from net1 are annotated to 5 and 2 probe sets of the
microarray chip. Gene filtering performed with the limma R-package omits these genes and one
does not know which probe set provides the most appropriate expression values. We therefore
treat both genes as missing observations and compare our estimates to the measurements of the
different probe sets. Table 1 shows the microarray measurements of all probe sets together with
our estimates. The comparison suggests to use the 4th probe set as observation for HLA-DRB1
and the 2nd probe set as observation for HLA-DRB3.
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HLA-DRB 1 HLA-DRB 3
time obs.1 obs.2 obs.3 obs.4 obs.5 est. obs.1 obs.2 est.
0h 4.99 5.23 5.26 5.20 2.46 5.44 5.20 2.46 2.52
2h 4.24 4.26 4.38 4.11 2.76 3.74 4.11 2.76 2.29
4h 4.26 4.65 4.47 4.43 2.54 4.66 4.43 2.54 2.81
6h 4.52 4.81 4.58 4.66 2.76 4.60 4.66 2.76 2.38
9h 4.66 5.21 5.22 5.04 2.62 5.15 5.04 2.62 2.61
24h 4.86 5.28 5.12 5.23 2.08 5.11 5.23 2.08 2.21

Table 1: Identification of the most appropriate microarray probe set. The table shows
the microarray measurements from LPS1 at all probe sets that are linked to the genes HLA-DRB1
and HLA-DRB3. If we treat both genes as missing observations we get estimated observations
(red). The comparison to the measurements identifies the most appropriate annotated probe set
for both genes (bold symbols).

Genes associated to source signals

Next, we determine key genes associated with the estimated source signals, and we compare
source signals that are estimated from different observations. Let sk = (sk(1), . . . , sk(N)) be an
estimated source signal. Based on a cut-off c > 0 we select all genes with absolute value larger
than c. This yields a set of key genes that characterize sk. With this we can compare key genes
of source signals that are estimated from different observations. We compare the treatment
groups LPS1-3 and the control groups PL1-3. Since the estimated source signals are unique only
up to sign and permutation we first align the source signals and minimize

min
P1,P2

{ ‖P1S1 − P2S2 ‖2 + ‖P1S1 − S3 ‖2 + ‖P2S2 − S3 ‖2 } .

Here, P1 and P2 are matrices with one entry ±1 per row and column and all other entries equal
to zero. Figure 4 illustrates the alignment of source signals and Figure 5 indicates that we have
a higher key gene agreement for the treatment groups LPS1-3 compared to the control groups
PL1-3. For the control groups only the network without edges (net0) yields a source with high
agreement of key genes.

5 Discussion and conclusion

In this manuscript we applied the recently developed blind source separation method emGrade

to gene expression data. The method aims to separate multivariate data with known network
structure into informative source signals. We discussed the pre-processing of publicly avail-
able microarray data consisting of treatment data LPS1-4 and control data PL1-4. From the
Genomatix database we derived the “lymphocyte activation” pathway which reflects differences
between the control and treatment group. We then applied emGrade to this data set.

In comparison to a network without egdes, the pathway information improved our estimates
and we found lower BIC values – this was true for the treatment and the control group. Never-
theless, the pathway information played a major role particularly for the treatment group where
more source signals were preferred. We further investigated the estimation of missing observa-
tion values. For two genes from the lymphocyte pathway standard annotation to one unique
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Figure 4: Alignment of source signals and intersection of key genes for LPS. For
patients LPS1, LPS2 and LPS3 and network structure net1 we determine the emGrade source
estimates. The plots on the left show the aligned source signals (different patients in different
colors) together with the selected key genes (dots). The horizontal red lines show the cut-off for
key gene selection. Solid vertical lines indicate genes that are key genes in the aligned sources
from all patients, dashed vertical lines indicate genes that are key genes in the aligned sources
from at least two patients. The bars on the right provide the counts of key genes in all estimates
(123) and the counts of key genes in two estimates (12), (13) and (23).

microarray probe set failed. When treated as missing observations emGrade could identify the
most appropriate annotated probe set in both cases. Finally, we characterized the estimated
source signals in terms of key genes, i. e. genes with high absolute value in the respective source
signals. We found a high number of key genes (per source) that were in agreement with LPS1-3.
For PL1-3 these numbers were lower. This might again indicate that the“lymphocyte activation”
pathway better explains the dynamics in the treatment group.

In our ongoing work we extend the proposed BSS model and consider different pathway
structures for each source signal. We aim to separate the data into a pre-defined set of path-
ways and determine the impact of the estimated source signals in terms of the graph-delayed
covariance.
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Maximum simulated likelihood
estimation of Thurstonian models

Manuela Cattelan, University of Padova, manuela.cattelan@unipd.it

Abstract. Thurstonian models are a class of models widely employed in psychometrics for the
analysis of preference data. These models assume that when some items are presented to a
subject, each of them elicits a continuous preference and the item with larger preference at the
moment of the comparison is the preferred one. Moreover, Thurstonian models assume that the
unobserved preferences are normally distributed in the population, and the main goal of the
analysis is the estimation of the mean and the covariance matrix of the stimuli produced by
the items compared. Such an estimation is awkward since it implies the computation of high
dimensional multivariate normal integrals. To overcome this difficulty, in the psychometric liter-
ature a limited information estimation method, that uses only marginal univariate and bivariate
probabilities, was proposed. We show that Thurstonian models for preference data can be esti-
mated using maximum simulated likelihood via the Geweke-Hajivassiliou-Keane algorithm. An
important advantage of this method is that the value of the likelihood function is available,
hence it can be used for other inferential purposes as hypothesis testing and model selection.

Keywords. GHK algorithm, maximum simulated likelihood, Thurstonian models

1 Introduction

The models introduced by Thurstone [9] are widely employed in the analysis of choice behavior,
with the aim of investigating preferences, attitudes and values of people. The items, which can
be physical objects, statements, values, etc., are compared in couples, and Thurstonian models
assume that each item presented to a judge elicits a continuous preference. The item that has
a larger preference at the moment of the comparison is the preferred one. Moreover, these
models assume that the unobserved preferences are normally distributed in the population.
Since the same item is involved in many paired comparisons, a complex structure of cross
dependence is originated. The difficulties associated with maximum likelihood estimation of
Thurstonian models fostered the proposal of alternative estimation methods based on low order
marginal distributions as limited information estimation [5, 6] and pairwise likelihood [1]. Here,
we propose the use of maximum simulated likelihood, in which the value of the likelihood function
is simulated via the Geweke-Hajivassiliou-Keane [10] algorithm. An important benefit of this
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method is that a (simulated) value of the likelihood function is available, and this can be used
for other inferential procedures.

In Section 2 Thurstonian models for paired comparison data are introduced and in Section
3 maximum simulated likelihood estimation through the Geweke-Hajivassiliou-Keane algorithm
is illustrated. Section 4 shows the results of two applications while Section 5 concludes.

2 Thurstonian models

Let Yijs, i = 1, . . . , n− 1, j = i+ 1, . . . , n and s = 1, . . . , S denote the result of the comparison
between items i and j performed by subject s. Yijs = 1 if subject s prefers item i, while Yijs = 0
if item j is preferred. If n objects are considered, the number of possible paired comparisons is
N =

(n
2

)
. It is assumed that every subject performs all the N paired comparisons.

Thurstonian models assume that the preferences for the items compared, T = (T1, . . . , Tn),
follow a multivariate normal distribution with mean µ = (µ1, . . . , µn) and covariance matrix
ΣT . Let ti be a realization of Ti, then in each paired comparison item i is preferred to j if
ti > tj , which is equivalent to zij = ti − tj > 0, where zij is a realization of Zij = Ti − Tj . This
specification assigns probability zero to inconsistent choices, which occur for example when item
i is preferred to item j, item j is preferred to item k, but item k is preferred to item i. Since
inconsistencies, also called circular triads, are not uncommon in paired comparisons, Takane [8]
proposes to add a vector of pair specific errors that give non-zero probabilities to circular triads.
Let Zs = (Z12 s, . . . , Zn−1n s) denote the vector of all latent variables pertaining to subject s,
then

Zs = AT + ε,

where ε = (ε12 s, . . . , εn−1n s) denotes the vector of pair specific normally distributed errors with
mean 0 and covariance matrix Ω, and A denotes the N × n design matrix, in which each row
denotes a paired comparison and each column represents an item. For example, if n = 4, then

A =



1 −1 0 0
1 0 −1 0
1 0 0 −1
0 1 −1 0
0 1 0 −1
0 0 1 −1

 .

Hence, the vector of latent variables related to subject s follows a multivariate normal dis-
tribution Zs ∼MVN(Aµ;AΣTA

′ + Ω). Thurstone [9] proposes various models with different
structures of the correlation matrix ΣT . In the unstructured model the elements of the covari-
ance matrix are not restricted, while Case III assumes that ΣT is a diagonal matrix, and Case V
assumes ΣT = σ2In, where In denotes the identity matrix of dimension n. In the applications
illustrated in Section 4, an unstructured covariance matrix is employed and it is assumed that
the pair specific errors have equal variance, hence Ω = ωIN .

Let Z∗s = D(Zs −Aµ) be the standardised version of the latent variable Zs, where D =
[diag(ΣZ)]-1/2 and ΣZ = AΣTA

′ + Ω denotes the covariance matrix of Zs. Then, Z∗s follows a
multivariate normal distribution with mean 0 and correlation matrix ΣZ∗ = DΣZD. Object i is
preferred to object j when z∗ijs ≥ τ∗ij , where the vector of the thresholds is given by τ ∗ = −DAµ.
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Then, the probability of the paired comparisons observed for subject s is

Ls(θ;Y s) =

ˆ
R12s

· · ·
ˆ
Rn−1n s

φN (z∗s; ΣZ∗)dz
∗
s,

where Y s = (Y12 s, . . . , Yn−1n s), θ denotes the model parameters, φN (·; ΣZ∗) denotes the density
function of an N -dimensional normal random variable with mean 0 and correlation matrix ΣZ∗

and

Rijs =

®
(−∞, τ∗ij) if Yijs = 0

(τ∗ij ,∞) if Yijs = 1.

The likelihood function is the product of the probabilities of the observations for all subjects

L(θ;Y ) =
S∏
s=1

Ls(θ;Y s).

Note that this approach requires the approximation of S integrals whose dimension is equal to
N = n (n− 1)/2, the number of paired comparisons, so its growth is quadratic with the increase
in the number of items.

Identification is an important issue in Thurstonian models [5, 12, 11, 7], indeed the model
requires some restrictions since only the thresholds τ and the tetrachoric correlations, which are
the elements of the matrix ΣZ∗ , can be identified. It can be shown [11] that n+2 constraints are
needed in order to identify the unstructured model. A first restriction is necessary to identify
the mean parameters; it is possible either to set one of them to zero, i.e. µn = 0, or to set∑n
i=1 µ = 0. Many different identification restrictions can be used for the covariance matrix, an

example is to set all the diagonal elements of ΣT to 1 and one off-diagonal element to 0. However,
the estimated parameters identify a class of covariance matrices since ΣT and ΣT + d1′ + 1d′,
where 1 is a vector of n ones and d is a vector of n constants, are not distinguishable, see [5, 1].

3 Estimation

Maximum likelihood estimation of Thurstonian models requires the approximation of multi-
variate normal integrals which can also be of large dimension. Such an approximation is quite
cumbersome, hence alternative estimating methods have been proposed. In the psychometric
literature, [5] suggests a limited information estimation method which uses only univariate and
bivariate marginals. This method is performed in three steps. In the first step the threshold
parameters τ are estimated from the univariate sample proportions, while in the second step,
given the estimated thresholds, the tetrachoric correlations are estimated using the bivariate
proportions. Finally, in the last step, the model parameters are estimated though minimisation
of the Mahalanobis distance between the estimated thresholds and tetrachoric correlations and
the corresponding model based quantities.

Another method based on low dimensional marginal distributions is proposed in [1], that
suggests a composite likelihood [14] approach. In particular, Thurstonian models are estimated
using the pairwise likelihood, which employs only marginal bivariate probabilities. The likeli-
hood function is replaced with a pseudo-likelihood function which is the product of all marginal
bivariate probabilities. Maximum pairwise likelihood estimation seems to perform well in a num-
ber of different Thurstonian models, see [1]. This method reduces noticeably the computational
burden since only bivariate normal probabilities are computed.
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Thurstonian models are a particular instance of the multivariate probit model, hence inferen-
tial methods developed for the probit model can be adapted to Thurstonian models. Multivariate
normal probabilities can be simulated via the Geweke-Hajivassiliou-Keane (GHK) algorithm [10].
This algorithm approximates the joint distribution of all the outcomes by sequential simulation
from univariate truncated normal distributions.

The implementation of the algorithm requires the assumption of an order for the preferences
expressed by a person. We choose to arrange the comparisons made by a person in lexicoghaphic
order of the first and then the second item. The GHK algorithm is a sequential importance
sampling algorithm based on drawing from the conditional density p(zijs|yijs, ζijs;θ), where ζijs
is the vector of latent variables Zkls preceding Zijs in the chosen order. In other words, the
GHK algorithm employs as importance density the normal density p(zijs|ζijs;θ) truncated over
the interval (δyijs , δyijs+1], where δ0 = −∞, δ1 = 0 and δ2 =∞.

Let mijs and vijs be the mean and the standard deviation, respectively, of the conditional
density p(zijs|ζijs;θ). Then, a draw from the importance density p(zijs|yijs, ζijs;θ) is obtained
by setting

zijs(uijs) = mijs + vijsΦ
−1{(1− uijs)lijs + uijsrijs},

where uijs is a draw from a random variable uniformly distributed in the unit interval, and
quantities lijs and rijs are defined as

lijs = Φ

Ç−δyijs −mijs

vijs

å
and rijs = Φ

Ç−δyijs+1 −mijs

vijs

å
.

Denote by z
(b)
ijs the bth draw from the above importance density (b = 1, . . . , B). The GHK

algorithm approximates the likelihood of the proposed paired comparison model by the Monte
Carlo sum

LGHK(θ;y) =
1

B

B∑
b=1


S∏
s=1

∏
ord(i,j)

p(z
(b)
ijs|ζ

(b)
ijs;θ)

p(z
(b)
ijs|yijs, ζ

(b)
ijs;θ)

 ,
where the product follows the predetermined comparisons order indicated by ord(i, j). The GHK
algorithm is popular in the econometric literature for approximate inference in multivariate
probit models; more details and references can be found in [10].

In the applications illustrated in Section 4, the GHK algorithm implemented in the R package
gcmr [4] is employed. The GHK algorithm provides an unbiased estimate of the likelihood func-
tion, but it is biased on the scale of the log-likelihood. Since it is more convenient to maximize
the log-likelihood, it is opportune to correct the bias of its importance sampling approximation.
For this purpose, in the gcmr package the correction suggested in [2] is implemented.

The performances of maximum simulated likelihood and limited information estimation are
compared in a simulation study using the same setting employed in [13]. There are six paired
comparisons involving four items, and every comparison is performed by 100 judges. The model is
parametrised in terms of differences with respect to a reference item, hence means and variances
of the differences T̃i = Ti − Tn, i = 1, . . . , n − 1, are estimated. The assumed parameters are
µ̃ = (−0.2, 1,−1.5) while the covariance matrix isÖ

1.5 1 1.3
1 4 2.5

1.3 2.5 3

è
,
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True LI GHK
value Mean Median Std. dev. Mean Median Std. dev.

µ̃1 -0.2 -0.226 -0.214 0.205 -0.216 -0.207 0.190
µ̃2 1 1.068 1.007 0.417 1.018 0.995 0.326
µ̃3 -1.5 -1.594 -1.531 0.489 -1.540 -1.507 0.346
σ̃2

1 1.5 2.058 1.579 1.967 1.690 1.492 1.040
σ̃2

2 4 5.342 4.372 4.424 4.333 3.909 2.252
σ̃2

3 3 3.913 3.190 3.170 3.282 2.914 1.785
σ̃12 1 1.340 1.059 1.443 1.094 0.952 0.823
σ̃13 1.3 1.716 1.387 1.476 1.414 1.246 0.906
σ̃23 2.5 3.351 2.724 2.673 2.697 2.457 1.407
b 0.5 0.720 0.577 0.820 0.559 0.520 0.448

Table 1: Averages (Mean), medians (Median) and simulation standard deviations (Std. dev.) of
parameters estimated by limited information estimation (LI) and maximum simulated likelihood
via the GHK algorithm (GHK).

and σ̃ij is used to denote the element in row i and column j of the above reduced matrix. The
covariance matrix used in [13] depends on a further parameter b whose value is set equal to
0.5. Table 1 shows means, medians and simulation standard deviations of limited information
estimation and maximum simulated likelihood estimates employing the GHK algorithm. The
maximum simulated likelihood estimates show a lower estimation bias and appear much more
precise than the limited information estimates.

4 Applications

The first application concerns preferences for compact cars. The data are analyzed in [6] and
they consist of paired comparisons among compact cars performed by Spanish college students
in order to investigate their purchasing preferences. The cars considered in the study are Citroën
AX, Fiat Punto, Nissan Micra, Opel Corsa, Peugeot 106, Seat Ibiza and Volkswagen Polo. All
the paired comparisons were performed by 294 students, hence the computation of the likelihood
function requires the approximation of 294 multivariate normal integrals of dimension 21. In
[6] a limited information estimation is employed. The maximum simulated likelihood estimates,
with standard errors in parentheses, of the mean and unstructured covariance matrix parameters
are reported in Table 2. The identification restrictions used are those employed in [6], specifically
the mean of the preference for Volkswagen Polo is set to 0, the variances of Citroën AX and
Volkswagen Polo are set to 1 and all the covariances with Volkswagen Polo are set to 0. Mean
estimates have to be interpreted relative to Wolkswagen Polo, the reference car. Only Seat Ibiza
has a mean significantly higher than Volkswagen Polo, while the mean for Peugeot 106 is not
significantly different from that of Volkswagen Polo. The least preferred car is Citroën AX.
The estimated common variance of pair specific errors is ω̂ = 0.31, with standard error 0.05.
Given the identification restrictions, significant positive covariances in Table 2 indicate that the
association between the utility of the two cars is stronger than the association between Citroën
AX and Volkswagen Polo. On the contrary, negative covariances denote an association which is
weaker than that between Citroën AX and Volkswagen Polo.
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AX Punto Micra Corsa 106 Ibiza Polo µ̂

Citroën AX 1 -1.41
(fixed) (0.12)

Fiat Punto -0.04 0.98 -0.53
(0.15) (0.31) (0.10)

Nissan Micra 0.31 0.10 1.90 -0.74
(0.18) (0.23) (0.45) (0.12)

Opel Corsa 0.23 -0.06 0.05 0.67 -0.27
(0.12) (0.17) (0.19) (0.23) (0.09)

Peugeot 106 0.31 0.00 0.26 0.16 1.21 -0.10
(0.15) (0.20) (0.24) (0.19) (0.36) (0.10)

Seat Ibiza -0.34 0.21 -0.39 -0.06 0.08 1.44 0.29
(0.18) (0.24) (0.22) (0.20) (0.24) (0.34) (0.11)

Volkswagen Polo 0 0 0 0 0 0 1 0
(fixed) (fixed) (fixed) (fixed) (fixed) (fixed) (fixed) (fixed)

Table 2: Maximum simulated likelihood estimates and standard errors of an unstructured
Thurstonian model for paired comparisons among compact cars.

The second application considered is a paired comparison study that investigates which
of five training delivery modes trainees prefer. The modes were computer-based (CO), TV-
based (TV), paper-based (PA), audio-based (AU) and classroom-based (CL) training. The
198 study participants were unemployed persons in the labour market training of the Austrian
labour market service. The data set is available in the R package prefmod [3]. We used the
same identification restrictions as those employed in the previous application. Estimates and
standard errors are shown in Table 3. Classroom-based training is the reference item; since all
the other means are negative, and significantly different from zero, classroom-based training is
the preferred training method, followed by computed-based, paper-based, TV-based and audio-
based training. Again, the significant positive association between computer-based and TV-
based training means that these two training methods have an association stronger than the
association between computer-based and classroom-based training. The estimate of the variance
of the pair specific errors is ω̂ = 0.38, with standard error 0.08.

5 Conclusions

Thurstonian models are widely employed in the analysis of choice behavior. However, these
models are quite difficult to estimate since maximum likelihood estimation requires the approx-
imation of high dimensional integrals, even for a small number of items compared. To overcome
this difficulty many authors have proposed alternative estimation methods that employ only
low dimensional marginal distributions, as pairwise likelihood or limited information estimation.
Here, we propose the use of maximum simulated likelihood, in which the value of the likelihood
function is simulated via the GHK algorithm for multivariate normal probabilities. This method
is computationally more expensive than estimating methods based on low dimensional distri-
butions, but it has the advantage of computing a likelihood function, so standard methods for
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CO TV PA AU CL µ̂

CO 1 -0.27
(fixed) (0.12)

TV 0.59 1.66 -1.10
(0.18) (0.42) (0.16)

PA -0.34 -0.37 0.00 -0.51
(0.16) (0.19) (0.22) (0.10)

AU 0.72 1.11 -0.34 1.55 -1.44
(0.17) (0.30) (0.19) (0.37) (0.17)

CL 0 0 0 0 1 0
(fixed) (fixed) (fixed) (fixed) (fixed) (fixed)

Table 3: Maximum simulated likelihood estimates and standard errors of an unstructured
Thurstonian model for paired comparisons among training delivery modes.

hypothesis testing and model selection based on the likelihood can be employed. Moreover, this
method can easily be extended to the case of ordinal data, when ties between items are allowed,
or when the results of the paired comparisons can be, for example, strong preference for an item,
mild preference for an item or indifference. The extension of maximum simulated likelihood es-
timation to instances in which subjects perform only a subset of the N paired comparisons is
straightforward.
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Abstract. The main objective of the present study is to investigate how robust multivariate
methods can contribute to characterizing relevant environmental conditions for the Site Index
of the Euclyptus globulus. Site Index is an important indicator of forest productivity and it is
affected by environmental properties of each geographical location. In order to identify which en-
vironmental variables are more relevant, a robust principal components analysis was conducted.
The use of the robust approach, when compared to the conventional one, resulted in a more re-
alistic structure of variability and showed some advantages. Moreover, collected data suggested
a grouping process. A cluster analysis was also accomplished considering both conventional and
robust procedures. Some practical difficulties arose with robust clustering methods; however
they resulted in some benefits, particularly in robust outliers detection.

Keywords. Cluster analysis, Eucalyptus globulus, outliers detection, principal components,
robustness, Site Index.

1 Introduction

Site Index (SI ) is an indicator used in forestry for the evaluation of the potential productivity
at a particular location or site. It is determined by the average height of the dominant trees on
the site at a given age and it expresses the quality of the tree stand (for instance, see [13]). The
age of the trees depends on the biological species. For the Eucalyptus globulus herein considered
it is ten years. Generally, SI is adopted for measuring the growth of the trees in the site, thus
being an important tool in forestry management for determining the economic value of a forest
or the interest in future stands (see [13, 16]).

SI depends on climate and environmental conditions, while it is barely affected by silviculture
conditions as stated in [16]. Thus, before taking management decisions, it is of major importance
to find the best set of available measures for characterizing the environment conditions in the
locations.

Several studies (for instance, [9] or [5]) concerning the empirical distribution and the predic-
tion of SI for other species of Eucalyptus are published in the literature, and also for different
geographical regions as Australia, Bolivia or Brasil (see [15], [10] or [12]). However, only a few
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papers (see [1]) are concerned with the SI of the Eucalyptus globulus in the European Union,
particularly in the Iberian countries, where there exists a large area devoted to commercial
forests. The present study aims to contribute to the knowledge of the main environmental vari-
ables that affect the SI ’s distribution of the Eucalyptus globulus in the Portuguese forest, which
represent about 26% of the Portuguese forest (according with the official report [14]). Other
authors used a traditional Principal Components Analysis (PCA) with similar purposes, but
those methods are not robust in sense that they are very sensitive to gross error observations,
as well as to extreme values and other deviations from the models. In the last decades, robust
statistical methods appeared as alternatives to the conventional statistic models and techniques.
In general, robust procedures lead to better results, but they also have the counterparts of more
computational complexity and less simplicity of interpretation. Thus they are not widely spread
among application fields like forestry, in particular. Besides, many robust procedures are current
fields of research and some future improvements will be welcome for simplicity of application.

In the following work we used conventional and robust multivariate methods. In the next
section we present the data and we summarize the methodology. The set of original variables
contained several correlated variables suggesting that a PCA should be used for reducing di-
mensionality. Also a preliminary data analysis pointed out for the existence of two groups of
seats, associated with the available water and humidity conditions. A cluster analysis was con-
sequently performed which confirmed the suspicious. When considering robust clustering it was
used the proposal of [8] which is based on a trimming process.

The remaining sections of this paper are devoted to the description of the data set, followed
by a brief review of the methods, a discussion of the results and some final comments.

2 Data description

The analyzed data was sampled in commercial pure Eucalyptus globulus stands in continental
Portugal, between 2000 and 2010 and according with international rules on the subject. The
data set consists of 3022 observations of SI and of 14 environmental variables, comprising cli-
mate indicators and soil characteristics. The choice of the variables took into account their
contribution for water availability to plants and their easy real access in collecting data, thus
ensuring operability of future modeling. Table 1 describes the variables whose measurements
were available, their abbreviation and their units system.

Some variables were initially transformed as recommended in specific literature. Namely,
a logarithmic transform was applied to the variable available water storage capacity, and Box-
Cox transforms were applied to the variables altitude, annual average precipitation and annual
average evapotranspiration (see [9] or [5]). The multivariate analysis proceed with the trans-
formed variables in place of the corresponding originals; they will be abbreviated, respectively,
by lnAwsc, tAlt, tPrec, tEvap.

An exploratory data analysis highlighted a set of potential outliers in the variable SI and, as
expected, high correlations between some other variables. It is also important to notice that the
empirical distribution of some variables like the precipitation along summer months, strongly
suggested grouping data in two (or more) groups.
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Variable Description Units

SI Site Index m
x latitude o (degrees)
y longitude o (degrees)
alt altitude m
dcl local slope %
exp exposition o (degrees)
Prof depth site cm
Pedreg stoniness %
prec annual average precipitation mm
dprec number of days with precipitation grater than 1 mm
prec678 average precipitation along summer months mm
evap annual average real evapotranspiration mm
tmin annual average minimal temperature Co

tmax annual average maximal temperature Co

awsc available water storage capacity mm

Table 1: Description of the variables with available measurements.

3 Methodology review

In this section we briefly review the supporting methods. PCA is probably the most spread
multivariate technique. Its main goal is to reveal relationships between observed p variables and
find the best linear transform of those variables such that the new k variables are uncorrelated
and can explain the most variability in data, reducing dimensionality if possible (k ≤ p). The new
variables are called the principal components (PC ) and their mathematical derivation assures
that they are ordered by decreasing importance in the explanation of the variability. Formally,
if X denotes an n× p data matrix, with (non singular) covariance matrix Σ with eigenvalues λj
and eigenvectors ej (j = 1, . . . p), each PCj has the form

PCj = ej
TX , (1)

where ej such that ‖ej‖ = 1 and cov(PCi, PCj) = 0 for every i 6= j, with i, j = 1, . . . p. Among
their properties it is convenient to remember that the variance of each PCj equals the eigenvalue
λj , also that summing those variances over j one obtains the trace of Σ and finally that the PCs
are not invariant. Last property is especially important for explaining the robust counterpart.
In fact, when data is standardized in a conventional way, the PCs are obtained by

PCj
∗ = ej

T (Σ
1/2
diag)

−1(X− µ) , (2)

where µ denotes the vector mean of the original data and the elements of the diagonal matrix

Σ
1/2
diag are the square roots of λj . The role of µ and Σ

1/2
diag is to correct the effects of location and

scale introduced by the standardization.
The lack of robustness of the location-scale traditional pair (mean vector, covariance matrix)

is well-known. The main idea for robustifying the PCA was to consider alternative robust pairs
of location-scale measures. Nowadays there exist many robust statistics that can replace that
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choice, like using a robust M-estimator for estimating the center of location together with a
robust covariance matrix estimator as, for instance, improved forms of the MCD (Minimum
Covariance Determinant) estimator. Other methods for robustifying PCA include those based
on projection pursuit algorithms (e.g. [2]) or those based on convex optimization for recovering
low-dimensional structure (e.g. [17]). In the statistical literature the main choices are sum-
marized in [4], a paper that gives an interesting review of robust regression and robust PCA
methods, which probably will contribute for a faster dissemination of statistical robustness.

As mentioned before, the study also included a clustering analysis. One of the most popular
methods for grouping data is the so-called k-means, a non-hierarchical method for partition of
data. Assuming a priori the existence of k groups, the method looks for the location center of
each group mj and assigns each sample point xi ∈ Rp to the nearest center, thus including the
observation in that group. The minimization process that seeks the center points is accomplished
with the Euclidean norm, as the solution of

arg min
m1,...,mk

n∑
i=1

min
j=1,...,k

‖ xi −mj ‖2 . (3)

The method is not robust, primarily due to the least squares criterion. Moreover, the choice
of the number k of clusters is often a difficult decision that can be worsened when data contains
outliers.

Looking for robust alternatives, one can use the trimming algorithm proposed by [8] and
later improved as in [6]. This method is based on the original proposal [3] that combines con-
ventional k-means with a trimming procedure, which was later improved by considering robust
Mahalanobis distances (with an efficient robust scale estimator). It is a very attractive robust
clustering method since it has good statistical properties and its computational counterpart is
well systematized. Nevertheless, for practical purposes the investigator user can be faced with
important troubles inherent in the method: besides the (almost) always subjective choices of the
number of clusters k and the proportion α of trimming, it is also necessary to take decisions in
advance about specific constrains related with shapes and structure of the covariance matrices
of the clusters and relations among its eigenvalues. Actually, specific tools are implemented for
helping in the choice of the pair (α, k) but the remainder decisions constitute a serious difficulty
in many practical situations.

4 Results

As already mentioned, having in mind a fast evaluation of the conditions that might affect SI,
as well as eventual future modeling of the distribution of this variable, was a main goal of the
present case study to identify the most important environmental variables, so that a location
can be characterized in terms of those indicators.

From empirical knowledge and a preliminary data analysis, two main suspicions were drawn:
hight correlation between some variables and possible need of considering at least two clusters
of locations. Actually, correlation analysis was conducted with both the conventional empirical
correlation matrix and using robust Fast-MCD estimator method; the correlations were generally
low when relating SI with any other variables (less than 40%), against several great values in
the correlations tables corresponding to some climate variables (greater than 90%, as expected).
That scenario of dependence was strengthened by the robust approach.
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The study continued with a PCA applied to the set of original and transformed variables
(except SI ), aiming the identification of the main variables. For the conventional approach, data
was standardized in the usual way by the sample mean and standard deviation, while for robust
approach the standardization was achieved with the pair median and median absolute deviation
(MAD) (recommended, for instance, in [11]).

The two first components together explained more than 70% of the variability (72% and
75%, respectively, by conventional and robust techniques). Interpreting the loadings in the con-
ventional PCA, one can point out two factors: the first one might traduce climate conditions
related to water and humidity; and the second factor that might be associated with soil char-
acteristics, in particular its capacity of retaining the water. Those conclusions were also valid
when using robust approach; moreover, the latter still highlights the significative contribution
of two more variables, namely, altitude in PC1 and depth in PC2. Notice that these last two
variables were not relevant by the conventional process, but the conclusions are coherent with
empirical forestry knowledge and it seems to mean that robust approach describes better the
structure of variability in data. Figure 1 and Figure 2 show the biplots with conventional and
robust PC s.

Figure 1: Biplots obtained by conventional PCA (on the right) and by robust (on the left) PCA.

Another advantage of the robust treatment was in outliers detection. Actually, since robust
statistics are less sensitive to anomalous points, potential outliers are much more evidenced. The
geographical locations corresponding to the outliers was verified and it was possible to confirm
in the field the outlying environmental conditions.

Also notice that both images in Figure 1 seem to show two clusters. A cluster analysis was
experimented with two to four groups. There was no clear advantage in considering more than
two groups, so that was the option, moreover because the choice of two clusters is well supported
by practice. Figure 2 shows the conventional corresponding clusters in the (PC1, PC2) plane.

Actually, a map can show that the clusters correspond to geographical distinct areas, namely,
north, and center and south of the country, with different climatical conditions.

When considering robust clustering, the option was for trimmed clustering. As mentioned
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Figure 2: Clusters obtained by conventional k-means.

before, the process has some advantages but also some difficulties.

One of the main advantages from a practical point of view is the existence of a package
produced for the method in the R software environment, the tclust package (see [7]), since all
computations were accomplished with R software. Unfortunately the package is not available
when writing the present text.

The problems related with the choice of the number of clusters k and the trimming proportion
α are attenuated by an auxiliary tool, which graphically represents the CTL (Classification
Trimmed Likelihood) curves; in the present case there was already the conjecture of 2 clusters, but
the trimming proportion it was not pointed out by the CTL curves, for any number of clusters.
In such a case the decision can be uncomfortably subjective. In this particular example it was
decided to exclude 5% of the observations, since there was 4% of points identified as outliers in
the PCA.

There are two more crucial practical options for using the method, which emerge from theo-
retical constrains and which are difficult to interpret for general users, especially because options
must be taken before clustering: the question of similar structure of the clusters covariance ma-
trices and shape of the clusters and, finally, the choice of a constant that should traduce a
relative measure of clusters dispersion. In what concerns the shape of the cluster the basic con-
figuration was used, which is based on the analysis of the eigenvalues. For deciding the constant
value that controls the relative differences among scatter clusters, and since there was not pre-
vious nor auxiliary information, the clusters produced by k-means were used in the estimation
of the eigenvalues of the robust clusters covariance matrices (in this case it returned the value
restr.fact = 43).

Finally notice that the package creates an additional auxiliary cluster consisting of the de-
tected outliers, thus presenting a more clear separation of the groups. Figure 4 maps the results
of the robust clustering with two clusters. The resulting geographical clustering was very good
in dividing the country into two regions almost disjoint. Detection of outliers was also very
precise, since outlier points were confirmed and all of them were located in seats with special
climate and/or altitude characteristics.
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Figure 3: Geographical location of clusters points by the robust approach with outliers evidenced
by dark triangles.

5 Concluding remarks

The PCA was very useful in profiling environmental properties that affect SI, particularly with
a robust approach, which seems to describe in a more realistic way the relative importance
of some variables. The first two PC can explain 75% of the variability, from which 50% is
attributed to climate conditions. From those PC s it was possible identify two factors with
real meaning, namely, water climatic disposability and capacity of soil for retaining the water.
Robust clustering confirmed that it is worthwhile to consider two groups of seats associated with
the two main regions of the country and shoed to have a good capacity for outlier detection.

From a practical point of view it is still not straightforward to use robust clustering methods
and it is desirable to develop auxiliary statistical tools which might give more support to the
user.

The main goal of the present study was to identify the most important environmental vari-
ables in the characterization of the sites. But there is an evident interest in the future modeling
of the SI ; thus, a robust PC regression will be the natural future step. Since present clustering
was performed after PCA, conclusions herein obtained were prepared for constituting a first
stage towards that future modeling.
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Abstract. Despite the increasing popularity of quantile regression models for continuous re-
sponses, models for count data have so far received little attention. The main quantile regression
technique for count data involves adding uniform random noise or “jittering”, thus overcoming
the problem that the conditional quantile function is not a continuous function of the parameters
of interest. Although jittering allows estimating the conditional quantiles, it has the drawback
that, for small values of the response variable Y, the added noise can have a large influence on
the estimated quantiles. In addition, quantile regression can lead to “crossing” quantiles. We
propose a Bayesian Dirichlet process (DP)-based approach to quantile regression for count data.
The approach is based on an adaptive DP mixture (DPM) of COM-Poisson regression models
and determines the quantiles by estimating the density of the data, thus eliminating all the
aforementioned problems. Taking advantage of the exchange algorithm, the proposed MCMC
algorithm can be applied to distributions on which the likelihood can only be computed up to a
normalising constant.

Keywords. Quantile regression, Bayesian density regression, Bayesian nonparametrics, Dirich-
let processes, COM-Poisson distribution

1 Quantile regression

Quantile regression was introduced as a nonparametric method for modelling a variable of inter-
est as a function of covariates [6]. By estimating the conditional quantiles rather than the mean,
it gives a more complete description of the conditional distribution of the response variable than
least squares regression, and is especially relevant in certain types of applications.

Consider a random variable Y with cumulative distribution function F (y). The pth quantile
function of Y is defined as

Q(p) = inf{y ∈ R : p ≤ F (y)} (1)
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and can be obtained by minimising the expected loss E[ρp(Y − u)] with respect to u, where
ρp(y) = |y(p − I(y < 0))|. The pth sample quantile is obtained in a similar way by minimising∑n
i=1 ρp(yi − u).

Suppose that the pth conditional quantile function, QY (p|X = x), is a linear function of the
predictors so that QY (p|X = x) = X ′βp. The parameter estimates β̂p are then obtained as

β̂p = arg min
βp∈Rk

n∑
i=1

ρp(Y −X ′βp). (2)

A closed-form solution for this minimisation problem does not exist since the objective function
is not differentiable at the origin, and it is solved using linear programming techniques [1].

Quantile regression for count data

The problem with applying quantile regression to count data is that the cumulative distribution
function of the response variable is not continuous, resulting in quantiles that are not continuous,
and which thus can not be expressed as a continuous function of the covariates. One way to
overcome this problem is by adding uniform random noise (“jittering”) to the counts [7]. The
general idea is to construct a continuous variable whose conditional quantiles have a one-to-one
relationship with the conditional quantiles of the counts. Defining the new continuous variable
Z = Y + U where Y is the count variable and U is a uniform random variable in the interval
[0, 1), the conditional quantiles QZ(p|X = x) = p+ exp(X ′βp).

The variable Z is transformed in such a way that the new quantile function is linear in the
parameters, i.e.QT (Z;p)(p|X = x) = X ′βp where

T (Z; p) =

®
log(Z − p) for Z > p,

log(ς) for Z ≤ p, (3)

with ς being a small positive number. The parameters βp are estimated by running a linear
quantile regression of T (Z; p) on x. Finally, the conditional quantiles of interest, QY (p|X = x)
can be obtained from the previous quantiles as

QY (p|X = x) = dQZ(p|X = x)− 1e (4)

where dpe denotes the ceiling function which returns the smallest integer greater than, or equal
to, p.

While the jittering approach eliminates the problem of a discrete response distribution, for
small values of the response variable Y , the mean and the variance in the transformed variable
Z will be mainly due to the added noise, resulting in poor estimates of the conditional quantiles
QY (p|X = x). As an example, when Y = 0 the term log(Z−p) = log(U −p) could go from −∞
to 0, simply due to the added noise. In addition, quantile regression can suffer from the problem
of crossing quantile curves, which is usually seen in sparse regions of the covariate space. This
happens due to the fact that the conditional quantile curve for a given X = x will not be a
monotonically increasing function of p.

Another approach would be to view the counts as ordinal variables with fixed thresholds and
then model the new latent variable by an infinite mixture of normal densities [5]. Instead of
using the aforementioned methods, we propose an adaptive Dirichlet process mixture approach
which estimates the conditional density of the data. The approach is based on an adaptive
Dirichlet Process mixture (DPM) of COM-Poisson regression models.
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2 COM-Poisson distribution

The COM-Poisson distribution [2, 11] is a two-parameter generalisation of the Poisson dis-
tribution that allows for different levels of dispersion. The probability mass function of the
COM-Poisson(λ, ν) distribution is

P (Y = y|λ, ν) =
λy

(y!)ν
1

Z(λ, ν)
where Z(λ, ν) =

∞∑
j=0

λj

(j!)ν
and y = 0, 1, 2, . . . (5)

for λ > 0 and ν ≥ 0, where the normalisation constant does not have a closed form and has to
be approximated numerically. The extra parameter ν allows the distribution to model under-
(ν > 1) or over-dispersed (ν < 1) data, having the Poisson distribution as a special case (ν = 1).

The above formulation of the COM-Poisson does not have a clear centering parameter since
the parameter λ is close to the mean only when ν takes values close to 1, which makes it difficult
to interpret for under- or over-dispersed data. Substituting the parameter λ with µ = λ

1
ν , where

bµc is the mode of the distribution

E[Y ] ≈ µ, V[Y ] ≈ µ

ν
(6)

and the new probability mass function is

P (Y = y|µ, ν) =

Å
µy

y!

ãν 1

Z(µ, ν)
where Z(µ, ν) =

∞∑
j=0

Ç
µj

j!

åν
and y = 0, 1, 2, . . . (7)

Mixtures of COM-Poisson distributions

The COM-Poisson is flexible enough to approximate distributions with any kind of dispersion
in contrast to a Poisson or a mixture of Poisson distributions which can only deal with overdis-
persion.

The two parameters of the COM-Poisson distribution allow it to have arbitrary (positive)
mean and variance; one can obtain a point mass by letting the variance parameter ν tend
to infinity. Thus one can show that mixtures of COM-Poisson distributions can provide an
arbitrarily precise approximation to any discrete distribution with support N0, which is why
COM-Poisson distributions are used by our method. All other generalisations of the Poisson
distribution we are aware of do not have this property.

COM-Poisson regression

A regression model can be defined based on (7), in which both the mean and the variance
parameter are modelled as a function of covariates:

logµi = xᵀiβ (8)

log νi = xᵀic (9)

where Y is the response variable being modelled, and β, c are the regression coefficients for
the centering link function and the shape link function respectively. The parameters in this
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formulation have a direct link to either the mean or the variance, providing insight into the
behaviour of the response variable. Notably,

E[Yi] ≈ exp(x′iβ), V[Y ] ≈ exp(x′iβ)

exp(x′ic)
= exp(x′i(β − c)). (10)

The calculation of the normalisation constant of the COM-Poisson distribution is the compu-
tationally most expensive part of the proposed regression model. It can be seen, in the next
subsection, that this calculation is redundant.

Exchange algorithm

Any probability density function p(y|θ) can be written as

p(y|θ) =
qθ(y)

Z(θ)
(11)

where qθ(y) is the unnormalised density and the normalising constant Z(θ) =
´
p(y, θ) dy is

unknown. In this case the acceptance ratio of the Metropolis-Hastings algorithm is

α = min

Ç
1,
qθ∗(y)π(θ∗)Z(θ)h(θ|θ∗)
qθ(y)π(θ)Z(θ∗)h(θ∗|θ)

å
(12)

where π(θ) is the prior distribution of θ. The acceptance ratio in (12) involves computing
unknown normalising constants. Introducing auxiliary variables θ∗, y∗ and sampling from an
augmented distribution

π(θ∗, y∗, θ|y) ∝ p(y|θ)π(θ)p(y∗|θ∗)h(θ∗|θ) (13)

results in

α = min

Ç
1,
p(y|θ∗)π(θ∗)p(y∗|θ)h(θ|θ∗)
p(y|θ)π(θ)p(y∗|θ∗)h(θ∗|θ)

å
(14)

= min

Ç
1,
qθ(y

∗)π(θ∗)h(θ|θ∗)qθ∗(y)Z(θ)Z(θ∗)

qθ(y)π(θ)h(θ∗|θ)qθ∗(y∗)Z(θ∗)Z(θ)

å
(15)

= min

Ç
1,
qθ(y

∗)π(θ∗)qθ∗(y)

qθ(y)π(θ)qθ∗(y∗)

å
(16)

where the normalising constants cancel out and h() is a symmetric distribution [9, 8]. In order
to be able to use this algorithm one has to be able to sample from from the unnormalised
density which in the case of the COM-Poisson distribution can be done efficiently using rejection
sampling.

Updating the parameter µ of the COM-Poisson we have θ = (µ, ν) and θ∗ = (µ∗, ν) where
µ∗ follows a Normal distribution centered at µ and

qθ(y
∗) =

Ñ
µ
y∗i
i

y∗i !

éνi

qθ∗(y) =

Ç
(µ∗i )

yi

yi!

åνi
(17)

qθ(y) =

Ç
µyii
yi!

åνi
qθ∗(y

∗) =

Ç
(µ∗i )

y∗i

y∗i !

åνi
(18)

Likewise for updating the parameter ν.
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3 Bayesian density regression

Density regression is similar to quantile regression in that it allows flexible modelling of the
response variable Y given the covariates x = (x1, . . . , xp)

′. Features (mean, quantiles, spread)
of the conditional distribution of the response variable, vary with x, so, depending on the
predictor values, features of the conditional distribution can change in a different way than
the population mean. The difference between density regression and quantile regression is that
density regression models the probability density function or probability mass function rather
than directly modelling the quantiles.

Bayesian density regression for count data

This paper focuses on the following mixture of regression models:

f(yi|xi) =

ˆ
f(yi|xi, φi)Gxi(dφi) where f(yi|xi, φi) = COM-P(yi; exp(x′ibi), exp(x′ici)) (19)

the conditional density of the response variable given the covariates is expressed as a mixture of
COM-Poisson regression models with φi = (bi, ci) and Gxi is an unknown mixture distribution
that changes according to the location of xi.

MCMC algorithm

Let θ = (θ1, . . . , θk)
′ denote the k ≤ n distinct values of φ and let S = (S1, . . . , Sn)′ be a vector

of indicators denoting the global configuration of subjects to distinct values θ, with Si = h
indexing the location of the ith subject within the θ. In addition, let C = (C1, . . . , Ck)

′ with
Ch = j denoting that θh is an atom from the basis distribution, G∗xj . Hence CSi = Zi = j
denotes that subject i is drawn from the jth basis distribution.

Excluding the ith subject, θ(i) = θ\{φi} denotes the k(i) distinct values of φ(i) = φ\{φi},
S(i) denotes the configuration of subjects {1, . . . , n}\{i} to these values and C(i) indexes the
DP component numbers for the elements of θ(i).

Grouping the subjects in the same cluster and updating the prior with the likelihood for the
data y, we obtain the conditional posterior

(φi|S(i),C(i),θ(i),X, a) ∼ qi0Gi,0 +
k(i)∑
h=1

qihδθ(i)
h

, (20)

whereGi,0(φ) is the posterior obtained by updating the priorG0(φ) and the likelihood f(yi|xi, φ):

Gi,0(φ) =
G0(φ)f(yi|xi, φ)

hi(yi|xi)
, (21)

qi0 = cwi0hi(yi|xi), qih = cwihf(yi|xi, θh), (22)

wi0 =
n∑
j=1

abij

a+
∑
l 6=i 1(C

(i)

S
(i)
l

= j)
, wih =

b
i,C

(i)
h

∑
m6=i 1(S

(i)
m = h)

a+
∑
l 6=i 1(C

(i)

S
(i)
l

= Ch)
, h = 1, . . . , k(i) (23)

where bij are weights that depend on the distance between subjects’ predictor values and c is
a normalising constant. Since there is no closed form expression for the posterior distribution,
approximation of the probability qi0 = cwi0hi(yi|xi) is difficult.
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We overcome this problem by bridging: i) an MCMC algorithm for sampling from the pos-
terior distribution of a Dirichlet process model, with a non-conjugate prior, found in [10]; ii) the
MCMC algorithm found in [3]; and iii) a variation of the MCMC exchange algorithm.

Algorithm 3.1.
The MCMC algorithm alternates between the following steps:

Step 1: Update Si for i = 1, . . . , n, by proposing, from the conditional prior, a move to a new
cluster or an already existing cluster with probabilities proportional to wi0 and wih for
h = 1, . . . , k(i).

a) If the proposed move is to go to a new cluster we draw parameters (µ0, νo) for that
cluster from G0 and at the same time sample an observation y∗ from the COM-
Poisson(µ0, ν0). The acceptance ratio of the Metropolis-Hastings algorithm is

min

Ç
1,
qθ(y

∗)qθ∗(y)

qθ(y)qθ∗(y∗)

å
(24)

If the proposal is accepted, CSi ∼ multinomial ({1, . . . , n}, bi).
b) If the proposed move is to an already existing cluster h, we sample an observation y∗

from the COM-Poisson(µh, νh) and accept with the same probability as in (24). If the
proposal is accepted CSi = Ch.

Step 2: Update the parameters θh, for h = 1, . . . , k by sampling from the conditional posterior
distribution

(θh|S,C,θ(h), k,y,X) ∼
∏

i:Si=h

f(yi|xi, θh)}G0(θh), (25)

using the Metropolis-Hasting algorithm with acceptance probability as in (16).

Step 3: Update Ch, for h = 1, . . . , k, by sampling from the multinomial conditional with

(Ch|S,C(h),θ, k,y,X) ∼
∏
i:Si=h bij∑n

l=1

∏
i:Si=h bil

, j = 1, . . . , n (26)

and location weights γj for j = 1, 2, . . . , n, using an approach used in [4].

4 Simulations and application

We consider two simulated data sets to compare the proposed discrete Bayesian density regres-
sion method to the “jittering” method. These are

Yi|Xi = xi ∼ Binomial(10, 0.3xi) (27)

Yi|Xi = xi ∼ 0.4Pois(exp(1 + xi)) + 0.2Binomial(10, 1− xi) + 0.4Geom(0.2) (28)

where xi ∼ Unif(0, 1). Table (1) shows the absolute mean errors obtained using both methods.
If qp is the true conditional quantile when x = p and q̂p is the estimated conditional quantile, the
mean absolute error is defined as E[|qp − q̂p|]. The discrete Bayesian density regression (BDR)
estimates outperform the “jittering” method and in almost all cases the “jittering” method leads
to crossing quantiles (except when n = 500).
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Method Number of Observations

Binomial Mixture
20 100 500 20 100 500

Density Regression 0.5576 0.2820 0.2421 0.7435 0.5833 0.3589
Jittering (linear) 0.5256 0.8461 0.4765 1.1923 0.6666 0.4294
Jittering (splines) 0.7820 0.5128 0.3020 1.9487 0.8269 0.3910

Table 1: Mean absolute error obtained using the different density/quantile regression methods.

We apply the discrete density regression technique to data on housebreakings in Greater
Glasgow (Scotland). The data consist of the number of housebreakings in each of the 127 inter-
mediate geographies in Greater Glasgow in 2010. We aim to relate the number of housebreakings
to the deprivation score of the intermediate geography area, as measured by the Scottish In-
dex of Multiple Deprivation (SIMD). The deprivation score is standardised by considering the
difference of each intermediate geography’s deprivation from the average deprivation in Greater
Glasgow e.g. low values relate to affluent areas, large values to deprived areas. The solid and
dashed lines in figure 1 show the quantiles (for p = 0.1, 0.5, 0.95) obtained for the standard
Poisson regression model and the COM-Poisson model respectively. The first model is not able
to capture the overdispersion of the data, nor the skewness of the distribution.
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Figure 1: Estimated quantiles for housebreaking data, using discrete Bayesian density regression
(dashed lines) and derived from a Poisson model.

5 Conclusions and further research

In this manuscript we have proposed a novel Bayesian density regression technique for discrete
data which is based on mixing COM-Poisson distributions. The new method takes advantage of
the exchange algorithm and updates the cluster allocations by drawing a new allocation for an
auxiliary observation and then accepting or rejecting it. As a result the MCMC samples from
the target distribution without the need to estimate the normalisation constant of the likelihood.
The method overcomes the two main drawbacks of the “jittering” method for discrete quantile
regression, namely that it does not require the addition of artificial additional noise and that it
does not suffer from the problem of crossing quantiles. We have illustrated the method in a real
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world application as well as simulated examples in which our method compared favourably to
the “jittering” method. Further research efforts will be devoted in improving the computational
speed and efficiency of the MCMC algorithm to make it an even more attractive alternative to
“jittering”.

We would like to thank the anonymous referee for his suggestions and comments.
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Score Function of Distribution and
Heavy-tails

Zdeněk Fabián, Inst. of Computer Science ASCR, zdenek@cs.cas.cz

Abstract. In this contribution we explain the recently introduced notion of the distribution-
dependent scalar-valued score function of distribution. Function and its moments are used for
description of continuous distributions and data samples generated from them. Each distribution
including the heavy-tailed ones and random samples from them are described by a typical value
and variability. Further, we discuss the generalized (score) moment estimates and a distribution-
dependent score correlation coefficient for continuous random variables, and present results
of simulation experiments with data generated from heavy-tailed distributions. Since score
functions of distribution of heavy-tailed distributions are bounded, the point estimates as well
as the sample score correlation coefficients are insensitive to outliers.

Keywords. Score function, Point estimation, Correlation, Heavy-tailed distributions.

1 Introduction

Statistical estimation is typically based on averaging functions generally called score functions.
In the classical parametric setup are observed data x1, ..., xn taken as realizations of random vari-
ables X1, ..., Xn iid according to F , where F is assumed to be a member of a regular parametric
family FX = {Fθ : θ ∈ Θ ⊆ Rm} with support interval X ⊆ R and densities f(x; θ). The result
of the inference procedure is the density f(x) ≈ f(x; θ̂n) where θ̂n is the estimate of the true
θ with suitable properties. During the estimation procedure the observed data are ’treated’ in
accordance with the model, that is, inserted into some type of score functions describing relative
influence of observations with respect to the estimated characteristic of the model distribution.
Thus, there are not the random variables themselves entering into inference procedure, but the
’latent’ values of the corresponding score functions. However, the vector nature of the Fisher
(maximum likelihood) score functions of classical statistics does not enable a consistent use
of this point of view and scalar-valued score functions of robust statistics are often in a loose
relation to the assumed model.

As a remedy of this ’state of the world’ we have constructed in [1], [2] and [6] a scalar-valued
score function reflecting the model, with the mathematical form depending on the support inter-
val X . It was derived by means of transformations from the score function SG(y) = −g′(y)/g(y)
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of ’prototype’ distribution G with support R. In some cases the new function equals the Fisher
score for the central parameter of the distribution, in other ones it is yet an unknown function.

2 Score function of distribution

By ΠX is denoted the set of distributions with (finite or infinite) interval support X and regular
in the sense stated later. Let f(x) be the density of F ∈ ΠX and η : X → R be a smooth strictly
increasing mapping. Let g be the density of some G ∈ ΠR such that

f(x) = g(η(x))η′(x) (1)

where the Jacobian of the transformation η′(x) = dη(x)/dx. G is called the prototype of F .
We noticed that any distribution with support X 6= R can be taken as a transformed proto-

type.

Definition 2.1. We say that η : X → R is Johnson’s mapping if

η(x) =


x when X = R

log(x− a) when X = (a,∞)

log (x− a)

(b− x)
when X = (a, b).

(2)

Theorem 2.2. For any X ∈ R, the decomposition of density f(x) of any regular F ∈ ΠX into
form (1) is unambiguous.

Proof. Either η(x) and/or η′(x) in formula (1) are clearly identifiable, or f(x) is to be written
in the form

f(x) =
1

η′(x)
f(x)η′(x) (3)

where η′(x) is the derivative of the Johnson’s mapping for the given X .
The ’right’ η(x) is called the innate mapping. Often, η(x) and/or η′(x) in the formula

(1) can be easily recognized. For instance, distribution from Π(−π/2,π/2) with density f(x) =
1√

2π cos2 x
e−

1
2

tan2 x is in the form (1) with innate mapping η(x) = tanx, the density of the

inverse gamma distibution from Π(1,∞) is f(x) = cα

Γ(α)(log x)α−1 1
xc+1 = cα

Γ(α)(log x)α 1
xc

1
x log x with

innate mapping η(x) = log log x and the density of the loglogistic distribution from Π(0,∞),

f(x) = c
x

(x/τ)c

[(x/τ)c+1]2
has η′(x) = 1/x. The density of the exponential distribution from Π(0,∞)

cannot be decomposed into (1); by Theorem 2.2 it is to be written as f(x) = e−x = xe−x 1
x .

Johnson’s mappings (2) as ’default innate mappings’ are used not only due to the principle of
parsimony (they are the simplest possible mappings η : X → R), but, as it is seen from the Table
1, due to reasonable consequences as well: the score functions of distribution of the exponential
and uniform distributions are, when using (2), linear. Another examples are given in [6].

Definition 2.3. Let F ∈ ΠX has density f(x) and η : X → R be the innate mapping. Set

TF (x) = − 1

f(x)

d

dx

ñ
1

η′(x)
f(x)

ô
. (4)

Let the solution x∗ to the equation
TF (x) = 0 (5)
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be unique. x∗ is called the score mean, and function

SF (x) = η′(x∗)TF (x) (6)

is the score function of distribution F (sfd of F ).

Let us explain the concepts introduced so far. If random variable Y has distribution G ∈ ΠR,
random variable X = η−1(Y ) has distribution F = G ◦ η with density (1). The first term on the
right hand side of (1) contains probabilistic information about X, whereas the second term η′(x),
the Jacobian of a (virtual) transformation, is carrying information about X only and masking
the genuine change of the statistical content of f(x) and is to be removed before differentiation
with respect to variable in (4). By [1], TF (x) = SG(η(x)).

3 Description of distributions by sfds

Let F ∈ ΠX . The regularity conditions are: f is differentiable according to the variable a.e., the
density g of prototype distribution G is differentiable and unimodal, and ES2

G <∞.
The score moments

ESkF =

ˆ
X
SkF (x)f(x) dx (7)

in cases of regular distributions exist and are usually given by simple expressions, since SF ’fits’
the distribution F , as is apparent from (4) and (6).

The score mean is taken as the typical value of a distribution: score mean y∗ = µ of a
location prototype distribution Gµ ∈ ΠR with sfd

SG(y − µ) = −g
′(y − µ)

g(y − µ)
= 0

is the mode, the sfd of F ∈ ΠX given by F = G ◦ η is

SF (x; τ) = SG(η(x)− η(τ))

where we set τ = η−1(µ). Parameter τ is actually the transformed location of the prototype. It
was shown in [1] or [6] that for distributions with transformed location (considered by us as the
’central parameter’ of the distribution) it holds

∂

∂τ
log f(x; τ) = SF (x; τ),

which entitles the removing of η′(x) in (4). In a general case, x∗ is the transformed mode y∗ of
the prototype, x∗ = η−1(y∗), cf. [1], which may or may be not a component of θ, and sfd is the
generalized Fisher score for x∗.

The value ES2
F is interpreted as Fisher information for x∗ or even as Fisher information of

distribution F . Its reciprocal value, which we call the score variance,

ω2 =
1

ES2
F

, (8)

has been suggested in [2] as a measure of variability of F . The values x∗(θ) and ω2(θ)) can
be used instead of the mean value and variance (which may be infinite in cases of heavy-tailed
distributions) as representatives of the center and variability of distributions.
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4 Example: Description of two heavy-tailed distributions

Fréchet distribution from Π(0,∞) with density

f(x; τ, c) =
c

x

Å
x

τ

ã−c
e−(x

τ
)−c τ, c > 0, (9)

is an example of a distribution with transformed location parameter τ (its prototype is the
extreme value distribution with location parameter). The distribution has mean EX = τΓ(1−
1/c) and variance V arX = τ2[Γ(1−2/c)− (EX)2], existing only if c > 1 and c > 2, respectively.
By (4)-(6), its sfd

SF (x; τ, c) =
c

τ
[1− (τ/x)c]

equals the Fisher score function for τ . Fisher information for τ is ES2 = (c/τ)2 so that the
score variance ω2 = τ2/c2 describing variability is proportional to the square of the score mean,
similarly as the variance. However, it is finite.

Beta-prime distribution (beta distribution of the second kind) from Π(0,∞) with density

f(x; p, q) =
1

B(p, q)

xp−1

(x+ 1)p+q
, p, q > 0 (10)

where B is the beta function, is an example of a distribution without central parameter. Its
mean EX = p/(q − 1) and variance V arX = p(p + q + 1)/[(q − 1)2(q − 2)] exist only if q > 1
and q > 2, respectively. By (4), TF (x; p, q) = qx−p

x+1 , the score mean is thus x∗ = p/q and the sfd

SF (x; p, q) =
q2

p

x− x∗
x+ 1

(11)
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Fig. 1. Densities and sfds of two heavy-tailed distributions.
is different from both Fisher scores for p and q. (11) can be taken as the generalized Fisher
score for the ’center’ x∗ = p/q of the distribution. Since ET 2

F = pq/(p + q + 1), the variability

of the distribution is described by the score variance ω2 =
Ä
p
q

ä2 (p+q+1)
pq , proportional to (x∗)2

again. The density (10) in the form f(x; 1, c) appears to be the density of the ’ shifted’ Pareto
distribution.

Densities and sfds of both distribution with x∗ = 1 and the same various values of ω are in
Fig. 1.
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Zdeněk Fabián 661

5 Point estimation

Let θ ∈ Θ ⊆ Rm and X1, ..., Xn be random variables iid according F ∈ mathcalF § = {Fθ, θ ∈ Θ}.
The finite counterpart of parametric score moments ESkF (θ) given by (7) are the generalized
moment equations defining the score moment estimator

θ̂n :
1

n

n∑
i=1

SkF (xi; θ) = ESkF (θ), k = 1, ...,m, (12)

which is a special form of the m-dimensional M-estimator.
In some particular cases equations (12) are especially simple. While score moment equations

for parameters are to be solved by an iterative way, sfd of some (one-parameter or even two-
parameter) distributions can be written in the form SF (x;x∗), where x∗ = x∗(θ), so that the
first score moment equation (12) sounds

n∑
i=1

SF (xi;x
∗) = 0 (13)

and the estimate x̂∗ of x∗ is efficient, cf. [7].
In a general case, score moment estimates are not efficient, but since SF (x; θ) is a scalar-

valued function (even if θ is a vector), they have a remarkable advantage with respect to the
maximum-likelihood estimators: for distributions with bounded sfd are robust to outliers for all
the components of θ; in cases of unbounded sfds can be relatively easily modified by some of
robust approaches, cf. [8], see [6]. It should be said that in cases of heavy-tailed distributions,
an outlier means an extremely large value generated, however, in accordance with the model.

In the case of the beta-prime distribution with typical value x∗ = p/q, the sample score mean
(typical value of the sample) can be estimated from (13) having a simple form

n∑
i=1

xi − x∗
xi + 1

= 0,

that is, by an explicit formula. Some examples of other distributions with the sample score mean
expressed by explicit formulas are given in Table 1.

X F f(x) SF (x) x∗ x̂∗

R normal 1√
2π
e−

1
2

(x−µ
σ

)2 1
σ
x−µ
σ µ x̄

(0,∞) gamma γα

xΓ(α)x
αe−γx γ2

α (x− x∗) α
γ x̄

(0, 1) beta xp−1(1−x)q−1

B(p,q) (p+ q)(x− x∗) p
p+q x̄

(0,∞) lognormal 1√
2πx

e−
1
2
c log2(x

τ
)c c log(xτ )c τ Πn

i=1xi

(0,∞) Weibull c
x(xτ )ce−(x

τ
)c c

τ [(xτ )c − 1] τ ( 1
n

∑n
i=1 x

c
i )

1/c

(1,∞) Pareto c/xc+1 c2(1− x∗

x ) c+1
c x̄H

R extr. value 1
σe
−x−µ

σ e−e
−x−µσ 1

σ (1− e−x−µσ ) µ −σ log( 1
n

∑n
i=1 e

−xi/σ)

Table 1. Density, sfd, score mean and sample score mean of some distributions. x̄G and x̄H
denotes the geometric and harmonic mean, respectively, σ in the case of extreme value and c in
the case of the Weibull distribution are supposed to be known constant.
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No matter by which method has the parameter vector been estimated, the sample score
mean and the sample score variance can be constructed as x̂∗n = x∗(θ̂n) and ω̂2

n = ω2(θ̂n),
respectively, giving a possibility to describe data samples by their typical value and dispersion
under the assumption of the model FX . This approach guarantees an easy comparison of results
of the estimation for various assumed models with a different type and a different number of
parameters.

6 Score correlation coefficient

Let X and Y be random variables with supports XX and XY , respectively, with joint distribu-
tion FXY , marginal densities fX(x), fY (y) and marginal sfds SX(x), SY (y). Let us denote by
ρP (X,Y ) Pearson’s correlation coefficient.

The distribution-dependent measure of association of random variables, the score correlation
coefficient, has been defined in [4] as

ρF (X,Y ) = ρP (SX , SY ). (14)

Given a random sample (x1, y1), ..., (xn, yn) from some F assumed to be member of a parametric
family FXY (θX , θY ), the sample score correlation coefficient is given by

rF =

∑
SX(xi; θ̂X)SY (yi; θ̂Y )»∑
S2
X(xi; θ̂X)

∑
S2
Y (yi; θ̂Y )

, (15)

where θ̂X and θ̂Y are the estimates of vectors of parameters of marginal distributions.
To model association of random variables X and Y , we set in simulation experiments

Y = αX + (1− |α|)Z (16)

where X and Z were generated independently from the same distribution. The theoretical value
of the correlation coefficient is

ρ = ρ(X,Y ;α) = α/
»

2α2 − 2|α|+ 1.

Samples were generated from different distributions with increasing variability of distribu-
tions described by ω by setting θ = θ(x∗, ω). For each sample (of length n = 75) were computed
also Pearson’s correlation coefficient, Spearman’s rank coefficients, Kendal’s tau and the robust
correlation coefficient with Huber’s score function (each computed by means of the Statistical
toolbox from MATLAB), averaged after 104 replications for each ω and plotted against ω for
data generated from various distributions. For distributions with ’mild’ non-symmetry (that is,
for distributions with support X = R and the gamma, Rayleigh and Maxwell) were all averages
roughly equal to the theoretical value: correlation properties overcome the structure of distri-
butions. However, correlation coefficients in cases of highly non-symmetric distributions with
support X = (0,∞) are strongly dependent on the variability of the distribution described by ω.
In cases of heavy-tailed distributions (as Fréchet, beta-prime and Pareto), Pearson’s coefficients
with quickly increasing MSEs with increasing ω are of no use as well as Kenndal’s tau with
queer results even for small ω. Correlation coefficients capable to detect association of random
variables with heavy-tailed distributions are the score correlation coefficient (rF ), the Spearman
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rank coefficient (rS) and, to a certain extent, robust correlation coefficients (rR). A simulation
study of the behavior of these three correlation coefficients with increasing variability of the
beta-prime distribution is given in Fig. 2.
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Fig. 2. Average sample correlation coefficients of heavy-tailed distributions in increasing
variability of distributions.

The clearly apparent tendency with increasing variability of distributions is that both rF and
rS possess a strong positive bias in cases of small values of ρ (with less biased rF ), and strong
negative bias if ρ approaches to 1 (with less biased rS), with splitting value about ρ = 0.5.
This behavior is, unfortunately, unfavorable to attempts to find the true value of correlation
of random variables with heavy-tailed distributions. In cases of heavy-tailed distributions we
do not recommend robust correlation estimates since they are too dependent on the percent of
trimming used according to [9]. By using two versions presented in Fig. 2, with score function
ψ(x) = const. if |ψ(x−med(x))| ≥ 3ω without trimming (R0) and with 20% trimming (R0.2),
we obtained quite dissimilar results.

7 Conclusions

By introducing the score function of distribution we obtained new characteristics of distributions,
the score mean (center) and score variance (variability), finite even for heavy-tailed distributions.

@ COMPSTAT 2014



664 Score Function of Distribution

It enables to view data from heavy-tailed distributions as data from regular distributions.
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Abstract. In this study, we aim to develop a methodology that merges Dynamic Time Warping
(DTW) and consensus clustering in a single algorithm. Mostly used time series distance measures
require data to be of the same length and the distance between time series data mostly depends
on the similarity of each coinciding data pair in time. DTW is a relatively new measure used
to compare two time dependent sequences which may be out of phase or may not have the
same lengths or frequencies. However, DTW is a similarity measure that is employed for single
variable with standard clustering methods rather than consensus clustering. Thus our motivation
is to create an algorithm that can combine the benefits of the DTW with benefits of consensus
clustering, which will also provide a solution for multivariate applications. We present the results
of our study both with simulated data and well known datasets from the literature.

Keywords. Consensus Clustering, Ensemble Clustering, Dynamic Time Warping, Time Series
Clustering

1 Introduction and Motivation

Clustering is the activity of unsupervised grouping of data points into classes so that the similar
objects will be in the same cluster. There are varieties of clustering methods extensively used
in literature such as k-means, hierarchical clustering, graph partitioning and so on. Since each
method depends on different rationale, the results obtained from their use usually may not be
the same. This situation leads to some confusion regarding which one gives the best clustering
result. The common practice is to find the overlapping classes generated by different clustering
methods and determine the non-overlapping observations. However, we may not come up with
a solid solution with this approach. Alternatively, domain knowledge if available can be utilized
to resolve this problem.

Consensus clustering is an attempt to solve this problem objectively; it tries to combine
multiple clusterings of a dataset into one consolidated clustering. Consensus clustering method-
ologies offers benefits such as improved quality of solution, improved robustness against wide
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ranges of datasets, elimination of the model selection process, knowledge reuse, distributed clus-
tering and effective consolidation of clusters depending on different views of data having multiple
features [4].

Employing the clustering algorithms requires comparing two objects, thus one needs a dis-
tance (similarity) measure to define how much similar those two objects are. Commonly used
similarity measures are Euclidean distance, Minkowski distance, Pearson’s correlation coefficient
and related distances, short time series distance and so on [7]. Mostly used time series distance
measures require data to be of the same length and measure the distance between time series
data mostly dependent on the similarity of each coinciding data pair in time. Dynamic Time
Warping (DTW) is a relatively new measure used to compare two time dependent sequences
with data which may be out of phase or may not have the same lengths or frequencies. DTW
aligns two time series data so that the distance between them is minimized [7]. In literature
DTW provided successful results when used for classification applications [5], while in this study
it is used for clustering applications.

In this study, we aim to develop a methodology that merges DTW and consensus clustering
in a single algorithm. DTW is a similarity measure that is employed for single variable with
standard clustering methods rather than consensus clustering. Thus our motivation is to create
an algorithm that can combine the benefits of the DTW with benefits of consensus clustering,
which will also provide a solution for multivariate applications. In literature, time series cluster-
ing algorithms are used for several application areas like medicine, signal processing, economics,
bio statistics and so on [6]. So we believe our approach with the DTW consensus clustering will
also be applicable to those application areas.

2 Dynamic Time Warping

Dynamic Time Warping algorithm is a time-series similarity measure, which can be used for
data that may be out of phase or may not have the same lengths or frequency for that matter.
DTW algorithm can be summarized as follows;

Step 1. Generating the Cumulative Distance Matrix: The first step is to compare each
point in one time series data with every other point in the second time series data, generating a
matrix. So the cumulative distance between time series data points is calculated using dynamic
programming technique.

Given two time series X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn) the cumulative distance
matrix can be found using Equtions (1), (2) and (3). In those equations, the Euclidian distance
between two data points is normally used for defining d(xi,yi).

dtw(1, j) = d(xi, yi) + dtw(1, j − 1) , (1)

dtw(i, 1) = d(xi, yi) + dtw(i− 1, 1) , (2)

dtw(i, j) = d(xi, yi) + min{dtw(i− 1, j − 1), dtw(i− 1, j), dtw(i, j − 1)} (3)

In the above formulation one step dynamic programming is used, however the depth (time
window) of algorithm can be defined specific to the problem nature. The Euclidean distance
measure can be seen as a special case of DTW with step size being equal to zero. However, this
special case can only be defined when the two time series have the same length.
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Step 2. Finding The Optimal Path: The optimal warping path is the minimum distance
path on the cumulative distance matrix. The minimum distance path is a sequence of points
p = (p1, p2, . . . , pQ), with pl = (i, j) ∈ [1 : n] × [1 : m] for l ∈ [1 : Q] (with Q being the total
number of points in the path) , i ∈ Z, j ∈ Z and l ∈ Z, satisfying the following conditions [9]:

• Boundary condition:The starting and ending points of the warping path must be the
first and the last points of aligned sequences, p1 = (1,1) and pQ = (n,m).

• Monotonicity condition: n1 ≤ n2 ≤ · · · ≤ nQ and m1 ≤ m2 ≤ · · · ≤ mQ. This
condition preserves the time-ordering of points.

• Step size condition:Limits the warping path making big shifts in time while aligning
sequences. Step size condition can be formulated as pl+1 − pl ∈ {(1, 1), (0, 1), (1, 0)} for a
single step size.

So starting in reverse order with pQ = (n,m) and finishing with p1 = (1,1) the simple
procedure for the optimal path is described in Eqution (4) [10]:

pl =


(1, j − 1) if i = 1,
(i− 1, 1) if j = 1,
argmin{dtw(i− 1, j − 1), dtw(i− 1, j), dtw(i, j − 1) otherwise.

 (4)

3 Consensus Clustering

In literature, the idea of using several runs of one or more clustering algorithms, different param-
eters of an object or dataset resamples, to create better clusters is know as consensus clustering,
clustering aggregation or in other words ensemble clustering. In this study we will use the
term ‘consensus clustering’ to indicate this idea. However the only reason for using consensus
clustering is not only to obtain better clustering. Ghosh et al. [4] and Ghaemi et al. [2] lists
other reasons to use consensus clustering as: improved quality of solution, novelty, stability,
elimination of model selection, knowledge reuse, multiview clustering, distributed computing
(parallelization).

Consensus clustering is generally a two-stage approach. First stage is to create diversity of
clustering and the second stage is to obtain a consensus across those diverse solutions by utilizing
an algorithm. Diversity can be achieved by several mechanisms [4] [2]: using different clustering
algorithms,using different initialization points or parameters, using different subsets of data or
creating resamples from the original data and using different features of data.

In this study, the consensus methodology developed by Monti et al. [8] is used. This method-
ology uses a resampling-based approach for class discovery and clustering validation. Monti et
al.s’ study provides a method to represent the consensus across multiple runs of clustering al-
gorithms [8]. This approach is an coassociation matrix based approach for consensus clustering.
Monti et al. [8] expressed their motivation for the proposed methodology as to increase the
robustness and stability of clusters to sampling variability. They have also explained that their
method can also be used to represent the consensus over multiple runs of a clustering algorithm
with random restart so as to account for the sensitivity to the initial conditions. Even though
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it was not mentioned in their paper, their approach is also suitable for obtaining a consensus
result for different clustering algorithms, as it is suggested by Simpson [11]. Also it is suitable
for multiview (multivariate) clustering, giving way for the utilization of different features of the
data.

So Monti et al.s’ proposed methodology, by using different clustering algorithms, different
initialization points or parameters, different features of data and resamples from the original
data, has the benefits of ‘Improved Quality of Solution,’ ‘Novelty,’ ‘Robust Clustering’ and ‘Sta-
bility’. In this study, we use this proposed approach for achieving a consensus clustering result,
by also including the usage of different clustering algorithms. This consensus clustering approach
can simply be summarized as follows [8]:

For a selected bootstrapping technique with different clustering algorithms and number of
clusters;

1. Resample the dataset for h iterations (in our case the square distance matrix developed
by DTW will be resampled).

2. Select a number of clustering algorithms for the consensus solution,
K={k-means,Agglomerative Nesting}

Starting from the first clustering algorithm, k=1, repeat Step 3 and 4 for all the clus-
tering algorithms:

3. Apply the clustering algorithm to each and every resampled dataset.

4. Compute the consensus clustering matrix using all the runs (each and every resampled
dataset) from the same algorithm. Here, the consensus clustering matrix for the kth

clustering algorithm can be generated using the following equation:

C∗k(i, j) =

∑
hC

h
k (i, j)∑

h I
h
k (i, j)

(5)

Here, Ckh is the connectivity matrix corresponding to the hth iteration of the kth clustering
algorithm, where

Chk (i, j) =

®
1, if item i and j belongs to the same cluster,
0, otherwise.

´
(6)

Furthermore, Ikh is the indicator matrix corresponding to the hth iteration of the th clus-
tering algorithm such that

Ihk (i, j) =

®
1, if item i and j are present in the same resampled dataset,
0, otherwise.

´
(7)
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5. Combine the consensus clustering matrices obtained for each algorithm using weights (wk)
in order to form the following merged matrix C∗

C∗(i, j) =
∑
k

wkC
∗
k(i, j) (8)

6. Use the merged matrix C∗ as a similarity matrix and obtain the final clustering solution.

4 Multivariate Problems

As mentioned earlier, one of the benefits offered by consensus clustering is to obtain a single
consolidated partition by effectively combining all the clusterings of different aspects of the data.
For the multivariate case there can be several different approaches to tackle the problem. This
study deals with the following two approaches:

Combining the similarity matrices into a single merged similarity matrix and
obtaining the clusters with the consensus clustering algorithm: As for each variable
before creating a consensus solution with the algorithm defined in previous section, one can
create an ensemble using the similarity matrices of each variable using the DTW methodology.
This can be simply done by using Equation (9), where DTWn represents the similarity matrix
for the nth variable:

DTW Merged =

∑N
n=1DTWn

N
(9)

Combining the merged matrix of each variable and obtaining a final consensus
clustering: It is also possible to use the same approach defined in the previous section to
obtain the ensemble of variables using the merged matrices of the consensus algorithm (see
Figure1).

In that case one can obtain the final merged matrix using Equation (10), where represents
the merged matrix for the nth variable obtained by using the consensus clustering algorithm:

C∗(i, j) =

∑N
n=1C

∗
n(i, j)

N
(10)

5 Experimentation

In order to test our proposed approach we have experimented with four distinct datasets. Two
of those datasets were created specific for this study. The other two datasets are used in the
literature for testing of the classification algorithms for time series data. Those two datasets are
Synthetic Control Dataset and Daily and Sports Activities Dataset [1].

In literature Agglomerative Hierarchical clustering and k-means clustering algorithms with
Euclidian distance measure are the mostly used algorithms for time series data clustering analy-
sis. Hence we have used those algorithms in order to compare the performance of theirs to that
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Figure 1: Final Merged Matrix

of our proposed algorithm. Initially we will discuss the performance of just DTW as a time series
distance measure when compared to that of the Euclidian distance measure. For that purpose
we will be using different window sizes (namely, window sizes 1, 2, 3, 4 and 5).

For obtaining consensus clustering merged matrices, we have utilized the R Package that
was created by Simpson [11]. For all datasets we have used Agglomerative Nesting (Hierarchical
Clustering), Partitioning Around Medoids, Divisive Analysis Clustering and k-means as different
clustering algorithms within the consensus clustering algorithm. All four clustering algorithms
were equally weighted for calculation of the final consensus clustering merged matrix.

For most of the cases we experimented with, DTW provides better results than the Euclidian
Distance measure. Mostly usage of window size equal to one provides better results than the
usage of other window sizes. However, consensus clustering with DTW is computationally very
expensive when compared to the usage of Euclidian Distance and the conventional clustering
algorithms. Thus this feature makes it harder to work with large datasets having too many time
series samples and data points. Also in some cases the performance difference is around 1%,
which makes it unnecessary to use both DTW and Consensus Clustering simultaneously.

But in all the cases we experimented with, when used with consensus clustering DTW per-
forms better than Euclidian Distance measure, both regarding the errors and cluster discoveries.
In addition, generally k-means (both as conventional clustering algorithm and final clustering
algorithm for consensus clustering) is better in performance (errors and the number of clusters
detected truly) compared to hierarchical clustering when DTW is used as a distance measure.

Also, dataset we have created backed up our initial expectation that DTW would perform
better with data having phase shifts. This point is open for further experimentation with
simulated datasets as the phase shift properties of real datasets are hard to observer if it wasn’t
considered in the data collection and mentioned in the dataset description.

Finally it should be mentioned that all this conclusions are dependent on the dataset’s
properties and need to be experimented with more data in detail in order to be expressed firmly.
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(a) Agglomerative Nesting (AGNES) (c) Consensus Clustering (AGNES) 

  
(b) k-means (d) Consensus Clustering (k-means) 

 

Figure 2: Example for Error Rates with Respect to Window Size and Number of Clusters

6 Conclusion and Future Work

Our initial suggestion was that, better clustering results can be obtained by using a similarity
measure (DTW for our study) that is suitable for time series data, rather than simple distance
measures (Euclidian Distance Measure etc.) used for common applications. So in this study
we have discussed the use of DTW as a similarity measure for time series data in clustering
applications and whether it performs better or not. Results of our experimentation showed that
even though DTW is computationally very expensive, for most of the cases we experimented with
DTW provides better results than the Euclidian Distance measure. As a feature work it will be
also beneficial to use additional distance measures (cross-correlation etc.) to compare with DTW.
In addition to our discussions with DTW we also discussed consensus clustering in this study.
Regarding our experimentation, DTW with consensus clustering performs better than Euclidian
Distance measure. However in some cases the performance difference was not beneficial enough
to use both DTW and Consensus Clustering, due to time consuming computations. With the
use of consensus clustering we also introduce to methodologies for multivariate clustering using
DTW.
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Abstract. A feature of Big Data is variety . We sometimes retrieve information based on
many kinds of descriptions related to one’s purposes. In SDA, description is a key issue for
modeling objects. In this paper, we discuss the analysis for mixed-type data, which consist of
different types of descriptions including sets of scalars, intervals, distributions and functions.
We develop the method for analyzing relations among the descriptions, such as linearity, with
PCA techniques. As an actual example, we analyze the monitoring data of environmental radio
activity levels in Fukushima prefecture in Japan. The data are collected by various processes.
We adopt the proposed method to the datasets from air borne monitoring survey, vehicle-borne
survey, and stationary measurements on monitoring posts. We give the three descriptions for
each city (as a concept): ”Radio activity levels measured by air borne monitoring survey”,
”Radio activity levels measured by vehicle-borne survey” and ”Radio activity levels measured on
monitoring posts”. We investigate the relations among them.

Keywords. BigData, Fukushima, environmental data, PCA, Correlation

1 Introduction

We come to utilize much more large and complex data than before. The emergence of cloud base
systems bring us a potential to deal with Big Data. From the life science to the social science,
the many have a great interest in it. Big Data is usually characterized by 3V - Volume, Velocity,
Variety. Typically, ”Volume”claims inexhaustible storages and fast retrieval, ”Velocity”demands
efficient data processing and algorithms for the analysis, and ”Variety” requires effective data
modeling in the sense of the database architecture or the analyzing methodology.
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From the view point of data analysis, ”Variety” is challenging since there could be statistically
new problems. In conventional data analysis, we deal with data which usually consists of scalar
values. However, as application areas are growing, we need to treat the structured data instead
of scalars, such as functional data, symbolic data including intervals, trees, modal, distributions
etc. More recently, statistical analysis for topological manifold is studied.

In actual situations, it is often that we need to represent the objects by the various types
of descriptions. However the treatment (and / or) interpretations of such data is usually diffi-
cult. One of the toughness stems from the nature of unstructured data, that is, we could not
perform the usual operations such ordering and arithmetic etc. To deal with the difficulties,
we pay attention to dissimilarities that are often commonly observable even when the data are
unstructured.

In this paper, we focus on the dependency between descriptions and develop the method to
analyze the their linear dependencies. The presented method could work with a various case of
the mixed-type data. We also show the actual example, by applying the method to environmental
radio activity level data related to the accident on Fukushima nuclear power plant.

SDA as a tool for Big Data

Here we briefly introduce the SDA related to Big Data and define some terminologies that we
use later.

The reason why Big Data have variety is from unstructured data. That is, we could not deal
with the data by the typical format of p variate n vectors. Actually, it is often the case that
the data are intractable with missing and ill-formed. This force us perform the data ”cleaning”
where we usually ”exclude” or ”coerce” those values into simple alternatives.

In the frame work of SDA, we could naturally deal with complex data that does not have the
form of p variate n vectors. The observations are considered to consist from two levels, called 1st
level individual and 2nd level individual. 1st levels individuals are the most primitive observations
such as points of p dimensional n vectors in Euclidean space. However, we could possibly consider
observations equipped with more complex structures like intervals. Such objects are called 2nd
level individuals.

In SDA, we often deal with the sets of 2nd level individuals such as categories, classes and
concepts, and we call those sets Concept space. The concepts have structured variations in their
own. To represent such data, we give descriptions to concepts, the mapping defined on concepts
space to intervals, modal, distributions, functions and tree etc.

Under the framework, we think that we would naturally deal with the complex data and at
the same time, we could also enhance the value of messy data by suitably abstracting the 1st
level individuals.

In this paper, we deal with the concepts and consider the mixture of various descriptions,
called ”mixed-type data”.

2 Analysis of mixed-type data

We assume that the concept space C and concepts are denoted as ci ∈ C for i = 1, 2, . . . , n. We
define descriptions Ym : C → Sm for m = 1, 2, . . . , p where Sm are description spaces. We put
description vector for each concept by Y (ci) = (Y1(ci), Y2(ci), . . . , Yp(ci)).
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For each description, we define dissimilarity measure dm : C × C 7→ R+ for Ym. We de-

note d
(m)
k,l = dm (ck, cl). We have dissimilarity matrix defined on Ym. We put the matrix by

D(m) = {d(m)
k,l ; k, l = 1, 2, . . . , n}. We make the configurations in a space such as Euclidean

space from the dissimilarity matrices D(m)(m = 1, 2, . . . , p).
In this paper, we consider the configurations in Euclidean space from each D(m)(m =

1, 2, . . . , p). We exploit Multidimensional scaling(MDS) technique and this time, we adopt
the classical metric MDS. We put the number of dimensions to be configured as km and con-

figurations as X(m) =
(
X

(m)
1 , . . . , X

(m)
km

)
. As a whole, we recover the Euclidean space with

RM = R
∑p

m=1 km , denoted by:

X :=
Ä
X(1), X(2), . . . , X(p)

ä
=
(
X

(1)
1 , X

(1)
2 , . . . , X

(1)
k1
, X

(2)
1 , X

(2)
2 , . . . , X

(2)
k2
, . . . , X

(p)
1 , X

(p)
2 , . . . , X

(p)
km

)
.

We adopt X as a probe for analyzing the structure of mixed-type data.
Here we focus on the dependent structure of mixed-type data through recovered space X.

Although there are several ways for investigating the dependencies, we exploit PCA technique.
The standard PCA technique is to project high dimensional data to linear subspaces with or-
thogonal lower dimensions, preserving as much variance in original spaces as possible. The
resulting spaces are spanned with some eigenvectors of covariance matrix.

We define (
∑p
m=1 km)× (

∑p
m=1 km) covariance matrix

Σ = (X − E[X])T (X − E[X]) (1)

The eigen equation is
γlΣ = γlal, (2)

where γl (1 ≤ l ≤
∑p
m=1 km; γ1 ≥ γ2 ≥, . . . ,≥ γkm) is a eigenvalue, and al is a corresponding

eigenvector. Since it is known that γl corresponds to the variance in the space al, the explained
variance in the subspace spanned by first maximal N eigenvectors is given by

νN =

∑N
l=1 γl∑M
l=1 γl

, (3)

where 0 ≤ νN ≤ 1.

Dissimilarity measures

In the procedure introduced in the previous section, we must primarily choose(or define) dissim-
ilarity measure for each description. Important dissimilarity classes that would be applicable to
a various type of descriptions are Gowda-Diday[5] and Ichino-Yaguchi[6]. The general definition
of dissimilarity measure for compositional data was proposed[5], which consists of the measure
for location, span and contents. [6] proposed the cartesian space model equipped with the op-
erations of cartesian product and join on which Generalized Minkowski distance is introduced.
The dissimilarity measures for the intervals, modal, histograms and taxonomical trees would
fall into these two classes. As for other generalized dissimilarities measures such as Generalized
Hasudorff distance, we refer [1, 2, 4]. Here, we show some typical examples.

Example 1.(Interval)
Suppose A,B are intervals, i.e., A = [la, ua], B = [lb, ub]. la, lb are lower bound of A, B, and ua,
ub are upper bound of A, B. Then dA,B = (|la − lb|+ |ua − ub| − 2|max(la, lb)−min(ua, ub)|).
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Example 2.(Distribution)
Suppose A,B are distributions. Wasserstein metric could be adopted. Suppose Yi and Yj are
random variables of A and B, and corresponding distribution function are Fi and Fj . Then

d(A,B) =
´ 1

0 |F−1
i (q)− F−1

j (q)|2dq.

Example 3.(Function)
L2-norm is often used. When the function is defined on L = [a, b](a, b ∈ R, a < b), for the t ∈ L:

d(fi, fj) =
´ b
a |fi(t)− fj(t)|2dt.

3 Fukushima radio activity level data

Just after the accident of nuclear power plant in Fukushima prefecture in Japan that is triggered
by the big earthquake in eastern area of Japan 2011.3.11, the government collect a huge amount
of environmental data to evaluate the radio activity levels (http://radioactivity.nsr.go.jp/
en/). A various types of measurements have been performed from view point of the many-sided.
Some measurements are aimed at the spatially exhaustive investigation, or some are aimed at
monitoring the levels in long term(or short term).

Comparing the datasets from the many measurements is one of the important task. However,
in most case, we have serious difficulties to deal with the datasets since each measurement
have been performed independently, the spatially covered ranges are different in each time, the
measuring locations are different etc. Besides, we face with the situation such that some types
of data are reasonably described by distributional type, however, some other data should be
represented as functional type.

Here, we focus on the three datasets, i.e., ”Vehicle borne survey”, ”Air borne survey” and
”Monitoring post”, that all measure the radio activity level in Fukushima prefecture (http:
//radb.jaea.go.jp/mapdb_prev/en/). ”Vehicle borne survey” measured the levels along with
roads by the cars. ”Air borne survey” has been conducted to measure the levels from the
helicopters over the prefecture. ”Monitoring post” is aimed at real time monitoring the levels
with sensors, and the sensors are placed more than 3000 points. Those sensors send their data
via the Internet every 10 minutes.

We assume the concepts are cities (wj ∈ Ω, j = 1, 2, . . . , 55) and we give the three descriptions
for each city, Y1(wj)=Measurement by vehicle borne survey, Y2(wj) =Measurement by air borne
survey and Y3(wj) =Measurement by monitoring post.

Figure 1 shows the heat maps of radio activity levels, left side shows measurements by air
borne around December 2012 and right side shows measurements by vehicle bores around the
period from November to December 2012 (http://ramap.jmc.or.jp/map/eng/). Black lines
in figure 1 left side shows the tracks of air borne where measurements points.

Figure 2 shows the generalized data by each descriptions. We describe Y1 and Y2 as distri-
butions, and Y3 as functions. As for monitoring post data, we extract period from November to
end of December 2012. We randomly chose 10 sensors in each city and get mean functions. We
would like to know the correlations between descriptions.

One of the way is to use means within concepts. The correlations using means are shown in
table 1. However, this approach is not enough to take consider the dispersions within concepts.
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We adopt the proposed method. We define the dissimilarity for Y1, Y2 by Wasserstein dis-
tance, and for Y3 by L2-norm distance. Table 1 and figure 3 and show the result of MDS. From
the each eigenvalues, each description could approximately be configured by the dimensions;
k1 = 1, k2 = 1 and k3 = 2. The monitoring post is represented by two dimensions in the euclid
space although each of Y1 and Y2 is represented by one dimension. The correlations between
sets of variables are not straightforward. Then PCA is adopted to analyze the linear depen-
dency(Table 3, Figure 4). The result don’t show the clear linearity between descriptions. It
indicates that the three measurements performed on a city do not have almost nothing to do
with each other. From the figure 4, we could find outliers such as naraha (top right), koriyama
(bottom left), kawamata (top left). Investigating their data, narahara includes large values in air
borne survey, koriyama includes them in vehicle borne surveys and kawamata does in monitoring
post.

Figure 1: Heat maps of radio activity levels. The left side shows the measurements by air borne
survey performed around December 2012. Black lines show the tracks of helicopters where the
measurements are performed. The right side shows the measurements by vehicle borne survey.
Both survey were performed in the period from November to December 2012.

4 Concluding Remarks

In the paper, we proposed the novel approach to mixed-type data that consist of various data
representations such as functional and distributional data. We especially aimed at the correla-
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Figure 2: Symbolic data tabs consisted of three descriptions

Table 1: Correlation of the descriptions using means within concepts

Vehicle borne Air borne Monitering post

VehicleBorne 1.000 -0.041 -0.082
AirBorne 1.000 -0.046

MoniteringPost 1.000

tions between descriptions with different types.

Since it is difficult to directly get correlations of them, we firstly focus on dissimilarities
of concepts for each description. Then, from the dissimilarities, we make inference on linear
dependency using MDS and PCA technique.

On one hand, we could use means within concepts and estimating correlation coefficient. On
the other hand, our approach is based on dissimilarities derived from each data representation,
the resulting linearity is considered to include the information of dispersions in original data.

In the actual example, we only use distributional and functional data. However, dissimilar-
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Table 2: Eigenvalues of MDS (only first maximum 5 eigenvalues are shown)

Vehicle borne survey Air borne survey Monitoring post

X
(m)
1 25.63 24.11 16.42

X
(m)
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4 0.10 0.16 0.11
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Figure 3: Configurations by MDS. City names is in the lower side and Colors corresponds to the
city names.

Table 3: The results of PCA

Comp.1 Comp.2 Comp.3 Comp.4

X
(1)
1 0.571 0.201 0.314 0.000

X
(1)
2 -0.043 -0.549 0.366 0.000

X
(1)
3 -0.406 0.341 0.404 0.000

X
(2)
3 -0.001 0.000 -0.001 0.044

Eigenvalues 0.493 0.459 0.395 0.002

Proportion 36.535 34.000 29.319 0.146

Cumulative prop. 36.535 70.535 99.854 100.000

ities could be defined for many types of data representations, then we could adopt our method
to many other mixed-type data.

We use different MDS models for each descriptions, however, there are MDS for different
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Figure 4: Principal component scores.

dissimilarity matrices[3].
Any Big Data should be structured in someway even when we deal with unstructured data

from the viewpoint of the analysis. We’ll face at the data with various representations at one
time, i.e., mixed-type data at the time. Our approach is effective for such case. As a future
work, we study the analysis for various mixed-type data.
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Abstract. Partial Least Squares Path Modeling (PLSPM) is a method aimed to model a
network of dependence relationships between blocks of variables where each block is summarized
by a construct. It is known that PLSPM presents some inconsistencies in terms of coherence with
the direction of the relationships specified in the path diagram. Even though PLSPM analyzes
networks of dependence relationships among constructs, the estimation process analyzes and
amplifies interdependence among them. PLSPM misses to distinguish between dependent and
explanatory blocks in the inner model. We propose a more suitable nonsymmetric approach
that aims at maximizing the explained variance of the dependent manifest variables in one block
given the others (i.e., a redundancy-related criterion). In this perspective, we propose a new
algorithm based on extracting and utilizing all the information in the blocks that is relevant to
maximizing the explained variances of manifest variables in dependent blocks.

Keywords. PLS Path Modeling, Redundancy Analysis, PLS Regression, Component-Based
Approach

1 Introduction

Partial Least Squares Path Modeling (PLSPM) is a method aimed to model a network of de-
pendence relationships between blocks of variables [3] where each block is summarized by a
construct, i.e. a linear composite of its own manifest variables.

In order to respect the direction of the relationship specified in the Path diagram (i.e. the
path directions), the estimation process should implicitly assume that there is a network of
dependence relationships among constructs. However, it is known that PLSPM presents some
inconsistencies in terms of coherence with the direction of the relationships specified in the
path diagram [5]. In the inner model, each construct is defined as a linear combination of all
the connected constructs. Two constructs are connected if there exists a link between the two
blocks: an arrow goes from one variable to the other in the Path diagram, independently of the
direction. Thus, the directions of the links in the inner model do not play a role in the algorithm
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apart from the specific case of the so-called path weighting scheme for the inner estimation.
In the latter, the path direction is taken into account only in the way the inner weights are
computed, but each construct is still defined in the inner step of the algorithm as a function of
all the connected constructs.

PLSPM provides composite scores that are as much correlated as possible to each other while
being somehow representative of each corresponding block of manifest variables. In the search for
optimally correlated constructs, the estimation process amplifies interdependence among blocks,
and as a consequence it misses to distinguish between dependent and explanatory blocks.

In order to show such inconsistencies of PLSPM, let us consider the case of three blocks
of variables, consisting of two explanatory blocks X1 and X2, and a block Y to be explained.
Whether we establish path directions from the two blocks X1 and X2 to the block Y or from
the block Y to the two blocks X1 and X2, the PLSPM algorithm produces the same results, in
terms of weights and loadings linking manifest variables to their constructs.

We propose a more suitable non-symmetrical approach that aims at maximizing the explained
variance of the dependent manifest variables in one block given the others, i.e. a new approach
based on the optimization of a redundancy-related criterion in a multi-block framework [2].

The methodological core of our approach exploits multivariate explicative statistical methods,
such as redundancy analysis [8], PLS2 regression, ridge regression, PCR and so forth so on,
in order to inherit their prediction oriented objective [6, 7] as well as their non-symmetrical
approach that takes the direction of relationships explicitly into account.

In this perspective, we propose a new algorithm based on extracting and utilizing all the
information in the blocks that is relevant to maximizing the explained variances (i.e. improving
the prediction) of manifest variables in dependent blocks.

2 Extensions of Redundancy Analysis

Given an explanatory block X, and a block Y to be explained, the redundancy analysis pro-
posed by Wollenberg (1977) [8] derives successively orthogonal components of the predictors X
which optimally explain the variance of the Y-variables. Redundancy analysis as developed by
Wollenberg shows how the optimal X-components should be chosen, but it does not provide
Y-components simultaneously with the X-components.

Following this argument, Johansson (1981) [2] suggested two alternative transformations
for the Y set which are naturally associated with the transformation for the X set. Given
the weights wi defining the i-th X-component, the corresponding Y-component is defined via
another vector of weights, vi, which satisfy desirable orthogonality properties. In particular,
the two solutions proposed by Johansson are directly based on the optimal X-components from
redundancy analysis, for which the condition w′iX

′Xwj = 0 is fulfilled. The first solution,
based on a least squares approach, satisfies the orthogonality condition between components of
the same block so that v′iY

′Yvj = 0, ∀ i 6= j , but not the orthogonality condition between
components of different order across blocks so that w′iX

′Yvj neq0, ∀ i 6= j. The second solution,
based on a restandardized procedure, fulfills opposite conditions, so that v′iY

′Yvj 6= 0, ∀ i 6= j,
and w′iX

′Yvj = 0, ∀ i 6= j.

We exploit the first solution proposed by Johansson because the specific orthogonality con-
ditions are useful for interpretation purposes and then we generalize the analysis to more than
two blocks.
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3 The Method

Our approach is based on a multi-step algorithm. At first, we extract as many components as
allowed by the ranks of blocks from each exogenous block, based on a redundancy analysis or
a series of multivariate PLS2 regressions with respect to adjacent dependent blocks as defined
by the inner model relationships. Then, the components of each dependent block are extracted
by means of a redundancy analysis or multivariate PLS2 regressions applied to the manifest
variables of the dependent blocks with respect to the components of the exogenous adjacent
blocks extracted at the previous step. This is then repeated for the subsequent dependent
blocks where the sequence is defined by the prediction flow specified in the inner model.

At the end of the second step, the manifest variables of all the blocks are replaced by com-
ponents. Then, the same steps are applied by replacing the original manifest variables with the
newly extracted components so as to update these components. As some of the blocks play a role
of both exogenous and endogenous blocks, we apply redundancy analysis or multivariate PLS2
regressions considering these components firstly as dependent variables, then as explanatory
variables. The procedure is repeated till convergence of the weights defining the components.

In this new approach, we overcome the theoretical difference between formative and reflective
schemes for the measurement model. We only make a distinction between explanatory blocks
and dependent blocks, in the sense of redundancy analysis. Furthermore, we do not assume
unidimensionality within each block.

Upon converge, we apply a backward selection procedure on the set of the extracted com-
ponents in order to remove noise but also to simplify interpretability and, finally, to yield final
component scores.

We can also integrate useful variable selection features, since we can identify the manifest
variables that do not improve the capability of the model in terms of variance explained on the
dependent variables and thus implement the method as a sparsifying tool.

In order to assess the quality and validity of results, we provide a new goodness-of-fit index
based on redundancy criterion and prediction capability together with a classical bootstrap-
based inferential approach.

Finally, we show the functioning of the proposed algorithm (implemented in a R code)
through a simulation study and a real data application in the area of healthcare performance.

The performance of the proposed method in terms of explained vatiability, predictiveness and
interpretation is compared to classical PLSPM as well as to other component-based methods
such as Generalized Canonical Correlation Analysis [4] and Generalized Structured Component
Analysis [1], either on real or artificial data.

Currently, our research work is mainly focusing on fine tuning the methodological and com-
putational aspects of the proposed method. The next step will concern the search for and the
specification of a redundancy-based optimizing criterion.
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Abstract. In this work we find two major results. The first one is related to the validation of
the exploratory analysis of contingency tables built from textual data including both closed and
open-ended questions. On one hand we propose “non-lemmatization” as a perturabation of the
responses, the effect of which is studied both through Correspondence Analysis and Clustering,
on the other hand a bootstrap phase in order to check the quality of the lemmatization phase.
The second important result is a new insight about the Tunisian revolution through a survey
among young Tunisians. The study reveals that it is not the economical preoccupation as media
programs claimed, that first guided the involvement in the revolution but the feeling of dignity
about being a Tunisian citizen.

Keywords. Text Mining, Open-ended questions, Correspondence Analysis, Bootstrap, cluster-
ing

1 Introduction

The analysis of textual data was developed nearly half a century ago [2]. It implies that we
assume the relevance of several dimensions to summarize the “bag of words” and to take into
account the textual complexity.

Factorial analysis (FA) of contingency tables can view the lexical profiles by the factorial
maps and synthesize them by the chosen compound variables [3]. Automatic classification reveals
clusters that may make sense for the case study and the expert will put labels on them according
to his linguistic domain.
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Visualization [6] is a focal point for exploratory approaches. We can thus associate classifica-
tion and factorial representation, by projecting the partition clusters onto the factorial mapping.
The theoretical results of the positioning of additional elements help in the finding of interpreta-
tions for the results of the data mining process, but they also help in the starting of a modeling
approach by statistical inference.

An external validation [4] (bootstrap, perturbation, etc.) can be a step to discriminate
sub-clouds represented by their centroids which are projections of categories.

In our work, we will introduce structural factors in order to work in a supervised context
[6]. We will also analyze the textual data before lemmatization and after lemmatization [8]. We
implement these new perspectives in the study of a questionnaire that is detailed here below and
that includes open-ended questions. Structural factors and lemmatization will help as validation
procedures.

2 The case study questionnaire

The textual data set comes from a survey about what has been termed the Tunisian Revolu-
tion in 2011. Data were collected throughout a questionnaire targeted at students or young
professionals, men and women of different origins, all enrolled in schools, institutes, universities
of Sousse and Monastir. These institutes include about sixty thousands young Tunisians. We
focused on students because they were at the very beginning of the revolution process (social
networks) and went on being the major actors in it. This survey was conducted during the
academic year 2012/2013, by direct face to face interviews. The duration of an interview is
approximately about one hour. Sampling is up to now a very difficult challenge in the Tunisian
context both for official or private companies. Particularly in our questionnaire which includes
open-ended questions, major difficulties are first of all the languages in use (Arabic or French,
answers had to be written in French),then the fact that people are globally not positive about
participating in surveys and most of all that at that time particularly there was defiance and
suspicion in the context of Tunisian post-revolution period.

We tried to be as much as possible in a probability sampling frame: first a geographical
cluster sample including heterogeneous respondents and within each regions a stratified random
sample including homogeneous respondents in the different grades of each universities. Moreover,
few unplanned respondents were included when submitting the questionnaire, in passing on the
university campus for example. We eventually collected about 600 students and the size of the
final subset is 541 people because open-ended answers in Arabic were not used. Note that the
classical sampling procedure may be non-relevant when collecting phrases and words instead of
measuring a numerical variable in order to make inference on the target population.

The objective of closed questions is to identify the respondents in terms of age, sex, educa-
tional level, marital status, etc. and also throughout their answers about the core of the study
(economic situation, etc.). Four open-ended questions were added: two primary questions are
in the form of comments related to two closed questions coded with a Likert scale. One of them
is “How proud are you about the Tunisian revolution” and the other one is “How proud are
you about being a Tunisian citizen”. The third open question is an explanation of the closed
question which classifies the major causes of the Tunisian revolution outbreak. The last open
ended question is the “What opinion do you have about the Tunisian economical situation” after
the Tunisian revolution. To be noted that all questions and all answers have to be in French.
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3 Analysis of the closed questions

As the closed questions are categorized we process the data by Multiple Correspondence Analysis
(MCA)[7]. The data table T1 includes 541 rows and 23 columns with 89 categories. Five
questions are eventually selected as active variables: five categories for the respondent origin,
five categories for the feeling upon the Tunisian revolution, five categories for the opinion about
the Tunisian economical situation and two dummy variables about the participation to the
revolution and the participation to the social networks.

Results and interpretations According to the modified eigenvalues histogram [1] three
factorial axes are to be considered. Active and supplementary categories are projected in figure
1 which shows the first factorial plane where only strongly contributing points appear.

Figure 1: Multiple Corresponding Analysis of T1, Axis 1 x Axis 2, variables projections

The maximization of inertia reveals on axis 1 that the main structure among the respondents
is an opposition between those who were involved in the Tunisian revolution and social networks
versus those who were not involved in the Tunisian revolution nor in social networks. Moreover
the participation to the events is linked more to the pride of being a Tunisian citizen than to
the economical situation. In fact, the three categories slightly, moderately and very for the
variable about the economical Tunisian situation are together projected in the same area, next
to the students who have been active during the revolution. The secondary main structure
among the respondents is made of those who are extremely negative: not at all proud of being
a citizen Tunisian, very bad opinion about the economic situation and not at all proud about
the revolution.

Another important element is revealed in the data by the first plane of the MCA: Sousse
and Monastir are both next to the negative opinions about the Tunisian events whereas “Tunis
and surroundings”, Mahdia and “South and Inlands” areas are supporters of the revolution.
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4 Joint analysis of closed and open ended questions

Open-ended questions give opportunity for free responses. According to the sociologist Lazars-
feld

[5] using open-ended questions is essential for the understanding of a set of responses to
closed questions. We process a contingency table T2 the rows of which are the 541 respondents,
the active columns include non-lemmatized words. Out of the 25306 initial tokens there are
2497 distinct words, 492 have more than 12 occurrences, they are the ones which are kept as
active columns of T2. Moreover we define table T3 which includes the same rows as T2 but
the active columns are lemmatized words. The lemmatized list of words is a simplified set of
words coming from distinct words included in the initial bag of words. We used the Tree Tagger
software [14] in order to obtain lemmas: 296 words are finally kept. Example in the case study,
a non-lemmatized list in French: “adore”, “aimable”, “aimer”, “aime”, “aimé” and “aimerai” (in
English: “adore”, “lovely”, “love”, “loved”, “will love”), lemmatized in French as the single word
“aimer” (English lemma “Love”).

Lebart [9] proposes to term as “supervised” the Correspondence Analysis (CA) performed on
the table crossing the bag of words extracted out of the open-ended questions and the categories
of one closed question. In our case study we process a contingency table T4 the rows of which
include 492 words. According to the Multiple Corresponding Analysis of T3 results we selected
three closed questions, those which mainly structure the information enclosed in the data set:
“How proud are you about the Tunisian revolution”, “How proud are you about being a Tunisian
citizen” and “What opinion do you have about the Tunisian economical situation” after the
Tunisian revolution. These columns are structural factors kept as active columns in table T4
analysis. This framework can be considered as an extension of the supervised approaches studied
by Lebart because there are more then one closed question in the lexical table.

Out of the 25306 initial tokens there are 2497 distinct words, 492 have more than 12 occur-
rences and finally 296 are kept after lemmatization. According to the multiple corresponding
analysis of section 2 we selected three closed questions as columns, those which mainly structure
the information enclosed in the data set: ’actual level of pride about the Tunisian revolution’,
’actual level of pride about the Tunisian citizenship’ and ’personal opinion about the post revo-
lution economical situation’. We also perform the Correspondence Analysis of the contingency
table T5 which includes the same columns as T4 but with the 296 distinct words out of the bag
of words after lemmatization. These two analysis are the ones that are then submitted to the
bootstrap procedures.

The Correspondence Analysis on T4 produces a first axis with 19% of inertia and a second
axis with 10% of inertia whereas on T5 percentages are respectively 25 and 11. These results are
coherent with the decreasing of words in the lemmatized context. The results of major interest
are the preservation of the oppositions when interpreting the axes (see figure 2). We verify
that first axis in both lemmatized and non lemmatized corpus is about the “Feeling upon the
Tunisian revolution”, “very proud” versus “not all proud” and that the second axis as well for
both analysis is about “Opinion upon Tunisian economical situation”, “excellent” versus “very
bad”.

Greenacre [11] proposes a first attempt of bootstrapping methodology in order to validate a
Principal Component Analysis, the so called ”Partial Bootstrap”. We performed a bootstrap for
the Correspondence Analysis of table T2 and table T3 through the Dtm-vic software[13]. As far
as lemmatization can be considered as a disturbance of the units, the comparison of bootstrap
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Figure 2: Interpreted first factorial mapping of both CA on tables T4 and T5

results before and after lemmatization may represent a tool to validate the quality of the chosen
lemma set. The two bootstraps before and after lemmatization are presented on figure 3 for
the example of the following set of words in French : “realiser”, “réalisés”, “réalisé”, “réaliser”
(in English: “realise”, “realised”, “realized”, “realize”), French lemma “realise” (English lemma
“realize”). In this case study the decreasing of confidence ellipses areas from non lemmatized
situation to lemmatized situation, as expected by the mathematical framework for a proper
reduction of words through lemmatization, proves that the lemmatization through Tree Tagger
software is good for the root“réalise” (English“realize”). It is consistent with the main structures
and main interpretations of the initial questionnaire responses.

Bootstrap on T2 CA Bootstrap on T3 CA

Figure 3: Confidence ellipses on Axis 1 x Axis 2

The next step consists of a comparison analysis between non-lemmatized and lemmatized
words clusters.

Statistical comparison of clustering results before and after lemmatization We
perform a clustering procedure after the Correspondence Analysis on both tables T4 (non-
lemmatized context) and T5 (lemmatized context). The Tandem Analysis [12] proceeds through
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the following steps: first Factorial Analysis procedures in order to eliminate noise in the data,
only a subset of all CA axes is selected for the next step which is a K-means procedure. Input
parameters are set with a large number of clusters (in our case study eighty). A Hierarchical
Ascending Cluster (HAC) analysis is then performed on the K-means clusters centroids. By
cutting the dendrogram at different levels different partitions are obtained . For each partition
statistical indices and geometrical results are collected by projecting the centroids of the related
clusters onto the first factorial plane of the two corresponding CAs.
Many indices such as between class-variance and within-class variance help in optimizing the
final choice of clusters.

between-class variance We show on Table 1 an example for the partitions into 12 clus-
ters. The inspection of the table that presents the between-class variances before (NL) and after
lemmatization (L), allows us to observe that the number of iterations decreases after lemmati-
zation. Initially, seven iterations were needed to achieve the maximum between-class variance
(0.589612), after lemmatization only six are needed. A second remark is that the between-class
variances, in the case of non-lemmatized data are lower than in the case of lemmatized data.

Itération NL variance L variance

0 0.537464 0.443747
1 0.579583 0.480360
2 0.585249 0.484078
3 0.587976 0.485556
4 0.588833 0.486063
5 0.589564 0.486234
6 0.589593 0.486384
7 0.589612 -

Table 1: Between-class variances before and after lemmatization.

This result is the same along the different partitions: the heterogeneity between classes
is higher at the end of processing lemmatized data than non-lemmatized data (0.5896 versus
0.4864). The interpretations of the clusters are thus much clearer in the lemmatized context.

Within-class variances Through the double optimization of the between-variances and
within-variances we find in our case-study that a 12 clusters partition is the best choice for both
non-lemmatized and lemmatized context. These results are confirmed by the comparison of
the partitions projections on the first factorial plane both for non-lemmatized and lemmatized
context. As the number of clusters changes the visualization is more or less easy to interpret.
We present on figure 4 four partition choices (4, 6, 12, 20) illustrated by the centroids on T4
and T5 CAs (left column: non-lemmatized context, right column: lemmatized context). Up to
12 clusters we can easily distinguish the projections: for the twenty classes partition we observe
that the images are much more overlapping. The clusters indeed become increasingly close and
sometimes contiguous.
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4 Non lemmatized clusters 4 Lemmatized clusters

6 Non lemmatized clusters 6 Lemmatized clusters

12 Non lemmatized clusters 12 Lemmatized clusters

20 Non lemmatized clusters 20 Lemmatized clusters

Figure 4: Between variance before and after lemmatization.

Conclusion In this work we find two major results. The first one is related to the validation of
the exploratory analysis of contingency tables built from textual data including both closed and
open-ended questions. On one hand we propose “non-lemmatization” as a perturbation of the
responses, the effect of which is studied both through Correspondence Analysis and Clustering,
on the other hand a bootstrap phase in order to check the quality of the lemmatization phase.
The second important result is a new insight about the Tunisian revolution through a survey
among young Tunisians. The study reveals that it is not the economical preoccupation as media
programs claimed, that first guided the involvement in the revolution but the feeling of dignity
about being a Tunisian citizen.
Further studies based on the same survey will consist in a complete textual analysis [10] by
discovering the repeated phrases and by characterizing the respondents both through the closed
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questions and the words coming from the open-ended questions. Moreover two important theo-
retical issues come out along the study: what does sampling means when the measurements on
the population consist in texts, phrases and words, and how is the resampling to be precisely
done for example in a bootstrap context.
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Fastrich, Bjoern, 177
Fensore, Stefania, 553
Fernández-Pascual, Rosaura, 539
Fernique, Pierre, 561
Ferrari, Davide, 157
Fichet, Bernard, 427
Fienberg, Stephen, 593
Figueiredo, Adelaide, 395, 443
Figueiredo, Fernanda, 395, 443
Fischer, Paul, 9
Fontanella, Sara, 281
Frick, Hannah, 379
Frigau, Luca, 577
Fuchs, Christiane, 625



694 Author Index

Ghattas, Badih, 617
Ghisletta, Paolo, 167
Giannerini, Simone, 491
Giordano, Francesco, 515
Giuzio, Margherita, 157
Gomes, M. Ivette, 289, 395, 545
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Linares-Pérez, Josefa, 327
Lourenço, Vanda, 53

Mai, Tiep, 103
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