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Preface

The 21st International Conference on Computational Statistics (COMPSTAT 2014) is held in
Geneva. This year the Conference also hosts the 5th TASC World Congress. The Geneva edition
coincides with the 40th anniversary of this biennial event which started in 1974 in Vienna and has
been organized all over Europe. In the preface of the 1974 proceedings we can read: ‘If we succeed
in making statisticians aware of the great possibilities of modern computing facilities, which at
any rate go beyond simple numerical computations, the Symposium serves its purpose.” This
goal has since been reached with certainty, as by now statisticians fully integrate computational
tools in their work.

The Geneva edition seems to pursue ‘the success story’ with more than 400 participants and 370
presentations. The electronic Book of Proceedings includes a selection of 84 papers covering 700
pages, all peer reviewed.

Keynote lectures are addressed by Peter Biihlmann from the Swiss Federal Institute in Zurich,
Anthony Davison from the Swiss Federal Institute in Lausanne and Xuming He from University
of Michigan, USA. Two tutorials are offered, one by Dietmar Maringer, University of Basel,
Switzerland and one by Stefan Van Aelst from KU Leuven, Belgium.

The editors thank the contributing authors, the referees and the members of the scientific pro-
gram committee, and most importantly, all participants who are the soul of the conference.

The next edition of COMPSTAT will take place in Oviedo, Spain on August 23-26, 2016 and
will be organized by Prof. Ana Colubi. We wish her the best success.

COMPSTAT 2014 Editors:

Manfred Gilli, University of Geneva, Switzerland.
Gil Gonzalez-Rodriguez, University of Oviedo, Spain.
Alicia Nieto-Reyes, University of Cantabria, Spain.
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Computation of Regularized Linear
Discriminant Analysis

Jan Kalina, Institute of Computer Science AS CR, kalina@cs.cas.cz
Zdenék Valenta, Institute of Computer Science AS CR, valenta@cs.cas.cz
Jurjen Duintjer Tebbens, Institute of Computer Science AS CR, duint jertebbens@cs.cas.cz

Abstract. This paper is focused on regularized versions of classification analysis and their
computation for high-dimensional data. A variety of regularized classification methods has
been proposed and we critically discuss their computational aspects. We formulate several
new algorithms for shrinkage linear discriminant analysis, which exploits a shrinkage covariance
matrix estimator towards a regular target matrix. Numerical linear algebra considerations are
used to propose tailor-made algorithms for specific choices of the target matrix. Further, we
arrive at proposing a new classification method based on Lg-regularization of group means and
the pooled covariance matrix and accompany it by an efficient algorithm for its computation.

Keywords. Classification analysis, Regularization, Matrix decomposition, Shrinkage eigenval-
ues, High-dimensional data

1 Introduction

Classification analysis methods have the aim to construct (learn) a decision rule based on a train-
ing data set, which is able to automatically assign new data to one of K groups. Linear dis-
criminant analysis (LDA) is a standard statistical classification method. In the whole paper,
we consider n observations with p variables, observed in K different samples (groups) with
p>K >2

X11,...,Xlnl,...,XKl,...,XKnK, (1)

where n = YK ;.

LDA assumes the data in each group to come from a Gaussian distribution, while the co-
variance matrix X is the same across groups. Its pooled estimator will be denoted by S. LDA
in its standard form assumes n > p and is unsuitable for high-dimensional data with a number
of variables exceeding the number of observations (large p/small n problem). In case where
n < p, the matrix S of size p is singular and computing its inverse must be replaced by an
appropriate alternative. Available approaches in this context are based e.g. on pseudoinverse



2 Computation of Regularized Linear Discriminant Analysis

matrices, which are however unstable due to a small n [4]. Other proposals are based on the
generalized SVD decomposition or on elimination of the common null space of the between-group
and within-group covariance matrices [2].

Various authors suggested to use a regularized version of LDA for n < p [3, 2, [4], [5]. Suitable
regularized estimators of the covariance matrix are guaranteed to be regular and positive definite
even for n < p. They have become established e.g. in image analysis, chemometrics, molecular
genetics, or econometrics, while their fast computation and numerical stability remains to be an
important issue [4, [7]. We will describe the most important approaches and critically discuss
their possible computation.

The first approach to a regularized discriminant analysis by [3] is based on a shrinkage
covariance matrix with two parameters, which are searched for in a grid search minimizing the
classification error. Later, the computation was criticized as computationally intensive in [§],
where a linear shrinkage estimator of the covariance matrix was proposed and the asymptotically
optimal value of the regularization parameter was derived. The method is implemented in the
corpcor package of R software; however, its computation for a large p is very slow.

Habitually used regularized versions of LDA are based either on regularizing only ¥ using one
of approaches of [8] or on a double shrinkage applied on the covariance matrix as well as means
of each group. The latter approach was proposed by Guo et al. [4], who performed shrinking of
the covariance matrix towards an identity matrix and at the same time shrinking of the mean of
each group to zero. The method is implemented in the rda package of R software. For specific
values of the parameters, the computation is based on the SVD algorithm, without applying
methods of numerical linear algebra to decrease computational costs. The optimal values of
shrinkage parameters are optimized in a cross-validation over a 2-dimensional grid, which has
been described as tedious [4]. Moreover, there are many possible tuning parameters giving the
same cross-validation error rate. The computational effectivity and stability of habitually used
algorithms is not investigated even in the recent monograph [7] on covariance matrix estimation
for high-dimensional data.

This paper studies efficient algorithms for computing various regularized versions of LDA.
Section 2 of this paper formulates several algorithms for shrinkage LDA, which exploits a shrink-
age covariance matrix estimator towards a regular target matrix. The computational effectivity
of the algorithms is inspected using arguments of numerical linear algebra. For a specific choice
of the target matrix, we are able to propose a tailor-made algorithm with a lower computational
cost compared to algorithms which are formulated for a general context. Besides, we arrive at
proposing new versions of classification methods and accompany them by efficient algorithms
for their computation in Section 3. The classification performance of the methods is illustrated
on real data in Section 4.

2 Algorithms for Regularized Linear Discriminant
Analysis

This section is devoted to proposing and comparing new algorithms for a habitually used version
of the regularized LDA [4]. We use suitable matrix decompositions to propose efficient algorithms
either for a general choice of T' or for its specific choices. To the best of our knowledge, tailor-
made algorithms for a specific T' have not been described. We compare the new algorithms in
terms of their computational costs as well as numerical stability.

COMPSTAT 2014 Proceedings



Jan Kalina, Zdenék Valenta and Jurjen Duintjer Tebbens 3

We will describe one of habitually used regularized versions of LDA. This will be denoted as
LDA* to avoid confusion, because the concept of regularized discriminant analysis encompasses
several different methods [4]. A given target matrix 7' will be used, which must be a regular
symmetric positive definite matrix of size p x p. Its most common choices include the identity
matrix I, or a diagonal (non-identity) matrix; other target matrices have been considered by [§].

Let us denote the mean of the observed values in the k-th group (k = 1,...,K) by Xj.
LDA* assigns a new observation Z = (Z,..., Zp)T to group k, if [ > [} for every j # k, where
the regularized linear discriminant score for the k-th group has the form

= XTS5 2 - S XT(S) " K +logpe, k=1,...,K, (2)

| =

where pj, is a prior probability of observing an observation from the k-th group and
S*=AS+(1-NT (3)

for A € [0, 1] denotes a shrinkage estimator of the covariance matrix across groups. The situation
with [} = [}, for k' # k does not need a separate treatment, because it occurs with a zero
probability for data coming from a continuous distribution. Equivalently, LDA* assigns a new
observation Z to group k, if

(%= 2)'s" (%= 2) = min {(X;-2)"s" (X, - 2)}. (4)

First, the standard approach for computing LDA* may be improved by employing the eigen-
decomposition of S* for a fixed A\. A suitable value of X is found by a cross-validation in the
form of a grid search over all possible values of A € [0, 1].

Algorithm 2.1.
LDA* for the general reqularization (@ based on eigendecomposition.

Step 1 Compute the matriz
A=[X1-2,..., Xk — 7] (5)

of size p x K whose k-th column is X;, — Z.
Step 2 Compute S* according to (@ with a fized \ € [0, 1].

Step 3 Compute and store the eigenvalues of S* in the diagonal matriz D,, and compute and
store the corresponding eigenvectors of S* in the orthogonal matriz Q..

Step 4 Compute the matriz
B=D."2QTA (6)

and assign Z to group k if the column of B with largest Fuclidean norm is the k-th column.

Step 5 Repeat steps 2 to 4 with different values of A\ and find the classification rule with the
best classification performance.

The main computational costs are in step 3; the eigendecomposition costs about 9-p3 floating
point operations. Note that we need not (and should never) compute the inverse of S*, thus

Q COMPSTAT 2014



4 Computation of Regularized Linear Discriminant Analysis

avoiding additional computations of the Mahalanobis distance, which is expensive of order p?
and numerically rather unstable. The group assignment is done by using
_ o _ B _ _1/9 _
(X;-2)"8 X - 2) = (X5 - 2)7Q.D'QI(X; — 2) = | D *QT (X, - 2))>. (7)

The algorithm can be made cheaper by replacing the eigendecomposition of S* with its Cholesky
decomposition
S*=L.LT, (8)

where L, is a nonsingular lower triangular matrix. The costs of Cholesky decomposition are
about 1/3 - p? floating point operations. On the other hand, Cholesky decomposition will suffer
from instability when S* is not positive definite.

Algorithm 2.2.
LDA* for the general regularization (@ based on Cholesky decomposition.

Step 1 Compute the matriz B B
A=[X1-Z, ..., Xg— 7] (9)

of size p x K whose k-th column is X}, — Z.
Step 2 Compute S* according to (@ with a fized \ € [0,1].
Step 3 Compute the Cholesky factor L, of S*.

Step 4 Compute the matriz
B=1L7A (10)

and assign Z to group k if the column of B with largest Euclidean norm is the k-th column.

Step 5 Repeat steps 2 to 4 with different values of A and find the classification rule with the
best classification performance.

For specific target matrices, we can further reduce computational costs by using the following
algorithm for LDA*. The pooled estimator S can be written in the form

S=YTy, Y=[Xu-X,..., X1n, - X,...,. X1 = X,..., Xicnye — XJ¥ (11)
where Y is of size n X p. Then using the singular value decomposition (SVD) of Y in the form
Y = PxQ7, (12)

we can express the eigendecomposition of S as

S=YTy = (P2QT)TPxQT = Qx*Q". (13)

The costs will be about 4-np? floating point operations, thus with p > n the gain is considerable.
Moreover, if

S*=AS+(1-NI,, Xe]0,1], (14)
we immediately obtain the needed eigendecomposition of S* as
S =AS+(1-NL=Q (A2 +(1-\NI,) Q" (15)

The SVD can be computed in a backward stable way with all singular values accurate up to
machine precision level [I]. For the special case , which is commonly denoted as Tikhonov
or ridge regularization of S, a more efficient computation can be performed as follows.

COMPSTAT 2014 Proceedings
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Algorithm 2.3.
LDA* for the ridge reqularization .

Step 1 Compute the matriz B B
A=[X1—-Z,... , X — 7] (16)

of size p x K whose k-th column is X, — Z and compute the matriz Y in .

Step 2 Compute the singular value decomposition of Y as

Y = PxQT, (17)
with singular values {o1,...,0,} and complement these singular values with p — n zero
values opqy1 = -+ = 0p = 0.

Step 3 For a fized A € [0,1], compute
D, = diag{\o} + (L= \),..., Aop + (1 = M)} (18)
Step 4 Compute the matriz
B=D;"*Q"4 (19)

and assign Z to group k if the column of B with largest Fuclidean norm is the k-th column.

Step 5 Repeat steps 2 to 4 with different values of A\ and find the classification rule with the
best classification performance.

Eigenvalues of the regularized covariance matrix forming the matrix D* in can be
interpreted as shrinkage eigenvalues.

In an analogous manner, algorithms for a regularized quadratic discriminant analysis (QDA)
can be obtained, using a regularized estimator of the covariance matrix in each group separately.

3 Lo-regularized linear discriminant analysis

Disadvantages of SCRDA [4] include a computational intensity as well as an inconsistent ap-
proach to shrinkage. The means are namely modified by an Li-norm regularization and the
covariance matrix in the sense of the Lo-norm. As an alternative, this section proposes a new
regularized version of LDA denoted as Lo-LDA together with an efficient algorithm for its com-
putation. It employs a shrinkage estimator of > and shrunken means towards the overall mean
across groups. As a unique feature, both shrinkage approaches have the form of an Lo-norm
regularization.

The classification rule of Lo-LDA assigns a new observation Z to the k-th group, if l,t > l;-
for every j # k, where

—/ £\ — 1, i\ —1 o
I =xT(5%)"'z - 5X,f(S )~ X}, + log pi (20)

and X ,; denotes the shrunken mean of the k-th group towards the overall mean computed across
groups. The method can be interpreted as based on a Lo regularized Mahalanobis distance.
As another contrast with the habitually used algorithm of SCRDA [4], we will estimate the

Q@ COMPSTAT 2014



6 Computation of Regularized Linear Discriminant Analysis

parameter A in a straightforward way using an asymptotically optimal value minimizing the
mean square error [§]. To avoid confusion, the asymptotically optimal value of A will be denoted
by At and the corresponding shrinkage covariance matrix by

ST=ATS 4+ (1 -ADT. (21)
Algorithm 3.1.
Lo-LDA.
Step 1 Compute \' as ‘
N 257, Y2 var(Sy) | (22)

2 SR+ (S — 1)2

where var(S;;) is the mazimum likelihood estimator of the variance of values Si; for a fized
1 and j.

Step 2 Compute and store the eigenvalues of ST in the diagonal matriz D,, and compute and
store the corresponding eigenvectors of ST in the orthogonal matriz Q..

Step 3 For a fized 6 € [0, 1], compute X',; =6Xp+ (1-6)X, k=1,...,K.

Step 4 Assign Z to group k, if

1D 2QI (X, ~ 2)ll =  min, [|D:12Q1(X; - 2)]|. (23)

oo

Step 5 Repeat steps 3 and 4 for various § and find the optimal classification rule yielding the
best classification performance.

Algorithm is formulated for a general target matrix T'. For a specific choice of T', a com-
putationally cheaper method can be obtained in an analogous way as Algorithms [2.2] and [2.3]
from the general algorithm

Another possibility is to regularize the within-group covariance matrix instead of regulariz-
ing S, which is however computationally more intensive.

4 Examples

We present two examples on real molecular genetic data sets in order to illustrate the behavior
of the newly proposed Lo-LDA method.

Example 1 contains data from a cardiovascular genetic study of the Center of Biomedical
Informatics in Prague performed in 2006-2011. The data contain expressions of p = 38 590 gene
transcripts measured on 24 patients having a cerebrovascular stroke and 24 control persons.

In Example 2, a prostate cancer metabolomic data set [9] is analyzed, which contains p = 518
metabolites measured over two groups of patients, namely those with a benign prostate cancer
(16 patients) and with other cancer types (26 patients). The task in both examples is to learn
a classification rule allowing to discriminate between the two classes of individuals.

In both examples, we computed the classification methods described in this paper using the
algorithms of Sections 2 and 3. For comparison, we computed also other available classification
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Youden’s index

Method S* R Package Function Example 1 Example 2
SVM - el071 sum 1.00 1.00
Classification tree - tree tree 0.94 0.97
Self-organizing map - kohonen som 0.88 0.93
Multilayer percpetron - nnet nnet Infeasible  Infeasible
LDA - MASS lda Infeasible  Infeasible
SCRDA 14 rda rda 1.00 1.00
LDA* 14 - - 1.00 1.00
LDA* 24 - - 1.00 1.00
Lo-LDA 14 - - 1.00 1.00
Lo-LDA 24 - - 1.00 1.00
PCA — LDA - - - 0.54 0.90
PCA — SCRDA 14 - - 0.71 0.92
PCA — LDA* 14 - - 0.63 0.81
PCA — LDA* 24 - - 0.63 0.81
PCA = Ly-LDA 14 - - 0.71 0.92
PCA — Ly-LDA 24 - - 0.71 0.92
PCA — MWCD-LDA - - - 0.69 0.90

Table 1: Results of Example 1 and Example 2. LDA* was computed using Algorithm for
the choice and Algorithm for . Ly-LDA was computed using Algorithm PCA
uses 20 principal components.

methods, including the support vector machines (SVM), a classification tree, Kohonen’s self-
organizing map, a multilayer perceptron with 2 hidden layers, or the highly robust classification
method MWCD-LDA of [6]. Various regularized versions of LDA include the most common
choice T' = I,, or another choice

p
S*=AS+(1=Nsl,, Ae€0,1], s=>_ Si/p. (24)
=1

We used the default settings to compute them in R software packages, which are listed also in
Table The classification performance is measured by means of the Youden’s index, which
is defined as sensitivity + specificity —1. The dimensionality reduction was performed by the
principal component analysis (PCA) with 20 principal components.

The results performed on raw data as well as after a dimensionality reduction reveal that
the regularized versions of LDA perform quite similarly. The newly proposed method Lo-LDA
with an efficient algorithm seems to perform comparably with the available regularized methods
with less efficient computation. Besides, the choice of the target matrix T" does not seem to play
an important role.

Further, we investigated the reduction in classification performance after reducing the dimen-
sionality to 20 principal components in both examples. The approach of Algorithm (PCA
= Ly-LDA) yields improved results compared to its standard counterpart (PCA = LDA).
The results of regularized methods do not greatly differ from the robust MWCD-LDA proce-
dure, which indicates that regularizaed versions of LDA do not greatly suffer by the presence of
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8 Computation of Regularized Linear Discriminant Analysis

outlying measurements in the data. Nevertheless, the robustness of regularized methods with
respect to outliers has not been systematically investigated [5].

To conclude the paper, several new algorithms for shrinkage LDA are proposed, exploiting
a shrinkage covariance matrix estimator towards a regular target matrix. Some algorithms
are tailor-made for a specific choice of the target matrix and their computational costs are
discussed. A new regularized classification method Lo-LDA is proposed and accompanied by
an efficient algorithm. An analysis of two real data sets reveals its classification performance to
be comparable to available regularized classification methods for high-dimensional data.
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Fast Detection of Structural Breaks
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Abstract. A fundamental task in the analysis of time series is to detect structural breaks. A
break indicates a significant change in the behaviour of the series. One method to formalise the
notion of a break point, is to fit statistical models piecewise to the series. To find break points,
the endpoints of the pieces are varied as is their number. A structural break is indicated by
a significant change of the model parameters in adjacent pieces. Both, varying the pieces and
repeatedly fitting models to them, are usually computationally very expensive. By combining
genetic algorithms with a preprocessing of the time series we design a very fast algorithm for
structural break detection. It reduces the time for model-fitting from linear to logarithmic in
the length of the series. We show how this method can be used to find structural breaks for
time series which are piecewise generated by AR(p)-models. Moreover, we introduce a non-
parametric model for which the speed-up can also be achieved. Additionally we briefly present
simulation results which demonstrate the manifold applications of these methods. A reference
implementation is available at http://www2.imm.dtu.dk/“pafi/StructBreak/index.html

Keywords. Structural breaks, parametric and non-parametric models, efficient algorithms,
range trees.

1 Introduction

We consider the problem to detect structural breaks in time series. A structural break is a point
in time, where the behaviour of the time series changes. What precisely a “change of behaviour”
(also called change of regime) is depends on the application. It might be a change in the level
of the observed data or a change of the magnitude of the local variance (the volatility in terms
of econometrics).

Often the times series is assumed to be generated by a known stochastic process. In this
case, a structural break is defined as a change of the type of the underlying model or of its
parameters. For example if an autoregressive (AR-) model is assumed, a structural break can
be a change of the order (number of numerical parameters) or a significant change of the values
of these parameters. See [4] for a recent overview.

From the above discussion there clearly cannot be a single algorithm for the detection of
structural breaks. Very often visual inspection of the plot of the time series by an expert does
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it. We provide a generic framework for the design of such algorithms, where the user has to
supply the application specific knowledge, basically a procedure to evaluate how good a set of
points is as structural breaks.

In practice, background information to guide the search for break points is in most cases
not available and exhaustive search is not an option already for moderately long time series and
few break points. The problem can be formulated as a black box optimisation problem where
evolutionary algorithms are an obvious choice for a heuristic. For finding break points, the
algorithm starts with a number of sets of candidate break points. In the course of the algorithm
these sets are modified by moving, deleting or adding break points. The goodness of a set of
break points is evaluated and better sets are kept while worse ones are deleted, details can be
found in [3]. The efficiency of evolutionary algorithms has been proved also in other areas of
statistics, see [5].

For series generated by AR-Models, Davis et. al. [I] propose an evolutionary algorithm for
break point detection. The resulting algorithm requires repeatedly fitting AR-models to parts
of the time series, making it computationally quite demanding and limiting its use to relatively
short time series of a few thousands observations.

We present a generic framework which allows AR~ and other parametric and non-parametric
models to be used and which is computationally much more efficient. With our approach we
can efficiently handle time series with millions of observations. The work was motivated by
an industrial application where very long time series (some millions of observations) had to be
analysed. Also the non-parametric method described in Section [3] has been designed for this
application because it simultaneously finds structural breaks and outliers in this type of series.

After introducing the notation in Section [2, the general framework for finding structural
breaks with evolutionary algorithms is introduced in Section |3} In Section 4] the central data
structure is introduced, which speeds up the algorithm. It is shown how different statistical
models can be adapted to profit from the speed-up. Simulation results on the running times and
precision of the algorithms are presented in Section

A reference implementation which can be used on user-supplied time-series is available on
the net at http://www2.imm.dtu.dk/“pafi/StructBreak/index.html.

2 Notation and Problem Description

Formally a univariate time series is a sequence Y = (yo,...,yr—1) of real numbers, where y,
is the observation at time t € {0,...,7 — 1}. For notational convenience, we assume that the
observations are equidistant in time, though this is not necessary. Non-equidistant observations
might however have an influence on the complexity of fitting the model.

The (indices of the) break points constitute an integer sequence (bo,...,by), where b; €
{0,...,T},and b; < bjy1, for j =0,...,k—1. We assume that by = 0, as it is the starting point
of the first regime, and we set by, = T, the first index after the end of the time series. In practice,
a minimum distance m between successive break points might be assumed (b; +m < bj11) in
order to avoid unreasonable short regimes. However, for the use in outlier detection with the
rectangle model, it is essential that break points can be close. Associated with each break point
b; might be a statistical model M; valid in the interval [b;; bj+1 — 1] with parameter set Bj.
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3 A Solution based on Evolutionary Algorithms

The general framework of our approach for break point detection, which uses evolutionary algo-
rithms, is as follows: Initially a number of candidate solutions is created, for example randomly.
Each solution is a set of indices and model parameters (potential break points). Then the evo-
lutionary algorithm creates a new solution set by: moving the positions of some points, deleting
some, creating new ones, or changing model parameters. The new solution is then evaluated,
and compared to the already existing solutions. If the new solutions is better than the worst old
one, the latter is replaced by the new one. The actual creation of a new solution is performed
by applying random crossover operations or mutations to existing solutions. In order to make
the implementation space-efficient, we uses an implicit representation of the break points. The
algorithm is run multiple times. Then the best solutions of each run are used as start solutions
for a final run.

The evolutionary algorithm is implemented in a generic manner, which means that the user
has to supply the “modules” that guide the execution. The essential module is the so called
fitness function, which associates a real number (the fitness) to a given solution, measuring how
good a given solutions is. Informally, we will define the fitness functions as follows: We are

given a time series (yo,...,yr—1), a sequence (by, ..., bg) of candidate break points, and a class
of statistical models, which are assumed to generate disjoint pieces of the series. We then fit a
model M; to every interval [bj,bj41 — 1], j = 0,...,k — 1. For every model M; we determine

the goodness of fit g; on the corresponding interval. This can, for example, be the sum of the
absolute (or squared) residuals. Then the total fitness f associated to the sequence of break
points is the sum of individual ones. The fitness function can also contain a term p(k) controlling
the number k of break points, normally penalising a high number:

bjy1—1

k-1
gi= Y. lyi—M;(@)| and f=f(bo,....bx) = | > g5 | +p(k). (1)
§=0

i=b;

The idea is that the best fit will be achieved when the candidate break points are the “true”
break points, i.e., when f is minimal. The other essential module the user has to supply is a
(randomised) method to generate the model data for a new break point, e.g., the order of the
AR-model to be used in the next interval, see [3] for a detailed description of the algorithm.

Subsequently we present two approaches how to evaluate the quality of a given solution into
a real numbered fitness value. The first one, called azes-aligned rectangles, does not assume that
the time series is piecewise generated by a certain process. The second one, named piecewise
AR-models, assumes that the time series is piecewise generated by AR-models.

Axes-aligned Rectangles. In this model we want to cover the time series with few axes-
aligned rectangles having a small total area. Clearly a minimum number of rectangles and a
minimal total area of them are conflicting aims. The fitness function must realise a balance
between them. A minimum number of rectangles would be achieved by using only one, the
bounding box of the whole time series, giving no internal break point. A minimum area would
be achieved by using a single zero-area rectangle at each observation of the time series, making
all points break points. Both are not desirable solutions.

Intuitively, the rectangle method detects large consecutive parts where the time series is
almost constant and small parts where it is rapidly in- or decreasing. Instead of applying the
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method to the original time series, it often yields better results when applied to a derived series
such as the series of moving variances.

For a formal definition, let (by,...,bx) be a sequence of candidate break points. Between
break points bj, bj 11, we use the minimum axes-aligned rectangle (bounding-box) which contains
the observations yp,, ..., yp;,,—1. That is the rectangle R; defined by

Rj = [bj; bj_|_1 — 1] X [mln{yl | 1= bj, .. .,bj+1 — 1};max{yi | 1= bj, e ,bj+1 - 1}] .
An example is shown in Figure All information stored at the break point is its index b;

for this non-parametric model. Let R denote the minimum axes-aligned rectangle containing
all observations y;, i.e., R is the bounding box of the whole time series. We define the fitness

Ml

o th ‘,n’| .'f l‘yl. :Ir_{-J I'I.l[ | || ,1" rﬁ i Jpluj. 1 \' f‘; ft'_j,'g.“l ‘ 'h'.d'
| (R

——
=
—
=%

(11 N
lr‘|J|i l'r; 'f|1i-.\;. ”[ ‘Il‘1 I| 'mi'] IFJ“' F|1

it f -

Figure 1: Example of a time series and a cover by rectangles.

function, to be maximised in this case, as follows. Given the time series of observations y;, the
fitness function f depends only on the break points (by,...,bx) and is composed of two terms.
As in , the first term f, is responsible for minimising the area of the R; (goodness of fit), by
maximising the area of R not covered by the R; and normalising to [0; 1]:

area(R) — ZJ —; area(R;)
area(R)

The second term f, = f.(k) is responsible for minimising the number k of break points. We
would like also to normalise f, to [0;1], for which we propose two approaches: One uses a
decreasing function of k, for example 1/k, 1/vVk, or 1/In(e + k — 1). The first one decreases
fastest and thus prefers few break points, the last one decreases slowest thus allowing more
break points. Without any a priori knowledge, f,(k) = 1/v/k proved to be a good choice in our
experiments. If one roughly knows how many break points to expect, other choices for f, are
meaningful. The fitness function is then defined as

f(bo,...,bx) = fa(bo,...,bk) + afr(k) (2)

for some choice of f,. The parameter o € [0;1] controls the balance between minimising the
area (goodness of fit) and minimising the number of intervals. Values in the range [0.10;0.75]
give good results in experiments on artificial and real world time series.

The identification of break points in a real-world time series is always subjective. For our
empirical evaluation we therefore used time series, where the experts we asked agreed on the
positions of the break points. Additionally we produced a number of artificial time series, where
the break points are clearly defined as level changes.

The computational complexity to compute the fitness of a solution is dominated by finding
the maxima and minima for all intervals [b;,bj11 — 1]. In Section {4 we will see that this can be
performed in time O(log(T)) for every interval, thus in time O(klog(T")) for k — 1 intervals.

ftl = fa(boa"'7bk) -
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Piecewise AR-models. In this setting we assume that there are indices 0 = sg,..., 8y, =T
(the “true” break points indices), such that the time series is generated by a particular AR(p;)-
model for every interval [s;, sj41 —1]. The orders p; and parameters of the models may vary. The
task is to identify the break points s;. As a side effect, the algorithms also produces estimations
for the AR-models, that is the orders p; and the parameters of the models.

As fitness function we used the sum of absolute (or squared) residuals to be minimised. Let
M; be the AR-Model, say of order pj, fitted to the interval [b;;bj41 — 1]

yi=ct+o1yi1+t...+Pp Yip; T €5 (3)

where ¢ is a constant, and the residual noise ¢; is N'(0, o) distributed for some o > 0. The model
is evaluated at indices b; + p; through b;41 — 1 using the observations y; of the time series. Let
M; (i) be the value provided by the model at index i. We compute

bji1—1 k—1
fi= > IMj(i) =yl and f=> f;, (4)
i=bj+p Jj=0

where k is the number of break points, and use f as one term in the fitness function. For an
alternative, the sum of squares, we could not observe a significant change in the location of the
break points found.

The evolutionary algorithm starts again by randomly allocating a number of candidate break
points (bo, ..., br). The AR-model M; associated with break point b; is specified by a set B; of
parameters. (The set By at the end of the series irrelevant.) Then the evolutionary algorithm
modifies the locations b; and the orders p;. The user has to supply a rule for modifying the model
order. A straightforward way, used in our implementation, is to choose a maximum model order
Pmaz and select the p; randomly from 0,1,...,pmee. We chose not to use more sophisticated
methods like analysing the partial autocorrelation function, Akaike’s information criterion (AIC)
or the Bayesian information criterion (BIC), see for example [7], because we want to support
randomised nature of evolutionary algorithms.

The fitness function again consists of two parts: 1) For every interval [b;,b;41 — 1], an
AR(pj;)-model is fitted (by setting up and solving the Yule-Walker equations). The fitness value
is evaluated as in Equation . 2) A term minimising the number of break points. These are
again conflicting aims. However, we observed that the second term (number of break points) is
of much less importance than for the rectangle model. For many time series the results do not
change when the first term (goodness of fit) is given very high (or even all) weight in the fitness
function. The reason is, that many break points give rise to shorter intervals. Fitting AR-models
to short intervals results in a worse fit, because the noise is not filtered well. This effect implicitly
reduces the number of break point. There are, however, cases where the second term is essential
for finding the right number and locations of the break points, e.g., a series which is composed
of few AR-models having all the same order and only slightly differing coefficients.

Setting up the Yule-Walker equations is by far the computationally most demanding sub-
task. We shall see below that, with an appropriate preprocessing, we can use a range tree to fit
an AR(p)-model to any interval [b;,b;41 — 1] in time O(log(T')), for p < pmas and Prmqa constant.
If pras is not assumed constant then the time is bounded by O(p2, . log(T)).
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4 Range Trees

Range trees are a general data structure which support multiple queries on intervals of indexed
data. A description of the general concept of a range tree may be found in [2]. We restrict the
presentation to the situation where the data is a time series (yo, ..., yr—1), that is, we consider
range trees for one-dimensional numerical data. A range query receives two indices a,b (the
range), 0 < a < b < T — 1, as inputs and returns as answer a quantity q(a,b) = q(ya, ..., yp)
which is determined by the data y,, ..., y,. We first describe the concept for the case were the
query asks for the maximum value in a range (interval) [a, b]: ¢(a,b) = max{y; | a <i < b}. For
a single query on range [a,b], the most efficient way is to compute the answer ¢(a,b) directly
from the data, which takes time O(b—a) = O(T'). If multiple queries with different ranges have
to be performed, a preprocessing might pay off. A straightforward preprocessing is to compute
the maxima for all T'(T'+ 1)/2 ranges [a,b] in advance and store them in a table. Then a query
[a, b] can be answered by a look-up in the table in constant time. The time for the preprocessing
is ©(T?). The quadratic preprocessing time and, especially, the quadratic space requirement
make this approach infeasible already for medium data sizes of around 10,000.

The idea behind range trees is to compute the maxima only for a few ranges and then
combine this information to determine the maximum for any other range. For example, if one
knows the maxima for two adjacent ranges, maz(a,c — 1) = max{y; | a < i < ¢— 1} and
maz(c,b) = max{y; | ¢ < i < b}, then the maximum for the range [a,b] can be computed by a
single addition max(a,b) = max(a,c — 1) + max(c,b). It is this merging property which allows
the use of range trees. A range tree is a rooted, binary tree where every node covers a range
[a,b] and the left and right child, respectively, cover the ranges [a, (a +b)/2] and [(a+b)/2+1, D]
(here and in the following we omit the details for handling the case that the division by 2 gives
a remainder). The root covers all the data, i.e., range [0,7 — 1]. The range tree is constructed
bottom up, starting with 7' leaves formed by singleton ranges [a,a] for which the maximum
trivially is a. Then pairs of adjacent nodes are merged and the common maximum is stored in
a new node which is the parent of two. For the maximum problem the preprocessing time is
©(T') and the query time is O(log(T)).

Preparing Rectangle Models for Range Trees

In order to apply the rectangle method, we have to be able to find the maximum max(a,b) =
max{y; | a < i < b} for every interval [a,b] and likewise the minimum min(a,b). To achieve
this, we store at all nodes of the range tree the minimum and maximum of the range the node
covers. The preprocessing time is ©(T") and the query time is O(log(T)).

Preparing AR-Models for Range Trees

In order to fit an AR-model of order p to an interval [a, b] of the time series, 0 < a <b < T —1,
using the Yule-Walker equations, we have to know the sample autocovariances ry for £ =0, ..., p.
In order to use range trees, one has to be able to compute the autocovariances for interval [a, b]
from those of the intervals [a, (a 4+ b)/2] and [(a + b)/2 + 1,b]. Instead of storing the sample
autocovariances 7, at the nodes of the range tree, we store a number of values from which the
r¢’s can be computed. These are the sum of the values of the part of the time series covered by
the range and the sum of products of values with lags 0 and ¢:
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b—¢ b—¢
Ur=> wive,  Ve=_ Yilire: for £=0,1,...,p. (5)
i1=a i1=a

Also the size S = b —a + 1 of the range is stored. Then the autocovariance r; for lag £ becomes

Y Ve B UoUy, (6)
TS+ (S—e+1)2

Now we are in a position to describe the merging step which is crucial for using the range tree.
Let a < ¢ < b be three indexes if the time series. Let I’ denote the interval [a, ¢], and I” denote
[c+1,b]. Let S =c—a+1,5"=b—c,and S=b—a+1. Let I = I'UI" = [a,b]. Let (Uy, Vp)
(resp. (Uy, V) and (U7, V}")) be the aforementioned parameters for I (resp. I’ and I”).

The parameters for I can be computed from those of I’ and I” by

S=5+5" Uy = U, + UY, Vo=V, +V/, for ¢ =0,...,p.

In addition, some values at the merging point ¢ have to be computed. Since, for example, V/
only contains products y;y;+¢ where both i and i + ¢ are in I’. Hence those with i € I’ and
i+ £ € I" have to be added to V. Alternatively, this data can be precomputed and stored in
the range tree. When the maximum order p of an AR-model is fixed then the construction of
the range tree can be done in time O(T') and the time to fit an AR-model to a given range is

O(log(T)).

5 Simulation results

We only mention the most important results of our simulations, a much more detailed description
can be found at the website below. The test have been performed on artificial and real-world
time series. http://www2.imm.dtu.dk/ “pafi/StructBreak/pfah-simulations.pdf.

Using range trees for the AR-model pays off for series longer than 400. For series with 50,000
observations, fitting an AR-model to a randomly selected range is on average 40 times faster
using range trees than a direct fit and 500 times faster for series with 1 million observations.

In order to evaluate how well break points are found by our methods, we tested them on
artificially generated time series with well defined break points, but also on real world time series,
where the “true” break points had been determined by human experts. In all cases, the break
points were found with high precision, for short series (7" < 2000) most of the time perfectly.
For the rectangle model applied to series like the one in Figure [T] almost always the true break
points were recovered precisely. For artificial series constructed of 2 to 5 AR-models of order 1
to 5, the break points (changes between models) were found within maximal +5 indices.

One has to remark, that using the residuals to measure the goodness of fit for the AR-model
requires linear time O(T'), however this is at least one order of magnitude less then the time
for naively fitting the model. In order to overcome using linear time, one can instead measure
the goodness of fit by using the Minimum Description Length principle of Rissanen [6], see
Davis [1] for details, which can be computed in constant time for fixed model order p. In our
tests, however, the break points found, did not match the true ones as good as when using the
residuals.
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6 Conclusion

We have shown how evolutionary algorithms and an efficient data structure can be combined
into very efficient and effective algorithms for detecting structural breaks. The method applies
to time series which are piecewise generated by statistical models, which meet the “merging
condition”, i.e., that the information for adjacent ranges can be merged into the information of
the union of the ranges. For two such models, the rectangle model and AR-models, it is shown
how the algorithm is used and that it performs very well on artificial and real world data.

The method generalises to higher dimensional data. For d-dimensional data, the complexity
depends on the type of range queries. If every query uses the same range in all dimensions, then
the time and space requirements are only increased by a factor d. Otherwise, the preprocessing
time for the range tree is O(T log?~1(T")) and the query time is O(log?(T")). An implementation
of the rectangle method for multi-dimensional data is under construction. We are also working
on an R-callable Java implementation.

In an industrial application, we have used the rectangle method with great success to detect
outliers in the series. It is a challenge to find further statistical models which meet the merging
condition and thus allow the speed-up by using range tree.
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Abstract. To detect outliers from a single regression model requires one, perhaps robust, fit to
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1 Introduction

The international trade data that inspired this study come from several linear regression models
that need to be distinguished. To detect outliers from a single regression model requires one,
perhaps robust, fit to the data. But if the “outlying observations” are other regression models,
it may be necessary to fit several different linear models in order to reveal the structure. In
this paper we illustrate the use of random start forward searches in exploring such mixtures of
regression models.

The Forward Search (FS) for a robust, diagnostic fit to a single regression model proceeds by
fitting subsets of the data of increasing size. The details are in In the random start F'S
is illustrated on an example of 180 observations arising from international trade. Forward plots
of aspects of the data as the subset size increases clearly reveal the structure. In we compare
our results with those obtained by robust fitting under the assumption of a single model. The
proposed method involving random starts, coupled with the graphical monitoring of residuals
during the FS, provides a powerful diagnostic method for detecting data coming from a mixture
of regression models.
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2 The Forward Search for Regression Data

The forward search achieves robustness by fitting the model to subsets of the data of increasing,
where the subsets are sequentially chosen to be as close as possible to the fitted model. The
introduction of outliers into the subset is diagnostically revealed by plots of residuals against
subset size as well as formally by statistically tuned tests.

In the regression model y = X3 +¢, y is the n x 1 vector of responses, X is an n x p full-rank
matrix of known constants, with ith row mZT, and [ is a vector of p unknown parameters. The
normal theory assumptions are that the errors ¢; are i.i.d. N(0,0?).

The least squares estimator of (3 is B Then the vector of n least squares residuals is e =
y—4§=y—XB = (I—H)y, where H = X(XTX)"2X7 is the ‘hat’ matrix, with diagonal
elements h; and off-diagonal elements h;;. The residual mean square estimator of o2 is s* =
eTe/(n—p) = Yy €2/ (n — p).

FS fits subsets of observations of size m to the data, with mg < m < n. Let S*(m) be the
subset of size m found by FS, for which the matrix of regressors is X (m). Least squares on this
subset of observations yields parameter estimates /3 (m) and s%(m), the mean square estimate of
o2 on m — p degrees of freedom. Residuals can be calculated for all observations including those

not in S*(m). The n resulting least squares residuals are

ei(m) = y; — x B(m). (1)

The search moves forward with the augmented subset S*(m + 1) consisting of the observations
with the m + 1 smallest absolute values of e;(m). To start we take my = p and search over
subsets of p observations to find the subset that yields the least median of squares (LMS,
Rousseeuw, 1984) estimate of 5. However, this initial estimator is not important, provided
masking of outliers is broken.

To test for outliers the deletion residual is calculated for the n—m observations not in S*(m).
These residuals, which form the maximum likelihood tests for the outlyingness of individual
observations, are

yi — xL B(m) ei(m)
Vs2(m){1 + hi(m)} \/32 {1+ hi(m)}

where the leverage h;(m) = z7 {X(m)T X (m)}~'z;. Let the observation nearest to those forming
S*(m) be imin where

ri(m) = (2)

tmin = a1g_min [ri(m)].
To test whether observation i,;, is an outlier we use the absolute value of the minimum deletion
residual, namely |rimin(m)|, as a test statistic. If the absolute value is too large, the observation
imin 1s considered to be an outlier, as well as all other observations not in S*(m).

In we use diagnostic plots of the evolution of all r;(m) with m in order to reveal the
structure of the data. In S{]we contrast this diagnostic approach with formal testing for outliers,
for which we need a reference distribution for r;(m) in (2). If we estimated o from all n
observations, the statistics would have a t distribution on n — p degrees of freedom. However,
in the search we select the central m out of n observations to provide the estimate s?(m), so
that the variability is underestimated. To allow for estimation from this truncated distribution,
let the variance of the symmetrically truncated normal distribution containing the central m/n
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portion of the full distribution be 0% (m). See Riani et al. (2009) for a derivation from the
general method of Tallis (1963). We take as our approximately unbiased estimate of variance
52 = s%(m)/o% = s*(m)/c(m,n). In the robustness literature c¢(m,n) is called a consistency
factor (Maronna et al., 2006).

For each m, the distribution of the minimum deletion residual |7, (m)| can be found by
repeated simulation of samples of size n. However, in the formal approach to testing for outliers
of S{] we repeatedly superimpose envelopes for varying values of n to establish the number of

outliers. For this we use the order-statistics arguments of Riani et al. (2009).

3 The Random Start Forward Search for Regression Data

The international trade data record the transaction value and amount of imports of individual
goods into the EU. For any individual supplier there should be a straight line relationship
between value and quantity, although the relationship may be different for different suppliers.
There may also be numerous outliers due to misrecording of the values of the two variables,
or due to erroneous coding of goods. Interest is in detecting price-quantity relationships that
are consistently anomalous; these may indicate money laundering or tax fraud. We analyse 180
observations with such a structure.

Random start forward searches have been used as a diagnostic tool to indicate the number
of clusters in multivariate data and to suggest cluster membership. The analysis of Atkinson
et al. (2004, S$3.4) of the Swiss banknote data of Flury (1997), in which there are two clusters
and some outliers, shows that the structure revealed by the search depends on whether the
search starts in one or other of the clusters, or with some units from both. For clustering such
data, Atkinson and Riani (2007) suggest running several hundred searches from random starting
points. Many of the forward searches are attracted to clusters in the data and the structure is
revealed.

We now exemplify this idea for the analysis of regression data. To run random start forward
searches we select 500 random subsets of my = 2 observations, and run a forward search from
each. Although the search moves forward by incrementing the value of m, the new subset is
chosen by ranking all n residuals using parameter estimates from the previous subset. Thus
observations that become outlying can be dropped from the subset, which is attracted towards
central observations from whichever is the nearest model. Such a process continues until all
observations near to the particular model have been used in fitting. Then outliers, or observations
close to other regressions, are included in the subset, and the parameter estimates may change
appreciably. Once two random starting points have converged to the same subset S*(m), for
some m, the searches cannot diverge again. Thus a forward plot of the minimum deletion
residuals shows trajectories that converge to a few potentially informative curves. In Figure
from around m = 100, the forward plots of the minimum deletion residuals are reduced to only
two trajectories. We now interrogate the plot to find out what structure is being revealed.

The darker trajectory in the figure lies above the 99% pointwise envelope from around m =
130 and continues to increase until m = 133. The lower left-hand panel of Figure [2] shows,
by circles, the 133 units that are included in the subset at this point, which clearly form one
line. The other units equally clearly fall on a second line; there are no outliers from these two
structures. The second trajectory in Figure (1| goes outside the upper envelope slightly earlier.
The bottom right-hand panel of Figure [2| shows a scatterplot of the units when this branch of
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Minimum deletion residual

20 40 60 80 100 120 140 160 180
Subset size m

Figure 1: Trade data: forward plots of minimum deletion residuals from 500 random starts with
pointwise 1% and 99% limits. There appear to be two distinct groups (regression lines)

the search is interrogated at m = 107. The structure of two lines is again revealed; as well as
units not in the subset lying below those in S*(m) for larger values of z, there are also four units
above those in the subset for the lowest values of z.

The curves in the upper panels of Figure [2| show the 500 trajectories divided into those that
give one of the two peaks and those that give the other. We select one initial subset from each
panel and follow the residuals generated during these searches. The left-hand panel of Figure
shows the scaled residuals for all units; those that are included in the subset at m = 133 are
shaded grey and plotted with broken lines, whereas the remaining units are plotted with a
continuous black line. The units included in the subset have, for most of the search, residuals
that approximately lie between —1 and 1. The residuals plotted in black all have positive values,
as we would expect from the lower left-hand panel of Figure |2 with values between 1 and 4 for
much of the search. The two groups are quite distinct until around m = 150 when the increasing
presence of the observations from the upper line starts to influence the fitted slope. The effect
of merging of the two lines shows more dramatically in the right-hand panel of the figure where,
now, the residuals from observations not in the subset at m = 107 mostly lie below the majority.
However, the four observations for low x have the highest residuals. In this plot the dramatic
change for m between 158 and 162 comes from the interchange of units between those in the
subset and those not (in these five steps 20 new units join the subset and 15 leave it). The fits in
the left-hand and right-hand panels of the figure are now identical, although the vertical scales
of the panels are different. The identicality of the fits is also clear at the ends of the searches in
the two upper panels of Figure [2| where the upwards jump in the right-hand panel signals the
interchange.

Our analysis indicates that the data fall on two straight lines. Out of 180 observations, we
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Figure 2: Trade data divided according to the two peaks in Figure Upper panels, forward
plots of minimum deletion residuals. Lower panels, scatterplots of observations; o observations
included in the subset S*(m)
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Figure 3: Trade data divided according to the two peaks in Figure [l forward plots of scaled
residuals. Black lines (blue in the .pdf); observations not in the subsets, plotted as + in Figure
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have 133 that seem to lie on one line and 107 that may well lie on the other. These figures are a
reminder that it is impossible to classify with any certainty those units that lie where the lines
overlap. However, for the analysis of the trade data, the diagnostic evidence of the existence of
two lines is the important outcome. The next stage is to return to the data and to identify the
units according to country of origin and importer.

4 Robust Analyses

It is very well-known that multiple outliers in regression models may mask each other, so that
they are not revealed by a least squares fit. A robust fit, using a single model, is needed. We
now investigate numerically how well such robust fits perform for the trade data which arise
from a mixture of regression models.

To calculate the confidence level for the observed value of |ryin(m)| in the FS we used the
results of Riani et al. (2009) to obtain the confidence level v as

V== B {00 | e -1 @

for m = mg,mo+1,...,n — 1. Here ' and T are the c.d.f.s of the F' and T distributions. As
the envelopes in Figures [1| and |2[ show, there is appreciable curvature in the plots as m — n; the
envelopes increase rapidly, as, in the absence of outliers, large residuals occur at the end of the
search. To clarify visual presentation we now introduce a pointwise normal-score transformation
of the envelopes, and of the observed distances, in order to give plots with horizontal envelopes.
The plot in normal coordinates uses ®~!(vy), which, of course, does not change the rule.

To avoid the problem of multiple testing (one outlier test for each value of m) we adapt the
rule of Riani et al. (2009) for multivariate data to obtain a procedure with a samplewise size
of around 1%, replacing Mahalanobis distances by the absolute value of the minimum deletion
residual. Now the F'S starts from a single, carefully chosen subset using LMS. Outlier detection
follows a two-stage procedure. In the first we use envelopes for all n observations. If outliers
are present we receive a signal of an outlier at some value m'. Succeeding observations may be
outliers. However, the envelopes depend on the value of n. If we reject some observations as
outliers we need new envelopes for a smaller value of n, in general n*. In the second stage of
the procedure we superimpose envelopes for values of n from this point until the first time we
introduce an observation we recognise as an outlier.

In the trade data the procedure from a robust starting subset yields a forward plot of values
of |rmin(m)| which is of the form of those in the upper left-hand panel of Figure [2l The rule
yields a signal at m! = 135 because of three successive values above the 99.99% threshold (the
values 133 and 107 in Figure [2] were chosen as the first of such three consecutive values for
searches leading to the respective peaks). We then superimpose envelopes for a series of values
of n*. Figure [4] illustrates this point for n* = 138,148,156 and 158. For the two lower values of
n* the plot of residuals lies below the 95% envelope. That when n* = 156 lies within the 99%
envelope (as does that for n* = 157 which is not shown). However when n* = 158 one value of
the statistic lies above the 99.9% envelope. The conclusion is that there are 157 observations,
out of 180, that can be used for estimating the regression model by least squares. There are
therefore 23 outliers.

We now compare this analysis of the trade data with that obtained using the Least Trimmed
Squares (LTS) and reweighted LTS (LTSr) algorithms described by Verboven and Hubert (2005).
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Figure 4: Trade data: resuperimposed envelopes for steps 138, 148, 156 and 158. In this process
the first outlier is detected at n* = 158, so there are 157 observations available for estimation
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Figure 5: Trade data: left-hand panel, scaled residuals from LTS, right-hand panel scaled resid-
uals from reweighted LTS. Inner bands , pointwise 99% region, outer bands, sample-wise 99%
region. There is no indication of the structure evident in Figure

Because the FS algorithm is designed to have size « of declaring an outlier free sample to contain
at least one outlier, we use a Bonferroni correction for simultaneity when identifying the outliers
found by these methods. In LTSr the outliers identified by LTS are removed from the fit and the
parameters re-estimated from the remaining observations. We also use the Bonferroni correction
to identify the outliers in this intermediate step.

The left-hand panel of Figure [5] shows a plot of the scaled LTS residuals against observation
number. In interpreting these plots it is important that the observations are numbered consec-
utively for one importer and then the other. The structure of different variances, particularly
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evident in the left-hand panel, disappears when the observations are permuted.

The inner bands in the plot provide pointwise 99% tests for outliers. There are a large
number of outliers at this pointwise level whereas we might expect two if the data followed
a single regression model. However the outer, Bonferroni adjusted, bands indicate only three
outliers and so no suggestion of the two lines that are the structure of the data. The plot of the
scaled residuals from LTSr in the right-hand panel shows no evidence of any outliers at either
level.

The further analysis of this section illustrates that robust methods designed to fit a single
model whilst detecting outliers may not be effective in detecting departures from a single model
if two or more models are present. In the random start forward searches of S3| our diagnostic
procedure detected linear fits with 47 or 73 observations excluded. The statistically controlled
fitting of a single model using the F'S, on the other hand, only revealed 23 observations as not
coming from one of the models. Although scatterplots like those in Figure [2| would reveal a pat-
tern of outliers from which the existence of two lines can be inferred, we need a procedure which,
like the random start F'S, reveals the presence of alternative models. The second conclusion is
that use of very robust methods, such as LTS, designed to reveal up to 50% of outliers in the
data, can fail if the major model and that for the outliers are close together. Several different
fits to the data, combined with diagnostic plotting of residuals, provide a surer way of detecting
data from mixtures of regression models.
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Abstract. In the analysis of binary longitudinal data a frequent problem is the presence of
missing data since it is difficult to have complete records of all individuals. Another feature in
these studies is to take into account the autocorrelation structure present in successive obser-
vations, taken over time on each individual and associated with a certain response variable. In
this paper we discuss the performance of the marginal models implemented in the R package
bild when missing values are present in data provided that they are missing at random (MAR).
In those marginal models inference is based on likelihood approach and serial dependence is
regulated by a binary Markov chain mechanism. A simulation study is carried out and a real
data set is also used to illustrate that behaviour.

Keywords. binary longitudinal data, marginal model, exact likelihood, Markov chain, missing
data.

1 Introduction

Longitudinal binary data studies are a powerful design and they have become increasingly pop-
ular in a wide range of applications in clinical research. In these studies repeated observations of
a response variable are taken over time on each subject in one or more treatment groups. In such
cases the repeated measures of each vector of responses are likely to be correlated and the auto-
correlation structure for the repeated data plays a significant role in the estimation of regression
parameters. Although most longitudinal studies are designed to collect data on every subject in
the sample at each time of follow-up, many studies have missing data since it is difficult to have
complete records of all subjects for a wide variety of reasons. When longitudinal binary data are
incomplete, there are important implications for their analysis and several methods have been
proposed [I}, 2, [7, 8]. A review of this topic is given by [6].

In the context of marginal model to binary longitudinal data, [3] proposed a methodology
based on likelihood approach and used a binary Markov chain model to accommodate serial
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dependence and odds-ratio to measure dependence between successive observations in the same
individual. This methodology has been implemented in the R package bild [4, 5] and allows
missing values on the response, provided they are missing at random (MAR) in the standard
terminology of [9].

The goal of this paper is to study the performance of that methodology for analysing incom-
plete binary longitudinal responses. A simulation study is presented where complete and missing
data are both considered. Data from the Muscatine Coronary Risk Factor [I0] is analysed to
illustrate the objective of this paper. In Section [2] we give a summary of the approach used.
In Section |3| we report a small simulation study to examine the performances of the procedure.
Complete and incomplete data cases are considered. In Section [l we present the results of ap-
plying the approach to the aforementioned real data set. Finally, in Section [5| we draw some
overall conclusions.

2 Models for binary data

Suppose that n independent individuals are observed at times t = 1,...,T;, which need not be
the same for all n individual, and denote by y;; € {0,1} the binary response value at time ¢
from individual i (i = 1,...,n), and by Yj; its generating random variable whose mean value is
Pr(Y; = 1) = 6;;. Associated with each observation time and each subject, a set of p covariates
is available, denoted by z;; and 5 as the p—vector of unknown parameters. We shall refer
collectively to the sequence (i1, ..., yit) as the ith individual profile.

A logistic regression model is assumed for the marginal mean of Y;; and the probability of

success is
logit 0y = x,, 5. (1)

For the first order Markov chain (MC1), the serial dependence is modeled using ¥y =
OR(Y;,Yi—1) where

PtV =Y, =1)Pr(Y,1 =Y, =0)  pi/(1-p1)
OR(Y: Y1) = 5 Y, 1=0,Y,=1)Pr(Y, 1 =1,Y%=0) po/(1—po)

where p; are the one-step transition probabilities given by
pj =Pr(Y; =1Y;-1 =), j=0,1 (2)

For the second order Markov chain (MC2) the joint distribution of three successive compo-
nents of the process at time, (Y;—2,Y;_1,Y;), is considered and the constraints,

OR(Y;-1,Y;2)= Y1 =OR(Y;-1,Y})
OR(Y;—2,Y4|Y;-1=0) = 92 =OR(Y;-2,Y1|Y;-1=1)
are imposed, with 11 and vy two positive parameters. The two-steps transition probabilities are

given by
phj :Pr(}/;f: 1’}/;5—2:h7}/t—1 :j)a haj:()vlv (3)

see [3] for a full account.
The serial dependence for MC2 models is regulated by A = (A1, A\2) = (log ¢, log1s), which

are assumed to be constant across time and subjects. When, Ay = 0, the Markov chain reduces
to MC1 models and the serial dependence is regulated by A;.
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The estimation of parameters is based on the likelihood approach. The contribution from a
generic individual to the log-likelihood for the parameters (3, A) is under MC1 model,

T;

(i (B, A) = yilogit (61) +log (1 — 61) + > [y logit(p;) + log(1 — p;)] (4)
=2

and under MC2 model,

(B, N) = [yllogit(Ql) + log(1 — 91)] + [yzlogit(pj) + log(1 —pj)] +
T;
> lydogit(pn;) + log(1 — prj) (5)
=3

where the three blocks on the right-hand side represent the contribution to the log-likelihood
from y1, yo, and (ys, ..., yr), respectively, where pj; is given by and p; by .

For both models, MC1 and MC2, the overall log-likelihood functions are obtained as the
sum of the n logarithmic individual contributions given by and , respectively. Numerical
maximisation of the log-likelihood is required and the derivatives of the functions are supplied
to improve the efficiency of the optimisation algorithms. Given the algebraic work required to
obtain explicit expressions of the gradient of the log-likelihood it is completely unfeasible to
develop analogous results for the Hessian matrix. Therefore, the observed information matrix
for (8,A) must be computed via numerical differentiation of the first derivatives. For a full
account see [3].

Missing data

In this approach missing values are allowed on the response, provided they are MAR. If missing
data occur at the beginning or at the end of an individual profile, this poses no problems, since
this case is equivalent to an unbalanced design in the length profile T; for that individual. Some
restrictions exist for the presence of missing data when they occur in the middle of the profile.
The precise description of the missingness patterns follows next, where p; in (2) will be denoted
here by p¢.; and pp; in by pi.n;-

If MC1 model is considered and we have a missing value at time point ¢t — 1 it is required
that there are observations at time points t — 2 and ¢. Expression is modified as follows: ;1
is replaced by y; and p; is replaced by py.; = Pr(Y; = 11Yi—2 = j) = (1 — pi—1:5) Pr:0 + Pe—1:5 Pe:1-

If MC2 model is considered and we have a missing value at time point ¢t — 2, it is required
that there are observations at time points ¢t — 4,¢ — 3,¢ — 1 and ¢. The modifications in are:

1. If yo is missing, and there are observations at the two adjacent time points (y3 and yy),
then (9] is modified as follows: ya is replaced by ys; p; is replaced by Pr(Ys = 1|Y; = j) =
(1 — p2:j) p3:0 + p2:j P31 using the one-step transition probabilities py.; as used in ; the
contribution from Y} is obtained from Pr (Yy = 1|Y1 = h, Y3 = j) = (1—po.p)pa:0j +D2:nP4:15-

2. If y; is observed and y;_1 is missing, the last term of type pp; in is replaced by
Pr(Y; =1|Yi3 = h,Yi—2 = j) = (1 = pr—1:5) Pt:jo + Pi—1:hj Pt:j1.

3. The more common case refers to a missing datum in the middle of the observation period.
Let us say that the missing value is at time point ¢ — 2 and that there are observations at
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time points t,t — 1,¢t — 3,¢t — 4. The joint contribution from (y;—1,y:) is
Pr(Yi1=nrY; =1, u=hY, 3=7j) =
= (1 — pr—2:n5) [(1 — Pi—1:0) + (2pi—1:50 — 1)7”} Dt:0r
+ Pt—2:hj {(1 — pi—1:51) + (2pe—1:1 — 1)7‘] De:Ar -

This approach is implemented in the R package bild [4].

3 A simulation study

A simulation study was conducted when we had a serial dependence MC1 or MC2 with the aim
to examine the impact of intermittent missingness status in the estimation parameters in terms
of relative bias and mean square error.

In the simulation, we have considered the following model

Pr(v; = 1jt) = -2 £ A1) (6)
+ exp(Bo + Bit)
where the fixed effect coefficients were set at 5y = —1 and 7 = 0.5. Each data set contains
I = 50 subjects of size T = 13, with t= -1.5, -1.25, -1, -0.75, -0.5, -0.25, 0, 0.25, 0.5, 0.75, 1,
1.25, 1.5.

On each run we have generated T' binary correlated data under the ith subject following a
first order serial dependence with constant A or a second order serial dependence with constants
(A1, A2). Under MC1 we considered for A; the values -2, -1 , 1 and 2. Under MC2 we have
considered for the pair (Aj, A2) the combinations (-1,-1),(-1,1),(1,-1), (1,1).

In both situations an intermittent missing-data mechanism MAR was considered, taking
into account the missingness restrictions described in Section[2] In this mechanism it is assumed
that the binary response on the first occasion is always observed, R;; = 1, here R; = 1 denote
a T x 1 vector of indicator variables for the ith subject, where R;; = 1 if Y}; is observed, and
R;y = 0 if Yj; is missing. The binary response for the ith subject at time ¢ (R;) is generated
with probability of success given by (1 — ¢)!~%it—1  where ¢ is the nonresponse parameter [2].
To each serial dependence the missing-data mechanism was applied with ¢ = 0,0.1,0.25,0.5
(¢ = 0 corresponding to complete data). The whole estimation procedure was repeated for
1000 runs and the sample mean of the estimates (Mean), the sample mean of percent relative
bias (Rbias%) and the sample mean square error (MSE) were computed. The estimates of the
parameters were obtained through the function bild in the R package bild [4].

The results of our simulation are displayed from Tables Each table lists the following:
Mean, Rbias% and MSE over the 1000 simulations runs. From Figures we present the
boxplots of Rbias% and MSE as a summary of those results.

Taking into account that our goal is to study the performance of the methodology with
intermittent missing data, the main conclusions of our simulation can be summarize as follows:

1. To the first group of data generated from a MC1 serial dependence (Table|l]and Figures
and [2]) the three main conclusions are: (i) the MSE of both 8y and $; is small for values
of ¢ until 0.25 but when ¢ equal 0.5 the MSE of (5 is greater than the MSE of f;; (ii)
the Rbias% of fy is greater than the Rbias% of f; to all situations considered; (iii) the
Rbias% of both 5y and 1 increase with larger values of ¢.
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Figure 1: Rbias% of ,éo and 31 for several A\ values and MC1 model.
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Figure 2: MSE of BO and 31 for several A1 values and MC1 model.

2. To the second group of simulations generated from a MC2 serial dependence (Table and
Figures [3| and [4]) the two main conclusions are: (i) the MSE of both Sy and /3 is very
small for all values of ¢; (ii) the Rbias% of /31 is greater than the Rbias% of 5.

3. When we compare the simulations for the two groups, the behaviour of Rbias% and MSE
is very similar for all parameters when we have complete data cases (¢ = 0). When missing
data is present the impact of intermittent missingness is smaller, both in terms of Rbias%
and MSE, under the MC2 serial dependence and for all parameters.

Based on the previous conclusions we may say that the results of the simulation study suggest
that the methodology implemented in R package bild has a satisfactory degree of robustness to
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A1 ¢ Bo b1 M

Mean -2 00 —0.975 0.510 —1.752
Rbias% —2.537 2.063 —12.404
MSE 0.006 0.007 0.147
Mean 0.1 —0.972 0.505 —1.754
Rbias% —2.838 1.123 —12.314
MSE 0.007 0.007 0.169
Mean 0.25 —0.944 0.492 —1.762
Rbias% —5.584 1.658 —11.895
MSE 0.011 0.010 0.183
Mean 0.5 —0.854 0.454 —1.778
Rbias% —14.616 —-9.124 —11.125
MSE 0.038 0.022 0.365
Mean -1 0.0 —0.984 0.507  —0.923
Rbias% —1.561 1.378 —7.529
MSE 0.007 0.008 0.063
Mean 0.1 —0.979 0.498 —0.904
Rbias% —2.051 —0.361 —9.564
MSE 0.008 0.009 0.073
Mean 0.25 —0.947 0.490 —0.945
Rbias% —5.258 —2.026 —5.455
MSE 0.012 0.012 0.090
Mean 0.5 —0.826 0.438 —0.957
Rbias% —17.408 —12.366 —4.261
MSE 0.050 0.026 0.184
Mean 1 00 —1.029 0.492 0.910
Rbias% 2.887 —1.686 —8.960
MSE 0.013 0.014 0.050
Mean 0.1 —1.017 0.491 0.898
Rbias% 1.706 —1.790 —10.194
MSE 0.013 0.015 0.055
Mean 0.25 —0.960 0.470 0.878
Rbias% —3.974 —5.906 —12.157
MSE 0.016 0.017 0.074
Mean 0.5 —0.767 0.428 0.783
Rbias% —23.293 —14.472 —21.748
MSE 0.089 0.040 0.160
Mean 2 0.0 —1.070 0.479 1.831
Rbias% 6.952 —4.150 —8.444
MSE 0.021 0.018 0.078
Mean 0.1 —1.059 0.477 1.827
Rbias% 5.916 —4.530 —8.664
MSE 0.023 0.018 0.085
Mean 0.25 —0.980 0.462 1.797
Rbias% —1.988 —7.518 —10.139
MSE 0.022 0.025 0.104
Mean 0.5 —0.744 0.393 1.693
Rbias% —25.625 —21.335 —15.367
MSE 0.111 0.057 0.216

Table 1: Results of the simulation study for A\; = —2,—1,1 and 2.

intermittent missing data status.

4 An illustrative example

To illustrate the results we have used a subset of data from the Muscatine Coronary Risk Factor
Study, a longitudinal study of coronary risk factors in school children from Muscatine (Iowa,
USA) [10]. The dataset contains records on 1014 children who were 7-9 years old in 1977 and
were examined in 1977, 1979 and 1981. The binary response of interest is whether the child is
obese (1) or not (0). Since one of the objectives of the study was to determine the effects of sex
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Figure 3: Rbias% of ,éo and ﬁl for several (A1, A2) values and the MC2 model.
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Figure 4: MSE of ,éo and 31 for several (A1, A2) values and the MC2 model.

and age on risk of obesity a marginal model is appropriate. Many data records are incomplete,
since not all children have participated in all the surveys, creating, as [I] said, a "genuine”
missing data problem. We have considered these data, available in the R package bild [4], as an
illustrative example to an easy comparison with findings of other authors [2] [I [§] when there
are missing values.

For comparison with the results of [2] and [I] we have fitted to data the same three models
for the marginal probability of the event, namely:

Model I: logit(0ir) = o + 51G + B2 A(L) + B3 A(Q) + B+ GA(L) + 5 GA(Q)
Model II: logit(0;t) = Bo + S1G + B2A(L) + B3 A(Q)
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(A1, A2) ¢ Bo B A A2

Mean  (-1,-1) 00 —0.998 0502 —1.022 —1.053
Rbias% —0.196  0.308 2225  5.300
MSE 0.005  0.006  0.047  0.066
Mean 01 —1.003 0498 —1.029 —1.038
Rbias% 0.337 —0.406 2932  3.858
MSE 0.005  0.006  0.057  0.079
Mean 025 —1.004 0503 —1.025 —1.035
Rbias% 0.362  0.587 2517 3.530
MSE 0.006  0.008  0.073  0.095
Mean 0.5 —1.003 0503 —1.024 —1.088
Rbias% 0.291  0.604 2360  8.836
MSE 0.008  0.009 0112  0.149
Mean (-1,1) 00 -1.006 0508 —1.034  0.970
Rbias% 0.569 1.559 3.397  —3.036
MSE 0.009  0.010  0.089  0.047
Mean 01 —1001 0502 —1.043  0.982
Rbias% 0.097 0.337  4.270 —1.787
MSE 0.010  0.009  0.108  0.055
Mean 025 —1.010 0508 —1.044  0.998
Rbias% 1.005 1.604 4399 —0.249
MSE 0010 0010  0.141  0.065
Mean 0.5 —1007 0502 ~—1.052  0.950
Rbias% 0.074 0497 5203 —4.970
MSE 0.011  0.011  0.166  0.093
Mean (1,-1) 00 —1.006 0506  0.990 —1.044
Rbias% 0.625  1.124 —1.038  4.420
MSE 0.010  0.011  0.028  0.076
Mean 01 —1008 0502 0981 —1.037
Rbias% 0.837 0239 1870  3.727
MSE 0.009  0.012 0035  0.085
Mean 025 —0.999 0491 0984 —1.053
Rbias% —0.059 —1781 —1.638  5.316
MSE 0010  0.012  0.046  0.098
Mean 0.5 —1.007 0500  0.966 —1.035
Rbias% 0.761 —0.006 —3.442  3.545
MSE 0011 0011 0072  0.126
Mean (1,1) 00 -1.001 0504 0991  0.986
Rbias% 0116  0.794 —0.865 —1.439
MSE 0.017  0.015  0.060  0.049
Mean 01 —1005 0499 0972  0.958
Rbias% 0.536  —0.186 —2.796 —3.126
MSE 0.018  0.016  0.080  0.054
Mean 025 —1.004 0506  0.966  0.958
Rbias% 0441 1212 -3.384 —4.197
MSE 0019 0017  0.096  0.071
Mean 0.5 —1.007 0498  0.970  0.967
Rbias% 0.749 —0.466 —2.977 —3.332
MSE 0.020  0.017  0.134  0.092

Table 2: Results of the simulation study for several (A1, A2) values.

Model III: logit(;;) = Bo + BLA(L) + 2 A(Q)

where G indicates gender (female=1, male=0) and A(L), A(Q) are orthogonal polynomial con-
trasts for linear and quadratic component of age effect, respectively. A fourth and simpler model
was also fitted to data:

Model IV: logit(6;) = Bo + 1 A(L)

In all four models a serial dependence MC2 has been considered, instead of the MC1 serial
dependence used by [I]. The analysis was performed using the bild function in the R package
bild.
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For all the models fitted to data, the estimated values of the parameters, as well as their
standard errors, t-ratio and corresponding p-values are given in Table 3] The estimates of the

regression parameters and the corresponding standard errors are in close agreement with those
of [2].

Model LogL Parameter Estimate SE t-ratio p — value
I —949.8621 Bo —1.346  0.097 —13.929 ~0
B1 0.042 0.138 0.303 0.762

B2 0.126  0.066 1.918 0.055

B3 0.020 0.035 0.570 0.568

B 0.175  0.095 1.852 0.064

Bs —0.092 0.049  —1.899 0.058

A1 3.146  0.200 15.728 ~0

A2 1.900  0.329 5.770 ~0

11 —953.0435 Bo 1.360 0.097 —14.057 ~0
B1 0.069 0.137 0.507 0.612

B2 0.214  0.047 4.515 ~0

Ba —0.027 0.024  —1.129 0.259

A1 3.104 0.197 15.722 ~0

A2 1.867 0.324 5.756 ~0

11T —953.1726 Bo 1.326  0.069 —19.291 ~0
B1 0.214  0.047 4.511 ~0

B2 —0.027 0.024  —1.112 0.266

Al 3.105  0.197 15.729 ~0

A2 1.861 0.324 5.739 ~0

1A —953.7947 Bo 1.325 0.069 —19.297 ~0
B1 0.209  0.047 4.483 ~0

A1 3.103  0.198 15.710 ~0

A2 1.863  0.323 5.760 ~0

Table 3: Log-likelihood, Parameters estimates, Standard errors, t-ratio and p-value for models I, II, IIT and IV.

As [2] reported the results of this analysis suggest that there is a linear increase (on the
logit scale) in the rate of obesity over time, with no statistically discernible difference between
males and females. As effect the decrease in deviance between the models I and IV is AD =
2 x (953.7947 — 949.8621) = 7.865 on four degrees of freedom (p-value =0.09664) and thus the
model 1V is not rejected at the level of significance 5%.

MC1 serial dependence was used by [1] which leads to the differences between his models
and ours. In this case we can ask which serial dependence is more appropriate. Despite of
the fact that the several summaries presented in Table [3] point out to a strong correlation of
second order, we have fitted to data two models with MC1 serial dependence. The first one
(Mode I1) with the marginal probability given by Model I and the second one (Mode IV1) with
the marginal probability given by Model IV. In the first case the decrease in deviance between
the models T and I1 is AD = 2 x (966.5612 — 949.8621) = 33.398 on one degree of freedom
(p-value ~ 0). In the second case the decrease in deviance between the models IV and IV1 is
AD = 2 x (970.3821 — 953.7947) = 33.175 on one degree of freedom (p-value ~ 0). And, as
expected, in both situations the MC1 serial dependence is rejected at the level of significance

5%.

5 Conclusion
This paper is concerned with the impact of MAR data in binary longitudinal studies when

the marginal models described along Section [2| and implemented in the R package bild [4] are
considered. A simulation study was carried out and we conclude that the approach performs
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quite well to intermittent missing data status in both situations of serial dependence (MC1 and
MC2), as well as, when complete data sets are considered. Finally, an example using data from
Muscatine Coronary Risk Factor Study set was analyzed. This allows us to compare our results
with those obtained by [2]. Based on that comparison we can say that this methodology is a
suitable alternative to the one presented by those authors.
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On the modification of the
non-parametric test for comparing
locations of two populations
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Abstract. Classical methods for monitoring the average level of the process in quality control
procedures are based on the normality assumption. The construction of the well known She-
whartas control charts is based on the sequence of parametric tests. The sample characteristics
are compared to the theoretical distribution or to the reference sample taken from the stable
process. To do this parametric tests are used. These tests could be used if the population is
normally distributed and observations are independent of each other. In the case of non-normal
distribution non-parametric tests (for example the Wilcoxon-Mann-Whitney test) can be used.
The paper presents a proposal of a modification of the L. Hao and D. Houser adaptive test for
comparing the locations of two distributions (H H test). The modification is based on the Hao L.
and Houser D. paper (see [2]). In the mentioned paper due to the values of the robust asymmetry
and shape characteristics, the test statistic is chosen. In the paper the method of continuous
modification of the test statistic is described. The properties of the proposed procedure are
analysed in the Monte Carlo study.

Keywords. adaptive test, quality control, process monitoring, non-normal process, permutation
tests

1 Introduction

Classical methods for monitoring the average level of the process in quality control procedures
are based on the normality assumption. The Shewhartas control charts are based on the sequence
of parametric tests (see [9]). The main assumptions in these tests are that the population is
normally distributed and observations are independent of each other. In many real-world appli-
cations the data are often non-normally distributed. Instead of the parametric tests, the non-
parametric methods can be used. The two-phase of nonparametric control charts are presented
in [10] and applications of a powerful nonparametric test for heavy-tailed and/or highly-skewed
data are presented in [4]. The non-parametric tests often have less power than the parametric
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tests. To increase the power of the non-parametric tests, the adaptive procedures can be used.
Adaptive tests (see [11]) use the sample data to adjust the test procedure.

The paper presents a proposal of a modification of the L. Hao and D. Houser adaptive test
presented in the paper [2]. In the mentioned paper due to the values of the robust asymmetry
and shape parameters the form of the test statistic is chosen. In the paper the method of
continuous modification of the statistic is described. The properties of the proposed method are
analysed in the Monte Carlo study.

The main idea of the adaptive tests is to select the test statistic. The selection in the H H test
is based on the asymmetry and kurtosis from the combined samples. The proposed modification
is based on changing the weights in the statistic in dependence of the asymmetry and kurtosis
of the combined sample. Adaptive tests are very flexible and can be modified in various ways
also in contexts other than the location problem, see eg [7] which proposed a modification of an
adaptive test for scale which uses Hogg tailweight measure.

Let us consider two samples X1, Xo,...,X,, (the reference sample) and Y7, Ys,...,Y,, (the
sample taken from the monitored process). Let us assume that the samples were taken from
distributions F'(z) and F(x + 6) where 6 is the shift of the location parameter. The hypothesis
that the samples were taken from the same distribution will be considered. Formally, the null
hypothesis can be written as follow

H0:(9:0

versus the alternative hypothesis

Hy:0=6#0

2 Adaptive tests

The adaptive procedure for comparing two distributions has been presented by Hogg et al. in
[3]. This procedure is based on calculating the asymmetry and kurtosis of combined samples.
For determining the asymmetry (Q3) and the kurtosis (@) characteristics following robust
estimators are used:

Q5 = U_o.os - ]\210.50 (1)
Mo.50 — Lo.os
Q4 = Uo.05 — Lo.os @)

Uo.50 — Loso

where Ug o5, Lo.os, Up.50 and My.50 are the averages of the upper 5%, lower 5%, upper 50%
and middle 50% of data (order statistic of the combined sample).

L. Hao and D. Houser in [2] have presented the modification of the adaptive test procedure,
first proposed by Hogg et all in [3]. The test statistic used in this procedure has the following
form

m

S=> a(R) 3)

=1
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where 1 < R; < N denotes the rank of the observation Y; (i = 1,2,...,m) in the combined
sample of n + m = N observations and the system of weights a(R;) depends on the robust
measures of asymmetry and tailweight.

L. Hao and D. Houser in [2] consider three possible statistics. The selection of the statistic
depends on the type of the distribution. Three variants of the distributions have been considered:
the symmetric heavier-tailed distributions, the symmetric light-tailed distributions and the right-
skewed distributions. The details of these models can be described as follows:

e Symmetric Heavier-Tailed Model.

This model is selected when Q3 is less than 2.1 and Q)4 is greater than 2.1. In this case

Let us denote the statistic for this case by 77. The weights (4) lead to the Wilcoxon-Mann-
Whitney statistics. Formally, the test statistic can be written as follows

m

Ti=) R

i=1

e Right-Skewed Model.

This model is selected when Q)3 is greater than 2.1. In this case bottom ranks begin near
the median and consequently are more informative about differences in medians. L. Hao
and D. Houser in [2] choose a modified rank test. This test uses only the bottom 50%
of the data. Let us denote the statistic for this case T5. The scoring function has the
following form

R; — floor[25%(N +1)] — 0.5  ifR; < 25%(N + 1)
a(R;) =< R; — ceiling[75%(N +1)] — 0.5 ifR; > 75%(N + 1) (5)

0 otherwise

where floor(x) rounds x down to the nearest integer and ceiling(z) rounds x up to the
nearest integer.

e Symmetric Light-Tailed Model.

This model is chosen when @3 and @4 are both less than or equal to 2.1. In this case the
modified rank test is used. The extreme ranks are more informative about location shifts
than the central ones. Only the data from the bottom 25% and top 25% of the combined
samples are used in calculating the statistic. Let us denote the statistic for this case by
T5. The scoring function has the form of:

N | Ri— floor[25%(N +1)] =1 4ifR; < (N +1)/2
a(Ry) = { 0 otherwise (6)

The HH test leads to the use of the proper statistic (77,7 or T3) based on the @3 and Q4
values from the combined samples. The idea of the test statistic selection is illustrated in Fig
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Figure 1: Model selection scheme for the HH adaptive test.

3 Modification of the HH test

The main idea of the proposed modification (mH H) of the HH test is not to select the proper
test statistic but to change the weights of the combined statistics.

Let @3 and Q4 be the robust asymmetry and the kurtosis statistics given by (1) and (2).
Then (g3, q4) is a point on the Q3/Q4 plane as in Fig. (1} Let d; for i =1, 2, 3 be the euclidean
distances of (g3, q4) to the border of the area of the use the statistic 7; in the H H test. Formally,
it can be written as follows:

\/(Q3 —21)2 4 (qa —2.1)%2 g3 >21and ¢4 <2.1

_ ) qu—21 g3 < 2.1 and g4 > 2.1
g3 —2.1 g3>21and qq <2.1
0 otherwise

o 21-a @<21
2700 otherwise
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\/(Q3 —21)2+ (g4 —2.1)2 ¢g3>21and g >2.1

de—d 04— 2.1 g3 < 2.1 and qq4 > 2.1
8 g — 2.1 g3 > 2.1 and g < 2.1
0 otherwise

Let us consider the test statistic

T =o1T1 + asTs + asTs (7)
where «; for i =1, 2, 3 are weights given by «; = kaiz and w; = exp~ 4.
=1 Wi

The distribution of the T statistic is unknown. To test the hypothesis that the samples were
taken from the same distributions, a permutation test was used (see [I1], [I]). The permutation
procedure maintains the level of the significance of the test provided that under Hy observations
are exchangeable.

4 Monte Carlo study

Data process generation

Generalized lambda distribution (GLD) is a very useful means to test and fit data to well known
distributions. This family of distribution can be used to generate random numbers from a
distribution with a specified mean, variance, skewness and kurtosis. It is interesting because
of the wide variety of distributional shapes it can take on (see [11]). Since the GLD is defined
by its quantile function, it can provide a simple and effective algorithm for generating random
variates. It can be used to generate random numbers with a specified mean, variance, skewness
and kurtosis.

The generalized lambda distribution family GLD is a four-parameter family. The param-
eters are denoted by A1, A2, A3, Ay and the distribution usually by GLD(A1, A2, A3, A4). The
distribution is most easily specified in terms of its percentile function

vt — (1 —y™

Qy) = A1 + "

(8)
where

A1 - location parameter,

A9 - scale parameter,

A3 - asymmetry parameter and

A4 - kurtosis parameter.

From (8) the probability density function can be written as follows

A2

f(x) = f(Qy) = Agya T — (1 — )L

(9)

The generalized lambda distribution was used to generate data in the Monte Carlo study.
The packages gb, GLDEX, gld and gldist from http://www-r-project.org were used.
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Simulation procedure

In the Monte Carlo study the properties of the mH H test were compared to the properties of
the HH test and the ¢ test. Due to the construction of the T" test statistic (7) the important
area of the comparison is the one where g3 and ¢4 are close to 2.1 (see Fig. [I). The data in the
study were generated from generalized lambda distribution. Computer simulations included the
following steps

Step 1 Two samples are generated. The size of the first sample is n and the size of the second
sample is m (n = m = 25).

Step 2 For the combined sample, the values of g3 and ¢4 are determined.

Step 3 The HH test (the test statistic is selected on the basis of Q3 and @4 values), the ¢ test
and the proposed mH H test were performed.

Step 1 - 3 are repeated N = 50,000 times. The probabilities of the rejection of Hy were
estimated for the considered tests. For mHH test N, = 1,000 number of permutations
were considered.

See [§] for the assessment of the simulation error in estimating size and power of the tests
which has two sources: an inner one (which corresponds to the inner permutation loop for p-
values computation) and an outer one (which corresponds to the outer Monte Carlo loop for
size/power computation).

Parameters A1, A2, A3 and A4 were established in such a way that the values Q3 and Q)4 were
close to 2.1 (see fig . To establish the values of the parameters Ay, Ao, A3 and A4 tables from
[12] were used. Parameters A1, A2, A3, Ag were as follows: A\; = 0, A2 = 1, A3 = 0.95,\y = 2.25
(mean = -0.21, variance=0.18). There were analysed two variants of the shift . The first one
for the true Hy where 6 = 0 and the second one for the false Hy where § = 0.1.

Results

It is important for the comparison of the proposed mH H modification, that the HH and the ¢
tests are near the borders of the three areas in Fig. [I] Random values were generated from the
generalized lambda distribution.

For each sample, the values of ¢3 and g4 were calculated using formulas (3) and (4). Four
regions were defined:

Ri: Q3 € (1.6,2.1] and Q4 € (1.6,2.1]

Ry: Q3 € (2.1,2.6] and Q4 € (1.6,2.1]

Rs: Q3 € (2.1,2.6]) and Q4 € (2.1,2.6]

Ry: Q3 € (1.6,2.1] and Q4 € (2.1,2.6]

The analysed regions are presented in Fig.

The results of testing the Hy hypothesis for the proposed mH H test are presented in Fig.
In this figure only the results for the first 500 samples are presented. White dots denote "no
rejection Hy” and black dots denote "rejection Hy”. Complete test results for the Hy hypothesis
for the HH test and the proposed modification are presented in Table

The empirical size of the mH H test and the HH test are similar. Due to the non-normality
of the distribution the size of the ¢ test could not be maintained (see Table , but in analysed
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Figure 2: Considered regions of computer simulations.
Region True Hy False Hy
R; Testt Test HH Test mHH Testt Test HH Test mHH
Ry 0.0520  0.0527 0.0538 0.3491  0.2318 0.3367
Ry 0.0481  0.0540 0.0538 0.3889  0.6087 0.5485
Rs 0.0473  0.0511 0.0489 0.3636  0.5707 0.5212
Ry 0.0530  0.0540 0.0527 0.3221  0.3473 0.3354

Table 1: Estimated probabilities of Hy rejection in specified regions.

Regions Ry — R4 the size of this test is close to 0.05. The power of the H H test and the proposed
mH H test is usually grater than the power of the ¢ test.

Additionally, the power of these tests was analysed in the Monte Carlo study for three
distributions. The symmetric distribution, skewed distribution and high kurtosis distribution
were considered as in [11]:

D, - symmetric distribution - normal distribution N(10, 1)

Q@ COMPSTAT 2014



42 On the modification of the non-parametric test...

Dy - skewed distribution - GLD (mean=0, variance=1, skewness=1, kurtosis=4.2)

Ds - high kurtosis distribution - GLD (mean=0, variance=1, skewness=2, kurtosis=15.6)

The power study was performed for three equal group sizes n; = ng = 10, 15 and 20. The
shift 6 = 0.0, 0.2 and 0.4 was considered. The power of the mHH test was compared to the
power of ¢ test, Wilcoron — Mann — W hitney (WMW) test and Kolmogorov — Smirnov (KS)
test. Zhang and Wu proposed omnibus test based on the likelihood ratio for location and shape
(see [13]). If the distributions of populations are different in location only this test is as powerful
as the old tests. The results of the size and the power Monte Carlo study are presented in Table
2

The adaptive test mHH maintain its level of significance because it uses permutations
method. Test ¢ maintain its significance level only in the symmetric distribution (D;) case.
The size of the Kolmogorov — Smirnov test doesn’t fit to the assumed significance level. It is
possible fairly compare the power of the considered tests only if they maintain their significance
levels. The power of the mH H test is similar to the power of ¢ test in the symmetric distribution
case.

Q4

Figure 3: Results of testing Hy - first 500 samples (left - true Hy and right - false Hp).

5 Conclusions

The problem of comparing distributions based on two samples is often taken into consideration
in quality control procedures, for example if the sample is compared to the reference sample
taken from stable process. If the sample is taken from the normal population then the Shewhart
control charts could be used. These tools are based on the sequence of the parametric tests. For
the non-normal samples, non-parametric tests or adaptive tests could be used. The proposal of
the adaptive test is presented in the paper. This test is based on ranks. It is a modification
of L. Hao and D. Houser’s procedure. The proposed adaptive test (mHH) is based on the
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nl:TLQ:lO n1:n2:15 n1:n2:20
Test 0=0 0=02 =04 6=0 6=02 6=04 6=0 6=02 6=04
Dy - symmetric distribution
mHH 0.0531 0.0739 0.1283 0.0497 0.0832 0.1847 0.0538 0.0963 0.2275
WMW 0.0445 0.0625 0.1188 0.0433 0.0753 0.1740 0.0504 0.0920 0.2190
t 0.0487 0.0694 0.1334 0.0490 0.0646 0.1902 0.0498 0.0939 0.2298
KS 0.0133 0.0179 0.0408 0.0247 0.0407 0.1016 0.0373 0.0607 0.1424
Dy - skewed distribution
mHH 0.0496 0.0671 0.1177 0.0544 0.0780 0.1548 0.0495 0.0827 0.1993
WMW 0.0439 0.0669 0.1393 0.0473 0.0841 0.2011 0.0480 0.1031 0.2692
t 0.0459 0.0676 0.1359 0.0479 0.0823 0.1906 0.0461 0.0918 0.2406
KS 0.0112 0.0207 0.0465 0.0288 0.0439 0.1184 0.0331 0.0678 0.1836
D3 - high kurtosis distribution

mHH 0.0520 0.0778 0.1484 0.0513 0.0862 0.2153 0.0498 0.1028 0.2654
WMW 0.0425 0.0738 0.1717 0.0443 0.0929 0.2662 0.0502 0.1176  0.3425
t 0.0404 0.0689 0.1556 0.0415 0.0828 0.2174 0.0461 0.0967 0.2674
KS 0.0127  0.227  0.0640 0.0245 0.0579 0.1812 0.0339 0.0809 0.2619

Table 2: Estimated probabilities of Hy rejection.

permutation method. The size and the power of the adaptive test were analysed in the Monte
Carlo study.

The Monte Carlo study has shown that the sizes of the tests in each analysed region in the
case of HH test and the proposed mHH test are similar. Due to the permutation analysis,
the proposed test maintains its significance level. The power of this test is close to the power
of the HH test. The power of ¢ test in the two cases is less than the power of the HH test
and the mH H test. A direction of future research may be assessment of the scale problem (see
[6]) and the location and scale problem (see [5]) which often arise in quality control and process
monitoring.
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Abstract. In this article classical techniques of extreme value theory and two new statistical
tools are compared through Monte Carlo tecniques and on the daily log-returns of financial data
extensively studied. The data sets predate the current economic crisis and so it is possible to
evaluate retrospectively the quality of market risk estimates.

Keywords. Heavy tails, Exponential tails, Statistics of extremes, Value at risk, Tail index

1 Introduction

The extreme value theory (EVT) has two main approaches: Block maxima models and Threshold
exceedance models. The financial markets provide many data sets where the two approaches
may be compared estimating high quantile. The main objective of this paper is to compare
the estimator of extreme value index using parametric, semi-parametric and non-parametric
approach. Some semi-parametric models based on bias reduction techniques for heavy tails
trough the use of an adequate bias-corrected tail index estimator are considered. A new non-
parametric tool based on the residual coefficient of variation is also analyzed, see [2]. This paper
focuses on value-at-risk for log-returns arising in modeling extremes of four datasets in the field
of finance, widely documented and studied. Applying extreme value methods in finance requires
accurate estimators on extreme value index that can be around zero. New parametric models
can still being of high interest for the analysis of extreme events, if associated with appropriate
statistical inference methodologies, for instance, the full-tails gamma (FTG) distribution, see

[3].
2 Techniques for extreme values

The generalized extreme value distribution (GEV) is the family H(x; &, u, ¢) = H((x — p)/9; )
where © € R and ¢ > 0 are the localization and scale parameter and H corresponds to the
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standard GEV defined by

exp(— x)~ Ve
Ao = { oL e £20 1)

where 1+ &x > 0.
The cumulative distribution function of the generalized Pareto distribution (GPD) is given
by
Gla;€,0) = 1= (1+&a/w) "¢ (2)

where ¥ > 0 and £ are scale and shape parameters. For & > 0 the range of z is z > 0 and
the GPD is just one of several forms of the usual Pareto family of distribution often called the
Pareto distribution. For £ < 0 the range of z is 0 < z < ¥/|¢|, then GPD has bounded support.
The limit case £ = 0 corresponds to the exponential distribution (EXP). The opposite inverse
of the shape parameter £ is the tail index.

The methodology for modelling extreme values uses the peaks over threshold (PoT) approach.
PoT is based on the theorem of Pickands-Balkema-DeHaan, see McNeil, et al. (2005) [9]. From
this result, PoT is used by many authors for modelling exceedances in several fields such as
finance and environmental science, see for instance Coles (2001) [4]. Several techniques have
been developed to search for the optimal threshold to link a GPD, such as Hill-plot or ME-
plot. This theoretical methodology shows some surprises in practical applications. For instance,
Dutta and Perry (2006) [6] observed, in an empirical analysis of operational risk, that even when
Pareto distribution fits correctly the data may result in unrealistic capital estimates (sometimes
more than 100% of the asset size).

In order to contribute to solve these problems it is necessary to use alternative models to
the GPD, but it requires certain properties that allow them to be treated as queuing models.
In this way, Castillo et al. (2012) [3] introduce the FTG distribution with probability density
function given by

f(z;v,0,0) =0" (z+ O')Vil exp (=0 (x +0)) /T (v,00) (3)

where T" (v, p) is the upper incomplete gamma function, see Abramowitz y Stegun (1972) [1], the
range of z is (0,00) and v € R,0 > 0,0 > 0. Remark that for o fixed, if 6 tends to zero, the
FTG distribution corresponds to Pareto distribution and then v is the tail index. The reason
why FTG is more appropriate is because the financial data has heavy tails but they have some
finite moments, see Shyriaev (1999)[10]. The existence of at least three moments allows us to
develop new techniques for more satisfactory extreme values in practice. Furthermore, it is also
interesting to consider the exponential distribution as the most basic tails model.

The coefficient of variation (CV) can be used also as a measure of non normality. The most
popular measure of non normality nowadays is the kurtosis, defined for distributions with four
finite moments. The next Lemma shows that the kurtosis can be obtained with the coefficient
of variation.

Lemma 2.1. Given a symmetric random variate X with respect to zero, the excess kurtosis is

E[X*]
E[Xx?)?

kulX]+3 = =1+ cev[X?)?,

therefore the kurtosis is a function of coefficient of variation of X?2.
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The coefficient of variation of X will be used as a measure of non normality, because it is
defined using only the two first moments of the distribution. Hence, it is more stable and more
widely applicable than kurtosis.

Let X be a continuous non-negative random variable (r.v.) with distribution function F'(z).
For any threshold, ¢ > 0, the r.v. of the conditional distribution of threshold excedances X — ¢
given X > t, denoted by X; = (X —¢| X >1t), is called the residual distribution of X over
t. The quantity M(t) = E(Xy) is called the residual mean and V(t) = var (X¢)the residual
variance. The residual coefficient of variation is given by

CV(t) = CV(Xy) = V(1) /M (D), (4)

like the usual CV, the function C'V(t) is independent of scale. Gupta and Kirmani (2000)
[8] proved that the residual CV also characterizes the distribution. The residual CV for GPD,
provided £ < 1/2, is a constant given by

OV (t) = 1/(1 - 2¢) (5)

Hence, from Gupta and Kirmani (2000) [§] it follows that if CV(¢) is constant then the distri-
bution of X is a GPD.

Castillo et al. (2014) [2], use these ideas to introduce a new graphical method. Given a
sample {zj} of size n of positive numbers, we denote by {x(k)} the ordered sample, so that
z) < zp) < -0 < xy,). A CV-plot is a representation of the empirical CV of the conditional
excedance , given by

k— cv (m(k)> . (6)

With this tool a non-parametric methodology can be used to estimate the tail index searching
the value of the coefficient of variation that minimizes the distance between its confidence interval
under hypothesis of constant tail index and the CV-plot. This non-parametric methodology
provides both tail index and optimal threshold for computing high quantiles with PoT. This
methodology combined with GPD as the model for the tail is denoted by CVm and some
examples are showed in Table Finally, the last methodology here considered is denoted by
cHm and it consists in a semi-parametric method for high quantiles estimation based on the
parametric model from Pareto and with a non-parametric techniques of bias-corrected Hill-
estimator, see Gomes and Pestana (2007) [7], based on an adequate consistent estimator of the
second order parameters, see Degen and Embrechts (2008) [5].

3 Numerical studies

In this section the two new methodologies, FTG and CVm, are compared with standard ap-
proaches, GPD and GEV, and the methodology based on second order corrections of the Hill
estimator, cHm. First, the methods are compared using the daily log-returns of financial data
extensively studied. Secondly, the behaviour of the techniques are studied when the simulated
data are not really heavy tails, only semi-heavy. It can be observed that some methods presup-
pose heavy tails and do not consider that the tails can be exponential, what also happens in
financial data.
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Data analysis of log-returns

To compare the different techniques four sets of finance data are considered, collected over the
same period: from January 4,1999 through November 17,2005. Those sets of data were the
Euro-USA dollar (EUSD) daily exchange rates and the daily closing values of the Dow Jones
Industrial Average In (DJI), Microsoft Corp. (MSFT), and International Business Machines
Corp. (IBM) stocks.
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Figure 1: In the left, daily closing values of IBM data (dark line) and MSFT data (grey line).
In the right, daily closing values of DJI (dark line and left axis) and EUSD daily exchange rates
(grey line and rigth axis).
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Figure 2: CV-plot of the absolute value of negative tail of log-returns. In the left, DJI data, in
the right EUSD data. Dashed constant line corresponds to the residual coefficient of variation
of a GPD with shape parameter 0.25, dotdash line corresponds to the 95% confidence interval
of a exponential distribution and dotted line corresponds to the 95% confidence interval of an
uniform distribution.

The assumption that financial data have heavy tail can lead to conclusions far removed from
reality, in Figure [2] the CV-plot of EUSD shows that the shape parameter can be negative, since
a residual CV less than 1 correspond to a negative shape parameter, see equation . From
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Equation it follows a residual CV is only possible with a negative shape parameter, so a
heavy tail is not the best option. It is also necessary to be careful with the splits, due to the
fact that a data can completely change the general behavior. Figure [3] shows the CV-plot of
the same data with the difference that one contains the split but no the other in the IBM and
MSFT cases. For example, the absolute value of the log-return the day that the split appears is
71% in the IBM case, in Figure [I| this value appears between 1999 and 2000.

CV-plot IBM CV-plot MSET
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Figure 3: CV-plot of the absolute value of negative tail of log-returns. In the left IBM data with
(dashed line) and without split (black line), in right, MSFT data with (dashed line) and without
split (black line). Dashed constant line corresponds to the residual coefficient of variation of
a GPD with shape parameter 0.25, dotdash line corresponds to the 95% confidence interval
of a exponential distribution and dotted line corresponds to the 95% confidence interval of an
uniform distribution.

Table [I] shows a brief of the results of the study. The cases EXP, GPD, FTG correspond
to model the whole data as the corresponding parametric model and GEV to model the month
maximums. To consider the new methodology C'V'm and the alternative cHm. The MSFT data
do not appear in the table because it is very similar to IBM results. It can be observed some
differences between the results using different methods. This differences are more significative
when the split are included in the data. From applied point of view, more interesting results are
obtained using POT with this advanced methodologies to search optimal threshold and improved
parametric models for tails, for instance, the FTG.

Simulation study on the calculation of VaR

Monte Carlo simulations have been used to compare the previous methodologies for VaR 99,9%
and tail index estimation. In Tables [2[ and [3| the mean square error (MSE) obtained for each
method is shown for 10,000 simulations performed for each of the sample sizes n=150, 250
and 500 of exponential distribution with scale 1. EXP, GPD and FTG denote the results of
considering parametric models, exponential GPD and FTG, respectively. cHm and CVm denote
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99.9% ¢ 99.9% ¢
DJI EUSD
GEV 0,104 0,17 GEV 0,026 -0,23
EXP 0059 0 EXP 0,035 0
GPD 0,055 0,00 GPD 0,033 0,00
FTG 0,050 0 FTG 0,026 0
CVm 0,040 0,04 CVm 0,016 -0,16
cHm 0,068 0,30 cHm  0.027 0,26
IBM IBMs
GEV 0,660 0,42 GEV 0,304 0,43
EXP 0,110 0 EXP 0,104 0
GPD 0,144 0,11 GPD 0,104 -0,00
FTG 0,147 0 FTG 0,126 0
CV 4,857 2,58 CV 0,103 0,14
cHm 0,181 0,39 ¢cHm 0,161 0,36

Table 1: A high quantile and the shape value £ corresponding to the opposite inverse of the tail
index for some simplified methodology and four sets of data: DJI, EUSD, IBM, and IBMs, the
last corresponds to IBM data without splits.

the two semi-parametric models considered. Naturally, the EXP model provides the best results
as well as the GPD because it contains the exponential and the FTG provides improved results
since it is a model between them. CVm provides better results than cHm, since the underling
distribution is not a heavy tail. Remark that, it is important to consider that the nature of
the data show the parametric and semiparametric methodologies can not be compared with this
simulation results.

n | EXP GPD FTG | cHm CVm
150 | 0.315 1.307 1.107 | 35.064 11.24
250 | 0.203  0.738 0.662 | 12.974 9.46
500 | 0.100 0.383 0.307 | 8.658  7.72

Table 2: MSE for the VaR 99.9% obtained for each method and for different sample sizes.

n | EXP GPD FTG | cHm CVm
150 [ 0 0006 0 |0.153 0.011
250 | 0 0.003 0 |0.134 0.008
500 | 0 0.001 0 |0.117 0.003

Table 3: MSE for the tail index, &, obtained for each method and for different sample sizes.
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4

Conclusions

After analyzing the data sets of this study the following conclusions arise.

1. Given that EVT is very sensitive to outliers one must be very careful to analyze market

data. It is repeatedly observed that the maximum values are outliers due to splits of
corporations.

. In practical applications since extrapolate for high quantiles is really difficult it is recom-

mended to consider the data from different points of view and not be limited to a single
technique.

. The market data (once corrected for splits), is well fitted by models with semi-heavy tails

that has few finite moments, as certain authors claim, see Shyriaev (1999) [10].

. When evaluating risks, it is better to study separately the positive and negative tails of

the distribution and not doing it together. Thus the coefficient of variation is a more
appropriate tool than the kurtosis to assess the weight of the tails.
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Abstract. The distribution of continuous real life variables is usually not normal and plant
phenotypes are no exception to the rule. These distributions often show heavy tails which
are sometimes asymmetric. In such scenarios, the classical approach whose likelihood-based
inference leans on the normality assumption may be inappropriate, having low statistical effi-
ciency. Moreover, association tests may also be underpowered. Robust statistical methods are
designed to accommodate for certain data deficiencies, allowing for reliable results under vari-
ous conditions. They are designed to be resistant to influent factors as outlying observations,
non-normality and other model misspecifications. Additionally, if the model verifies the classi-
cal assumptions, robust methods provide results close to the classical ones. Therefore, a new
methodology where robust statistical methods replace the classic ones to model, structure and
analyse genotype-by-environment interactions in the context of multi-location plant breeding
trials, is presented. Here interest lies in the development of a robust version of the additive main
effects and multiplicative interaction model whose performance is compared with its classical
version. This is achieved through Monte Carlo simulations where one particular contamination
scheme is considered.

Keywords. AMMI model, Robust statistics, Singular value decomposition, Statistical genetics

1 Introduction

Multi-environment trials (MET), which comprise experiments across multiple environments, are
important tools for testing both broad and narrow genotype adaptation. Here, when two different
genotypes show a differential response to a prototypic trait (e.g. yield) across environments, it
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is said that genotype-by-environment interaction (GEI) is present. Data from MET are often
summarized in two-way tables of means with genotypes in the rows and environments in the
columns.

The additive main effects and multiplicative interaction (AMMI) model [4] is one of the
most widely used tools for MET analysis. This tool works under a fixed-model framework and
is conducted in two stages. First, the main effects of the model are estimated using the additive
two-way analysis of variance (ANOVA) by least squares. Then, the singular value decomposition
(SVD) is applied to the interaction residuals to obtain the estimates for the multiplicative terms
of the AMMI model. The AMMI model in its standard form also implicitly assumes equal weights
for all entries of the two-way data set and that no outlier is present in the data. However, field
data such as data resulting from MET is prone to contamination and thus outlying observations
are often found. As a consequence, the results from the analysis may be biased leading to
possible misinterpretations which in turn may result in bad practical decisions. It is therefore
important to improve the performance of the AMMI model in the cases where contamination is
present in the data. For that reason we introduce in this work a robust AMMI model where the
linear fit is replaced by a robust fit (M-regression) and the use of the standard SVD by a robust
SVD approach. We underline that the choice of M-regression was based on the fact that in this
kind of analysis contamination is only seen at the response variable level and not also at the
explanatory variables level, in which case high breakdown and efficient MM-regression should
be considered.

The proposed robust AMMI model is also useful in other studies where data contamination is
inevitable, e.g., in QTL (quantitative trait loci) detection and QTL-by-environment interaction
(QEI) studies. Here, the robust AMMI model will be used to calculate more accurate predicted
values for GEI analysis. These predicted values can then be subject to a QTL analysis in a two
stage procedure, similar to the ones described in [5] [11].

We present a Monte Carlo Simulation study to assess the performance of the proposed robust
AMMI model, which is compared with the classical one under a particular contamination scheme.

2 Materials and methods

AMMI model

The AMMI model combines the features of ANOVA and SVD as follows: first the ANOVA
estimates the additive main effects; then the SVD applied to the residuals from the additive
ANOVA model, estimates the interaction with N < min(I — 1,J — 1) interaction principal
components (IPC) axes. Here, I represents the number of genotypes (rows) and J the number
of environments (columns) considered in the study and described in the two-way data table.
Assuming for simplicity a completely randomized design for individual trials, the model can be
written as [4]:

N
Yijk = 1+ a; + B + Z AnVn,iOnj + pij + €k (1)

n=1
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where: y; ;. is the phenotypic trait (yield or some other quantitative trait of interest) of the
ith genotype in the jth environment for replicate k; p is the grand mean; «; are the genotype
deviations from p; B; are the environment deviations from p; A, is the singular value of the
IPC analysis axis n; ,; and 6, ; are the ith and jth genotype and environment IPC scores
(i.e., the left and right singular vectors) for axis n, respectively; p; ; is the residual containing all
multiplicative terms not included in the model; €; ;. is the experimental error; N is the number
of principal components retained in the model.

Robust AMMI model

We consider the following matrix formulation of the AMMI model:

Y = 1,150+ a1y +1;8] + UDVT + ¢, (2)

where Y is the (I x J) two-way data table of means, 1;1% is a (I x J) matrix with the grand
mean 4 in all positions, ay17% is a (I x J) matrix of genotype main effects (equal rows), 1 IBJ»T is
a (I x J) matrix of environmental main effects (equal columns).

The interaction part of the model Y* =Y — 1 Il?;u -« 11; -1 Iﬁf is approximated by the
product of matrices UDVT, with U an (I x N) matrix whose columns contain the left singular
vectors of the interaction, D a (N x N) diagonal matrix containing the singular values of Y*,
and V a (J x N) matrix whose columns contain the right singular vectors of Y*. The residual
term in equation , the (I x J) matrix e, includes both the lack of fit term and the error term
of the model in equation

We suggest that a robust AMMI model can be obtained in two stages as follows: (i) use the
robust regression based on the M-Huber estimator [§] to replace the ANOVA model; (ii) use a
robust SVD [6] to replace the standard SVD.

The robust methods described are available in the R software in packages MASS and pcaMethods
via functions rlm() and robustSVD(), respectively.

3 Simulation study

We use Monte Carlo simulations to study the impact that contaminated data has in the results
of the classical AMMI model and to assess the improvement that can be gained when using
the proposed robust methodology. We discuss only a particular contamination setting with a
fixed percentage of outliers to illustrate the advantage of the proposed methodology. Further
complete studies are being carried but will not be presented here.

In this particular case we simulate 1000 two-way data tables with 100 rows/genotypes and 8
columns/environments each, where the interaction is explained by two multiplicative terms (i.e,
two IPCs). The number of multiplicative terms was confirmed by the cross-validation procedure
proposed by [3] for principal component analysis and then generalized by [2], 1] for the AMMI
model. In each run of the simulation, the AMMI and robust AMMI models were used to analyse
these data. After the AMMI is applied to the data, the biplots are constructed and the singular
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values obtained. Having the good non-contaminated data, 5% of contamination is introduced
in the two-way original data table so as to be consistent with the known shift-outlier case
[10]: (i) 5% positions are randomly selected in the two-way table thus assigning contamination
positions in different environments for distinct genotypes; (ii) the 5% bad data is generated from
a N(p;+k, sigmajz) (pure shift outliers; & = 40 units) where p1; and 0]2 are taken as the sample
phenotypic mean and sample phenotypic variance according to the correspondent environment
j,j=1,...,8; and (iii) the bad data replaces the 5% of the good data from the two-way table
at the positions assigned in (i). Method comparison is achieved using the mean squared error
(MSE) [9]:

R 1 1000 () 9
MSE(%) = 155 2= (A = %) 3)
=1

where \;, j = 1,2, are the true singular values of the two-way data tables, and the ;\5-”, 7=1,2,
are the estimated singular values for each of the 1000 replications, using the robust AMMI
model for the raw uncontaminated data, and both the AMMI and robust AMMI models for the
contaminated data.

4 Results and Discussion

Simulation study

Figure [I| shows the biplots obtained for the AMMI and robust AMMI models with two principal
components (AMMI2), with and without contamination, for one random simulation run. The
component loadings (for the environments) are similar for all four models. As for the scores of the
genotypes, a similar behaviour is seen for both models without contamination (top two plots of
Figure|l]), as expected. However, when 5% contamination is considered, the display of genotypes
shows a completely different behaviour in the AMMI2 biplot (bottom left plot in Figure [1]).
This shows that the AMMI model is not appropriated when the data is contaminated. When
comparing with the biplot for the robust AMMI model with 5% contaminated data (bottom right
plot in Figure , the scores for the genotypes show strong similarities with the biplots for the
data without contamination, showing the usefulness of the robust AMMI model for contaminated
data. With the use of the robust AMMI model, the impact of the outlier observations is reduced
and the position of the scores becomes similar to the “true” position given by the AMMI2 model
without contamination. Consequently, the use of this robust version of the AMMI model will
allow practitioners to make better strategic decisions.

The MSE obtained for the robust AMMI model applied to both the contaminated and
uncontaminated data, and the MSE obtained for the AMMI model applied to the contaminated
data, are presented in Table[I] As expected, the MSE between the AMMI model and the robust
AMMI model is small when considering the data without contamination. However, when we
consider the data with 5% contamination, the robust AMMI model provides a MSE 6.21 times
lower for the IPC1 and 4.61 times lower for the IPC2, when compared with the AMMI model.
This result confirms the usefulness of the robust AMMI model when dealing with contaminated
data.
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Figure 1: Biplots for: AMMI2 of data without contamination (top left); robust AMMI2 of data
without contamination (top right); AMMI2 of data with 5% contamination (bottom left); robust
AMMI2 of data with 5% contamination (bottom right).

To conclude, this preliminary simulation study outlined the fragility of the classical AMMI
model in the presence of contaminated data. Moreover, the use of the robust methodologies
proposed, not only provided results similar to the classical ones when there was no contamination
but also proved to provide better results when the data was in fact contaminated. It is therefore
important to study further the “robustification” of the AMMI model so as to account for what
is in practice data reality: data contamination. This need is more than justified for the wide
use of this technique in multi-environmental studies upon which many important decisions are
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Model IPC1 IPC2
Robust AMMI 26.00 34.03
AMMI (5% contaminated data) 1159.22  1268.81

Robust AMMI (5% contaminated data)  186.57  275.33

Table 1: Mean square errors for singular values of the the AMMI and robust AMMI models.

made.

Real data example

The real data set used for illustration is the Steptoe x Morex (SxM) barley mapping population
[7]. Figure [2| shows the biplots obtained for the AMMI and robust AMMI models with two
principal components. In the AMMI2 biplot for the classic model (left hand side of Figure
the environment OR1 shows a dominant effect over the biplot being non-correlated with most
of other environments and presents an overlap in the direction of many of the loadings for
the environments. This makes this biplot difficult to analyse. When considering the robust
AMMI model (right hand side of Figure [2|) the interpretation of the biplot seems easier, with
the environments more spread and with different angles between their component loadings and
without such dominant influence of the environment OR1. These results are consistent with
[5] where environment OR1 was considered to be an outlying environment. Moreover, the use
of the robust AMMI model made it possible for this particular environment to be included in
the analysis without distorting the final results, which was achieved by reducing its influence on
the final model. To conclude, this example application further reinforces the usefulness of the
proposed methodology.
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Figure 2: Biplots for: AMMI2 of SxM data (left); and robust AMMI2 of SxM data (right).
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Abstract. Time series clustering is an active research topic with applications in many fields.
Unlike conventional clustering on static data, time series are inherently dynamic and hence the
similarity searching must be governed by the behavior of the series over their observation periods.
A dissimilarity aimed to compare quantile autocovariance functions is proposed to perform clus-
tering. Results from an extensive simulation study show that the proposed metric outperforms a
range of alternative dissimilarities reported in the literature. Estimation of the optimal number
of clusters is also discussed. A prediction-based resampling algorithm proposed by Dudoit and
Fridlyand [2] is adjusted to be applied in clustering based on quantile autocovariances. Several
criteria to select the number of clusters are examined in new simulations.

Keywords. Time series, Clustering, Quantile autocovariances, Clest.

1 Introduction

Time series clustering is a central problem in many application fields and it is nowadays an active
research area in a vast range of fields (finance and economics, medicine, engineering, pattern
recognition, among many others). Comprehensive surveys can be seen in Liao [I0] and more
currently in Fu [5]. A crucial point is to determine the similarity notion between time series.
Unlike conventional clustering on static data objects, time series are inherently dynamic, with
underlying autocorrelation structures, and therefore the similarity searching must be governed
by the behavior of the series over their periods of observation. Many dissimilarity measures
have been proposed in the literature. The R package TSclust [I5] presents a large set of well-
established peer-reviewed time series dissimilarity measures, including measures based on raw
data, extracted features, underlying parametric models, complexity levels, and forecast behav-
iors. We focus on the feature-based approach, where the raw data are replaced by a reduced
number of extracted features and then dissimilarity between these representations is assessed.
Some authors have considered measures based on comparing estimated simple or partial auto-
correlations and cepstral coefficients (see [1, [3, [14]). We propose to measure dissimilarity by
comparing quantile autocovariance functions [§]. For a given time series X;, the quantile auto-
covariance function (QAF) consists of the cross-variances cov (I (X; < x),I (Xi4r <)), where
I(-) denotes the indicator function. The quantile autocovariances examine the so-called serial
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dependence structure, i.e. the joint distribution of (X, X¢4,), for all ¢ and r, so accounting
for sophisticated serial features that simple autocovariances are unable to detect. To the best
of our knowledge, QAF has not been considered to perform clustering, even though it satisfies
suitable properties to carry out this task, such as light computational complexity and robust-
ness inherent to quantile methods. Unlike the usual autocovariance function, QAF is robust
to the non-existence of moments. This way, a QAF-based dissimilarity should take advantage
to discriminate between series generated from processes with different heavy-tailed marginal
distributions or presenting different conditional heteroscedasticity models. Many financial time
series (log-return series of stock indices, share prices, exchange rates, etc) are known to exhibit
this kind of properties. In such cases, usual feature-based dissimilarities are unable to capture
differences between dynamic behaviours. For instance, similar correlograms and flats spectra are
exhibited by both an ARCH(1) and a Gaussian white noise process. Theoretical properties of
the quantile autocovariances and the quantile spectral density have been established in [111 8 [9].
In this work, the behavior in time series clustering of a QAF-based dissimilarity is examined on
different simulation scenarios and compared with other dissimilarities.

The problem of estimating the number of clusters K underlying the database is also addressed
by adjusting the prediction-based resampling algorithm (so—called Clest) proposed by Dudoit
and Fridlyand [2]. Clest is aimed to select the value of K providing the strongest evidence
against Hy : K = 1. For each value of K, Clest evaluates the amount of reproducibility, say
Ry, of the K-cluster solution combining ideas from supervised and unsupervised learning, and
then examines whether the value of Ry is significantly larger than the expected one under
the null hypothesis of no clusters. In the original procedure, the expected value for Rx under
Hj is approximated resampling a multivariate uniform distribution. Nevertheless, this is not
reasonable when dependent data are considered. To overcome this drawback, the uniformity
assumption is marginally considered for each quantile autocovariance, i.e. the reference datasets
are generated from univariate uniform distributions. This modified version of Clest algorithm
was examined and compared with other alternative procedures in a new simulation study. All
the simulations and the analysis of real data have been carried out using the R language [18].

2 Clustering procedure

Consider a set of p time series S = {X(l),...,X(p)}7 with X0 = (ij), o 7X:(Fj)) being a T-

length partial realization from a real valued process {Xt(] ), t € Z}. Our goal is to perform cluster

analysis on S to group the series into K homogeneous clusters. First, a dissimilarity measure

between two series is introduced in terms of sequences of estimated quantile covariances.
Given a strictly stationary time series {X;}, the quantile covariance function is defined by

Y(q,q) = cov{I (Xy < q) , I (X1 < q')} = P(X; < ¢, Xpyr <¢) = P(Xy < @) P (Xpyr < '),
with (q,¢') € R%. Function 7,(g, ¢’) can be estimated from a T-length stretch (Xi,...,X7) by
1 T—r
’%(% q,) = T Z Zt(Q)ZH-r(q/)v (1)
t=1
where Z, is the centered variable Z,(q) = I (X; < q) — Fr(q), with Fp(q) = FXL L I(X; <q).
Each series X in S is characterized by an ordered set ') of quantile autocovariances

estimated according to . Specifically, for a prefixed range L of lags l1,...,l; and r quantiles
(Grys- -1 Gr), With ¢, = F~(7;), T is given by
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o) — (r}f), - ,rl(i)) , (2)

with Fl(lj) = (’%Z (QnCIn) P 7;)71- (QﬁQTr) 7%2- (%’2%‘2) PR a:}/li (ngqTr) yoee 7’%1' (QTTqTr))7 1=1,...,L.

In practice, the quantiles g;, are unknown and must be estimated by the empirical quantiles
Gr;- Then the dissimilarity between a pair of series X @ and XU is defined as the squared
Euclidean distance between I'® and '), and it is denoted by dgar (X @ X (7)). Computing
these distances for all pairs of series in S allows us to set a pairwise dissimilarity matrix, which is
taken as starting point to develop a conventional agglomerative hierarchical clustering algorithm.

3 Simulation study: Part 1

A first set of simulations was conducted to assess the behaviour of dgar in time series clustering.
Different processes were considered to examine robustness, and comparisons with other model-
free and model-based dissimilarities were carried out. In this abstract, results from two particular
classification setups are shown, namely classification of nonlinear models and classification of
different structures of conditional heteroscedasticity. The specific models are presented below.

e Scenario 1: Non-linear processes classification. The studied models are:
Model 1: TAR X =05X; 11 (Xt—l < 0) — 2Xt_1I(Xt_1 > O) + €
Model 22 EXPAR X, = (0.3 — 10exp (—X7 1)) Xi1 +
Model 3: MA Xt = *0.4615_1 + €
Model 4: NLMA  X; = —0.5¢;_1 + 0.8¢2 | + &

e Scenario 2: Conditional heteroscedastic processes classification. Consider X; = u; + ay,
with gy ~ MA(1) and a; = oyer, ¢, ~ II1D(0,1). Then, the following structures for the
varying conditional variance are considered:

Model 1:  ARCH(1) 02 =0.1+08d2 ,

Model 2:  GARCH(0,1) 02 =0.1+02,

Model 3:  GJR-GARCH 02 = 0.1+ (0.25 + 0.3N;_1)a? | 4+ 0.502 ;; Ny_y = I(a;_1 < 0)
Model 4: EGARCH In(02) = 0.1+ €1+ 0.3[|es—1]| — E(|ez—1])] + 0.4In(02_;)

In all cases, the error process ¢, consisted of i.i.d. N(0,1) variables. Five series of length
T = 200 were generated from each model over N = 100 trials. The considered dissimilarity
measures and proper references are briefly summarized below.
e Periodogram-based distances [I, [16]. Euclidean distance between periodograms (dp), log—
periodogram (drp), normalized periodograms (dyp) and log—normalized periodograms (dypnp).
o Autocorrelation-based distances [11, [16]. Euclidean distance between simple (d4cr) and partial
(dpacr) autocorrelations using a number of significant lags. Versions dacrg and dpacre
including geometric weights decaying with the lag w; = 7(1 — 7)°, with 0 < 7 < 1, were also
considered. In our study, ten lags and m = 0.5 were used.
o Model-based distances. AR distances proposed by Piccolo (dprc) [17] and Maharaj (dar) [12].
o Nonparametric dissimilarities in the frequency domain. A spectral dissimilarity measure based
on local linear fits of log-spectra using maximum likelihood (dw ) [20, 16], and a dissimilarity
measure based on the integrated squared difference between estimated log-spectra (d;sp) [16].
e The proposed metric dgar. Results presented here were obtained with » = 3 empirical quantiles
given by (go.1,do.s,Go.9) and only one lag, that is L = 1, with {; = 1.

Assuming that the clustering is governed by similarity between underlying models, the
“true” cluster partition is given by the four clusters involving the five series generated from
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the same model. The experimental 4-cluster solutions are compared with the true partition
using three agreement measures based on known “ground-truth” the Gavrilov index [6], the
adjusted Rand index and the one-nearest-neighbour classifier evaluated by leave-one-out cross-
validation (loolNN) [7]. In all cases, the closer to 1 is the index, the higher is the agreement
between the true and experimental partitions. The obtained indexes, averaged over 100 trials,
are shown in Table [II

Scenario 1 Scenario 2
Measure Gavrilov  Adj. Rand loolNN Gavrilov  Adj. Rand loolNN
Periodograms
dp 0.402 0.081 0.429 0.441 0.113 0.497
dpp 0.713 0.501 0.694 0.689 0.441 0.653
dnp 0.488 0.145 0.366 0.468 0.151 0.428
dpNp 0.486 0.115 0.373 0.570 0.248 0.457
Autocorrelations
dacrc 0.592 0.310 0.554 0.604 0.313 0.599
dpacFra 0.667 0.397 0.613 0.641 0.358 0.589
dpacr 0.610 0.306 0.550 0.625 0.327 0.541
Model-based
dprc 0.674 0.443 0.751 0.560 0.291 0.615
dp 0.680 0.453 0.746 0.632 0.374 0.653
Non-parametric
dw Lk 0.914 0.821 0.920 0.733 0.530 0.764
drsp 0.916 0.826 0.919 0.740 0.541 0.765
Quantile autocov.
doar 0.961 0.917 0.980 0.908 0.800 0.919

Table 1: Clustering on nonlinear (Scenario 1) and heteroscedastic (Scenario 2) processes: cluster
evaluation indexes averaged through all the 4-cluster hierarchical solutions for several dissimi-
larity measures. Series length 7" = 200. Number of trials N = 100. Complete linkage procedure.

Results in Table || allows us to conclude that the quantile autocovariance dissimilarity dgar
produced the best results in both scenarios. Except for the adjusted Rand index in Scenario 2,
dgar always led to indexes above 0.9, and sometimes very close to 1 in Scenario 1. As expected,
metrics based on ARMA models (dpro and djy) were strongly affected by model misspecification
and produced poor results. The nonparametric dissimilarities work fairly well in Scenario 1, with
results above 0.9 and close to the best ones attained by dgar. These measures take advantage
of being free of the linearity restriction, and hence their good performance. Nevertheless, their
behaviour substantially worsened by classifying heteroscedastic models. In fact, dgar notice-
ably outperforms both dy 1k and dygp in Scenario 2. In addition, the nonparametric measures
employed computing times significantly higher than dgar, which is very important in time se-
ries clustering where huge databases with long series are often used. Distance dgar obtained
excellent scores for loolINN index and this is also remarkable because this criterion directly eval-
uates the efficacy of the dissimilarity measure regardless of the considered clustering algorithm.
The remaining metrics produced the poorest results, corresponding the worst classification to
the periodograms-based measures. In particular, the Euclidean distance between periodograms
(dp) worked really bad. Simple ACF and PACF were not able to separate correctly the con-
sidered models such as quantiles autocovariances did. Additional simulations were carried out
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using different clustering algorithms and alternative scenarios. In all cases, dgar led to very
good results, attaining competitive results even to cluster ARMA models.

4 Determining the number of clusters

A prediction—based resampling algorithm (called Clest) introduced by Dudoit and Fridlyand [2]
to estimate the optimal number of clusters K is here adjusted to: (i) use dgar in the clustering
process involved by the algorithm, and (ii) overcome the dependence underlying the classifying
variables T'Y) given in . Clest is aimed to select K , 2 < K<M , with M < p denoting the
maximum possible of clusters, that provides the strongest evidence against the null hypothesis
Hy : K = 1. The version of Clest including the proposed adjustments is outlined below.
Algorithm 4.1.

For each k, 2 < k < M, perform steps 1-4 below.

Step 1 Repeat B times:
i. Randomly split the set of series S into two groups, a learning set L° and a test set T°.
1. Using the clustering procedure described in Section @ based in dgar, obtain partitions
P (-; £b) and P (-; 'Tb> of the sets LY and T?, respectively.
ii5. Classify each series of the test set TP into the closest cluster (according to doar) of
P (-; Eb), thus obtaining the new partition C (-; Tb).
iv. Fvaluate an index of agreement sy between partitions C (-; ’Tb> and P (-; 'Tb).

Step 2 Compute Ry, = median (s, .., 5kB)-

Step 3 Generate By resamples of the quantile autocovariances matriz under Hy : K = 1.
As the columns of this matriz are dependent, the resamples of each column are separately
generated from an uniform distribution with support determined by the range of the column.
Then, Steps 1 and 2 are repeated for each resample obtaining Ry, 1, ..., Ry p,.

Step 4 Compute R = 5= 51 Rip, dr = Ry — Ry, and p, = g-#{Rep > Ry : 1 <b < Bo}.

Define K= = {2 < k < M : pp < Pmazs A > dmin}, where ppmae and dpin are preset
thresholds. If K™ is empty, take K = 1. Otherwise, take K = argmazy,c gy d.

5 Simulation Study: Part II

Second part of our experiments was conducted to examine the behaviour of Clest compared
with other methods for estimating the optimal number of clusters. Besides Scenarios 1 and 2,
where K = 4 clusters lie behind data, two new scenarios under Hy : K = 1 (“no clusters”)
are considered. Specifically, 50 realizations of length T' = 100 were generated from each of the
following processes:

e Scenario 3: X; = (0.3 —10exp (—=X7 1)) X¢1 + €, with ¢ iid A(0, 1).

e Scenario 4: X; = u; + a;, with pu; ~ MA(1) and a; = oye;, where 02 = 0.1 + 0.8a4? ; and

The parameters required by Clest were: M = 7; B = By = 25; size of learning set, 2/3p;
Prmaz = 0.05, dmin = 0.05 and the agreement between partitions in Step 1.iv was the index of
Fowlkes and Mallows. Besides Clest algorithm, five commonly used criteria were considered:
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maximization of the average silhouette width and of the indexes proposed by Calinski-Harabasz
and Krzanowski-Lai; minimization of the Hartigan index and the gap method proposed by
Tibshirani et al. [19]. A brief review of these indexes can be seen in, e.g., [19]. Figure
illustrates the behaviour of the tested methods based on N = 100 trials. Under the alternative

Wkl b

clest gap sl K ch hat clest gap sl K ch hart clest gap sl K ch hart clest gap sl K ch hart

Figure 1: Percentage of trials where the number of clusters was correctly estimated.

Scenario 1 Scenario 2 Scenario 3 Scenario 4
he

hypothesis (Scenarios 1 and 2), the Clest procedure produced very good results, being the winner
method in the nonlinear framework and clearly competitive together with the Krazanowski—Lai
and Hartigan indexes in the heteroscedastic setup. Good results were also obtained by the
gap method in Scenario 1, although this criterion performed poorly in Scenario 2. Graphs
for Scenarios 3 and 4 show that only Clest and gap were able to detect the lack of clustering
structure. In short, Clest algorithm has shown a good performance regardless of the considered
scenario and only the gap procedure seems to show similar robustness. Krazanowski-Lai and
Hartigan indexes worked well under alternative but clearly failed under the null. Silhouette and
Calinski-Harabasz indexes do not work in any scenario.

6 A real data example

For illustrative purposes, the proposed metric was used to cluster dailies’ returns of Euro ex-
changes rates against 28 international currencies (sample period: January 2009 -February 2014,
T = 1885). Series in study can be adequately modeled by GARCH models and our clustering
approach should work properly. This same example (with shorter observation period) was also
considered by [4] to illustrate the merits of their fuzzy clustering approaches based on GARCH
models. The dendrogram obtained with dgar and the complete linkage is shown in Figure

Three clusters seem to be determined. One of them groups 18 Euro exchange rates against
the major international currencies and those linked to the US dollar (US dollar -USD-, Canadian
dollar -CAD-, Great Britain pound -GBP-, among others). The other two clusters are formed
by 5 memberships. The cluster grouping {South African rand (ZAR), Russian rubel (RUB),
Argentine peso (ARS), South Korean won (KRW) and Hong Kong dollar (HKD)} is the most
heterogeneous by including Euro exchange rates against Asian, European, South American and
African currencies.

The Clest algorithm was also executed and K = 3 was obtained, which is according to the
intuitive solution derived from the dendogram.

7 Concluding remarks

In time series clustering, the identification of proper models is not per se the objective. The
real challenge is to find out an effective dissimilarity measure to deal with different generating
processes and detect structural similarities to form representative clusters. This is a central
problem in many real applications and the main motivation behind this work. With this objective
in mind, a metric based on quantile autocovariance functions is proposed. These functions
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Figure 2: Complete linkage dendrogram based on dgar for the returns of the exchange rates.

account for important dynamic features of time series and are well-defined for a broad class
of processes, including nonlinear and heteroscedastic processes. In particular, clustering of
heteroscedastic models is still a little explored topic (see works on fuzzy clustering by [13] 14]).
An extensive numerical study shows that the proposed dissimilarity produces excellent results in
clustering regardless the kind of processes subjected to cluster. In complex scenarios including
conditional heteroscedastic processes, our proposal clearly leads to the best results compared
with alternative metrics introduced in the literature. Furthermore, our metric also outperforms
metrics specifically designed to tackle nonlinear series, and, although not all results are presented
here, it was highly competitive to classify linear models. In short, the quantile-autocovariance-
based metric shows a very interesting robustness property with respect to the kind of processes
and presents an efficient implementation at a very low cost in terms of computing time.

Estimation of the optimal number of clusters is also addressed in the present work. An
adaptation of the Clest algorithm to cover the metric based on quantile autocovariances is
proposed and promising results are observed in a broad simulation study, where the modified
Clest is clearly the winner procedure compared with other classic alternatives.
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A Graphical User Interface Platform
of the Stepwise Response Refinement
Screener for Screening Experiments

Frederick Kin Hing Phoa, Academia Sinica, fredphoa@stat.sinica.edu.tw

Abstract. Supersaturated designs (SSDs) are useful in investigating a large number of factors
with few experimental runs, particularly in screening experiments. The Stepwise Response
Refinement Screener (SRRS) method is a new analysis introduced to screen important effects
in the experiments using both a SSD and a general factorial design with the consideration of
interactions. The cross-platform package SRRS is developed in R and the interface is built usng
the Tck/Tk bindings provided by the tcltk package included with R. The users are required to
input the data and responses in the form of text files and the significant factors are suggested as
an output. In addition, users are allowed to specify the threshold values, the selection criterion
and whether the two-factor interactions are considered in the function setting panal.

Keywords. Supersaturated Design, Graphical User Interface, Screening Experiments, Model
Selection

1 Introduction

As science and technology have advanced, scientific researchers and industarial practioners are
capable of studying large-scale systems. Typically the initial stage of these systems contain
a large number of potentially important factors and interactions among these factors, but the
probing and studying of a large-scale system is commonly expensive. Under the condition of
factor sparsity, it might be useful to run experiments with fewer runs than there are factors to try
to identify a small number of factors that appear to have dominant effects, and a supersaturated
design (SSD) is suggested in such cases for run-size economy.

SSDs were first constructed in the discussion of the papers by [I] and [2]. [3] presented the
first SSDs, but no more works was published until the papers by [4] and [5]. A comprehensive
list of early works are referred in [6] and [7]. Traditionally, SSDs are employed primarily for
screening main effects, discarding the possibility of interactions. Even the analysis considers
main effects only, usual regression methods using all candidate factors cannot be used. Some
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refined anlaysis methods were developed since [4] and a brief list of these works are provided in
[8], [@], [10], [11], [12] and many others, and thus omitted here.

Recently, [8] introduced a new method, called the Stepwise Response Refinement Screener
(SRRS), for analyzing the results of experiments using supersaturated designs. The method
can further be extended in [I3] to the experiments using a general factorial design, with the
consideration of interaction effects. The SRRS method is a two-step procedure: Factor Screening
and Model Searching. The first step aims at selecting a pool of potentially important effects
from all factors in the experiments and the second step aims at searching the best model, under
a given criterion, built among the selected effects in the first step.

Traditionally, Akaike information criterion (AIC) is used for model selection. For linear
models, AIC = nlog(RSS/n)+ 2p, where RSS = S" , (y; — 4;)? is the residual sum of squares,
n is the number of runs, and p is the number of parameters in the model. It is known that
AIC tends to overfit the model when the sample size is small. [I4] imposed a heavy penalty on
the model complexity and proposed a modified version of AIC for automatic variable selection
procedure of the Dantzig selector (DS) method, mAIC = nlog(RSS/n) + 2p?>. The mAIC
typically chooses a smaller model than AIC. This new criterion works well in both the DS
method in [I4] and the SRRS method in [8], [13].

To the best of our knowledge, there is no R package oriented to the variable selection problem
in SSDs. Hence, we implement the SRRS method and introduce the package SRRS in this paper.
The scope of SRRS is to allow any person with knowledge on variable selection and/or the SRRS
method to start using SRRS for their everyday work without having to learn anything about
the R syntax. The cross-platform package SRRS is developed in R for statistical computing and
the graphical user interface (GUI) is built using the Tcl/Tk bindings provided by the tcltk
packages included in R [I5, [I6]. The user only needs to type in the function name and the
setting panal pops up in a window mode. After loading the data and selecting the required
settings, the analysis is performed via the RUN button and the outputs are directly exported
in the result panael when it is finished. The R package described in this paper is available from
the Comprehensive R Archive Network at “http://CRAN.R-project.org/package=SRRS”.

The remainder of this paper proceeds as follows: the methodology of SRRS is reviewed in
Section 2, the functions of SRRS is described in Section 3 and the examples on the analysis of real
data are presented in Section 4. Finally, some concluding remarks and future possible extensions
of the package are given in Section 5.

2 A review on Stepwise Response Refinement Screener
(SRRS)

The SRRS, proposed in [§], is used for analyzing the experiments using SSDs. Consider a linear
regression model y = X + €, where y is an n X 1 vector of observations, X is an n X k model
matrix, 8 is a k x 1 vector of unknown parameters, and € is an n x 1 vector of random errors.
Assume that € ~ N(0,0%1I,). In addition, X is assumed to be supersaturated, n < k. We let
m be the number of potentially important effects (PIEs) and S;,¢ be the influential set of PIEs
found in the process. It proceeds as follows.

Algorithm 2.1.
SRRS - Factor Screening
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Step 1. Standardize data so that yo has mean 0 and the columns of X have equal lengths.
Step 2. Compute the correlation p(X;,yo) for all factors X;, i =1,...,k.

Step 3. Choose Ey such that |p(Eo,yo)| = maxx, |p(Xi,v0)| and include Ey as the first PIE in
Sinf-

Step 4. Obtain the estimate B, by regressing yo on Ey.
Step 5. For the next m PIEs E;, j=1,...,m, m <n — 2,

(a) compute the refined response y; = yj—1 — Ej_18g;_,;

(b) compute the marginal correlation p(X;,y;) for all X;, i =1,... k;

(c) choose T such that |p(Tj,y;)| = maxx, |p(Xs, y5)|;

(d) obtain the estimate fr; by regressing y; on Eo, ..., E;j_1,T};

(e) if |Br;| >~ and T; has not been included in Siny, put E; =T and include it in Si,y;

(£) repeat (a) to (e) up to m'™ step, where E; = E,y, is not included in Sy, r, m determined
by either m < n — 2 or the threshold condition |Br,| > v, or both.

SRRS - Model Searching

Step 6. Perform an all-subset search for all Ej, from models with one to m factors, where m
is minimum of n/3 and the number of Ej in Siny.

Step 7. Compute the objective function for each model and choose the final model as the one
with optimal objective function; all E; included in the final model are considered to be
significant to the response 1.

Demonstrated in [I3], SRRS can also be used to analyze the experiments using a general
factorial design, with the consideration of interactions. Consider a nonregular FFDs with k;
main effects and n runs, where n < m. There are ks = ki(k1 + 1)/2 interactions between
two different main effects. If all two-factor interactions are considered together with all main
effects, it is possible that ks > m, then the design matrix is supersaturated. Traditionally, the
analysis of nonregular FFDs is based on two assumptions: the factor sparsity principle and the
effect heredity prinicple. The first assumption has been embedded in the SRRS method, but the
second assumption does not.

In order to implement the heredity principle into the SRRS method, some procedures are
slightly modified: (1) Step 2: Due to the heredity principle, two-factor interactions are never
be selected as the first PIE, so only the marginal correlations of all main effects are compared
for selecting the first PIE. (2) Step 5: During the search of the j** PIE, not all two-factor
interactions are considered in the comparison of marginal correlation. According to the heredity
principle, a two-factor interaction Xj; is considered in Step 5(b) if and only if either X; or X
or both parents main effects have been included in Sy, in the previous searches. Therefore,
the modifications in Step 5 take away a subset of two-factor interactions that none of their
corresponding parent main effects have been PIEs. (3) Step 6: The reduced models built in
this step must follow the heredity principle in order to avoid the situation that some significant
two-factor interactions are included in the reduced model but none of their parent main effects
have been included.
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A detailed discussion on the main idea of each step in SRRS is out of the scope of this paper
and we omit it here. Readers who are interested in these details are referred to [§].

3 SRRS interface and function

As is typical plug-ins, the SRRS pacage can either be loaded directly or by the command
library("SRRS").

Data files preparation. In practical applications, the user needs to prepare for two data
files to run the program SRRS. The first file is a design matrix file that corresponds to the de-
sign matrix X in the SRRS method. Only main effect columns are required in this file because
two-factors interaction effects are considered as an option in the procedure. The second file is a
response file that corresponds to the response variable Y in the SRRS method. Only one column
of response values is needed. Both data files should be saved as text files, preferably with .txt
or .dat extensions. If either files contain headers, one should put them in the first row of the files.

SRRS input panal. To start the program, after loading the library, one only need to type
SRRS() in the command prompt window, and a GUI panal like Figure[I] will pop up as a separate
window. This panal is roughly divided into four parts from top to bottom. The first part is

SRRS version 0.1 lfpr‘]a:e! About |
Data Files:
Design Matric Cpen File ! Header? | 7
Response Vector : np.af\. I'.i!.P J: Header? | .? |

Optional Parameters:
MNumber of Main Effects: o 7

Specify Gamma: o ?

Selection Conditions:

2-Factor Interactions? r -

Model Selction Criterion: [

RUN

Figure 1: An empty SRRS input panal.

the information about the SRRS method. The current version is 0.1. The first button labeled
“Update” brings the users to the official website of this program via a R command browseURL. It
provides a convenient link for the users to update their SRRS library when a new version is avail-
able. The second button labeled “About” provides some basic information about SRRS, including
the current version with date, authors’ names and affiliations (with maintainance personnel and
email) and some legal claims. In addition, the question-mark buttons on the right of the panal
provide short hints about the functions in the following three parts of the panals.

The second part of the panal aims at loading the data files into SRRS. Two buttons labeled
“Open File” open the directory window for the users to select their prepared files. The checkboxes
on the right of two “Open File” buttons are indicators if the files have headers or not. For
example, if a user prepares a design matrix file with header names located in the first row, then
the first checkbox should be clicked after loading the design matrix file in order to avoid program
crash. Notice that if one wrongly clicks the checkbox for a file without headers, the program

COMPSTAT 2014 Proceedings



Frederick Kin Hing Phoa 73

will not crash but the analysis will be incorrect for the missing of the first row. However, if one
forgets to click the checkbox for a file with headers, the program will crash because all entries
of the matrix are not numeric anymore. In addition, if the design matrix file does not contain
a row of header names, the program will automatically assign the names for all columns in the
design matrix with the syntax “X1”, “X2”, etc.

The third part of the panal allows the users to enter some optimal parameters in SRRS. The
first textbox is for the number of main effects. By default, if a user enters 0 or any number
that is greater than the number of columns in the design matrix, the number of main effects is
automatically set to be the number of columns in the design matrix. For example, assume that
there are 8 columns in the design matrix, the users can provide optimal setting on the number
of main effects by entering any integers from 1 to 8. Entering 0 or any numbers greater than
8 will be equivalent to entering 8 in the textbox. Furthermore, entering a negative number is
equivalent to entering 0, and entering a number with decimal points is equivalent to entering
that number without decimal points (i.e., entering 4.5 is equivalent to entering 4).

The second textbox is for the specification of . It is a tuning parameter in the factor
screening procedure of the SRRS method, mainly for the termination of the screening when the
magnitude of the potential important effect is too small when compared to noise. By default, if
a user enter 0 in this checkbox, the suggestion of [§] is followed and « will be automatically set
to be 1/10 of the magnitude of the first potenital important effect. Similar to the first checkbox,
entering a negative number is equivalent to entering 0. However, it is different from the first
checkbox that there is no upper limit to this checkbox, and a number with decimal point is
allowed. Details on how + is set appropriately are referred to [§].

The fourth part of the panal relates to the selection conditions in SRRS. The checkbox pro-
vides an option to users to consider two-factor interaction effects in the analysis. If there are
two-factor interactions that have significant impact to the response but the analysis excludes
them, serious biases to the estimates of main effects may lead to inconclusive results. [20] has
an extensive discussion on this manner. If the user clicks this checkbox, SRRS will consider
the significance of two-factor interactions under heredity principle. The combobox provides an
option to users to choose which model selection criterion is used in the analysis. There are two
choices, mAIC and AIC criteria, in the current version. AIC is a standard measure in many
traditional analyses, but a problem of overfitting is observered when the sample size is small.
mAIC, first proposed in [14], is a new measure with heavier penalty on the model dimensions.

SRRS result panal. Once the data loading and parameter setting are finished, the user
clicks the “RUN” button to run the analysis via SRRS. A result panal will pop out after the
analysis is done and a sample result panal is provided in Figure bl The panal always includes
five suggested models and their ranks are given in the first column. The second column provides
the important effects in these five models and the syntax needs some explanations. For example,
the second rank model in Figure [5|is “D + F + F : G”. This means that the main effects D, F
and the interaction effect F'GG are important and a model with these three effects are selected as
the second rank model. The “4” sign are used to separate effects and the “:” sign indicates the
interaction effect. The model is ranked via the user-selected criterion. In Figure [5] the model
rank is determined by the mAIC criterion, and the smaller the mAIC, the better the model. The
last row provides the threshold value = used in the analysis. If the user enters v as an optional
parameter in the input panal, the number will be the same in the result panal. If the user skip
the optional setting, the v will be automatically determined in SRRS and reported here.
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4 Some illustrations on real-data examples

A classic supersaturated design example. In this example, we apply SRRS to a classic
supersaturated design example demonstrated by [4]. The original dataset has 24 factors but two
factors (13 and 16) are identical. As [I7], [I4] and [§], we delete factor 13 and rename factors
14-24 as 13-23. The design matrix and response files are found in the SRRS package named
Lin_Dx.txt and Lin_Yx.txt respectively.

Figure [2] is the input panal for this example. Since both data files do not have headers, we

T The SRRS Method — B
SRRS version 0.1 l]pﬂ M
Data Files:
Design Matrixc Open File| Header? I 3
Response Vector : -Open File| Header? I 1

Optional Parameters:

MNumber of Main Effects: 23 t
Specify Gamma : 0 ?
Selection Conditions:
2-Factor Interactions? r T
Model Selction Criterian: mAIC x| 2
RUN

Figure 2: The input panal for the classic supersaturated design example.

do not click the checkboxes in the data files part. We consider all columns as main effects, so we
enter “23” in the first textbox. Alternatively, we can leave the textbox unchanged (i.e., “0”) and
SRRS still recognizes the number of main effects as “23”. We do not specify the threshold v and let
SRRS determine it automatically. Since the design matrix is supersaturated (number of factors
exceeds number of runs), there is not enough degree of freedom to estimate interaction effects
and we leave the corresponding checkbox unclicked. We choose mAIC as the model selection
criterion. Finally, we click “RUN” to analyze this dataset.

Figure [3| is the result panal for this example. The analysis via SRRS suggests that a model

Fank Madel maIC
1 ®14 105.7253

2 He #1241 4419 106.3701
3 X12+14 106.8446
4 ®12+414+18 107.0885

5 X14+x19 107.7655
gamma 5.3214

ﬂ

Figure 3: The result panal for the classic supersaturated design example.

with factor 14 only has the minimum mAIC, and thus it is the best model among all models.
The same analysis result were reported in several literature, see [I14] and [§]. Some additional
observations are highlighted in this result panal. First, the threshold ~ is reported in the result
panal and it is 5.3214, which is 10% of the magnitude of the first potential important effect.
Second, since there is no headers in the design matrix, all factors are assigned with a generated
header, namely “X17, ..., “X23”. Finally, since we do not click the checkbox for two-factor
interactions, none of these models include interaction effects. Readers who are interested in its
mathematical analysis are referred to [§].
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A classic factorial design example with consideration of interaction effects. In this
example, we apply SRRS to the cast fatigue expneriment, a real data set consisting of seven two-
level factors. [I8] demonstrated the difference in the analysis result of factorial experiment with
and without considering the interaction effects. The result is confirmed in later literature, see
[14]. The design matrix and response files are found in the SRRS package named cast_Dh.txt
and cast_Yh.txt respectively.

Figure [ is the input panal for this example. — Opposite to the previous example, both

7 The SRRS Method — O
SRRS version 0.1 Update | About
Diata Files:
Design Matrix Open File| Headerr F [
Response Vector ; OpenFile| Header? T
Optional Parameters:
MNumber of Main Effects: 7 1
Specify Gamma : 0.05 1

Selection Conditions:

2-Factor Interactions? R

7
Model Selction Criterion: mAalC =] T

L0l
Figure 4: The input panal for the cast fatigue example.

data files have their header names in the first row, so we click the checkboxes in the data files
part. Although the data matrix consists of 11 columns, which are the columns of a 12-run
Plackett-Burman design, we only use the first 7 columns in this example. Therefore, we specify
the number of main effects as “7” in the firs textbox. In addition, assume that there is a prior
information that the threshold is around 0.05, so we specify this value in the second textbox. We
consider the possibility that there may exist some significant two-factor interactions, so we click
the corresponding checkbox. We choose mAIC again as the model selection criterion. Finally,
we click “RUN” to analyze this dataset.

Figure 5| is the result panal for this example. The anlaysis via SRRS suggests that a model

Fank Model mAlC
| 1 F+F.G 27,8169
| 2 D+F+FG 21,2074
| 3 FEF+FG 19.7512
\ 4 E+F+FG 195627
\ 5 CoFeFG 150597
‘ gamrma 0.05

ﬂ

Figure 5: The result panal for the cast fatigue example

with main effect F' and interaction effect F'G has the minimum mAIC, and thus it is the best
model among all models. The same analysis result were reported in several literature, see [1§],
[14] and [13]. In this result panal, the threshold v is exactly the same value as we entered in
the input panal. In addition, interaction effects are considered under heredity principle in the
model searching procedure, and some good models reported in the result table contain interac-
tion effects. Readers who are interested in its mathematical analysis are referred to [13].
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Another factorial design example with different analysis result. In this example, we
apply SRRS to the HPLC expneriment. [19] performed this experiment with 8 two-level factors
via a 12-run Plackett-Burman design, but they consider main effects only and ignore the impor-
tance of interactions. The experiment is reanalyzed in [20], which a better model is suggested
with a significant interaction effect. The design matrix and response files are found in the SRRS
package named HPLC_Dh.txt and HPLC_Yh.txt respectively.

Figures [6] and [7] are the input and result panals for this example.  In the input panal, we

7 The SRRS Method — B
SRRS version 0.1 Update M
Data Files:
Design Matrix OpenFile| Header? ¥
Response Vector : Open rils_ Header? W _?

Optional Parameters:

Number of Main Effects: 0 t
Specify Gamma o 1
Selection Conditions:
2-Factor Interactions? = 7
Model Selction Criterion: mAIC = ?
RUN

Figure 6: The input panal for the HPLC example.

Riank todel rrAlC

1 E+F+E:F -b.4626

I

[ B E+EF 5 4546
[ 3 E+F+H+E:F -3.0488
[ 4 F+EF -1.8045
[

5 E+E:F+El -0.1999
gamma 0.0558

o

Figure 7: The result panal for the HPLC example with mAIC criterion.

click the header checkboxes because both design matrix and response files contain headers. We
do not need to enter optional parameters because all columns in the design matrix are main
effects and we have no prior information on the threshold v. We consider two-factor interaction
effects and choose mAIC as the model selection criterion. In the result panal, the analysis via
SRRS suggests that a model with main effects £, F' and interaction effect £ F' has the minimum
mAIC, and thus it is the best model among all models. The same analysis result was reported
in [13].

However, the result is found to be different in [20], where the analysis is based on AIC
criterion. Figure [§is the result panal that AIC is chosen as the model selection criterion in the
input panal, and all other settings remain unchanged. The analysis suggests the best model
that includes an additional main effect H. The same model is ranked third when mAIC is the
model selection criterion in Figure [7] The discrepency comes from the different penalty on the
additional dimension in the model. This example demonstrates that the result provided by SRRS
is a suggestion and it is necessary to perform a follow-up experiment for further confirmation.

COMPSTAT 2014 Proceedings



Frederick Kin Hing Phoa 7

% Result - o N
Fiank Model AlC
1 E+F+H+EF -27.9488
2 E+F+E:F+El -20.31649
3 E+F+E:F+FH -18.8722

4 E+F+EF -18.4826
5 ArE+F+EF -17.2264
gamma 0.0558

o |

Figure 8: The result panal for the HPLC example with AIC criterion.

5 Conclusion and future development

In this paper we have presented the R package SRRS for analyzing the experiments using SSDs
and/or a factorial design with consideration of interactions. All features of the GUI in SRRS
have been demonstrated through several real-data examples in Section 4. The latest version of
SRRS can be downloaded at “http://www.stat.sinica.edu.tw/fredphoa”.

Further development in the SRRS method and its R package SRRS will focus on the following
directions.

1. The current version of SRRS allows users to consider the potentially important two-factors
interaction effects, but it is possible to have some higher-order interaction effects that
have significant impacts to the response. A future version of SRRS will allow the search of
potentially important higher-order interaction effects under the principle of effect heredity.

2. The current version of SRRS provides AIC and mAIC as two choices of model selection
criteria. There are many other criteria that are commonly used in the model selection,
like BIC, cAIC, Mallow’s Cp, etc. A future version of SRRS will provide additional choices
on model selection criteria. Furthermore, it is desired to allow users to specify their own
criterion as the objective function. In such case, the best possible way is to allow loading
the criterion as a text file and read it in R environment.

3. The current version of SRRS utilizes the all-subset search in the model searching part.
Although it is possibly the best method among all model searching methods, the complexity
of this method is relatively higher than many other methods in the literature. For example,
it is possible to substitute it via the DS method proposed in [14], which is known as an
efficient linear programming method. A future version of SRRS will include a new choice
on the search methods in the setting panal, which allows the users to select their preferred
model searching method.

Appendix: Computational details

All computations and graphics in this paper have been obtained using the R version 3.0.0. Several
utility pacages have been created to help in the analyzing process. For examples, package tcltk2
[21] creates the input and result panals and package gregmisc [22] enumerates the possible
combinations of columns from all available choices of main effects and/or interactions via its
command combinations.
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Unravel: A Method and a Program
to Analyze Contingency Tables,
Unveiling Confounders.

Helmut Vorkauf, Bern, retired, helmut@vorkauf .ch

Abstract. An information theoretic approach to analyze multidimensional contingency tables
to find the important relations between dependant and independent variables, uncovering con-
founding effects in a straightforward manner

Keywords. Multiple Associations, Multidimensional contingency tables, Confounding, Simp-
son’s paradox, Effect size.

1 Method

When planning a study of cause and effect, one primarily selects an effect ¥ and a probable
cause X, and then designs a study that lets one find out whether the presumed cause X actually
has a significant influence on the effect Y. One is always aware that other variables might also
have an effect on Y or X, therefore the study almost always includes measurements of further
variables Z; that might need to be controlled. In experimental designs one can control such
further variables that might also have an effect through direct control or randomization, but in
survey studies, observational by design, such a control becomes impossible.
In a paper [§] we introduced two measures of dependance based on information theory:

1. Gamma, the dependability 7, or 7,, is an unsymmetrical indicator of how reproducible
or non-random the outcome of Y is, how unequivocally Y is determined by the other
variables. This is a multivariate extension of Theil’s uncertainty coefficient [6].

2. Zeta, the diagonality! or conciseness (, is a symmetrical coefficient of the closeness of
relations between variables. This coefficient determines how free of slackness a logical link
between variables is. It is defined for tables with any number of dimensions.

1We had coined the name terseness for this coefficient when searching for a proper translation for the German
Prégnanz and pregnancy seemed unfitting. Now the term diagonality seems more appropriate to us, indicating
the accumulation of cases along the diagonal of a table with categories appropriately ordered. Conciseness might
be an alternative term.
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Both v and ¢ are normalized to 1, independent of the base of the logarithm and, especially,
independent of the sample size N. That is why they are comparable for tables of different size
and dimensionality, a quality that the usual measures do not achieve, especially not x2. This
comparability led us to choose them for an analysis of multivariate tables, where the many
sub-tables of different size and dimensionality of a high-dimensional table have to be compared.
An additional benefit stems from the clear quantitative meaning of the dependability?. These
qualities make the measures ideal instruments for quantifying strength of effect.

We should not be discouraged by the numerically small values we find working with depend-
abilities, we should not fall into the trap of interpreting them like e.g. correlation coefficients.
The following informal but useful thresholds may serve as guidelines:

0.10 is enormous,
0.01 is very considerable,
0.001 and below may be regarded as negligible.

Thus we introduce a method of analyzing the dependence of Y on X, given the multitude of
relations with and between the controlling variables Z;. Failure to recognize a disturbing effect
of such confounding relations may easily lead to erroneous conclusions concerning the primary
purpose of a study. Our approach, we hope, may help to direct ones attention to problems
that can occur in non-orthogonal designs when one or more of the control variables Z have
disturbing effects and turn out to be aptly named confounding, i.e., they start to make the
researcher confused.

2 Radelet’s Data on the Death Penalty in Florida

A simple (in the sense of a low dimensionality only) problem is Radelet’s study on Florida death
penalties influenced by the race of the defendant when controlling for the victim’s race (cited
from [1I]) as shown in table

If the victim was white, black defendants received a death penalty more often than white
defendants (22.9 % vs. 11.3 %), and this was also the case when the victim was black (2.8 %
vs. 0). Yet, when collapsing the table by ignoring the victim’s race (summing out the victim’s
race), in the total white defendants received the death penalty more often (11 % vs. 7.9 %).

The primary question is: “How strongly does the color of the defendant determine the
penalty?”, and we get two conflicting answers when we compare the total result with the result

2The clear quantitative meaning of the dependability ~ shall be briefly demonstrated with artificial data:

a b c Total
20

40
35 120
25
30 20 10 60

Total 90 60 30

HoQwE >

Row E with 60 (a third of all cases) was deliberately constructed to have the same distribution as the column
totals. For this third of cases one can say nothing more about the column than was known beforehand from
the column totals. In the other two thirds of the table the column is determined clearly without ambiguity.
Consequently the dependability v, is % What coefficient to describe the contingency has this nice quantitative
interpretability?
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Race of ... Y =Penalty
Z=Victim X=Defendant Death No death Percent Death Penalty
we e n oW
Black \]zavlglctlf 2 11369 g:g v
"R

Table 1: Frequencies of Death Penalties in Florida.

within victim’s race. The puzzling reversal of trend in the collapsed table is known as Simpson’s
paradox. It is a phenomenon less known to statisticians trained in the analysis of experimental
designs where all variables are orthogonal to each other.

Such orthogonality is rare, however, in surveys where Y and Z may vary freely, and in this
case the free variation has led to an enormous linking of X and Z as shown in table 2| Black

X =Defendant
White Black

White 467 48
Black 16 143

Z=Victim

Table 2: Frequencies of Victims and Defendants, vpetendant = -4736.

defendants tend to have killed black victims and white defendants tend to have killed white
victims, and this non-orthogonality produces the baffling paradox.

A way to treat this annoying interdependence of X and Z is a technique (first introduced
by Preuss [7]) which he called uncoupling  ; the interdependence is eliminated by combining
the cross-tabulated values of X and Z into a composite variable: instead of analyzing the
effect of the 2 x 2 contingency table of X= race of defendant and Z= race of victim on Y=
penalty, Preuss analyzes the effect of the composite variable [victim+defendant] with four values,
namely [victim/defendant = W/W, W/B, B/W, B/B| on Y=penalty. This in effect removes
any dependence between X and Z.

Our measure of diagonality ¢, which is ( = .257726 for the complete 2 x 2 x 2 table, is reduced
to just ¢ = .014110 for the 2 x [2 x 2] table in which X and Z are uncoupled. The majority
(95%) of the diagonality of the complete 2 x 2 x 2 table thus vanishes when the relation between
X and Z is eliminated by uncoupling; this relation between X and Z has the enormous size of
¢ = .328238 (table [2)).

We should revise our original question and ask: “How strongly is the sentence determined by
the composite of victim’s and defendant’s race?”. The dependability ~sentence Of predicting the
death sentence using the composite variable of the victim’s and the defendant’s race is .0505,

30nly now (March 2014), on re-reading Goodman and Kruskal[7], Preuss found that they had described the
same technique on p.761, without following it through, however.
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and this is the answer to the newly formulated question. We might go on to look at white
and black defendants only and find that ~gentence 1S & rather small .0113 for white defendants
versus a strong .1612 for black defendants. The black defendant is the poor bugger, his sentence
is strongly influenced by the race of his victim. This finding is rarely mentioned in published
analyses.

It is our conviction that the summing out of the control variable Z=victim, in an effort to
produce a summary, amounts to an illegal act that produces Simpson’s paradox which leaves us
confounded. In this extreme case, where summing out produced Simpson’s paradox, you will
probably agree, but we would like to propose a general rule banning the summing out of control
variables, even when their effect seems marginal. The error involved in collapsing tables when
an effect is insignificant, routinely done in parsing log-linear models, is only gradually less severe
than when a very large X—Z-relationship produces Simpson’s paradox.

3 Byssinosis, a higher-dimensional example

Dustiness of Workplace
most dusty medium dusty least dusty
Years employed  Smoking  Gender Race No  Yes p(Yes) No  Yes p(Yes) No  Yes p(Yes)

M white 37 3 0.075 74 0 0.000 258 2 0.008

Yes other 139 25 0.152 88 0 0.000 242 3 0.012

P white 5 0 0.000 93 1 0.011 180 3 0.016

< 10 yrs other 22 2 0.083 145 2 0.014 260 3 0.011
M white 16 0 0.000 35 0 0.000 134 0 0.000

No other 75 6 0.074 47 1 0.021 122 1 0.008

F white 4 0 0.000 54 1 0.018 169 2 0.012

other 24 1 0.040 142 3 0.021 301 4 0.013

M white 21 8 0.276 50 1 0.020 187 1 0.005

Ves other 30 8 0.211 5 0 0.000 33 0 0.000

P white 0 0 ?? 33 1 0.029 94 2 0.021

10 — 20 yrs other 0 0 ?7? 4 0 0.000 3 0 0.000
M white 8 2 0.200 16 1 0.059 58 0 0.000

No other 9 1 0.100 0 0 ?? 7 0 0.000

P white 0 0 ?7? 30 0 0.000 90 1 0.011

other 0 0 ?? 4 0 0.000 4 0 0.000

M white 77 31 0.287 141 1 0.007 495 12 0.024

Yes other 31 10 0.244 1 0 0.000 45 0 0.000

P white 1 0 0.000 91 3 0.032 176 3 0.017

> 20 yrs other 1 0 0.000 0 0 ?? 2 0 0.000
M white 47 5 0.096 39 0 0.000 182 3 0.016

No other 15 3 0.167 1 0 0.000 23 0 0.000

P white 2 0 0.000 187 3 0.016 340 2 0.006

other 0 0 ?7? 2 0 0.000 3 0 0.000

Table 3: Frequencies of Byssinosis by Length of Employment, Smoking, Gender and Race.

Let us now turn to a complex data set with six variables [4] as shown in table The
complete 3 X 3 x 2 x 2 x 2 x 2 table is difficult to read. When one tries to find the main factors
leading to byssinosis, a lung disease caused by exposure to cotton dust, one has to take into
account some very strong interrelations between the possibly illness-inducing variables. Higgins
and Koch have devised a laborious y2-based set of rules designed to find the important factors;
they concluded that dustiness of the workplace is the most important determinant of illness,

COMPSTAT 2014 Proceedings



Helmut Vorkauf 85

gender of employee is next important, and smoking is in 3rd place. From the content of the
study, it seems curious that the length of employment and therefore the length of exposure to
dust came in 4th place only. Could it be that some disturbing X-Z-relation has suppressed the
Z-Y -relation between length of exposition and byssinosis?

Our analysis starts by looking at dependability + of byssinosis which is v = .2077, a very
strong reproducibility. Summing out of single variables results in varying degrees of loss of
dependability. This loss of dependability of byssinosis we interpret as the importance of the
variable summed out, it is its contribution to the dependability (table .

When summing out...  Dependability v % Loss by summing out

Dustiness of workplace .0639 71
Length of employment .1935 11
Smoking 2011 8
Gender .2046 6
Race .2089 4

Table 4: Dependability when summing out Variables.

May we say that as a first impression we like the ordering of variables better than the
ordering of Higgins and Koch? Exposure to dust, length of the exposure and smoking as the
major determinants of a lung disease seem plausible to us, gender in 2nd place does not.

Next we investigate the full cross-tabulation, uncoupling in turn 15 pairs, 20 triples, 15
quadruples and 6 quintuples of variables, looking for effects of uncoupling on the diagonality of
the full table. The diagonality ¢ for the full table is .098369. The following partial table lists
only pairs and triples of variables uncoupled that produced larger losses (table .

Uncoupled variables Diagonality ¢ % Loss due to uncoupling
Race Employment .049793 49
Dustiness Gender .084665 14
Smoking Gender .088207 10
Race Employment Dustiness .040804 59
Race Employment Gender .042130 o7
Race Employment Smoking .046762 52
Race Employment Byssinosis .048688 51

Table 5: Diagonality when uncoupling Variables.

By far the strongest bivariate relation found in the data is the longer employment of white
employees, nonwhites have a much higher turnover, Ygmployment = -1664 (table @

When uncoupling race and length of employment, this reduces ¢ by 49 %. This reduction,
due to the strong association of race and employment, repeats in the triples with larger losses.

The disproportionality has the effect that the clear increase of byssinosis with length of
employment and thus exposure seen within race (table[7)) is greatly reduced when race is summed
out; YByssinosis 18 reduced to .0069 when summing out race, while it is .0191 for whites and .0255
for others (table [6).
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Race
white other

< 10 years 1071 1658
Employment 10 to 19 years 604 108
204 years 1841 137

Table 6: Frequencies Length of Employment by Race of Employee.

Race Employment Percentage of Byssinosis
<10 1.12
White 10 to 19 2.81
20+ 3.42
<10 3.08
Other 10 to 19 8.33
20+ 9.49
<10 2.31
All Races 10 to 19 3.65
20+ 3.84

Table 7: Summing out Race.

Here, the collapsing of the table by summing out race was not yet an error that produced
a reversal of trend as in Simpson’s paradox, but it is an error that led Higgins and Koch to
underestimate the strong effect of length of exposure on developing a byssinosis. There is a
continuum of degree of error that summing out may produce, and Simpson’s paradox simply is
a more severe error. We might say that race and employment in the Higgins and Koch data
produced not an outright Simpson’s paradox, but an attenuated one.

This error of summing out will affect any of the statistical models we usually apply in the
analysis of data, as in the last resort they all use summaries of partially collapsed tables to
arrive at their estimates of main effects. Fortunately, collapsing of tables by summing out
minor variables is not needed; Preuss’ method of uncoupling can successfully replace it without
producing confounding results, as it does not discard data but merely rearranges them.

4 An Application to Two Meta-Analyses

A Chinese study on the effect of smoking on lung cancer by Liu [5], serves as the first example
(table [3)).

The v for predicting cancer for the whole table reaches a sizeable .0267. Ignoring smoking
by summing it out reduces v to .0019 (a reduction by 93 %), so smoking is a very important
determinant for cancer, whereas summing out the studies reduces v to .0236, a loss of only 11%.
Trying to gain oversight in this meta-analytic study seems not to be hampered by too much
variation among the eight local studies. Summing out the eight localities to arrive at a 2 x 2
table linking smoking to cancer seems justified with not too much error.
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Smokers Non Smokers

Cancer No Cancer Cancer No Cancer Study
126 100 35 61 Beijing
908 688 497 807 Shanghei
913 747 336 598 Shenyang
235 172 58 121 Nanjing
402 308 121 215 Harbin
182 156 72 98 Zhengzhou
60 99 11 43 Taiyuan
104 89 21 36 Nanchang

Table 8: Data of a Chinese Meta-Analysis of Smoking and Cancer.

Smokers Non Smokers
Cancer No Cancer Cancer No Cancer Study

83 72 3 14 01_D_Muller 1939

90 227 3 43 02_D_Schairer&Schoniger 1943
129 81 7 19 03_NL_Wassink 1948

70 397 12 125 04_US_Schrek 1950

412 299 32 131 05_US_Mills&Porter 1950

597 666 8 114 06_US_Wynder&Graham 1950
88 174 5 12 07_GB_McConnel 1952
1350 1296 7 61 08_GB_Doll&Hill 1952

60 106 3 27 09_US_Wynder&Cornfield 1953
459 534 18 81 10_US_Sadowsky 1953

724 246 4 54 11_SF_Koulumies 1953

499 462 19 56 12_US_Breslow 1954

451 1729 39 636 13_US_Levin 1954

260 259 5 28 14_US_Watson&Conte 1954

Table 9: Data of an International Meta-Analysis of Smoking and Cancer.

Dorn [2] compiled 14 international studies, published between 1939 and 1954, on the as-
sociation of smoking and lung cancer (table [9). Our analysis reveals a picture differing from
the Chinese data: ~ for predicting cancer reaches an enormous .1189, and by summing out the
studies factor, « is reduced to .0431, a dramatic loss of 64 %. The diagonality of the 2 x 2 x 14
table is ¢ = .0319; if we take out the cancer x study relation by uncoupling we lose 50 % of this
diagonality, half of the conciseness is due to the great differences in cancer prevalence of the 14
studies. Thus, in this collection of data, it seems to make no sense to gain a 2 x 2 table of cancer
by smoking, which was the signal the study was aiming at. The signal is drowned in the noise
of the far too different studies.
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5 A program for the analysis

A program Unravel running under Windows is available that computes the separabilities with
each variable in turn regarded as the dependant variable when each single variable or pair or
higher dimensional tuples of variables is summed out. Likewise, the diagonalities are computed
with pairs and tuples of variables uncoupled. In short, all tuples of variables are analyzed like
in CFA, Lienert’s Analysis of Configuration Frequencies (in fact, the program started with a
CFA program I wrote decades ago). You may use the output for CFA interpretation, looking
for types and antitypes. The main program is written in Delphi Pascal and expects input in the
form of dBase tables. These can be either raw data of one case per row or contingency tables
with one row per cell. You might want to use Excel data and save them as dBase, or you can
enter dBase data directly with an additional routine written in FoxPro. A further addition, also
written in FoxPro, is only needed for getting error estimates by bootstrap sampling.
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Preventive maintenance in a
complex warm standby system. A
transient analysis
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Abstract. Preventive maintenance plays an important role in the reliability field. Fatal failures
with the corresponding damage associated can be avoided by considering preventive mainte-
nance. A complex warm standby system that evolves in discrete time is modeled in transient
regime. The system is composed of one online unit and the rest in warm standby. All units can
undergo repairable failures due to wear. Besides, the online unit is subject to external shocks,
which can produce a repairable failure. If any unit suffers a repairable failure, this one goes to
the repair facility for corrective repair. The corrective repair time depends on the type of failure
(online or warm standby unit). Preventive maintenance is introduced as response to random
inspections over the online unit. When one inspection occurs, two possible degradation levels
of the online unit can be observed: minor or major. In latter case preventive maintenance is
carried out. The system is modeled and some interesting measures such as reliability, avail-
ability and some conditional probability of failure or preventive maintenance are worked out in
transient regime. The modeling and the measures have been calculated in an algorithmic form
through matrix algebraic expressions. The results have been implemented computationally with
Matlab.

Keywords. Preventive maintenance, warm standby system, Phase type distribution, Matlab

1 Introduction

Redundancy and preventive maintenance are methods that are widely applied to improve relia-
bility and availability in system design. They are necessary in order to improve overall reliability,
prevent system failures and reduce costs. Classical texts on reliability have examined such tech-
niques. Recently, valuable contributions have been made to maintenance policies in the area
of reliability theory. Nakagawa (2005) [2] considered standard and advanced problems of main-
tenance policies for system reliability models, analysing topics such as repair, age, block and
periodic replacement and preventive maintenance. Preventive maintenance is of special interest
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when system degradation and non-repairable failures, due to wear and/or external shocks, are
present.

One of the main problems encountered when analyzing standby systems with three or more
units is that it may not be feasible to build the model and its associated measures. It is
desirable to model complex reliability systems in an algorithmic and well structured form. If
phase-type distributions are assumed for the embedded times in the system, then this objective
is reached. This class of distribution was introduced by Neuts (1981) [3] and has been applied
in fields such as queuing and reliability theory. Recently, PH distributions and block-structured
stochastic models are analysed in He (2014) [I]. This class of distributions has been considered
to model complex redundant systems ([5], [6]) and systems with preventive maintenance ([4])
in an algorithmic form. When PH distributions are considered in modeling reliability systems,
their construction and the measures associated with the system are achieved in an algorithmic
matrix form which simplifies the computational implementation.

The main objective of this paper is modelling and analysing, in an algorithmic form, the effect
of preventive maintenance introduced in a complex warm standby system, with an indeterminate
number of units, where the online unit can go through degradation levels. The online unit is
subject to internal failures and external shocks that produce failure. Any warm standby unit
can fail at any time with probability p. All failures are repairable and only one repairperson is
assumed in the repair facility. We assume that the events which produce the external shocks
occur statistically independently of the performance of the device, and that they may occur even
if the device is currently under repair. Two types of repair are considered: corrective repair,
which is carried out when repairable failures occur, and preventive maintenance. The preventive
maintenance is performed in response to random inspections. When an inspection takes place,
if any internal damage is observed, the device is sent for preventive maintenance, unless the
damage is trivial.

The paper is organized as follows. The system is described in Section [2] and it is modelled
through a vector Markov process in Section [3] The transient distribution is built in an algorith-
mic form in Section [4] Some interesting reliability measures, such as availability, reliability and
conditional probability of failures are developed in Section 5} A numerical example shows the
versatility of the model in Section [6] The results have been implemented computationally with
Matlab.

2 The warm standby system

We assume a warm standby system that evolves in discrete time. There are K units, the online
one and the rest disposed in warm standby. All units are subject to repairable failures, but
the online unit is also subject to external shocks, which can produce a repairable failure. Each
time that the online unit undergoes a repairable failure, this one goes to the repair facility for
corrective repairing and one warm standby, if any, unit occupies de online place. There is a
repairperson. The corrective repair time is different depending on the failure is from the online
unit or from a warm standby. The internal behavior of the online unit one can go through two
degradation levels: minor and major. While there is at least one operational unit, a random
inspection can occur. When it happens, the degradation level of the online unit is observed. If
this degradation level is major, the unit goes to the repair facility for preventive maintenance
only if there is at least one warm standby. In other case, the unit continues working. The

COMPSTAT 2014 Proceedings



Juan Eloy Ruiz-Castro 91

following assumptions are considered.

Assumption 1. The internal operational time of the online unit is PH distributed with repre-
sentation («,T') with order n. The states are partitioned in two degradation levels: minor
and major. The minor degradation level is composed of the states 1,...,n1, and the major
is composed of the rest of the states.

Assumption 2. The accidental failure of the online unit is produced by external shocks. The
external shocks happen according to a PH renewal process where the time between two
consecutive shocks is PH distributed with representation (v, L) with order ¢.

Assumption 3. The time between two consecutive inspections of the online unit is PH dis-
tributed with representation (n, M) with order e.

Assumption 4. Each warm standby unit fails at any time with probability p.

Assumption 5. There are two different corrective repairs depending on the type of failure:
internal failure of the online unit and the failure of a warm standby unit. The corrective
repair distribution is PH in both cases with representations (8p,Sp) with order zy and
(B2, S2) with order zo respectively.

Assumption 6. If one inspection is produced and the degradation level of the online unit is ma-
jor, then the unit goes to preventive maintenance if there is at least unit in warm standby.
The preventive maintenance distribution is also PH distributed with representation (1, S1)
with order z;.

Assumption 7. Preventive maintenance and any type of failure of the online unit have prefer-
ence among the warm standby failures at same time for the repair facility.

State space

The system can pass through K + 1 macro-states. The macro-state space is given by S =
{So0,51,...,SK} , where S; contains the phases when there are [ units in repair for [ =0, ..., K.
If we denote as 6, = 0,1,2 to the kind of failure of the v-th unit in the repair facility (O:
internal failure, 1: preventive maintenance, 2: warm standby failure), then the phases of these
macro-states are given by
So=1{(4,4,5);1<i<n,1<j<t,1<s< ¢},
St =1{Fp, 05,..0:0,=0,1,2,v=1,... i}l =1,..., K, where
Eg 050, =1(,7,57);1<i<n1<j<t,1<s<el<r<z,},l=1,...,K—1, and
Epy 0,0 ={(,7); 1 <G <11 <7 <z, }.

The phases of the macro-states can be interpreted in the following way. For instance, the
macro-state S; contains the phases when there are [ units in the repair facility. The composition
of the repair queue is given by FEy, g, . g,- It indicates that the unit that is being repaired is
type 61, and the units in queue are types 6a,...,0; (in order). If [ = 1,..., K — 1, then this
macro-state, Fy, g, _g,, contains the phases (i, j, s,) where i indicates the state of the internal
operational time, j the state of the external shock time, s the state of the inspection time and
r the state of the repair time. Throughout the paper, given a matrix A, the column vector A°
is defined as A° = e — Ae where e is a column vector of ones with appropriate order.
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3 The model

The system described above is modeled through a vector Markov process with state space S.
The transition probability matrix is given by

Boo Bo1 Bo2 . Bo, k2 Bo, k-1 Bo,x
By Bu Bi2 . Bik—2 Bi1 k-1 Bk
0 Boy B - Bs ko Ba 1 Bs i
P . . ) ) |
0 0 . Bg-2rx-3 Brx-akx-2 Br-ox-1 Br-oxk
o o0 .. 0 Brk-1,xk-2 Brx-1k-1 Bk 1Kk
0 0 0 . 0 Brxrx-1 Brx

where the block B;; contains the transition probabilities between the macro-states S; — S;. For
instance, the matrix blocks from the macro-state Sy are shown.
Boo

This block contains the transition probabilities from the macro-states Sg — Sg. All units are
working and at next time all units continues working. It occurs because the internal operational
time, the external shock time and the inspection time change of state, and then they are not
taken place (T'® L ® M). Also, one inspection can occur and it observes a minor degradation
level, the external shock time follows changing of state (U317 ® L ® M%y). The auxiliary matrix
U, is given by

N 1 5 Z:_]Snl
UI(Z’J)_{O : otherwise

Respect to the warm standby, none of them fails and it occurs with probability (1 — p)&—1.
Therefore,

Byo=(1-pf ' TeLeoM+UTe Lo M.

Block B()1

This block contains the transition probabilities from the macro-states Sy — Si. All units
are operational and one failure or preventive maintenance occurs. This failure can be due to an
internal operational failure, to an external shock or to preventive maintenance of the online unit
after inspection; or one warm standby unit fails. This matrix can be partitioned depending on
the type of failure (0: failure of the online unit, 1: preventive maintenance, 2: failure of a warm
standby unit) as B()1 = {BOI (O), B()l(l), B()l (2)} s

Bo(0) = (1-p)" '[Ta® (L+ L) & (M n+ M)
+ (e-T%*a® L'y (M%+ M)|  p°
Boi (1) (1-p) ' Us(e-T")a® Lo Mo g,
Bn(2) = (K-1p(l-p ?[TeLeM+UTeLye M| @8
bing U39 = { Lt e
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Blocks By, forl=2,..., K

This block contains the transition probabilities from the macro-states Sy — S;. All units are
operational and [ failures (or one preventive maintenance)occur. These failures can be due to
an internal operational failure, to an external shock or to preventive maintenance of the online
unit after inspection and [ — 1 warm standby fail; or [ warm standby unit fails. This matrix
can be partitioned depending on the transitions between the macro-states Sy — Ep, 9,...
alphabetic order. The blocks different to zero are the following ones.

, 11

K-1
BOl(O>2727"'72) = (l—l

+ (e—T%a® L0y @ (M + M)| @ 8°,

)pl—lu )R [T @ (L + L%) @ (M + M)

K—-1
By (1,2,2,...,2) = (l_ ) )pl_l(l — )K" Us(e = Ta® L ® M ® B,

K-1
By (2,2,2,...,2) = ( z )pl(l—p)K_l_l [TeLeM+UT®LeM
+ I{l:Kq}PK*lUQTa ®L® Mon] ® B2,

where the function I is the indicator function. Finally,

Bok (0,2,2,...,2) =p" T @ (L+ L) @e+ (e —T°) ® LYy) @ ¢] @ B°.

4 Transient distribution

The transient distribution is obtained from the transition probability matrix by considering the
matrix blocks. The probability of occupying the different phases at time v is worked out by

blocks as P = P¥ = ( BZ(]” )). - . The blocks have been expressed in a recursive form as
,J=U;. s
By = By
min{2+j,K}
v v—1
BY = Y By VByv>2
k=0

This recursive method can be developed obtaining that

O _ p.

BY = By,
min{2+j,K} min{2+k,_1,K} min{2+ko,K}

W) _

By -y S B B B
ky—1=0 ky_2=0 k1=0

The initial distribution is also expressed by considering the macro-states defined. Let w; be
the initial probability vector of having [ units in the repair facility. Then, the initial distribution
is w= (W, w1, ...,wk).
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Therefore, the probability that the system occupies the corresponding phases of the macro-
state [ (I units broken) at time v is

S
Pl = ZwiBilV .
i=0
If the system is new initially then wo = a® y® n,w; =0 for I =0,..., K . In this case

5 Transient Reliability Measures

Several measures of interest associated to the system are shown in this section in an algorithmic
form.

Availability
The availability is the probability that at time v the system is operational (at least one unit is
working). This probability is equal to
1,1 (v)
A(v)=1—-py'e=1—woByge.

Times up to a determinate macro-state

In this section the first visit time distribution for a determinate macro-state is calculated. We
define P_; and w_; to the matrix P and the vector w without the probabilities corresponding
to the phases of the macro-state j. The first visit time up to macro-state j distribution follows
a phase-type distribution with representation (w_;, P—;).

The mean time up to first time that the system visits the macro-state j is given by

—w_;(I-P) e
Therefore, if the reliability function is defined as the time up to first time that the system has
all units in the repair facility, it is given by

R(v)=w_g (I — P_g) ' PY P

Conditional Probability of Failure

Three different conditional probabilities of failure are defined in this section depending on the
types of failures and preventive maintenance.

a The system is in macro-state [ and only h warm standby units fail

We assume that the device is working with [ units in the repair facility at time v — 1, and
h warm standby units fail at next time, h = 1,..., K — [ — 1. This probability is equal to

Yo n(v) = (K _hl - 1>ph(1 _p)Kt1h

p e @=L @ (e~ M)+ Ui(e-T%) & (e~ L) @ M°| ®e.

COMPSTAT 2014 Proceedings



Juan Eloy Ruiz-Castro 95

b The system is in macro-state [ and the online undergoes an internal failure and h warm
standby units fail

We assume that the device is working with [ units in the repair facility at time v — 1, and
the online unit undergoes an internal failure and h warm standby units fail at next time,
h=0,...,K —[1—1. This probability is

K—1-1 e (e
wm,z,h(V):( ) )ph(l—p)K b=d=hy (=) [T°® (e~ L% @e].

¢ The system is in macro-state [ and the online undergoes an accidental failure and h warm
standby units fail

We assume that the device is working with [ units in the repair facility at time v — 1, and
the online unit undergoes an accidental failure and h warm standby units fail at next time,
h=0,...,K—1—1. It is given by

K—-1-1 I1—h (v—
o) = (Y= - 10 8 10

d The system is in macro-state [ and the online undergoes an internal or external accidental
failure and h warm standby units fail

-

Yo 1.0(V) = Vinin(V) + Yace i n(V) + (K b

1 1 (v—
>ph(1_p)K -1 hpl( 1) [T0®L0®e].

e The system is in macro-state [ and the online undergoes a preventive maintenance and h
warm standby units fail

Finally, while the unit is working on macro-state [ at time v — 1, one inspection occurs by
observing major degradation level at next time, h warm standby units fail at same time.
The probability of occurrence is given by

PY1n(v) = (K _hl B 1>ph(1 - p)Kﬁl*l*hpl(Vil) [Uz(e ~THY®(e-L) oM ® e] )

6 A numerical example

A numerical example shows the versatility of the model. The measures described throughout
the paper have been implemented computationally with Matlab and they have been applied
for analyzing the behavior of a system with and without preventive maintenance. Any warm
standby can fail with probability p = 0.001 and the embedded times in the model are PH
distributed. The Table [1| shows the corresponding representations. Some transient measures for
both systems, with and without preventive maintenance, are shown in Table
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Internal operational time External shock time Inspection time
o= (1,0,0) v = (1,0) n=(1,0)
o (70 o oo ) oo (99 0B) (08 o)
0 0 0.998 ' ' ' )
Corrective repair time Preventive maintenance time Warm standby repair time
Bo = (1’0) p1 = (170) B2 = (170)
5= (0n o1e ) 5= (oo 010) = (05 ous )

Table 1: Embedded time distributions

v CPCR MTCR OMT
PM  No-PM PM No-PM PM No-PM

10 0.0212 0.0211 0.9532 0.9533 10.9975  10.9975
50  0.0207 0.0206  12.1341  12.1425  50.5504  50.5727
100 0.0203 0.0202 30.6766  30.7204  98.9240  99.0241
200 0.0202 0.0201 70.4531  70.6266 194.5930 194.8694
1000 0.0202 0.0201 335.7359 394.4028 958.1201 959.7753

Table 2: Conditional probability of corrective repair (CPCR), mean time working corrective
repair (MTCR) and operational mean time (OMT), up to a certain time v
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Abstract. The Lo- norm based linear regression or the least-squares estimation (LSE) models
often perform relatively well under conditions such as the model errors follow normal or ap-
proximately normal distributions, are free of large size outliers and satisfy the Gauss-Markov
assumptions. Under these conditions, LSE is optimal and provides the best linear unbiased es-
timators of the linear regression model parameters. However, there are often situations wherein
the LSE based linear regression may not meet one or others of these assumptions and hence fails
to be optimal. We have considered for some experimental data sets the L;, Ly and L,,-norm
estimation based linear models and noted that the LSE based models do not alwaays perform
best. We discuss results of the L,-norm based estimations by describing types of data sets
varying in size and probability distributions, model fit, residual analyis and residual plots.

Keywords. Linear models, Least-squares estimation, L,-norm estimation, Prediction, Fore-
casting.

1 Introduction

The least-squares estimation (LSE) technique, first published by Legendre in 1805, is used for
estimating the linear regression models. The linear regression models based on LSE technique
perform well provided the errors follow a normal or approximately normal distribution, do not
possess large size outliers and follow Gauss-Markov assumptions. Under these conditions, the
LSE is optimal and provides the best linear unbiased estimators of the model parameters.
A number of alternatives to the LSE which are more robust to departures from the usual
least squares assumptions have been studied [Gauss (1809,1820),Laplace (1812), Stigler (1990),
Farebrother (1999)]. In this paper, we have investigated the performance of the L;, Ly and
L - linear regression models. We consider experimental data from the applications which are
of small to large size and follow different types of bivariate probability distributions. We have
evaluated fitted models using error based measures and residual analysis. Numerical calculations
are carried out using Matlab codes.
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2 The L, -norm Linear Regression Models

Suppose that data be available on n cases, y; is the observed response and z;1, ..., ;; are the
values of k independent variables of the 7 th case. The values of k independent variables are
treated as fixed constants, however, responses are subjected to variation. A general linear
regression model for a single response variable y given k independent variables is

y=XpB+e, (1)

where y is the vector of n response observations, X is the n x k matrix of values of k
independent variables, (5 is the vector of k+1 model parameters and € is the vector of n residual
values. Residuals € in the model are assumed to follow a multivariate normal distribution, i.e.,
€ N(0,0%I). Similarly, y"N(X3,02I).

Definition 2.1. The L,-norm of the residual vector € is

_ [ (S la ) for pelio0),
e lp={ =l ) 2
ax | € |, for p — oo.

An estimator minimizing a L,- norm of the residual vector is called an L,- norm estimator.

Measuring the size of € in (1) using the L,- norm, we arrive at the L,-regression problem.
In regression analysis, goal is to find 3 that attains the minimum Lj,-norm for the difference
between y and X 3. Thus, the Lj-regression problem is to determine 3 such that

mip | X8y |- 3

2.1.L;-norm regression model

Setting p = 1 in (3), the Li-norm regression problem becomes min g | X5 — y ||1, which can
be written as the linear programming (LP) problem

n
I?}?nztl =t < szﬁ — Y < t’LaZ = 1727 -y T, (4)
=1

where X7 is the transpose of X. Methodology of estimating unknown parameters in L;-norm
regression model was first introduced by Boscovich (1757). He proposed to estimate parameters
according to the minimum of a function of the measurement errors. The proposed function
was the sum of absolute measurement errors. This method is known as the minimum absolute
deviations (MAD) or least absolute error (LAE) or minimum sum of absolute errors (MSAE) or
least first power or Li-norm estimator. The estimating method was computationally complicated
[Nyquist (1980)].

2.2.Ly-norm (Least Square) regression model

Case p = 2 in (3) results in the Lo-norm regression problem which is min g || X8 —y ||2 . This

is equivalent to minimize
n k 2

Yi — ) wijB; (5)
=1 j:l

(]
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with respect to 5. The explicit formula for estimation of 3 is /3’ = (XTX)"1XTy. This is the
formula for Lo-norm regression and is commonly known as the least square estimation (LSE)
or least square regression estimators. It may be noted from the works of Legendre (1805) and
Gauss (1809) that they proposed to minimize the sum of the squares of the measurement errors
and, thereafter, the method of least square became the most popular estimating technique. The
main reason for LSE’s popularity is presumably due to easy computation and due to the fact
that when the residuals are independent and identically normally distributed, the least squares
estimators of a Lo-norm regression model are also the best linear unbiased estimator as well as
equivalent to the maximum likelihood estimator, implying the inference to be easily performed
[Nyquist (1980)]. However, it has been noted that the least squares estimates are sensitive to
departures from the assumptions, for example, normally distributed errors.

2.3.L,-norm regression model

the Lo,-norm regression problem translates to min g || X8 —y ||oo, which can be written as the
linear programming (LP) problem

n?iﬁnt: —t<zlp—y <ti=12.,n. (6)

This minimization problem is often referred to as the Chebyshev approximation. Laplace
(1818) and Edgeworth (1887) have shown that the L,-norm estimator is preferable to the least
squares, when estimating a simple linear regression model with fat-tailed distributed residuals.
Nyquist [1980] has investigated the L,-norm estimators of linear regression models. In particu-
lar, he discussed results on the existence, uniqueness and asymptotic distributions of L,-norm
estimators and gave geometrical interpretations of L,-norm estimation.

3 Numerical Applications

We first describe six bivariate data sets form the wide range of application areas [Abraham and
Ledolter(2005)]. We focus only on the comparisons of estimated model parameters using various
L,-norms.

3.1.Descriptive Summaries of Data Sets

Data set A originates from a company which builds custom electronic instruments and computer
components. The firm wants to investigate the association between overhead cost and the total
direct labor hours. Data set A have a smaller number of degrees of freedom equals to 15 only.
In data set B, iron contents of crushed blast furnace slag is of interest. Two methods, one
chemical analysis in the laboratory which is time-consuming and expensive and other magnetic
test on-site which is cheaper, are available. We investigate the extent to which the chemical
tests of iron content can be predicted from a magnetic tests of iron contents. Measurements
on b3 consecutive slags are available resulting in large number of degrees of freedom. Data
set C is from a study on effects of environmental pollutants upon animals excluding man. An
industrial pollutant, Polychlorinated biphenyl (PCB) is thought to have harmful effects on the
thickness of egg shells. To investigate the relationship between the thickness of the egg shell
in millimeters and the amount of PCB in parts per million in Pelican eggs, data are collected
from 65 Anacapa pelican eggs. Data set D refers to the energy requirements in Mcal/day for
a sample of 64 grazing merino sheep together with their body weights in kg. Objective is to
fit a model that explains the energy requirements as a linear function of body weight. Data
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set E is from a research study on advances in oxygen equivalence equations for predicting the
properties of Titanium welds. Data on oxygen content in parts per million and strength in ksi
for 29 welds are recorded to study their relationship. Data set F is from a research study on
establishing a relationship between the erythrocyte adenosine triphosphate, ATP levels in the
youngest and oldest sons in the families. The ATP level determines the ability of blood to carry
energy to cells of the body. The data for the oldest and youngest sons are extracted from the
17 sampled families. ATP levels are expressed as micromoles per gram of hemoglobin and we
estimate regression line for predicting ATP level of youngest son from that of the oldest son.
It is noted that three data sets A,C and F follow approximately bivariate normal distributions,
however, remaining three data sets B, D and E do not represent bivariate normal populations.

3.2.Checking Model Adequacy

The principle of analysis of variance partitions the total response variance into two components:
the variance explained by the model and the variance that remained unexplained. For assessing
model adequacy, one commonly used measure calculated from estimated residuals is the well
known coefficient of determination R? which is defined as the proportion of the total response
variance that is explained by the model:

2
R? =100 x {1—261‘}. (7)
S (yi — 9)?

We define a new measure denoted by || R? ||; based on estimated residuals for checking

model accuracy as
| R? ||;= 100 x {1 — ZM_} . (8)
> lyi — 9l

It may be noted that the numerator ¢; and denominator (y; —%) terms of || R? ||; are Li-norm
while in case of R? these are Ly-norm. Either measure provides an overall measure of how well
the model fits. A higher value of || R? ||; or R? indicates a better fit.
3.3.Estimated Model Parameters and Error Measures

Estimated Lq, Ly and L.,-norm based linear regression model parameters along with model
adequacy measures || R?||; and R? defined in (7) and (8) are presented in Table 1. It may
be noted that for the data sets A, B and D, Ls-norm based estimated model have the maximum
| R? |1 and R? values respectively as [39.38,62.62], [32.50, 53.72] and [34.72, 56.31]. Thus, for
three populations A, B and D, Lo-norm based estimated models are expected to perform better
than the L1 and Ly,-norm based linear regression models. Referring to the data sets C, E and F,
model accuracy measures || R? ||; and R? do not lead to a consensus about the best estimated
model. For data set C, we note that the L;—norm results in the best model, however, Lo =~ [
using measure || R? ||; and Ly—norm is the best model according to R? criterion. In data sets E
and F, we notice that the L; —norm is the best model, however, Ly ~ L1 using measure || R? ||
and Ly—norm is the best model according to R? criterion, however, Ly ~ Ly. Thus interestingly,
both estimated models L1- and Lo-norm based linear regression models are good competitors
for the populations represented by data set E and F. It may further be noted that data set E
represents a non-normal population whereas data set F represents a normal population.

3.4.Residual Analysis

Residual analyses of the fitted linear models are presented in Table 2. Plots of residuals against
fitted values and residual lag plots are not included (because of space limitations) however

COMPSTAT 2014 Proceedings



Pranesh Kumar and Faramarz Kashanchi 101

Data Ly Regression | Intercept Error Error Error
Set Norm Coefficient Measure 1 | Measure 2 Measure 3
A L, 12.2518 15201 70.48 95.72 60.98
Ex 2.16 Lz (LSE) 10.9820 16310 73.06 95.50 62.62
p.60 Low 8.8329 17423 93.11 94.04 38.59
B L 0.6154 7.6923 755.63 86.52 51.79
Ex2.21 Lz [LSE) 0.3866 8.9565 793.36 86.41 53.72
p.62 Loo 0.6522 8.0495 819.23 86.03 52.23
C Ly -0.0003 0.3714 1365.39 80.11 5.93
Ex 2.24 L, (LSE) -0.0003 0.3749 1395.64 80.03 2.95
p.64 Loa -0.0002 0.3767 1611.22 78.47 9.68
D Ly 0.0463 0.0475 1073.01 83.96 55.95
Ex 2.25 Lz [LSE) 0.0434 0.1329 1062.09 83.94 56.31
p.65 Loo 0.0667 -0.8135 1364.30 79.53 36.03
E Ly 20.8393 43,8264 181.21 93.76 27.80
Ex 7.16 | t;(LsE) 16.9229 49.7796 183.75 93.67 29.37
p.517 Loo 29.8039 29.6033 199.49 93.15 11.55
F Ly 0.8254 1.0495 135.22 92.47 35.57
Ex93 L, [LSE) 0.8337 0.9867 135.50 92.42 35.69
p.350 Low 1.2097 -0.5095 191.75 89.24 13.32

Table 1: Lp -norm Based Linear Regression Models and Model Adequacy Measures.

indicative conclusions are discussed. The characteristics of a well-behaved residual versus fitted
values plots and residual lag plots, what they suggest about the appropriateness of the simple
linear regression model, are described. (i) Linear relationship: In all cases, residuals are more or
less spread randomly about the zero line. This suggests that the assumption that the relationship
is linear is reasonable. (ii)Error Variance: The residuals have no increasing or decreasing trend
and roughly form a horizontal band around the zero line. This suggests that the variances of
the residuals are constant. (iii) Independence of Residuals: The residual lag plot by plotting
residual (7) against lag residual (i-1) indicates the dependency of the residual terms. A random
pattern in a lag plot suggests that the residuals are independent. This assumption appears to
hold good for all models. (iv) Normality and Outlier Detection: The Shapiro-Wilk statistic
and probability values given in Table 2 indicate that residuals have normal distributions. Since
normality assumption holds, approximately 95 percent of the standardized residuals will fall
between -2 and +2. It is seen from Table 2 that it is true for all models. Also from residual vs.
fits plot, no one residual falls out from a random pattern of residuals. This suggests that there
are no outliers.

4 Concluding Remarks

The least squares estimation (LSE) although is simple and algebraically highly developed,
studies have shown that LSE based linear regression may not be the optimal model when one
or others of its assumptions fail. For bivariate populations representing small to large size and
normal and non-normal distributions, We have estimated L;, L (LSE) and Lo.-norm based
linear regression models. Our findings are in agreement with those in some earlier studies. Our
study also raises questions on the distributional properties of the L,-norm based linear regression
estimated models. The effects of deviating from the assumptions of LSE on the L,-norm linear
regression models. The statistical inference issues, like interval estimation, hypothesis testing
and prediction bands etc., for the L,-norm models. For given application data, how to determine
optimal choice of the L,-norm.
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Data: Lp Min Max Qy Qs Qs Skew | Kurtosis | Shapiro-Wilk
Morm Statistic | Prob.
Ar L1]-201]| 1.85 | -850 | .141 | .782 | -.307 -.093 974 .894
[2(ISF) | -2.02 | 1.72 | -961 | .1493 | .748 | -350 | -297 | .975 | .908
Leo -194 | 143 | -.694 | .052 | 672 | -.312 -.552 965 748
B: Ly -1.85 1.60 -.950 -.620 007 .889 837 916 145
L, (LSE) -1.92 1.51 -.97- -.648 032 824 702 923 187
Lee -1.76 1.70 -.934 -.582 -.025 967 1.018 906 099
C: L | -1.63 | 1.87 | 1.00 | -219 | 654 | .286 | -.700 963 720
L (LSE) -1.62 1.87 -.997 -.223 654 .286 -.692 963 J17
Leo -1.70 1.85 -.943 -.275 650 .246 -.533 877 937
D: Ly -2.10 3.47 -.821 .152 687 757 1.433 942 371
L, (LSE) -.197 3.61 -.845 080 611 .980 1.915 822 179
Loo -.260 2.18 -.572 .398 1.027 | -.518 315 958 028
E: Ly -1.79 1.44 -.969 016 902 -.349 -1.001 938 325
L, (LSE) -1.75 1.32 -1.1 129 991 -.285 -1.240 930 247
Loo -1.87 1.62 -.96 056 752 -.278 -.702 944 399
F: Ly -1.83 2.23 -.284 041 305 .203 868 910 115
Lr(tsE) | -1.83 | 2.23 | -286 | .046 | 294 | 209 | =70 209 | .13
Lea -1.41 2.30 -.5358 074 581 427 415 .949 ATT

Table 2: Residual Analysis.
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Abstract. This article describes Storm, an environment for doing streaming data analysis.
Two examples of sequential data analysis — computation of a running summary statistic and
sequential updating of a posterior distribution — are implemented and their performance is
investigated.
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1 Introduction

In sequential statistical inference, data arrive as a stream and inference is an iterative process
that updates as new data are available. Numerous examples and applications exist, starting with
the Kalman filter and its generalisations such as the dynamic state space model [4]. Approaches
to implement inference in this setting are the subject of much current work e.g. sequential
Monte Carlo [3]. The challenge is not only to work with data sources that require sophisticated
analyses, but also for scaleable inference algorithms that can cope with increased data dimension
and arrival rates.

Computational capabilities for the collection, management and analysis of large volumes of
data continue to increase at a fast rate. Most of the well known internet companies have devel-
oped storage and processing systems that adopt the MapReduce paradigm [2], where scaleability
is achieved by exploiting the availability of many processing units that can work in parallel on
independent tasks, and fault tolerance is achieved by managing these tasks so that they can
be re-assigned to a different processor if a fault is detected. MapReduce implementations of
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algorithms are now relatively easy to code with software libraries such as Hadoop [9]. These are
batch computations i.e. a single computation with a pre-defined set of data.

However, analysis of streaming data is becoming another important challenge, for which
Hadoop has not been designed; it treats a sequential analysis as a sequence of batch analyses.
This will typically involve writing data to memory after each batch and then reading it again
which can be very inefficient. To address this, environments such as Storm have been developed.
They aim to permit the programming of analyses of streams of data in a scaleable and reliable
manner that is analogous to MapReduce in many ways.

In the context of statistical analysis, it is natural then to ask what are the advantages of
using a streaming data environment such as Storm to implement sequential statistical inference
algorithms, and for which algorithms are these advantages greatest. In this paper, we describe
a programming environment called Storm [5]. This is one of several such environments for the
processing of streaming data in a distributed manner. It is applied to two examples: computa-
tion of running summary statistics and a grid-based approximation. The performance of these
algorithms is evaluated and discussed with respect to these examples.

2 What is Storm?

Storm is an example of an open source, distributed, fault tolerant framework for the processing
of streaming data. This is achieved via the concept of topologies, a directed acyclic graph which,
at an abstract level, represents both the computation to be performed and the flow of data
through the system. Each datum in the data stream is known as a tuple. Data are introduced
into the topology via spouts, processed by bolts and data flows between them according to
stream groupings. Simply, spouts are sources of data, bolts are functions in the code that have
input variables and produce an output, and the topology shows how the inputs and outputs
of each propagate through the computation according to the stream groupings. Parallelisation
is achieved by setting the number of replications (referred to as tasks) of each spout and bolt.
Storm manages the computational load across the available processors; see [I] for more details.

Storm was initially developed in 2011 by a company called BackType which had been founded
in 2008. BackType was acquired by Twitter in July 2011, and Twitter made Storm open-source
later in September 2011. In September 2013 Storm became an Apache incubation project; this
ensures that the code base of Storm will not be abandoned.

One interesting aspect of the way that Storm manages the data stream concerns guaranteeing
that every tuple that is input into the system, as well as any new tuples that are created from it
during the computation, has been fully processed. This guarantee is implemented by assigning
a unique message id to each tuple generated within a spout. Once it and any tuple generated
from it have been processed then the acknowledgement function ack() is called by the originating
spout. If that does not happen then a fail() function is called and the tuple is reprocessed. The
ack() function can be used for temporal synchronization of ordered data, i.e. the spout can send
the next data tuple when the previous tuple has been fully processed. However, such usage
induces a strong bottleneck in the system as the computation will then move at the rate of the
slowest bolt to process any part of a tuple in each temporal step.
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3 Performance Assessment

The performance of a streaming data processing algorithm can be evaluated in several ways, the
most common of which are:

Throughput: This is the average number of tuples processed per unit time.

Latency: This is the average time it takes for a tuple to be processed. Latency may also be
defined for parts of a computation, such as a bolt or combinations of bolts. A special case
is execute latency which is the time taken by the bolts in the topology to process a tuple,
ignoring communication time and other overheads in managing the computation.

Capacity: This is a measure of the proportion of time that Storm spends in processing tuples
with the bolts in the topology, defined as

. Execute latency x No. of observations processed
Capacity = - - .
Total computation time
A capacity of 1 usually indicates that bolts are overloaded and unable to process data as
quickly as it can be streamed.

These statistics play an important role in scaling the streaming system, and so Storm has a user
interface that allows one to monitor performance of each bolt, spout and processor being used.
A capacity near to 1 indicates a bottleneck of the current system which could be improved with
more computational bolts or cluster machines. Ideally, when scaling an algorithm to make use
of a larger number of processors, one should be able to increase throughput close to linearly with
the number of processors while both latency and capacity remain steady.

4 Example: Computing running summary statistics

In this first example, a stream of bivariate normal observations (x1,¥1), (x2,¥2), . .. is generated
and the goal is to output the running sample correlation:

- nY i 2iYi _221';1 Lidim1Yi . n=23,... (1)
VSt a2 — (S ) Vn Y v — (S0, )

Figure [I| shows the topology. On the left, one or more spouts called bvn data simulate bivariate
normal observations. More than one spout may be needed if we are testing the performance
limits of the algorithm because the generation of the data requires more computation than the
computation of the correlation. The data are streamed in groups of size k, with each group
transmitted to only one summary bolt. This assignment of a group to a particular replication
of the summary bolt is done using one of Storm’s standard transmission options called shuffle
stream grouping, where the bolt is chosen at random.

The mth set of k observations D,, = {(x;,y;) |i = (m—1)k+1,...,mk} is sent to a summary
bolt, which computes the five summary statistics

Tn

mk
Sm = Z (%ﬂmﬁﬂi%%)
i=(m—1)k+1

Q@ COMPSTAT 2014



106 Storm and sequential inference

Figure 1: The topology for computing the running correlation of a stream of bivariate observa-
tions.

needed to compute the correlation, and then transmits .S, to the collect bolt. The collect
bolt updates the running sum of the summary statistics and uses them to compute the sample
correlation. Defining M = {m|S,, transmitted to collect}, collect will compute and store the 5
summary statistics over all transmitted sets:

S= > Sm,

meM
from which it can output the sample correlation, as defined in Equation (1] by
r(M) = |M|kS5 — 5159 ‘

VIMIES; — (81) V|MIESs — (S2)°
This example illustrates the issue of synchronisation. There is no guarantee that if M sets of
statistics .5, have arrived to the collect bolt then they are Si,...,Sy;. However as can be seen
above, the indices m of the sets that have been transmitted to collect can also be transmitted
if needed, so that at least one knows which data have been used in the computation of the
correlation.

This topology was implemented on a cluster of 6 machines with a total of 32 cores using
observation groups of size k = 50. Thus for every 50 observations generated, one correlation
value should be transmitted by collect. The throughput of observations and correlations for
different numbers of bvn data spouts and summary bolts was explored. It was observed that
peak throughput occurred when between 8 and 16 bvn data spouts were used per summary
bolt, and so the experiments kept to that ratio. With the ratio of bolts to spouts constant, in
principle the capacity of the algorithm to process observations is constant, and so changes in
performance are due to the overhead involved in managing different numbers of spouts and bolts.
The algorithm was allowed to run for several minutes to eliminate any initialization effects, and
then data were recorded for 6 minutes; throughput is reported as the average output per minute.
Figure [2] shows that, for this cluster, performance begins to deteriorate when more than about
250 spouts are replicated. Having more bolts does give better performance, but having twice as
many (runs with 8 spouts per bolt) does not give twice the throughput.
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Figure 2: Summary of experiments with different numbers of bvn data spouts with a fixed ratio
of spouts to summary bolts. Left: observation throughput as a function of the number of bvn
data spouts. Right: number of correlations emitted per observation generated as a function of
the number of bvn data spouts; the dashed line shows where 1 correlation is emitted for every
k = 50 data points e.g. all data points are being processed.

5 Example: Sequential posterior computation

A stream of observations 1,2, ... is to be fitted to a parametric probability model p(x |6). It
is assumed that 6 is of small enough dimension so that it is possible to compute the posterior
distribution of the parameters on a discrete grid of points ©. The goal is to sequentially update
the posterior; when z,1 arrives, the posterior is updated via the Bayes recursion:

p(9 ‘ xl:n—i—l) 08 p(e | xl:n) p(xn—i-l ‘ 0)7

where z1., = {z1,...,2,}. The output is a stream of sets of posterior distribution values
p(0|x1.),0 €O forn=1,2,....

A parallel implementation of this computation is to partition © and assign the computation
of the unnormalized log posterior

1(6) = log(p(0)) + 3 log(p(x: | 9))
=1

over each part of the partition to bolt replications, where p() is a prior. Let M be the degree
of parallelization available for the computation and let ©1,...,0,s be a partition of ©; load
balancing considerations imply that the ©,, should be of similar size.

Figure [3] shows the topology. There are M instances of the logpost bolt; each is assigned
a different subset of the grid ©,, over which to store the unnormalized log posterior values
P, ={l(8)]|0 € ©,,}. When a new observation z,; arrives, the transmit bolt transmits it to
all M instances of the logpost bolt; this is an all stream grouping, in contrast to the first example,
where data was transmitted to only one summary bolt. The replication that is responsible for

Q@ COMPSTAT 2014



108 Storm and sequential inference

Ty, T2y ...

logpost

Figure 3: The topology for sequential posterior computation.

©,, computes log(p(zn4+10)), 6 € ©,,, and adds it to the corresponding element of P,,. After
every K observations have been processed by the logpost bolts, they transmit P, to the collect
bolt that then exponentiates and normalises the values to derive the posterior density over the
grid.

An important distinction between this example and the previous one is that the logpost
bolts have state; they must store the current value of the log posterior. If a bolt dies then
that state is lost and can be recovered only by computing the log posterior from scratch on its
partition. Alternatively, the state could be stored and read from memory, but that again implies
an overhead to the computation.

We illustrate this idea for Gaussian data with unknown mean g and precision 7, so that
0 = (p,7) and p(x | 0) = (7/2m)%5 exp(—0.57(x — p)?). For this example we assume independent
non-informative Gaussian (zero mean, large variance) and gamma (scale and shape are 0.5) priors
on 4 and 7.

This topology was implemented on a cluster of 5 identical machines, each with four 3.4
GHz cores. One million Gaussian observations were generated and stored to a file; the file was
streamed and processed using 4, 8, 12, 16 and 20 logpost bolts. The posterior density was
computed by the collect bolt every K = 50,000 observations. This value of K was used because
of the large size of the output, given the rate at which data can be processed; with a smaller K
then the input-output time begins to dominates the processing time in the system. A small grid
of size 76 x 86 = 6,536 and a larger one of 376 x 426 = 160, 176 points were used, with points
distributed as evenly as possible between the bolts. Further, this problem was implemented
in two ways, which we label as ack and nack: with ack, the transmit spout acknowledges that
each observation has been completely processed successfully. When a fail() is called, Storm will
automatically replay the tuple. With nack, no acknowledgement is made.

Figure[4 shows results from these experiments. The left plot shows the median data through-
put over 6 runs as a function of the number of logpost bolts for 3 cases: the small grid with
ack, the small grid with nack and the large grid with nack. As it involves more computation per
observation, the larger grid has a lower data throughput than the smaller grid, hence the data
throughput curves of two datasets are not comparable. Still, they are plot together in Figure
4a for convenience and for the progression of data throughput over number of bolts. There is
a considerable cost to using ack, which grows larger as the number of logpost bolts increases.
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Nmberoflogostbols ~ Numberof logpost bolis

Figure 4: Performance of the sequential computation of the posterior density of the mean and
precision of a Gaussian distribution as a function of the number of logpost bolts over 6 runs.
From left to right: median data throughput, median latency and median capacity.

Performance worsens considerably in one case from 20 to 24 bolts; the cluster has 20 cores, and
so managing 20 or 24 bolts means 2 or more bolts running on some cores and a computation
overhead results. The capacity plot shows that the larger grid is more efficient in that it spends
more time in computing log likelihoods (the dominant computation in the bolts) rather than
in communication. In the nack small grid case, the capacity is around 0.97 when there are 4
log-post bolts, meaning that each bolt is very busy. This high capacity implies a bottleneck in a
system but, unlike the throughput measurement, it does not measure how fast the system is. In
the nack-small-grid case, when the capacity value is from 0.85 to 1, the system throughput can
be improved significantly by adding more processsing power (bolts). In the nack large grid case,
the capacity is almost 1, which implies that a larger cluster would lead to a faster computation.
Finally, latencies are plotted for 3 cases, all with the small grid: execute latency for ack, execute
latency for nack and process latency for ack. The latency of the big grid is not drawn as it
follows the same pattern but on a different scale (from 1.4ms down to 0.4ms). It can be seen
that the execute latency is slightly longer than the process latency. As with throughput, there
is a considerable overhead in using ack that grows with the number of bolts, and performance
does not improve significantly with more than 16 bolts.

6 Concluding Remarks

In this paper we have introduced Storm and illustrated its use in 2 examples of sequential data
analysis. The topology of the second example, where a function is evaluated on all data at each
point in a discrete grid, is a common scenario. In Bayesian inference, it is often the compu-
tationally most demanding step of the integrated nested Laplace approximation [§]. Another
example where this topology could be used is the griddy Gibb’s sampler [7].

Sequential Monte Carlo methods, such as the particle filter, have a similar structure to
the second example but where the fixed grid is the set of particles. However they have an
important distinction in that the topology has a cycle; results of processing one datum, such as
particle weights, are needed to process the next. While Storm can implement such topologies,
it introduces potentially difficult issues of synchronization. This has spurred the development
of systems for iterative computation e.g. [6]. For sequential statistical methods like the particle
filter, an interesting question is which will be more effective.
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The examples demonstrate the typical properties of a parallel algorithm, with a trade off
between increasing parallelization and the overhead of managing a larger number of processors.
In terms of Storm and its alternatives for streaming computation, we see advantages in terms of
ease of coding, easy scaleability, reliability and the development of interfaces with higher level
languages such as R. It is faster than R, much better suited to streaming data applications than
OpenMP and OpenMPT and much easier to program than a GPU through CUDA.
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Abstract. In this paper is studied the performance of statistical methods used to analyze
longitudinal count data when the target of inference is the population. The goal of this study is to
give a statistical assessment of marginal approaches in terms of properties such as efficiency and
coverage probability, as well as, to give some guidelines for the choice of the statistical approach
to an applied researcher. Two approaches are considered: the generalized estimating equations
(GEE) and the maximum likelihood estimation with a serial dependence of Markovian type
(MML). A simulation study was carried out and the results indicate to a better performance of
the MML approach when the correlation among response variable for a given subject increases.

Keywords. count longitudinal data, marginal model, exact likelihood, generalized estimating
equations, Markov chain.

1 Introduction

Longitudinal count data are commonly encountered in both experimental and observational
studies across all disciplines. In these studies repeated measurements are made on the same
subject across occasions in one or more treatment groups. In order to make correct inferences, the
correlation among response variable for a given subject must be take into account. In the context
of marginal model, this is, when the target of inference is the population, several models have
been proposed. [6] proposed the generalized estimation equations (GEE) method. [9] proposed
an estimation equation method for regression analysis with a time series of counts analogous to
the one used by [6]. [5] used generalized estimating equations to model longitudinal count data
with overdispersion. [1] proposed an approach based on maximum likelihood estimation where
the serial dependence is assumed to be of Markovian type (MML).
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The goal of this paper is to give information to the practitioners about which of the two
procedures, GEE or MML, is more appropriate to use for their data at hand. To achieved that
goal a simulation study is carried out to compare the two aforementioned approaches in terms
of properties such as efficiency and coverage probability.

For GEE approach the estimates were obtained through the function geeglm in the R package
geepack [3]. The function cold in the R package cold [2] is used to obtain the MML estimates.

The paper is organized as follows: Section [2] gives a summary of the models used. Section
reports a small simulation study to assess the performance of the procedures. Section[dconcludes
the paper.

2 Parametric models

Consider count responses y;; (t = 1,...,7T;) at time ¢ from subject i (i = 1,...,n), a set of p
explanatory variables, x;+, associated with each observation time and each subject, and Yj; its
generating random variable which has a Poisson distribution with E(Y;;) = 6;;. The Poisson
regression which links the covariates and the probability distribution of the response, is given
by

In(0it) = x4 8, (1)

where [ is the p—vector of unknown parameters.

Maximum likelihood estimation

The approach based on maximum likelihood estimation proposed by [I] is implemented in the
R package cold and is summarized in this section. In this approach is made use of the idea of
self-decomposable probability distribution following [7] and the serial dependence is assumed to
be of Markovian type. To simplify notation, the subscript ¢ is dropped temporarily.

Yt:POthl‘th, (t:2537"'5T)7 (2)

where for any given t, F(Y;) = 6; assuming that E(Y;) = 61, &, is a Poisson random disturbance,
p € (0,1) and po Y;_ [7] is defined by
Yio1
poYi 1= Z Zy, (3)
h=1
where 71, Zo, ... is a sequence of independent Bernoulli variables with common probability of
success p, Pr(Z, =1) =1 —Pr(Z, = 0) = p. See [4] for details.

The response variable Y;, as given in , is the sum of two independent random variables;
one of which has Poisson distribution with expected value equal to §(1 — p), and the other has
binomial distribution with probability of success equal to p. The m-step transition probabilities
are

min(z,j) , . j—k
. . t\ m\i— exp(_vt,m)v,
Pr(Yi = Vi = i:0) = 3 (k)p k(1 - gy P ()
k=0 :

The contribution from a generic individual to the likelihood for the parameters (53, p) is

exp(—61)6Y" L
exp(—0)01" IT Pr(Y:=welYiom = ye—m: ). (5)

|
b1 t=m+1

Li(B,p) =
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The overall log-likelihood function is obtained as the sum of the n logarithmic individual con-
tributions of type ().

Generalized estimating equations

The generalized estimating equations (GEE) presented in [6] are an extension of the quasi-
likelihood of [§] to the case when the second moment cannot be fully specified in terms of
expectation but rather additional correlation parameters must be estimated, what differs is the
way to choose the variance-covariance matrix. This approach is implemented in the R package
geepack and can be summarized as follows. Consider,

var(Yit) = ¢V (0it), (6)

where ¢ is a common scale parameter and V' (6;;) is a known variance function.
The GEE for 8 are

Us(B,a) =>_ D] V1 (Y; = 6;) =0,
=1

00;
=y, =
0B’

“working” variance-covariance matrix. For the ith subject

where D; = (Yi,...,Yir) T, 0; the vector of the mean of Y; and V; is now called a

Vi = 0A;Ri(a)A}?,

where A; is the diagonal matrix with entries V' (0;;) and R;(a) = corr(Y;) is a T; x T; "working”
correlation matrix.

3 A simulation study

A brief simulation study was carried out to study the performance of both methodologies. The
marginal Poisson model with a first order autocorrelation between two successive observations of
the same subject was considered. The model included a dichotomous treatment, a linear effect
time and an interaction between time and treatment and is given by

it = exp(Bo + Bit + Box; + B3(t X x3)), (7)

where x; = 0 for half the population and 1 for the remainder. The regression coefficients were
set at By = 1,51 = 0.5, 82 = 1.5 and 3 = 0.10.

To reflect the range of experimental data encountered in practice several designs were consid-
ered. The number of subjects was set to either small (n = 20) or large (n = 50). The length of
profile on each subject was short (I' = 5) or long (7" = 13). The correlation between successive
observations of the same subject was set at p = 0.25,0.5 and 0.75 (low, moderate or high, respec-
tively). On each run were generated T' correlated Poisson observations under the ith subject fol-
lowing the AR(1) model given by . The time points were set for ' = 5att = —1,—-0.5,0,0.5, 1,
and for T = 13 at t = —1.5,—-1.25,—-1,—-0.75,—0.5,—0.25,0,0.25,0.5,0.75,1,1.25,1.5. The
whole estimation procedure was repeated for 1000 runs and the sample mean of estimate pa-
rameter (Mean), the sample mean of percent relative bias (Rbias%) and the sample mean square
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error (MSE) were computed, as well as, the coverage probabilities of nominal 95% confidence
intervals.

For each simulated dataset the estimated 95% confidence interval of each parameter in the
model was computed based on the sample normal approximation. To GEE approach the sand-
wich standard error was used. When the MML approach was considered the standard error was
based on the Fisher information matrix. The coverage probabilities of nominal 95% confidence
intervals were computed as the proportion of simulated intervals that cover the true parameter
used to generate the simulated data. The relative efficiency (RE) of MML estimators to GEE
estimators was computed, as usual, by the ratio of the respective MSE. RE>1 means MML
estimator is preferred.

The estimates of the parameters using the MML approach were obtained through the function
cold in the R package cold. When the GEE approach was considered the function geeglm in the
R package geepack was used.

The simulation results are given from Figures[I] to 3] and in Table [T} In Figures [I] and [2] are
display the graphics of the coverage probabilities of nominal 95% confidence intervals of £ to
both approaches in all the situations considered. Figures 3| gives the relative efficiency of the
MML estimators to GEE estimators of B .

In Table [T] are displayed the simulation results to p parameters. To each approach the table
lists the following: Mean, Rbias% and MSE over the 1000 simulations runs and, in parentheses,
the coverage probabilities of nominal 95% confidence intervals.
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Figure 1: Coverage probabilities of nominal 95% confidence intervals for 3 to MML and GEE approaches when
T =05.
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Figure 2: Coverage probabilities of nominal 95% confidence intervals for 3 to MML and GEE approaches when

T =13.

p 0.25 0.5 0.75
T n MML GEE MML GEE MML GEE
Mean 5 20  0.225 0.182 0.481 0.393 0.744 0.620
(0.960)  (0.809)  (0.936)  (0.758)  (0.952)  (0.751)
Rbias% —9.930 —27.217 —3.759 —21.409 —0.781 —17.348
MSE 0.017 0.020 0.012 0.026 0.004 0.028
Mean 50  0.241 0.205 0.490 0.415 0.747 0.639
(0.946)  (0.872)  (0.937)  (0.731)  (0.943)  (0.597)
Rbias% —3.800 —18.089 —1.944 —17.056 —0.344 —14.756
MSE 0.006 0.008 0.004 0.014 0.002 0.017
Mean 13 20  0.238 0.213 0.491 0.439 0.747 0.674
(0.962)  (0.856)  (0.940)  (0.770)  (0.944)  (0.713)
Rbias% —4.691 -14.948 —1.732 —12.286 —0.576 —10.187
MSE 0.004 0.006 0.003 0.010 0.001 0.012
Mean 50  0.245 0.224 0.498 0.457 0.748 0.690
, (0.938)  (0.881)  (0.944)  (0.787)  (0.945)  (0.685)
Rbias% 22076 —10220 —0.461 —8568 —0.301 —8.042
MSE 0.002 0.003 0.001 0.004  0.0004  0.006

Table 1: Results of the simulation study for p. Coverage probabilities of nominal 95% confidence intervals given

in parentheses.

Taking into account the goal of the simulation study the main conclusions can be summarize

as follows.

(1) To all 8 parameters: (i) the coverage probabilities are closer to nominal for the MML
approach than for the GEE approach; (ii) the MML estimators are more efficient than the GEE
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Figure 3: Relative efficiency of § for different correlations p and MML and GEE approaches.

estimators to higher values of p. This is so much better applied as the length of the profile of
each subject increases. (2) To the estimator of p and in all situations consider: (iii) the MML
approach gives lesser values of Rbias% and MSE than GEE approach. The coverage probabilities
are closer to nominal for MML approach than for the GEE approach.

4 Conclusion

This paper is concerned with the asses of performance of the MML approach implemented
in R package cold and GEE approach implemented in R package geepack for the analysis of
longitudinal count data in the context of marginal model. The results of the simulation study
point out that the MML approach seems to be preferable to GEE in all situations considered by
checking that its performance is so much better the higher the correlation between observations
of the same subject, regardless of the number of subjects involved in the study or the length of
their profile.
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Abstract. A mixture model of Gaussian copulas is proposed to cluster mixed data. This
approach allows to straightforwardly define simple multivariate intra-class dependency models
while preserving classical distributions for the one-dimensional margins of each component in
order to facilitate the model interpretation. Moreover, the intra-class dependencies are taken into
account by the Gaussian copulas which provide one robust correlation coefficient per couple of
variables and per class. This model generalizes different existing models defined for homogeneous
or mixed variables. The Bayesian inference is performed via a Metropolis-within-Gibbs sampler.
The model is illustrated by a real data set clustering.

Keywords. Clustering, Gaussian copula, Gibbs sampler, Mixed data, Mixture models.

1 Introduction

With the informatics advent, multivariate data sets become more complex. Particularly, they
often contain mixed data (variables of different kinds). Clustering provides an efficient solution
to extract the main information from the data by grouping the individuals into few characteristic
classes. It can be performed by probabilistic methods modelling the data generation whose the
most popular one uses finite mixture models of parametric components [12]. In such a case, a
class gathers together the individuals drawn by the same distribution. Obviously, the choice
of the component distributions depends on the kind of the variables at hand. However, few
distributions exist to model mixed data and their margin distributions are often complex [§].
The simplest way to cluster mixed variables consists in approaching the data distribution
with a finite mixture model assuming independence conditionally on the class membership of
each individual. This model, called locally independent model, obtains good results in many real
clustering problems [I1] [6], especially when few individuals are described by several variables.
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Indeed, when its one-dimensional margins of each component follow classical distributions, this
model provides a meaningful summary of the data by its margin parameters. However, this
model leads to biases when its assumption of conditional independence is violated.

The aim of this paper is to present a model-based clustering for mixed data of any kinds of
variables admitting a cumulative distribution function. This model has a double objective: to
preserve classical distributions for all its margin distributions of each component and to model
the intra-class dependencies. This objective can naturally be achieved by the use of copulas [9)]
since these objects allow to build a multivariate model by setting, on the one hand, the one-
dimensional margins, and, on the other hand, the dependency model between variables. More
precisely, the data distribution is approached by a full parametric mizture model of Gaussian
copulas whose the margin distributions of each component are classical and whose the Gaussian
copulas [7] model the intra-class dependencies. The new mixture model is meaningful since
each class is summarized by its proportion, by the parameters of each marginal distributions
and by the correlation matrix of the Gaussian copula providing one coefficient per couple of
variables measuring the intra-class dependency. In addition, a principal component analysis
(PCA) computed per class is a straightforward by-product of the model. Indeed, it is computed
on the correlation matrix of the class and it can be used to summarize the main intra-class
dependencies and to provide a scatter-plot of the individuals according to the class parameters.

This paper is organized as follows. Section [2] presents the mixture model of Gaussian copulas
for clustering, its links with the existing models and its contribution to the visualization of mixed
variables. Section |3|is devoted to the parameter estimation in a Bayesian framework. Section
illustrates the model by a real data set clustering. Section [5| concludes this work.

2 Mixture model of Gaussian copulas

Finite mixture model

Let the vector of e mixed variables ¢ = (z!,...,2¢) € R® x X, whose the first ¢ elements are the

set of the continuous variables further denoted by ¢, and whose the last d elements are the set
of the discrete variables (integer, ordinal or binary) further denoted by «®, with e = ¢+ d. Note
that if 27 is an ordinal variable with m; modalities, then it uses a numeric coding {1,...,m;}.
Data @ are supposed to be drawn by the mixture model of g parametric distributions whose the
probability distribution function (pdf) is written as

g
p(z;0) = mp(e; o), (1)

k=1
where @ = (7, o) and where 7 = (71, ..., m,) groups the proportions of each class k denoted by
Tk, and respects the following constraints 0 < m, <1 and 3°7_; 7 = 1, while a = (a1, ..., ay)

groups the parameters of each class k denoted by .

One-dimensional margins of the components

The margin distribution of 27, for the component k, belongs to the exponential family and has
p(a7; By,;) for pdf and P(z7; By;) for cumulative distribution function (cdf). More precisely, the
margin distribution of each component is a Gaussian (if 27 is continuous), Poisson (if x7 is
integer) or multinomial (if 27 is ordinal) distribution where By, denotes the usual parameters.

COMPSTAT 2014 Proceedings



Matthieu Marbac, Christophe Biernacki and Vincent Vandewalle 121

Dependency model of the components

The model assumes that each component k follows a Gaussian copula whose the correlation
matrix is I'y. We note ®.(.;T) the cdf of the e-variate centred Gaussian distribution with
correlation matrix I'y, and <I>1_1(.) the inverse cumulative distribution function of univariate
Gaussian variable N1 (0,1). Thus, the cdf of the component k is written as

P(x; o) = (@7 (up), - .., 27" (uf); 0,T), (2)

where u{g = P('T];Bkj)v o = (ﬁk’rk) and IBk = (IBkl’ ce aﬁke)'
Remark 2.1 (Standardized coefficient of correlation per class).
The Gaussian copula provides a robust coefficient of correlation per couple of variables. Indeed,
when both variables are continuous, it is equal to the upper bound of the coefficient of correlation
obtained by all the monotonic transformations of the variables [10]. Furthermore, when both
variables are discrete, it is equal to the polychoric coefficient of correlation [13].
Remark 2.2 (Two latent variables).
The mizture model of Gaussian copulas involves two latent variables: a categorical one using a
condense coding z € {1,...,g} denoting the class membership and an e-variate Gaussian one
y = (y',...,y°) € R®. Indeed, if y|z = k ~ N.(0,T}) and if 27 = P_l(él(yj);ﬁkj), Vj =
1...,e, then the component k is a Gaussian copula whose the cdf is defined in . Thus, we
deduce the following generative model

e Class membership sampling: z ~ My(mq,...,7,)

e Gaussian copula sampling: ylz = k ~ N(0,T})

e Observed data deterministic computation of  as such 2/ = P*1(<I>1(yj);ﬁkj).

Probability distribution function of the components

We introduce the function ¥(x ay) = (%,] =1,..., c) and the space of the antecedents
J

of ” in the class k, by Sy = S¢™' x ... x Sf, where S} is the interval defined by S} =
169 (27), b2 (27)], for j = ¢+ 1,...,e, whose the bounds are by (z7) = &7 (P(27 — 1; B;)) and
by (27) = 71 (P (27 Br;)). The pdf of the component k is written as

p(e; o) = p(a; ag)p(x”|x; ag) (3)
(U (x% ap); 0,T

- Cel¥@ 00 Bce) [ i, 39 ()

Hj:lgkj Sk

r r . . . . . .
where I'y, = keo kep | g decomposed into sub-matrices, for instance I'pcc is the sub-matrix
Fch FkDD

of the first ¢ rows and columns of I'y, where p) = Tinel U (2% o) is the conditional mean

kcc
of y® and where X} = Typp — I‘kDCI‘,;CICI‘kCD is its conditional covariance matrix.

Heteroscedastic and homoscedastic versions of the model

The trade off between the bias and the variance of the model may be improved by adding some
constraints on the parameter space. Thus, we propose an homoscedastic version of the mixture
model of Gaussian copulas by assuming the equality between the correlation matrices, so

I =..=T, (5)
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The heteroscedastic (resp. homoscedastic) mixture model of Gaussian copulas requires Ve
(respectively vy,) parameters where

e(e+1)

1
5 +d> and vy = (g — 1) + 25—~/

uHe:<g—1>+g(

Related models

The mixture model of Gaussian copulas allows to generalize many classical mixture models,
among them one can cite the four followers.

e Obviously, if the correlation matrices are diagonal (i.e. Ty = I, Vk = 1,...,g), then the
mixture model of Gaussian copulas is equivalent to the locally independent mizture model.

e If all the variables are continuous (i.e. ¢ = e and d = 0), then both versions of the
heteroscedastic and homoscedastic mixture models of Gaussian copulas are equivalent to
the heteroscedastic and homoscedastic multivariate Gaussian mizture models [1].

e The mixture model of Gaussian copulas is linked to the binned Gaussian mizture model.
For instance, it is equivalent, when data are ordinal, to the mixture model of [5]. In such
a case and under the true model assumption, this model is stable by fusion of modalities.

e When the variables are continuous and ordinal, the mixture model of Gaussian copulas
is a new parametrization of model proposed by Everitt [4] which directly estimates the
space Sy containing the antecedents of ” and not the margin parameters. The maximum
likelihood inference is performed via a simplex algorithm dramatically limiting the number
of ordinal variables. Note that our approach detailed in Section [3] avoids this drawback.

Data visualization per class: a by-product of Gaussian copulas

We can use the model parameters to perform a visualization of the individuals per class and
to bring out the main intra-class dependencies. Thus, for the class k, we firstly compute the
coordinates E[y|x, z = k; ;] and we secondly project them on the principal component analysis
space of the Gaussian copula of the component k, obtained by the spectral decomposition of T'y.
The individuals drawn by the component k follow a centred Gaussian distribution in the factorial
map (so they are close to the origin) while the other ones have an expectation different to zero
(so they are farther from the origin). Finally, the correlation circle summarizes the intra-class
correlations. The application given in Section [4] illustrates this phenomenon.

3 Bayesian inference

We observe a sample x = (@1, ...,x,) composed by n individuals &; € R® x X assumed to be
independently drawn by a mixture model of Gaussian copulas. We assume the independence
between the prior distributions and we select the classical conjugate prior distributions for each
parameters. The following Gibbs sampler allows to perform the inference, in a Bayesian frame-
work, since its stationary distribution is p(@,z|x). Thus, it samples a sequel of parameters
according to the marginal posterior distribution p(@|x). This algorithm relies on two instrumen-
tal variables: the class membership of the individuals of x denoted by z = (z1,...,2,) and the
Gaussian vector of the individuals denoted by y = (yq,...,Y,)-
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Algorithm 3.1 (The Gibbs sampler).
Starting from an initial value 0(0), its iteration (r) is written as

A7) y(r—1/2) ~ z, y|m, FIGY .

’Bkj’y[rk] ,3k]7y[rk]\m y[rk O BTJ r 1) (8)

) o ﬂ.‘z(r o

T~ Ty fy™), 27, o)

where gy = Yoy 40 = @yl T YY) ana g =

BB LB LBl

Remark 3.2 (Twice sampling of the Gaussian variable).

The Gaussian variable y is twice generated during one iteration of the Gibbs sampler but, obvi-
ously, its stationary distribution stays unchanged. This twice sampling is mandatory because of
the strong dependency between y and z, and between yfrk} and By;-

Remark 3.3 (On the Metropolis-within-Gibbs sampler).
If the samplings from @ and are classical, the two other ones are more complex. Indeed,
the sampling from inwolves to compute the conditional probabilities of the class member-
ships, so to compute the integral defined in . If the number of discrete variables is large, this
computation is time consuming. However, the sampling from can be efficiently performed
by one iteration of a Metropolis-Hastings algorithm having p(z;, y;|xi, O(T_l)) as stationary dis-
tribution. Concerning the sampling according to , it is performed in two steps. Firstly,
the margm pammeter is sampled by one iteration of a Metropolis-Hastings algorithm having
p(Bi;lz, y[rk] )7z(” ﬁ“(r T'y) as stationary distribution. Secondly, the latent Gaussian vector
is sampled from its full conditional distribution.

Remark 3.4 (Initialization of the algorithm).

The algorithm is initialized on the maximum likelihood estimate of the locally independent model.
Thus, it is initialized in a point close to the maximum of the posterior distribution if the variables
are not strongly intra-class correlated.

4 Application: clustering of Portuguese wines

The data The data set [3] contains 6497 variants of the Portuguese “Vinho Verde” wine (1599
red wines and 4898 white wines) described by eleven physiochemical continuous variables (fixed
acidity, volatile acidity, citric acidity, residual sugar, chlorides, free sulfur dioxide, total density
dioxide, density, pH, sulphates, alcohol) and one integer variable (quality of the wine evaluated
by experts). The kinds of the wines (red or white) are hidden and we cluster the data set by
excluding of the study one white wine (number 4381) since it is an outlier.

Model selection We estimate the three mixture models (locally independent one, the het-
eroscedastic and homoscedastic versions of the mixture model of Gaussian copulas) for different
numbers of classes. The estimate is obtained by taking the mean of the sampled parameters
computed after 1000 iterations. The model selection is performed by using two information
criteria (BIC criterion [14], ICL criterion [2]) computed on the maximum a posteriori estimate.
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We present the values of both used information criteria in Table [1| which distinctly select the

Mixture model of Gaussian copulas to cluster mixed-type data

bi-component heteroscedastic mixture model of Gaussian copulas.

g 1 2 3 4 5 6

BIC loc. indpt. -63516 -61069 -61010 -55967 -60250 -57163
hetero.  -44675 -34520 -39724  -44692 -44484 -48349
homo.  -44675 -39372 -38289 -45209 -43217 -42417

ICL loc. indpt. -63516 -61229 -61365 -56310 -60726 -58138
hetero.  -44675 -34688 -40176 -44933 -44758 -48959
homo.  -44675 -39607 -38791 -45380 -43345 -42667

Table 1: Values of the BIC and ICL criteria for the three mixture models estimated.

Partition comparison Table 2| presents the values of the adjusted Rand index and the confu-
sion matrices in order to compare the relevance of the estimated partitions according to the true
one (wine color). These results confirm that the bi-component heteroscedastic Gaussian copula
mixture model is the best one among the competing models since its partition is the closest to
the true one.

white red white  red

white red I T oadl B class 1 2547 1561

class 1 4359 9 Elzzz s o o class 2 2007 35
class 2 538 1590 class 3 545 1580 class 3 275 3

class 4 68 0
(c) Adj. Rand.: 0.00

(a) Adj. Rand.: 0.68 (b) Adj. Rand.: 0.30

Table 2: Adjusted Rand indices and confusion matrices related to: (a) the bi-component het-
eroscedastic Gaussian copula mixture; (b) the tri-component homoscedastic Gaussian copula
mixture; (c) the four-component locally independent mixture.

Visualization Figure [l displays the individuals in a PCA map of both classes estimated by
the bi-component free mixture model of Gaussian copulas. According to these scatter-plots,
classes are well-separated.

Interpretation of the best model The following interpretation is based on the margin
parameters and on the intra-class correlation matrices summarized in Figure |2l The majority
class (m = 0.59) is principally composed by white wines. This class is characterized by lower
rates of acidity, pH, chlorides and sulphites than them of the minority class (wo = 0.41) which
is principally composed by red wines. The majority class has larger values for both sulfur
dioxide measures and the alcoholic rate. Note than the wine quality of both classes is similar
(Biquality = 5.96 and Boquality = 5.58). The majority class is characterized by a strong correlation
between both sulfur measures opposite to a strong correlation between the density and acidity
measures. The minority class underlines that the wine quality is dependent with a larger alcoholic

rate and small values for the chlorides and acidity measures.
Conclusion On this data set, the mixture model of Gaussian copulas overcomes the locally

independent model (reduction of the number of classes, better values of the information criteria,
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Figure 1: Visualization of the partition by the bi-component heteroscedastic mixture model of
Gaussian copulas (Class 1 is drawn by black circles and Class 2 by red triangles).
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Figure 2: Summary of the bi-component heteroscedastic mixture model of Gaussian copula.
Class 1 is drawn in black and Class 2 in red. (fixed acidity: fxd., volatile acidity: vlt., citric
acidity: ctr., residual sugar: rsd., chlorides: chlr., free sulfur dioxide: fr., total density dioxide:
tt., density: dnst., pH, sulphates: slph., alcohol: alch., quality: qlty.).

estimated partition closest to the true one). Based on the individual scatter-plots in the model
PCA, the estimated classes are relevant since they are well-separated. Finally, the estimation
of the intra-class dependencies helps the interpretation since it underlines the link between the
wine quality of the minority class and its physiochemical properties.

5 Conclusion and future extensions

The proposed model uses the properties of copulas: independent choice of the margin distribu-
tions and of the dependency relations. Thus, the mixture model of Gaussian copulas allows to
fix classical margins belonging to the exponential family for the component margin distributions
and takes into account the intra-class dependencies. An approach based on a PCA per class
of the Gaussian latent variable allows to summarize the main intra-class dependencies and to
visualize the data by using the model parameters. The application points out that this model
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is sufficiently flexible to efficiently fit data and that it can reduces the biases of the locally inde-
pendent model (for instance the reduction of the number of classes). The number of parameters
increases with the number of classes and variables especially because of the correlation matrices
of the Gaussian copulas. To avoid this drawback, we propose an homoscedastic version of the
model assuming the equality between the correlation matrices. This model may better fit the
data than the heteroscedastic Gaussian mixture models.
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Sampling inspection by (Gaussian)
variables via estimation of the lot
fraction defective: a computational
approach
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Abstract. Quality Control has lost impetus in the last decades toward managerial features that
evade the intricacies of Statistics, but these can, in the computer age, be made comfortable,
namely through the Internet. In Quality Control, acceptance sampling (AS) by variables (as
opposed to by attributes) often assumes, as we do here, that the quality characteristic is a
Gaussian variable, and has, as decision criterion on the lot, the comparison of the quality index
with the acceptance constant (Form 1). This criterion is simple and applies only to the case,
addressed here, of a single specification limit, but can be confronted with another (Form 2),
mathematically equivalent, to which attention is drawn in this paper. In this latter, the decision
is based on the comparison of the estimated "lot percent defective” with its maximum, critical
value. Transforming the former criterion into the latter is done by the incomplete beta ratio
function, for the computing of which we prepared a computer program and an open webpage. So
nowadays either criterion becomes easy to be adopted by the decision maker, with the advantage
going to the latter, Form 2, which presents intuitive results.

Keywords. Quality Control, acceptance sampling, inspection by variables, Gaussian variable,
international standards, “Form 2”.

1 Fundamentals and scope
Quality is currently a general concern in every productive activity, but in the last few decades it

has lost impetus toward other managerial features that evade the rigorous facets and intricacies
of Statistics, as acutely observed, e.g., by Gunter in a blunt article ([8]). Otherwise, there is
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no motive why nowadays the harder, computation-based aspects of Quality should not be more
easily made available to the users, as we propose in this study, namely through the Internet.

From a statistical standpoint, Quality Control is usually divided in two broad categories,
acceptance sampling (AS), and statistical process control (SPC), the former to be applied in
the frontiers of the production system and the latter inside of the system. In this regard, an
argument used against AS is its uselessness due to the stable interest in SPC, together with the
cooperation with the suppliers, both of which indeed reduce the need for AS. Nevertheless, the
fact that AS proper continues to be necessary is attested, not just by the many classical studies,
e.g., [13], [I5], but by the recent update (in 2013) of the successor to the original Mil-Std 414
([12]), the corresponding ISO standard ([10]).

Acceptance sampling decides on the quality of a lot from the observation of a random sample
taken from it, and deals with variables that can be discrete (control by attributes, counting
nonconformities) or continuous (control by variables). In this paper, we address the control by
variables of continuous, Gaussian variables with a single specification limit, as treated in the
applicable international standards for AS by variables ([2]).

The standards establish two mathematically equivalent decision criteria on the lot for a single
specification limit, the so-called “Form 1” and “Form 2”. In the former, a comparison is made
between the quality index, Q, and the acceptance constant, k, acceptance occurring iff QQ > k;
and in the latter (mandatory for double specification limits), a comparison is made between the
estimated lot percent defective (fraction nonconforming), w, and its mazimum, M, acceptance
occurring iff w < M. The procedure in Form 1 is simple to apply, but can be confronted
with the richer information yielded by Form 2, to which attention is drawn in this paper. This
becomes computationally accessible, as will be seen, and is generally advantageous, namely, to
non-specialized decision makers.

2 Sampling plan

Underlying an AS procedure is a certain sampling plan, which gives, as is well known, the size
of the random sample to be drawn, n, and the critical value of the test statistic, k, leading to
the criterion to accept or reject the lot of given size, under inspection. In order to try to avoid
the rejection of “good” lots (Type I error), and the acceptance of “bad” lots (Type II error),
under Form 1, the calculation of n and k results from (e.g., [3], [6]) the resolution of the classical
system of inequalities

{Pac(w =AQL)>1—-«a (1)

P,.(w = LTPD) < B,

where: P,. is the probability of acceptance (a function of n and k); AQL, “Acceptance Quality
Limit”, is the maximum fraction defective (nonconforming) that corresponds to the producer’s
risk, a; and LTPD, “Lot Tolerance Percent Defective”, is the maximum fraction defective that
corresponds to the consumer’s risk, 8. Note that n has, of course, to be integer. (The nomen-
clature in Quality Control bears the tradition of informal terms, such as “percent” instead of
“fraction”, used since its inception in the early 20."" century, to make it easier for the laymen to
apply it.) The following parameters are stipulated according to the situation (example values):

AQL = 1.5%, a = 5%, LTPD = 12%, and 8 = 10%.
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Regarding Form 1, examplified here for the (arbitrarily chosen) lower specification limit, the
lot acceptance criterion is given by the following condition, in which X and S are the sample
average and standard deviation, respectively.

="tk @

where @ is the quality index, i.e., @ (general) referred to the lower specification limit, L, and
k the acceptance constant. In this equation, the equals sign —which is meaningless in terms of
probability— is important because, upon application, the comparison is made with ) rounded
according to the significant figures in k. For the upper specification limit, the numerator is
changed to U — X, for practical convenience (so that a higher, positive, quality index always
means better quality).

In order to transform the quality index, @ (typically used to decide lot acceptance when
the quality characteristic is a Gaussian variable) into the estimated lot percent (proportion)
defective, w, the equation presented below is used, leading to Form 2. While, as mentioned, in
Form 1, the lot is accepted iff @ > k, in Form 2 it is accepted iff w < M, with M a critical
value, defined below, Form 2 being more intuitive to the non-specialized decision makers.

Form 2, optional in the case of a single specification limit, whether lower, L, or upper, U
(as mentioned, mandatory for two limits), comes from the transformation ([14]) of both terms
of the comparison in Eq. [2] into an estimate of the lot fraction defective, wy, depending on n,
and its critical value, M, i.e., maximum acceptable fraction, compatible with AQL and n. The
transformation comes from the application to each side of Eq. [2| ([9], [14]) of

n n
w:F(x,§—1,§—l) (3)
where F' represents the “incomplete beta ratio function”; i.e., the cumulative distribution func-
tion (’cdf’), with n > 2 (n = 2 making the two parameters 0 in Eq. [3), and with (equal)
parameters % —1, and z is

) (4)
From Egs. [2| and [3| will come the alternative criterion of acceptability, for a single specification
limit (in this case, the lower one),

wr < Mj,. (5>

When the two specification limits are present (not addressed in this article), the acceptance
criterion becomes the following three simultaneous conditions ([9]):

wr < My,
wy < My
wr, + wy < maz(Mp, My) (6)

In the criterion in Eq. [5| or the set of conditions in Eq. |§| (besides having the third condi-
tion), the decision on the lot is intuitive, as comparisons are simply between percent (fraction)
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TABLE B-5—Continued
Table for Estimating the Lot Percent Nonconforming Using Standard Deviation Method'

Ty _ Sample Size

Q |3 ]| a15 | 7 1w} 15 2] 2| 33| 35|71 |wo|s0] 200
150000 [000] 3.80 | 528 ) 5.87| 6.20 | 6.34 | 641 | 646 | 656 | 6.55 | 6.60 | 662 | 664 | 6.65
151|000 | 0.00( 361 | 513 | 573 | 6.06 | 6.20] 628 | 6.33 | 6.36 | 642 | 6.47 | 6.49 [ 651 | 652
152000 | 0.00 | 3.42 | 497 | 559 | 593 | 6.07 | 6.15 | 6.20 | 6.23 | 6.29 | 6.34 | 636 {638 |6.39
1534000 | 000 | 323 | 482 | 545 5.80 [ 594 | 6.02 | 6.07 [ 6.41 | 617 | 6.2 | 624 | 626 | 627
1.54 0,00 | 0.00] 305 | 467 | 531 567 |581| 589 595) 598 | 604 | 6.09 } 611 |6.13 | 615
155000 | 0.00 | 2.87 | 452 | 5.18 | 554 | 569 | 577 | 582 | 585 | 592 | 597 | 5.99 |'6.01 | 602/,
156 {000 | 0.00 | 269 | 438 | 505 | 547 | 558| 565)| 670 | 574 | 580 | 585 | 587 | 589 | 590
157 {000 | 000 | 252 | 4.24 | 492 ) 520 | 544 553|558 562 568 | 573575 | 578 {579
158 0.00 | 000 | 235 [ 410 | 479§ 5.16 | 532 | 541 | 546 | 550 | 5.56 | 5.61 | 564 | 566 | 5.67
1.59 000 | 0.00 | 219 | 3.96 | 466 | 504 |520| 529|534 [ 538 { 545 | 550 | 552 | 554 | 5.56

1.60 Jooo {000 | 203 | 383 | 454 ] 492 |509] 517 (5231527533 | 538|541 [543 {544
1614000 (000 ) 187 | 369 | 441 | 481 |497; 506 ) 5121516 | 522 | 527 | 530 | 532 | 533
1.62 4000 | 0.00| 1.72 | 357 | 430 469 (4856} 495|501 1 5041 511 | 516|519 | 521 | 5.23
15630000 [000) 1.57 | 344 | 418 | 458 475 484 | 490 454 | 501 | 506 | 505 [ 511 | 512
1.64 §10.00 | 0.00 | 142 | 331 | 406 | 447 464 | 473 [ 4.70 | 4B3 | 490 [ 4.95| 498 | 500 | 5.01
165 1000 (000 | 128 | 219 | 395 | 4.36 |453 | 462 | asn | 472 | 479 | 485|487 | 490 | 491

- - . - L

mmm llmomm | omomm - ~ o -~ i 4 am TS A A SR =i

Figure 1: Excerpt from the table in [10] to transform @ (or k) into w (or M).

defectives instead of values of @) and k, all the more dependent on n. These calculations are
shown below and made available on our website.

3 Computation

The transformation of values of the quality index, @, into w (and the corresponding critical
value of @), the acceptance constant, k, into M) is made available in the standard through a
quite extensive table (ten pages), of which a small excerpt is shown in Figure .

For further verification of the computation done in our website, some values taken from the
complete table are shown in Table

QQ n=5 n=10 n=35

1.50 3.80 0.87 6.50
1.65 1.28 3.95 4.72
1.75 0.19 2.93 3.72
1.80 0 2.49 3.35
2.00 0 1.17 2.02
250 0 0.04 0.45

Table 1: Values (%) from the table in [10] for verification.

In order to verify the values in Table [I the computation of w as a function of ) for a
given n can be done at our dedicated webpage ([7]), through a computer program of ours that
implements Eq. |3} the values are thoroughly confirmed.
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Notice that the values of M, critical values of w, are themselves the transformation of the
acceptance constants, k (given in the standard). These constants are, of course, critical values
of @, the quality index, which, in the form Q+/n, follows a noncentral t-distribution. This is not
addressed here, but can be computed in one of our webpages ([5]) by Monte Carlo simulation
and directly.

The “incomplete beta ratio function” (Eq. [3)) is usually denoted by I.(«, ), and is given by
the following expression,

GRS /I a—171 _ pnp-1
I.(a, ) 7F(a)F(B) ; (1 —1) dt (7)
where « and /3 are parameters. The integral in Eq. [7jmust be computed numerically, but becomes
easy as it benefits from some peculiarities: (a) the I function, in this application, has an integer
or half-integer argument (as o = 8 = § — 1), so its computing is straightforward (factorials or
multiples of /7); (b) the integrand is “well behaved”; and, (c) thus, a “simple Euler” or
Simpson’s rule integration can be used. As the computing of the function is necessary for many
(successive) values of x, a progressive form of the numerical integration is computationally
convenient, which (generally overlooked in the common literature) was done according to our
previous practice ([4]). This progressive form was precisely necessary to make Figure

The webpage mentioned ([7]) is open to anyone wishing to do the transformation, showing
how acceptance sampling by variables Form 2 can be easily used.

Estimate of lot fraction defective

15

o (%)
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o
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Figure 2: Variation of w with @ for n = 5,10, 35 (respectively, right hand side curves upwards).

Conclusions
Quality Control (QC) has lost impetus towards many current managerial directions, which

try to avoid the intricacies of Statistics. The current availability of computing power, namely
through the Internet, makes QC accessible, even to non-specialists. Thus, of the two branches
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of statistical QC, acceptance sampling and statistical process control, the former can now be
more approachable.

The application of AS by variables to the typical Gaussian random variable, according to the
generally adopted international standards, was shown in its more intuitive and informative “Form
2”7 where clear, simple percentages are made available to the decision maker. The underlying
computations were mentioned, and we prepared an open website available to anyone wishing
to transform a quality index, @, into w, an estimate of the lot percent defective (fraction
nonconforming).
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Estimation of the weighted kappa
coefficient subject to case-control
design

José Antonio Roldan-Nofuentes, University of Granada, jaroldan@ugr.es

Abstract. Assessment of the accuracy of a binary diagnostic test subject to a case-control
sample is frequent in clinical practice. The estimation of the sensitivity and the specificity of
the likelihood ratios of the diagnostic test is easily carried out as it consists of the estimation
of binomial proportions and of ratios of binomial proportions respectively. Nevertheless, the
estimation of parameters that depend on the disease prevalence is more complex and requires,
from a frequentist perspective, knowledge of the disease prevalence. In this article, we study the
estimation of the weighted kappa coefficient of a binary diagnostic test subject to a case-control
sample. The weighted kappa coefficient is a parameter that depends on the sensitivity and the
specificity of the diagnostic test, on the disease prevalence and the relative importance between
the false negatives and the false positives. The estimation of this parameter requires knowledge
of a value of the disease prevalence. Two confidence intervals are proposed which are based on
the asymptotic normality of the estimator of the parameter: a Wald-type interval and another
one based on the logit transformation. Simulation experiments were carried out to study the
asymptotic coverage of these intervals. The results obtained were applied to a real example.

Keywords. Binary diagnostic test, Case-control design, Weighted kappa coefficient

1 Introduction

The most common parameters to assess the accuracy of a binary diagnostic test are the sensitivity
and specificity, the likelihood ratios and the positive and negative predictive values. Moreover,
when the losses of an erroneous classification with the diagnostic test are considered, the accuracy
of the diagnostic test is measured in terms of the weighted kappa coefficient [I, 2]. The weighted
kappa coefficient depends on the sensitivity (Se) and the specificity (Sp) of the diagnostic test, on
the disease prevalence (p) and the weighting index (c). The weighting index c is a measure of the
relative importance between the false negatives and the false positives. In a case-control design,
the estimation of the sensitivity (specificity) is made from the sample of diseased (non-diseased)
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individuals applying methods for binomial proportions. The positive and the negative likelihood
ratios are estimated from both samples applying methods to estimate the ratio of independent
binomial proportions. Nevertheless, the estimation of the positive and the negative predictive
value requires, from a frequentist perspective, knowledge of the disease prevalence [3]. Mercaldo
et al [3] studied the estimation of the predictive values of a binary diagnostic test subject to this
type of sampling. . In this article, we study the estimation of the weighted kappa coefficient
subject to case-control design, assuming that the disease prevalence is known. We have studied
two asymptotic confidence intervals for the weighted kappa coefficient: a Wald-type interval and
another interval based on the logit transformation. This study is organized as follows. In Section
2, we describe the weighted kappa coefficient. In Section 3, the two confidence intervals to be
studied are presented, simulation experiments are carried out to study the asymptotic coverage
of these intervals subject to case-control design and we describe a programme in R to solve this
problem of estimation. In Section 4, the results are applied to a real example, and in Section 5
the results obtained are discussed.

2 Weighted kappa coefficient

Let L be the loss that occurs when for a diseased individual the result of the diagnostic test is
negative, and let I’ be the loss that occurs when for a non-diseased individual the result of the
diagnostic test is positive. Loss L is associated with a false negative and loss L’ is associated
with a false positive. Losses L and L’ are equal to zero if all of the individuals are classified
correctly by the diagnostic test. For example, let us consider the diagnosis of breast cancer using
as a diagnostic test a mammogram. If the mammogram is positive for a woman who does not
have breast cancer, the woman will undergo a biopsy which will finally be negative. Loss L’ will
be determined from the economic costs of the diagnosis and also taking into account the risks,
stress, etc, caused for the woman. If the mammogram is negative for a woman who has breast
cancer, the woman may be diagnosed at a later stage, but the cancer may spread, reducing the
possibility of successful treatment. In this situation, the cancer may spread and the chances
of successful treatment will be reduced. Loss L will be determined from these considerations.
Therefore, these losses are not only measured in economic terms but also with reference to other
considerations, and for this reason in clinical practice it is not possible to determine the value of
such losses [I]. Let ¢ = L/(L 4 L') be the weighting index, then the weighted kappa coefficient
is expressed as [I, 2]

(o) = P DY )

p(1=Q)e+(1-p)Q(1—c)’

where @ = pSe + (1 —p) (1 — Sp) and Y = Se + Sp — 1 is the Youden index. The weighting
index is a measure of the relative loss between the false positives and the false negatives and
varies between 0 and 1. If L = 0 then ¢ = 0 and the weighted kappa coefficient is

Sp—(1-Q)
k(0) = ——= . 2
(0) 0 (2)
If L' = 0 then ¢ = 1 and the weighted kappa coefficient is
Se — Q
R(l) = - 0 (3)
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The coefficients (1) and x(0) are the chance-corrected sensitivity and the chance-corrected

specificity respectively. If L = L’ then ¢ = 0.5 and the weighted kappa coefficient (called the

Cohen kappa coefficient) is

2k(0)k(1)
1

k(0.5) = 71%(0) (D)

: (4)
The weighted kappa coefficient can be written as

k(c) = p(1 = Q)er(1) + (1 = p)Q(1 — ¢)x(0)
p(1=Q)c+(1-p)Q(1—c) '

()

In practice, losses L and L’ cannot be determined, and therefore the clinician usually allocates
values to the weighting index depending on their knowledge of the relative importance of false
positives and false negatives. Thus, for example, if the clinician decides that the false positives
are twice as important as the false negatives, then the clinician will allocates the value 1/3 to
the weighting index c. The values of the weighted kappa coefficient vary between -1 and 1. If
the value of the weighted kappa coefficient is lower than 0, then the results of the diagnostic
test must be interchanged and therefore the analysis must be limited to positive values of the
weighted kappa coefficient.

3 Estimation subject to case-control sampling
Let us consider a binary diagnostic test which is applied to two random samples, one of n; dis-

eased individuals (case sample) and another one of ng non-diseased individuals (control sample).
In Table 1 we can see the frequencies obtained when applying the diagnostic test to two samples.

Sample Positive Test Negative Test Total

Case s1 S0 n1
Control 71 70 N9

Table 1: Observed frequencies.

The estimators of sensitivity and specificity of the diagnostic test are

S1

Se = aa (6)
and

&y — 10

Sp = - (7)

Assuming that the disease prevalence p is known, the estimator of the weighted kappa coefficient
is [4]

p(1 —p)Y
p1—=Q)c+(1—p)Q(l—c)’

R(c) =

(8)
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where Y = Se+Sp—1and Q = pSe+ (1-p)(1— S‘p) Applying the delta method, the estimated
variance of #(c) is

Var (89) = Lo gm0 o (gt [T

(1—p)2p2{(1—p)(1—§p)+c<§p—(1—p))}2§e(1—5’e) I

ni

(1-p)2p2{c(p—5e)+Se(1—p) }* Sp(1-5p)
no

We now propose two confidence intervals (CIs) for the weighted kappa coefficient of a binary
diagnostic test subject to case-control sampling.

Wald-type confidence interval
Based on the asymptotic normality of the weighted kappa coefficient, the Wald-type CI is

i(c) £ 21_as0 x VVar(i(c)), (9)

where 2;_, /o is the 100(1 — a/2)th percentile of the normal standard distribution.

Logit confidence interval

In Statistics, it is common for a parameter not to be studied directly but instead one of its trans-
formations is studied. Thus, for example, for a binomial proportion we can obtain a confidence
interval based on the logit transformation [5]. Since the values of the weighted kappa coefficient
are limited to values between 0 and 1 (as is explained in Section 2), a logit transformation can
be used to obtain a confidence interval for this parameter. Based on the asymptotic normality
of k(c) , its logit transformation, logit(k(c)) , has a normal distribution with mean logit(x(c)).
Then the 100(1 — 2;_,/2)% confidence interval for the logit is

logit(#(c)) £ 21_as2 x V/ Var(logit(i(c))), (10)

and applying the delta method, the estimator of the variance of logit(#(c)) is

. o 1
Var (logit (M) = G i—agra(i-8)--na-a]F *

{(l—p)(1—C)+(c—(1—p))§p}236(1—§e> {(c—(l—p))ge—cp}Q,SA'p(l—S'p)
ni + n2

Finally, the logit CI for the weighted kappa coefficient is

expllogit(ii(c)) & #1_ay2/Var (logit(i(c)))]
1 + expllogit(i(c)) £ z1—a/2 \/Var(logit(/%(c)))]

(11)

Simulation experiments were carried out to study the asymptotic coverage of these two Cls.
In order to do so, 10000 binomial samples were generated, both of case samples and control
samples, with different sample sizes and from the different values of sensitivity and specificity.
As prevalence, different values were taken (p = 0.10,0.25,0.50) and as the weighting index
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the values ¢ = 0.1,0.5,0.9 were taken. . In Table 2, the results are shown for Se = 0.90 |,
Sp = 0.80 and p = 0.10, and in Table 3 the results are shown for Se = 0.70 , Sp = 0.90 and
p = 0.25. The simulation experiments showed that the CI logit has a better average coverage
and average width than the Wald CI. The coverage of the logit interval fluctuates around the
coverage of 95%, whereas that of the Wald interval is usually lower than 95%. A programme
in R has been written, called “ewkecces” (Estimation of the Weighted Kappa Coefficient subject
to a Case Control Study), in order to solve this problem of estimation. The programme is
available at the following website: “http://www.ugr.es/ bioest/software.htm#Potros”. The
programme runs with the command “ewkcces(s1,0,71,70,cindex,p)” when the confidence intervals
are calculated to 95% of confidence, and where s; and r; are the frequencies observed, cindex
is the value of the weighting index (0 < cindex < 1) and p is the disease prevalence; and the
programme runs with the command “ewkccces(s1,s0,71,70,cindex,p,conflevel)” when the intervals
are calculated to 100con flevel%.

ny ng ¢ Coverage Wald CI Length Wald CI Coverage Logit CI Length Logit CI

50 50 0.1 0.937 0.301 0.956 0.293
50 50 0.5 0.931 0.339 0.955 0.327
50 50 0.9 0.934 0.274 0.953 0.269
50 100 0.1 0.938 0.211 0.950 0.209
50 100 0.5 0.944 0.245 0.952 0.241
50 100 0.9 0.940 0.226 0.952 0.223
100 50 0.1 0.940 0.299 0.956 0.291
100 50 0.5 0.940 0.333 0.956 0.322
100 50 0.9 0.941 0.248 0.954 0.244
100 100 0.1 0.942 0.209 0.950 0.207
100 100 0.5 0.945 0.239 0.952 0.234
100 100 0.9 0.948 0.194 0.954 0.193

Table 2: Results of the simulation experiments (I).

4 Example

The results were applied to the study made by Li et al [6] on the diagnosis of Alzheimers disease
using as a diagnostic test the genotype ApoE.e4. In order to do so, the authors applied the
diagnostic test to a sample of 418 individuals with Alzheimers disease (the test was positive for
240 of them), and they also applied the diagnostic test to a sample of 375 individuals who did not
have Alzheimers disease (the test was negative for 288 of them). Assuming that the prevalence
of Alzheimers disease is 50% [3], in Table 4 we can see the estimations of the weighted kappa
coefficient and the Cls for different values of the weighting index. When the weighting index is
higher than 0.5, the beyond chance agreement between the diagnostic test and the disease takes
a mediocre value (at 95% confidence). When the weighting index is lower than 0.5, beyond
chance agreement between the diagnostic test and the disease takes a mediocre to moderate
value (at 95% confidence) depending on the value assigned to the ¢ index.
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ny mng ¢ Coverage Wald CI Length Wald CI Coverage Logit CI Length Logit CI
50 50 0.1 0.922 0.427 0.957 0.407
50 50 0.5 0.942 0.327 0.959 0.317
50 50 0.9 0.935 0.301 0.957 0.293
50 100 0.1 0.930 0.320 0.951 0.310
50 100 0.5 0.937 0.273 0.954 0.267
50 100 0.9 0.939 0.291 0.953 0.283
100 50 0.1 0.920 0.418 0.950 0.399
100 50 0.5 0.935 0.294 0.951 0.286
100 50 0.9 0.947 0.227 0.957 0.223
100 100 0.1 0.932 0.308 0.953 0.299
100 100 0.5 0.939 0.234 0.950 0.230
100 100 0.9 0.940 0.213 0.949 0.210

Table 3: Results of the simulation experiments (II).

¢ R(e) 95% Wald CI  95% Logit CI
0.1 041 0.33-0.48 0.33-0.48
0.2 0.39 0.31-0.46 0.32-0.46
0.3 0.37 0.30-0.44 0.31-0.44
0.4 0.36 0.29-0.42 0.29-0.42
0.5 0.34 0.28-0.41 0.28-0.41
0.6 0.33 0.27-0.39 0.27-0.39
0.7 0.32 0.26-0.38 0.26-0.38
0.8 0.31 0.25-0.37 0.25-0.37
0.9 0.30 0.24-0.35 0.24-0.36

Table 4: Results from the study of Li et al.

5 Conclusions

The estimation of the parameters of a diagnostic test that depend on the disease prevalence is
conditioned by the type of sampling. When case-control sampling is used, it is necessary to know
the value of the disease prevalence, since this cannot be estimated from the study itself. In this
article, we have studied two approximate confidence intervals for the weighted kappa coefficient
of a diagnostic test subject to this type of sampling, and it is obtained that the logit interval
performs better than the Wald type interval in terms of coverage and width.
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The jackknife estimate of variance
for transition probabilities in the
non-Markov illness-death model
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Abstract. Multi-state models are often used to represent the individuals’ progress along a cer-
tain disease. The estimation of transition probabilities is an important goal in such a setting. The
progressive illness-death model is an important multi-state model which has many applications
in medical research. Non-parametric estimators of transition probabilities for the non-Markov
illness-death model were recently introduced as an alternative to the Aalen-Johansen estimator,
which may be inconsistent when the Markov assumption is violated. In this work, the problem
of estimating the variance of these transition probabilities is discussed. The jackknife approach
is considered to this end. A consistency result is established, and the finite-sample performance
of the jackknife estimator is investigated through simulations. A real medical dataset is included
for illustration purposes.

Keywords. Censored data, Illness-death model, Jackknife estimator, Kaplan-Meier.

1 Introduction

Multi-state models are models for stochastic processes which represent the states possibly visited
by an individual along time, and the allowed transitions among them. They often involve as-
sumptions on the joint distribution of the successive transition times, the influence of covariates
on transition intensities, and so on. Multi-state models have become a key tool for data anal-
ysis and inferences in medical research; existing reviews include Commenges (1999), Hougaard
(1999), Andersen and Keiding (2002), or Meira-Machado et al. (2009). One important target in
applications is the estimation of transition probabilities. Nonparametric estimation of transition
probabilities in a general multi-state model goes back to Aalen and Johansen (1978). The Aalen-
Johansen estimator is consistent for Markov models; however, in practice, Markov assumption
may be violated, and the Aalen-Johansen estimator may show a systematic bias ([3], [8]).

Meira-Machado et al. (2006) introduced an alternative estimator of the transition matrix
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for the progressive illness-death model, which does not require the Markov condition. The
progressive illness-death model (or disability model, cfr. Hougaard, 2000) is a very specific
multi-state model, but with many practical applications. It involves three states: ’Healthy’
(state 1), 'Diseased’ (state 2), and 'Dead’ (state 3), and three possible transitions among them:
1—2,2—3,and 1 — 3. In this model, states 1 and 2 are transient, while state 3 is absorbing;
note also that 'recovery’ (i.e. transition 2 — 1) is not allowed. Let Z denote the sojourn time
in state 1, and let 7" denote the absorption time (time to reach state 3 from state 1); thus, the
relevant transition probabilities are, with s < ¢,

p(s,t) = P(Z > t|Z > s),

pi2(s,t) = P(Z <t<T|Z > s),

and
paa(s,t) = P(T > t|Z <s<T).

If (Z,T) are observable, obvious non-Markov estimators for these curves are given by sampling
proportions. The presence of censored trajectories demands however for a more sophisticated
structure; Meira-Machado et al. (2006)’s estimators involve the computation of two Kaplan-
Meier curves: the one pertaining to Z, and that corresponding to 7. These estimators are
consistent (regardless the Markov condition) provided that the potential censoring time C' is
independent of the process (i.e. of the pair (Z,T)), and that the support of C' contains that of
T. See [3] for related estimators and comparative results.

To be specific, and to introduce the main ideas and novelties of this work as soon as possible,
we focus on the transition probability poa(s,t). Let ( i Z,(Sl,A) 1 < ¢ < n, be a random
sample of (Z T,é, A), where (Z 1:) are the (possibly) censored versions of (Z,T'), and (J, A)

are the corresponding censoring indicators. Let S(t) be the Kaplan-Meier estimator of S(t) =

P(T > 1) (computed from the ( 7,7Ai)’ ) and let W,,; be the jump of S( ) at t = T;, that is,
A —J

W.. — A

to the Varlable T (1n the uncensored case these weights simply reduce to Wy; =1/n, 1 <i <n)

Meira-Machado et al. (2006) introduced as a suitable estimator for paea(s,t) the empirical

i, where we assume that the sample is ordered with respect

D 1WmI(Z <s t<T) Zl 1 nzSOst(ZuT)
D1 WniI(Zi <s< Tz) i1 Whips, S<ZZ=T)

P22(s,t) =

where ¢ ¢(u,v) = I(u < s,t < v). This estimator is a quotient of two multivariate Kaplan-
Meier integrals, in the sense of Stute (1993). As such, available asymptotics for multivariate
Kaplan-Meier integrals ([11], [12]) apply. This results in the consistency and the asymptotic
normality of paa(s,t) under a number of conditions; in particular, by using the delta method,
the asymptotic variance of paa(s,t) is given by

N o?
AVar(pa(s,t)) = o
where s )2 S )
1 Ps,t Ps.t
2= 52(s,t) = o1 ———s ALV PR L 1
ot =) =ongr — Fong, i~ g, s M
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S(p) = Ele(Z,T)], and o;; = 0;;(s,t) stands for the limit covariance between two Kaplan-
Meier integrals Sy, (p;) and Sy, (g;) of the general form S, (p) = 37, Whip(Z;, T;); here we put
P1 = Psit and Y2 = Ps;s-

In practice, estimation of the limit variance o2 is required for (e.g.) the computation of

confidence limits for paa(s,t). In , the quantities S(p,) and S(pss) may be replaced by
the corresponding Kaplan-Meier 1ntegrals Sn(pst) and Sy, (pss) respectively. Regarding the
estimation of the o;;, Azarang et al. (2013) established the consistency of the jackknife approach
(cfr. Shao and Tu, 1995) in the general setting of censored data with multiple covariates, thus
extending previous results in Stute (1996b) for the univariate setting; here, by considering Z

(k)

as a ’covariate’ of the absorption time 7', their result applies. More specifically, let Sy (),

1 <k < n, be the pseudovalues of S, (); Sék)(cp) is computed like S, (¢) but deleting the k-th
datum (Z, Ty, 0, Ag) from the initial sample. The jackknife estimate of covariance between
Sn(pi) and Sy (@), 1 <4,5 <2, is defined as

nCouvij = (n —1) Z ST i) = S5 (i) (SP) (05) = S (05))

where Sy, (e )( ) denotes the average of the S, (k)( )’s. In the definition of nC’ovU, when the largest

datum T(n) is uncensored but the second largest T(n 1) is censored, we artificially set T( ) to be
censored; see [4] for discussion. Introduce the estimator

Sn(@s,t)z Sn(@s,t) )
Sn<905,5>3

Sn(@s,s)Q Sn(@s,syl

Put 7o(t) = exp { i (1 — H) 'dH®} where H(t) = P(T < t) and H(t) = P(T < t,A = 0).
We have the following result.

52 — 2nCovia

= nCovyy + nCovggy

Theorem 1.1. Under condition
E[—log(1 —  H(T))%(T)*A] < oo
we have with probability one 62 — % as n — oco.

Proof. The result is a consequence of the SLLN for multivariate Kaplan-Meier integrals in Stute
(1993) and the Theorem in Azarang et al. (2013), up to noting that both ¢, and ¢, ¢ are
bounded functions. O

Remark. The condition in Theorem 1.1 above ensures that the censoring effects do not
dominate at the right tail of the distribution of 7. In the particular case in which both T and
C are exponentially distributed, the condition holds provided that the expected proportion of
censored data is below 0.5.

Theorem 1.1 above suggests to approximate the variance of paa(s,t) by 52/n when n is large.
The finite-sample accuracy of this approximation is explored through simulations in Section
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while in Section |3 we illustrate the jackknife method with real medical data. Since the bootstrap
is a popular method to approximate the variance of a given statistic, we include it in our study for
comparison purposes. Note however that, for the best of our knowledge, the consistency of the
bootstrap variance has not been formally established for the setting considered in this paper.
The jackknife method may be used to introduce estimators for the other relevant transition
probabilities in Meira-Machado et al. (2006) too. Since pii(s,t) only involves the marginal
distribution of Z, the consistency of the jackknife approach for this transition probability will
immediately follow from existing results for (univariate) Kaplan-Meier integrals (Stute, 1996b).
The theory for p12(s,t) is not so easily obtained, since the estimator pertaining to this transition
probability depends on two different Kaplan-Meier curves (the ones corresponding to Z and T');
new technical results are required in this case.

2 Simulation study

In this section we investigate the performance of the jackknife estimate of variance for poa(s,t)
and we compare the jackknife and bootstrap methods through simulations.
To simulate the data in the illness-death model, the procedure is as follows:

Step 1 V; ~U(0,1) , Vo ~ U(0,1) are independently generated

y(e™? —1)
y+(1—y)e b2

1
Step2 U=V, U = C_l(Vg\Ul); where C’_l(y|x) = —glog[l + ]

Step 3 Z = —log(Uh) , Taz = —log(Us)
Step 4 p ~ Ber(p) is generated independently of Z

Step 5T = Z+pT23

This corresponds to Frank’s copula model for the dependence between the (exponentially dis-
tributed) sojourn times in state 1 and 2, Z and Tb3 respectively, for those individuals visiting
the latter state (p = 1). We take § = 12 which implies a positive association between Z and
T53 (Kendall’s Tau is 0.71). Also, an independent exponential censoring time C' is generated,
according to Exp(0.59), Exp(0.20), Exp(0.10) models, which correspond to 50%, 26%, and 15%
of censoring respectively. The simulated models are non-Markov due to the dependence between
Z and Tb3. In each simulation M = 1000 samples are generated, and sample sizes 50, 150, and
250 are considered. The proportion of individuals going through state 2 is p = 0.7. The true
variance of paa(s,t), denoted by 0%40, is approximated using Monte Carlo simulation.

In Tables 1-3 we report the mean values of the jackknife variance estimator (6% = 62/n)
and the bootstrap variance estimator (6%) along the M = 1000 simulations, for the cases
(s,t) = (0.2231,1.6094), (s,t) = (0.5108,0.9163), and (s,¢) = (0.9163,1.6094), which correspond
to the 0.2, 0.4, 0.6 and 0.8 quantiles of the Exp(1) model. The bootstrap variance estimator is
defined as the variance of the bootstrap values of paa(s,t) along B = 999 bootstrap resamples;
the simple bootstrap which resamples each datum (with replacement) with probability 1/n is
used to this end. In Tables 1-3 we also give n times the bias (n.Bias), n times the standard
deviation (n.SD), and n? times the mean square error (n>.MSE) of 63 and 6%. These three
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n=>50 n=150 n=250
CP: 50% 26% 15% 50% 26% 15% 50% 26% 15%
o2 0.00010  0.00118  0.00027  0.00015 0.00010  0.00008  0.00010  0.00005  0.00004
% 0.00006  0.00012  0.00021  0.00010  0.00009  0.00008  0.00007  0.00005  0.00004
5% 0.00255  0.00184  0.00028  0.00010  0.00008  0.00007  0.00008  0.00005  0.00004

n.BiasB -0.00219 -0.05297 -0.00316 -0.00703 -0.00179 -0.00078 -0.00695 -0.00059 -0.00000
n.BiasJ 0.12249  0.03298  0.00038 -0.00665 -0.00276 -0.00142 -0.00633 -0.00105 -0.00066
n.SDB 0.08515  0.13864 0.20454  0.28335 0.21932  0.14351  0.34126  0.13420  0.11000
n.SDJ 3.92920  2.40963  0.20442  0.28988  0.20198  0.13556  0.34612  0.12847  0.10266
n . MSEB 0.00726  0.02203  0.04185  0.08033  0.04810  0.02059  0.11650  0.01801  0.01210
n? . MSEJ 15.45364 5.80739  0.04179  0.08407  0.04080 0.01838  0.11984  0.01651  0.01054

Table 1: Results of the simulation study for the case (s,t) = (0.2231, 1.6094).

n=>50 n=150 n=250
CP: 50% 26% 15% 50% 26% 15% 50% 26% 15%
o3 0.07466  0.04755  0.04353  0.02078  0.01351  0.01179 0.00739  0.00696  0.00655
% 0.04070  0.03755  0.03636  0.01999  0.01372  0.01237 0.00794 0.00710 0.00737
o 0.24713  0.10072  0.03062 0.01849 0.01292 0.01171 0.00772 0.00690  0.00715

n.BiasB -1.69802  -0.50028 -0.35847 -0.11912 0.03185  0.08692 0.13788 0.03702  0.20532
n.BiasJ 8.62323  2.65831 -0.64543 -0.34432 -0.08818 -0.01229 0.08315 -0.01452 0.14974
n.SDB 2.13836  1.64609 1.4795 1.65376  0.86834  0.72824 0.56648 0.47532  0.49615
n.SDJ 41.5393  14.34684 1.21307  1.40787  0.75497  0.64130 0.53077 0.44442  0.45989
n2 . MSEB 7.45586  2.95990 2.31742 2.74911 0.75504  0.53788 0.33991 0.22730  0.28832
n? . MSEJ 1799.873 212.8985 1.88812 2.10065 0.57775 0.41142 0.28863 0.19772  0.23392

Table 2: Results of the simulation study for the case (s,¢) = (0.5108,0.9163)

n=50 n=150 n=250
CP: 50% 26% 15% 50% 26% 15% 50% 26% 15%
o2 0.07065  0.03485  0.03179  0.02440 0.01131  0.00975 0.01426  0.00723  0.00552
% 0.03890  0.03266  0.03000 0.02171  0.01134 0.00958 0.01334 0.00674 0.00567
0% 0.24833  0.08349  0.02613  0.02055 0.01086  0.00923  0.01300 0.00658  0.00555

n.BiasB -1.58723  -0.10980 -0.08947 -0.40312 0.00456 -0.02520 -0.23041 -0.12358 0.03545
n.BiasJ 8.88433 243169 -0.28254 -0.57685 -0.06648 -0.07827 -0.31419 -0.16370 0.00647
n.SDB 230719  1.35810  1.12683  2.22722  0.66445 0.52867  1.48568  0.45833 0.36264
n.SDJ 44.78929 16.01074 0.92105 1.99408 0.59817  0.47153  1.46354 0.43768 0.34248
n> . MSEB 7.84240  1.85649 1.27775 5.12303  0.44152 0.28013  2.26034  0.22534  0.13276
n? . MSEJ 2085.012 262.2567 0.92815 4.30911  0.36223  0.22847  2.24066  0.21836  0.11733

Table 3: Results of the simulation study for the case (s,t) = (0.9163,1.6094).

quantities should converge to zero for an increasing sample size, provided that the estimators
are consistent (see Theorem above for the jackknife).

We see in Tables that the bias, the SD, and the MSE of the jackknife estimator decreases
as the sample size increases, revealing its consistency. The only exception is the case with 50%
of censoring in Table 2, where both the SD and the MSE increases when moving from n = 150 to
n = 250. The same holds true for the bootstrap estimator. Larger sample sizes could be needed
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to replicate the convergence result in Theorem Bias is of a smaller order of magnitude
compared to SD. On the other hand, the error in estimation increases with the censoring degree,
as expected. The estimator based on the jackknife performs better than that based on the
bootstrap in most of the cases; however, when the sampling information is very scarce (n = 50,
moderate to large censoring degree), the bootstrap may report more accurate results. Regarding
the influence of the particular (s,t) values, the results suggest that large values of variance are
less accurately estimated (something expected). Other scenarios have been simulated and the
results and full discussion will be reported elsewhere.

3 Colon cancer data

08 08 1.0
1

p22(1548 1)

04

T T T T T T T
1600 1800 2000 2200 2400 2600 2800

Time (days)

Figure 1: Estimated transition probabilities of poa(s,t) for s = 1549 (black line) with 95%
jackknife confidence bands (red lines) and bootstrap confidence bands (blue lines). Colon cancer

data.
For illustration, we apply the jackknife method to data from a large clinical trial on Dukeas

stage III patients, affected by colon cancer (Moertel et al., 1990). This data set is freely available
as a part of the R survival package. These data come from one of the first successful trials of
adjuvant chemotherapy for colon cancer. In this study, from the total of 929 patients that
underwent a curative surgery for colorectal cancer, 423 patients remained alive at the end of
the follow-up; 468 patients developed recurrence and among them 414 died; and 38 patients
died without recurrence. Here, recurrence is considered as state 2. Using the progressive illness-
death model, there are three states: ’Alive and disease-free’, ’Alive with recurrence’, and 'Dead’.
Figures and 3| depict the estimator paa(s,t) proposed by Meira-Machado et al. (2006)
for s = 1549 days along ¢, with 95% pointwise confidence limits obtained by the jackknife and
bootstrap methods, for the whole colon cancer data, levamisole treatment group, and levamisole
plus 5-FU treatment group respectively. From the figures we conclude that both the jackknife and
bootstrap methods report similar results, and that the jackknife confidence intervals are often
slightly narrower than those of the bootstrap (particularly true for levamisole and levamisole
plus 5-FU treatment groups).
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Figure 2: Estimated transition probabilities of pos(s,t) for s = 1549 (black line) with 95%
jackknife confidence bands (red lines) and bootstrap confidence bands (blue lines). Levamisole
treatment group, colon cancer data.
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Figure 3: Estimated transition probabilities of pos(s,t) for s = 1549 (black line) with 95%
jackknife confidence bands (red lines) and bootstrap confidence bands (blue lines). Levamisole
plus 5-FU treatment group, colon cancer data.
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Abstract. The aim is to classify a set of functional data according to a categorical variable
with more than two categories. To this end, functional linear discriminant analysis (LDA) is
considered to classify the curves. Two ways to achieve functional linear discriminant analysis
based on different penalized estimation of the PLS components are proposed. Both are based
on a two-step algorithm: first the data set is projected into a reduced number of functional PLS
components, and after that LDA is carried out on the original response variable. In order to
show the good performance of these penalized functional classification approaches, they have
been compared with the non-penalized version in an application to classify spectral data.

Keywords. Functional data analysis, Linear discriminant analysis, Partial least squares regres-
sion, P-splines, NIR spectra.

1 Overview

The aim of this work is to classify a set of functional data according to a categorical variable
with more than two categories. In fact, we are interest on functional data which are affected
by some noise or contamination. Therefore, in order to get a good classification of the samples
curves and an accurate interpretability, reduction dimension techniques and regularization must
be considered. In that sense, LDA is a consolidate technique for classification widely used in
chemometric studies. A solution to the high dimension problem is to decompose and project
the sample curves onto a small number of orthogonal components given by principal component
analysis (PCA) or PLS regression. PCA was applied to classify NIR spectral data of vegetable
oils in [I6]. In [12], PLS analysis was applied as a discriminant as well as a quantitative tool in
the analysis of edible fats and oils by Fourier transform near-infrared (FT-NIR) spectroscopy.
Once the dimension is reduced, multivariate classification techniques such as LDA, quadratic
discriminant analysis (QDA) and non-linear regression {0, 1} were applied in [10].

But sometimes functional data are not smooth and therefore some penalty or regularization
is needed. In fact, a new method called regularized discriminant analysis (RDA) which is a pe-
nalized alternative to the classical maximum likelihood estimates for the covariance matrices was
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developed in [§]. Another regularized classification method consisting of discriminant analysis
with shrunken covariances (DASCO) was proposed in [7], providing superior performance that
the old favorites. An alternative to these penalized methods is the penalized LDA proposed by
Hastie and Tibshirani [9]. A general overview of regularized techniques in discriminant analysis,
for continuous and discrete response variables, can be seen in [13]. In that context, our contribu-
tions are two different functional versions for penalized discriminant analysis based on penalized
functional PLS regression. The first one introduce a P-spline penalty in the initial estimation
of the sample curves. After that, functional LDA on the smoothed sample curves is carried out.
The second one introduce the penalty directly in the definition of the norm involved in the PLS
algorithm.

In order to show the good performance of the proposed penalized methods, they are compared
with functional LDA on non-penalized PLS components in an application to classify spectral
data.

2 Functional LDA based on functional PLS regression

In this work we are focus on LDA when the predictor X = {X(¢) : ¢ € T} is functional
(continuous and second order stochastic process whose sample paths take values in the Hilbert
space of squared integrable functions Ly([0, 7)) and the response is a categorical variable Y with
K categories. The aim of functional LDA is to find linear combinations ®(X) = fOT X(t)s(t)dt
so that the between class variance is maximized with respect to the total variance

V(E[@(X)[Y])
V(®(X))

max

Due to the infinite dimension of the functional predictor, the estimation of 5(¢) by LDA is an
ill-posed problem. In order to reduce the dimension of the data and to estimate the discriminant
coefficient functions, functional LDA based on PLS regression on functional data was proposed
in [14] taking into account the equivalence between LDA and canonical correlation analysis. In
[6] PLS regression was used in functional data classification problems.

By considering the basis representation of the functional data, a B-spline approach for func-
tional PLS regression was proposed in [I]. These functional approaches were applied to estimate
the quality of cookies from the resistance of dough during the kneading process. The case of
functional LDA for irregularly sampled curves was studied in [I1]. Following the ideas developed
in these works, in order to improve the estimation and the classification ability of functional LDA
different penalized versions of functional LDA are proposed in this paper.

Denoting by {Y; € (0,1) : i =1, ..., K — 1} the dummy variables associated to the categorical
response Y, the functional LDA-PLS model consists of performing the classical LDA of Y on a
reduced set of PLS components obtained from the PLS regression of the vector (Yi,...,Yx_1)
on the functional predictor X.

Penalized functional PLS

Non penalized PLS components ¢t = [ X (t)w (t)dt are estimated by solving the following
maximization problem

K-1
Ma.y, Cov? (/ X (t)w (t) dt, Z ciY;)
T

i=1
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restricted to ||w| = ||¢|| = 1, with |||| representing the usual norms in the spaces L3[0,7] and
REX~1 where the component weights belong to, respectively. By considering a basis representation
of the functional predictor given by

X (t) = a;o;(t),
j=1

it can be concluded that FPLS is equivalent to an ordinary PLS on the vector of variables
(U1/2) o, where W'/2 is the squared root of the matrix of inner products between basis functions
and « is the vector of basis coefficients of the functional predictor X [I].

When we are working with noisy functional data some penalization is required to get a
smooth estimation of the partial PLS weight functions. In that sense, two different penalized
functional PLS regressions are considered.

In order to smooth the estimation of the functional linear model, two different PCR and
PLSR approaches for functional data were proposed in [I5]. The main difference between our
penalized PLS versions and the mentioned above, is that these penalized estimation approaches
did not consider the functional form of the sample paths and they are based on multivariate
linear regression of the response in terms of the matrix of discrete-time observations of the
sample curves.

The first version consists of introducing a P-spline penalty [5] in the initial smoothing of the
sample curves by considering their basis representation (see [2] for more details). This type of
penalty was used in [3] for functional LDA and functional logit regression when the response
variable has only two categories {0,1}. The other version introduces a P-spline penalty in the
definition of the norm in the functional space given by ||w|? + APENy(w), with A being the
smoothing parameter and PENg;(w) a d-order discrete penalty. This penalized version of PLS
is equivalent to an ordinary PLS on the vector of variables L~'Wa, where L = (¥ + APd)l/ 2

with Py = (Ad)TAd and A? being the matrix of d-order differences between adjacent basis
coefficients.

As stated before, once the functional PLS regression is computed, classical LDA is carried
out on a reduced set of PLS components. For penalized methods, both the smoothing parameter
and the optimal number of PLS components are jointly estimated by a 10-fold-cross-validation
algorithm.

3 Results

The aim is to classify mayonnaise sauce spectra according to a categorical response variable that
represents the type of oil from which the samples of mayonnaise were made. Exactly we have
162 NIR spectra observed in 351 equally spaced wavelengths in the 1100-2500nm area based on
six types of vegetable oils (soybean oil, sunflower oil, canola oil, olive oil, corn oil and grapeseed
oil). The sample paths have been displayed in Figure

In Table [I] the miss-classification rates (MCR) for the compared methods are shown. The
good performance of the penalized versions is proved, being LDA on functional PLS regression
penalizing the norm which provides the lowest miss-classification rate. From the results on
the mayonnaise spectra we can conclude that the penalized functional classification approaches
considered in this paper significantly improves the classification with respect to the non-penalized
approach.
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Figure 1: 162 NIR spectra observed in 351 equally spaced wavelengths in the 1100-2500nm.

LDA-FPLS LDA-Pspl FPLS LDA-Penalized-Norm FPLS
MCR 14% 10% 5%

Table 1: Miss-classification rates (MCR) for LDA on a set of PLS components obtained by
non-penalized functional PLS (LDA-FPLS), functional PLS on P-splines (LDA-Pspl FPLS) and
functional PLS penalizing the norm (LDA-Penalized-Norm FPLS).
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Abstract. We develop a new minimum description length criterion for index tracking, which
deals with two main issues affecting portfolio weights: estimation errors and model misspecifica-
tion. The criterion minimizes the uncertainty related to data distribution and model parameters
by means of a generalized g-entropy measure, and performs model selection and estimation in a
single step, by assuming a prior distribution on portfolio weights. The new approach results in
sparse and robust portfolios in presence of outliers and high correlation, by penalizing observa-
tions and parameters that highly diverge from the assumed data model and prior distribution.
The Monte Carlo simulations and the empirical study on financial data confirm the properties
and the advantages of the proposed approach compared to state-of-art methods.

Keywords. g-entropy, penalized least squares, sparsity, index tracking

1 Introduction

Since Markowitz [I], an optimal portfolio in asset allocation is determined by first considering
the risk/return performance of each asset, in terms of mean and variance, and then selecting the
portfolio with the best trade-off. Portfolio weights result then to be very sensitive to changes in
parameter estimates, especially in presence of model misspecification and high dimensionality
of the problem. Thus, estimation bias may heavily affect the optimization process resulting in
suboptimal and unsatisfactory performance ([2], [3], [4]). Typically, asset returns are highly
correlated with a leptokurtic distribution, which is largely contaminated by outliers [5]. If these
statistical regularities are not properly considered, the misspecification of the data model may
result in imprecise parameter estimates. To deal with these issues, several methods have been
proposed in the financial literature, i.e. robust estimation methods, minimum divergence models
and penalized least squares. We formulate a new criterion for portfolio selection that is able to
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deal with both estimation errors and model misspecification, and develop a general algorithm
to obtain robust and sparse portfolios, i.e. with a low number of active positions.

In particular, we propose a description length criterion that codes the uncertainty about the
data and the model parameters through a g-entropy, a generalized information measure [6] that
accounts for the divergence from the assumed data model and the target prior distribution. It
enhances the robustness of the portfolio to model misspecifications by assigning a lower weight
to observations and parameter estimates that are not consistent with the assumed models. The
whole criterion performs model selection and estimation in a single step and depends on the
choice of two tuning parameters, ¢ and A\. The former manages the trade-off between accuracy
and stability of parameter estimates [7], while the latter controls the penalization of portfolio
weights.

Section 2 introduces the description length criterion. Section 3 describes the re-weighting
algorithm for portfolio selection and the special cases in which data are assumed to follow a
Normal or a t-Student distribution, while the prior distribution on the parameters is a Laplace
function. Section 4 presents the simulation study comparing the performance of our method to
the main state-of-art benchmark. Section 5 illustrates the behaviour of our portfolio selection
method in an index tracking framework with real-world financial data. Section 6 concludes.

2 Description Length Criterion

Let a financial portfolio return be defined as Y = 87 X, where X is a p-dimensional random
vector of asset returns with unknown multivariate distribution and 3 is the vector of asset
weights. Given observations x;,i = 1,...,n, let x and o2 be the portfolio expected return and
variance. Then, the true probability density function of the standardized portfolio return g(z),
can be modelled through the function f, which may be for example the standard Normal or
the t-Student distribution. Given a mean target value u = p*, we can then compute portfolio
weights Bq, y, by minimizing the following description length criterion:

=1 o

Dustp.) = - 31, {7 (H2=1) é:fq (~(5 V) 0

for fixed tuning constants A > 0 and ¢ < 1. In , L,(-) is the generalized g-logarithm

ul=q — —
S i

and 7(f;; \) is a symmetric distribution for 5; with zero mean and variance depending on A.
In the general framework, no restrictions are placed on the vector of portfolio weights 3. We
notice that when ¢ — 1, criterion is equal to maximum a posteriori (MAP) estimation of
B, where 7(3;; \) represent a prior probability density function on f;. The penalty function
7(B;; A) controls the model selection and sparsity by shrinking to zero the weights of the assets
that do not contribute to obtain a mean target value p*. From now on, 7() is assumed to
be a Laplace function and then L,(m) results in a non-convex function. In , the first term
represents the information provided by the data x; given a model, while the second term encodes
the information about the model itself, given by the prior distributions 7(53;;A). Minimizing
this criterion results in the most efficient description of the data, including the description of
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the model itself [8]. Differentiating function with respect to parameters (3,0)7, we get the
following estimating equations:

n p
0=VDy(B,0) =D wy(xi,B,0)Viog fo (x] B—p*) + D vg(B;, NVIogm(Bj;A),  (3)
i=1 j=1

where

wy(xi, B,0) = floH(x{ B =)' wg(By, ) = (BN (4)

are the vectors of weights applied to the observations and the parameters, respectively. The
weights w, downweight observations x; that diverge from the assumed data model f, while v,
downweights the |BJ| that diverge from the assumed prior distribution 7. For example, when
q < 1, the linear combinations x! 3 that are far away from the target mean p* are assigned a
small wg. If ¢ — 1, f(z) is the normal density function and w(8;\) is the Laplace function,
we recover the popular Lasso method [9], in which w; = v; = 1. However, as shown by [10],
since the weights in Lasso do not affect the optimization process, we may obtain unstable and
inaccurate results in presence of large coefficients. Our approach proposes a remedy to such
problem.

3 Re-weighting algorithms

The following section describes the weighting algorithm we introduce to estimate optimal port-
folios in the general case in which data are assumed to follow a generic ditribution f, and then
focus on the specific cases in which f is a Normal or a t-Student distribution. The aim of the
optimization process is to obtain the parameter estimates ,Bq » by minimizing criterion . Since
the L, terms are typically non-convex in 3, we divide the whole process in several convex opti-
mization steps. In particular, if we fix ¢, the vectors of weights w, and v, become w;,i =1,...,n
and vj,7 = 1,...,p, and the criterion results in a penalized likelihood problem that we can solve
with an iteratively re-weighted scheme: given the weights w; and v;, we estimate Bq, 5 by solving
equation and then update the weights using the new parameter estimates. We call this
process a doubly re-weighted (2RE) algorithm as the re-weighting is applied to both data and
penalty scores.

Algorithm 3.1.
Given the tuning constants ¢ < 1, A > 0, and a target portfolio return p*, the algorithm consists
of the following steps:

Step 0 At Iteration s = 0, compute the parameter estimates 3(8) and 5.

Step 1 Set s = s+ 1, and update the vector of weights as
—~(s 8 1) * ~(s— — ~(S (s— —
@ = f(aB = ) a), B = (BTN (5)

Step 2 Compute the parameter estimates ,B and ¢ by minimizing

> wilog f((x] B — p*) /o) + D ilogm(B); A). (6)
=1

Jj=1
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Step 3 Update B(s) and ) by solving f(XZTB —p*)/o)? for B and o.
Step 4 Repeat Steps 1 and 2 until a stopping criterion is satisfied.

In Step 3, a re-scaling operation re-centers the estimates to correct the bias arising from the
weights wy(x;, B, 0), as suggested by [7].

The parameter A controls the penalty term on the 3 coefficiants and regulates the sparsity of
the portfolio. The literature suggests to choose such tuning parameters by information criteria
like the AIC and BIC. As [I1], given a certain level of ¢, we select the optimal values of A
by minimizing the robust Bayesian Information Criterion defined as below, where k£ < p is the
number of active positions:

n TR %
BIC, = -2 L, {f (Xﬁ““> } +log(n)k. (7)
A

i—1 Ogq,

Normal portfolios

If we assume that data follow a p-variate normal distribution and 7(f5;; A) is a Laplace function,
then Y ~ N(p,0?). In this case, the 2RE algorithm can be adapted as follows.

Algorithm 3.2.
Given ¢ <1, A >0, and a target return p*:

(5) o)

Step 0 At Iteration s = 0, initialize w, ; and o).

Step 1 Set s =s+ 1, and obtain B(S) by solving
() & e [ =xIBY & e
B = argmin {Z @3 (MA( Z Y18 (8)
i=1 j=1
Step 2 Update the vectors of weights as

o (s—1)\ 2 1—q
_(s—-1) _ [ 1 (“* —x; ( 1)) -I _(s—1)

YT [V2wa2(5 DA EET=IC | i

~Gewfol] o

Step 3 When the portfolio variance is a fized target o*2, we set 525) = o*2, for all s > 0;
otherwise )
-1 ~(s—1)
D ﬁ’f’s ) (M* - Xz'T )

—(s—1
a3 wgs :
Step 4 Repeat Steps 1 to 3 until a stopping criterion is satisfied.

o2(9) = (10)

The optimization function in is a weighted Li-penalized least squares problem that we
solve by applying the gradient projection algorithm developed by [12]. Other algorithms, like

coordinate wise and quadratic optimization ([9]), could be used to efficiently estimate 3(8
However, as the gradient projection is faster and updates parameters and solutions by using the
optimal values of the previous iteration as warm-start points ([I3]), we rely on it for solving the
penalized least squares problem.
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t-porfolios

If we assume the portfolio Y to be a non standardized t-Student distribution with mean pu,
variance o and number of degrees of freedom v > 1 (i.e. Y ~ f,(p,0)), then Step 2 of the 2RE

algorithm computes {B(S), )} as

argmin {—(V—FI)Z’@ 2 log{l (“80} Zp: . I)WJ} (11)

B’U

where 0 > 0. While the penalty weights v; are updated as in @, the data weights w; are
obtained as

s— 1—q
o = {f,,( gt A(S*U)} Ci=1,...n. (12)

When data are assumed to follow the nonstandardized t-Student distribution and A — 0, equa-
tion results in biased estimates for 3 and o. Thus, according to Proposition 1 in [7], we solve
this issue by adjusting the degrees of freedom parameter: we use v, = qv + (¢ — 1) instead of v.
Also, the optimization function represents a non-convex problem, which results in imprecise
estimates if solved directly. Therefore, by writing a t-Student observation as a scale mixture
of normals Y; ~ N(u,02Z; 1), where Z; follows a Gamma distribution Z; ~ Ga(v/2,v/2), we
derive an EM algorithm, which efficiently estimates the optimal solutions as follows.

Algorithm 3.3.

For any s > 0, we set the initial weights z; = 1/n, i = 1,...,n and estimate B(S) and )
through the expectation-mazrimization steps:

M-Step FEstimate B and o as

. ~(5—1) ~(s— 1 XlTIB_ ? P ~(5—
g = amgm”{ e (M) A gy, (1)
j=1

n
7
i=1
~(s—1
1) (s

~ 2
p_ TmeE Y (B - p) v
o° = DD X . (14)
PIRET M (r+1g—1
E-Step Update the mizing constants z;, such that
)0’
% = (v + 1)o L i=1,...,n, (15)

e A
4 Simulation study

In the following simulation study, we evaluate and compare the behaviour of the 2RE algorithm,
for both normal (GDL_N) and t-Student portfolios (GDL_t), with respect to the Lasso penaliza-
tion model. In particular, we want to test the robustness of the proposed methods in presence of
outliers and correlated assets X. We simulate data from a multivariate t-Student distribution
with v degrees of freedom: t,(p,X,v), where p; = 1, if j < k, and p; = 0, if j > k, and
the covariance matrix has diagonal elements ;; = 1, j = 1,...,p, and off-diagonal elements
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ik =p, 0 < p<1j#k We construct four settings by considering four different levels of
correlation between assets, p = 0.2,0.4,0.6,0.8. For each setting, we generate B = 50 samples
with n = 500, p = 50, k£ = 10.

We evaluate the average performance of the B portfolios in terms of sparsity, model selection
performance and risk /return characteristics with respect to a specifc target ©* = k. In particular,
we compute (i) the number of active positions as k = b I(\BJ] > 7), where 7 = 0.005 is a
threshold value, below which the estimated weights are set equal to zero; (ii) the F-measure
to assess whether the portolios select the “correct” assets, which in our model are the ones
in the first k& positions; (iii) the Monte Carlo mean squared error to compare the risk/return
performance to the specified target:

2
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where, given a vector 3, the support is equal to supp(3) = {j : |5;| > 7}, and 8" represents the
vector of weights whose first k& positions are equal to 1.

For each setting, we set ¢ = 0.9 and select from a grid of values the A associated to the
model with the lowest BIC. We then compare the average portfolio performances with the ones
obtained using Lasso. As specified in Section [3] we handle the optimization problem by using the
DC-programming as proposed by [13]. As the EM algorithm is very sensitive to the initialization
of 3, we initialize the Lasso and the GDL_N algorithms with the OLS [ estimates, while the
GDL_t approach uses instead the optimal estimates obtained by the GDL_N. Finally, the initial
vectors of weights w; and v; are set equal to w; = 1/n and v; = 1/p.

Figure |1 shows from left to right the boxplots of the average number of active positions k
estimated by the GDL methods and Lasso (a), and the relative F-measure (b) and MSE (c)
obtained in 50 simulations for different values of correlation p = 0.2,0.4,0.6,0.8 on the x-axis.
We can compare the performance of the three methods in terms of sparsity and selection ability,
and analyse their robustness in presence of correlated data.

First of all, we notice that the GDL criteria estimate much sparser portfolios than Lasso for
each value of p. The number of active positions is very close to the optimal value of 10 and it is
not influenced by the level of correlation between assets (Panel (a)). The stability of the GDL
criteria represents a clear advantage when comparing with Lasso, whose performance becomes
worse when p increases: on average it selects approximately 17 assets when p = 0.2 and 27
assets when p = 0.8, against the 8 and 11 assets selected by the GDL_t with p equal to 0.2
and 0.8, respectively. In terms of F-measure, the GDL approaches obtain better performance
than Lasso as closer to 1, showing very good model selection properties. However, for all the
methods, the average value of F-measure highly depends on the level of p (Panel (b)): when
data exhibit low correlation, Lasso obtains a value of 0.74 while GDL_N and GDL_t are closer
to the maximum of 1, that represents the case in which we select the correct vector of assets 8%;
when data are highly correlated, Lasso presents a value of 0.52, while the GDL methods obtain
approximately 0.6. The GDL_N and GDL_t algorithms show similar results in terms of sparsity
and F-measure since they both select the same active positions and their estimated weights
differ only in magnitude. Finally, we analyse the overall performance of the three methods with
respect to the return target p* by comparing their MSE. Though the two GDL criteria slightly
differ in their results, they both outperform the Lasso, whose performance get much worse when
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data show high correlation (i.e. with p = 0.8 the MSE is twice the value obtained with p = 0.2).
As expected, given that the true model is a t-Student one, the GDL_t obtains the lowest MSE in
all settings, indicating very good performance. However, this advantage might also result from
the initialization of the vector of 8 as the optimal solution of the GDL_N algorithm.
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Figure 1: Average number of estimated active positions /;‘, F-measure and Mean Squared Error
for different levels of correlation p in 50 simulations, using GDL for Normal and t-Student, and
Lasso methods.

Further simulations considering different set-ups support the main reported findings. Results
are available upon request. This study points out the main advantages of the proposed approach
with respect to a well-known benchmark: (i) the sparsity of the selected portfolios obtained by
penalizing and weighting the vector of asset weights /3; (ii) the high robustness of the estimates in
presence of correlation between assets, which is ensured by weighting the observations according
to their divergence from an assumed distribution.

5 Sparse and Robust Index Tracking

In this section, we test our approach in an index tracking framework, where we try to reproduce
the performance obtained by a certain index by selecting a vector of active weights only for some
of its components, in order to limit transaction and managing costs. The optimization problem
can be described as a regression problem, where the dependent variable y represents the vector
of index returns and X is the return matrix of its components.

Using a penalized technique may help to obtain good out-of-sample performance with respect
to the index by optimally selecting a small number of components. In order to evaluate the
behaviour of the proposed GDL criteria, we focus on three financial indexes by using n = 1401
daily return observations of the Fama & French 100, the S&P 200 and the S&P 500, with
different number of constituents p, equal to 100, 200 and 500, respectively. For each index, we
compare the performance of three strategies: the GDL for Normal and t-Student portfolios, and
the Lasso.

We estimate the optimal portfolios using a rolling window sample of 250 observations, and
compute the excess return of the first out-of-sample observation with respect to the index. For
the GDL criteria, we set ¢ = 0.9 and select the A in each window as described in Section [3] First,
we evaluate the risk /return performance of the optimal portfolios through the Information Ratio
(IR), which is computed dividing the excess return by the tracking error volatility (TEV). Then,

Q@ COMPSTAT 2014



164 Sparse and Robust Index Tracking

we check sparsity by means of the number of estimated active positions k and finally, we test
the tracking ability computing the correlation with respect to the index.

Strategy ER (%) TEV (%) IR k TO  Cor
PANEL A: F&F 100

GDL N  0.338 0.624 0542 37.749 0.068 0.999

GDLt  0.170 0.492  0.346 32.241 0.066 0.999

Lasso  1.030 2.117  0.486 65.939 0.017 0.990
PANEL B: S&P 200

GDL N  0.319 4500  0.071 36.950 0.399 0.963

GDL t -2.421  4.897  -0.494 28431 0.520 0.933

Lasso  4.760 7.267  0.655 66.532 0.037 0.950
PANEL C: S&P 500

GDL N  2.906 6.966  0.417 | 44.564 0.605 0.932

GDL t  1.192 9.018  0.132 27.770 0.811 0.872

Lasso 2986  10.315  0.289 66.407 0.053 0.926

Table 1: Out-of-sample statistics of each tracking portfolio: strategy (column 1), annualized
excess return ER (column 2), tracking error volatility TEV (column 3), Information Ratio IR
(column 4), average number of active components k (column 5), turnover TO (column 6), cor-
relation w.r.t. index Cor (column 7).

Table |1 shows the out-of-sample statistics of each tracking strategy. In terms of IR (Column
4), the GDL_N has the best performance for F&F 100 and S&P 500, while the Lasso outperforms
the other strategies in the second dataset, S&P 200. However, the GDL criteria always obtain
a lower out-of-sample TEV (Column 3), which is a characteristic already underlined in the
simulation study, where the GDL showed smaller MSE than Lasso. This result is even more
important if we consider that the GDL strategies select very sparse solutions for each dataset
(Column 5). While the Lasso always uses approximately 66 positions, the GDL strategies select
35% of the available assets for the first index, less than 25% for the second index and less than
10% for the third index. In terms of tracking ability, the GDL_N portfolios achieve values of
Cor near 1 and outperform the Lasso by closer tracking the indexes, especially in small dataset,
where the TEV is lower.

6 Conclusion

In this paper we propose a generalized description length criterion to obtain sparse and ro-
bust portfolios in presence of estimation errors and model misspecification. By relying on a
g-entropy measure, the approach minimizes the uncertainty about the distributions of data and
model parameters by assigning a lower weight to observations and parameters that diverge from
the assumed models. After deriving the general estimation algorithm, we specify two interesting
cases, in which data are assumed to follow a Normal or a t-Student distribution, and develop the
corresponding algorithms, GDL_N and GDL_t. The simulation study supports the theoretical
properties of the GDL criterion and shows that it achieves better performance in terms of spar-
sity, stability and robustness of the estimates with respect to the well-known Lasso benchmark,
especially when data exhibit high correlation. The empirical results presented for the index
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tracking framework show that the GDL criterion is able to obtain good out-of- sample estimates
and reproduce the performance of an index by using only a small number of its components in
order to limit transaction and managing costs.
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Abstract. We applied data mining techniques to explore survival in a sample of 6’203 adults
(age range 42-93 years), living in the Manchester and Newcastle-upon-Tyne (UK.) arcas. We
were particularly interested in the relations between cognitive performance and mortality pre-
diction. Participants were assessed up to four times over 20 years on several psychological and
health-related variables and were also administered an extensive battery of cognitive tasks. We
applied linear mixed models to estimate level of cognitive decline and change (mostly decline)
therein for each individual. We then utilized Cox proportional-hazards modeling to predict
time to death based on levels of and changes in cognitive performance, and on demographic
and social predictors. Next, to gain further insight into the survival process, we used recently
developed induction trees and ensemble methods. These models allow studying complex and
asymmetric interactions and non-additive functions of model predictors. Particularly relevant to
our theoretical purposes, the random forest approach allowed us to identify a set of demographic
and cognitive variables that strongly influenced survival. We conclude that induction trees and
ensemble methods are a useful extension to more classical models in that they are not limited
by common modeling assumptions and can reveal complex patterns of relation.

Keywords. longitudinal data mining, survival analysis

1 Introduction

The prediction of selected outcomes is of central importance to scientific inquiry, and statistical
modeling is essential to this endeavor. When the outcome is a specific event, such as death, and
the investigative aim is to predict the amount of time preceding this event, the preferred approach
is generally survival analysis [I]. In survival analysis, the dependent variable is indicative of the
occurrence of the event of interest, contingent upon the amount of time elapsed before the
event. A survival model can also accommodate data from observations for which the event has
not occurred (i.e., right-censored data).
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In survival analysis the specification of predictors is not limited to their main (direct) effects.
Interaction (indirect) effects, generated via multiplications of predictors, can also be tested. Such
interactions are additive, in that they add to (or subtract from) the main effect the amount of
influence contingent upon levels of one or more additional predictors. There are four limitations
of this conceptualization of interactions. First, such interactions are typically specified by the
analyst a priori, and this excludes the exploration of all indirect effects of a predictor. Second,
statistical reliability requires the interactions to be defined over the entire data space. However,
in practice the data are often too sparse to include all instantiations of an interaction. Third,
although testing higher-order interactions is possible, for instance by multiplying more than two
variables, the interpretation of such interactions is often arduous. Therefore, analysts typically
limit their analyses to include two-way interactions. Fourth, the statistical complexity inherent
to nonlinear interactions often prohibits researchers from examining them.

One approach to address these shortcomings, and thereby gain further insight from classical
survival regression models, is to employ Induction Trees (ITs; also called Classification and
Regression Trees, [2]), a family of data mining techniques that originated from the machine
learning literature. ITs have gained much interest in genetics, epidemiology, and medicine,
where oftentimes the analyst faces the so-called “small n, big p” problem, in which data from
a large number of variables is obtained from relatively small samples of observations. For an
excellent introduction to ITs and extensions thereof, see [19].

Here, we will use survival trees to explore demographic, social, and cognitive performance
variables as predictive of survival in a large sample of British adults who were tested repeatedly
across a span of 20 years. Although our application of ITs does not fall within the “small
n, big p” situation, we apply survival trees to extend our knowledge about the survival process
gained from classical survival models. In particular, we explore complex, asymmetric interactions
among predictors, as well as non-additive functions of the predictors. Finally, we apply recently
developed ensemble methods, to examine the robustness of the survival tree results.

2 Sample and Measures

Sample

The data come from the University of Manchester Longitudinal Study [I7], a large-scale 20-
year longitudinal examination of cognitive performance in a large sample of cognitively healthy
adult individuals, who initially ranged in age from 42 to 96 years. The original researchers
tracked changes in a large number of variables related to participants’ demographics, cognitive
functioning, social functioning, health, etc. Owverall, the sample includes 6203 volunteering
participants. The majority (70.6%) were female, and overall 45.5% came from the Greater
Manchester (UK.) area, while the remaining 54.5% from the Newcastle-upon-Tyne (UK.) area.
Participants did not suffer from major visual or auditory handicaps and could wear corrective
aids during assessments. The Registrar General’s Scale of Occupational Categories [14] was
used to classify participants according to six levels of socio-economic status: professional (4.7%),
intermediate (31.6%), non-manual (26.8%), manual skilled (21. 6%), partly skilled (7.4%), and
unskilled (0.8%) - for 7.1% this information was unknown.

The most recent mortality update by the researchers at the University of Manchester took
place in August 2012. At that point, 1906 of the initial participants were still alive, 4085 were
deceased, and information were not available for the remaining 212 individuals.
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Cognitive assessment

Two cognitive batteries were administered to participants. Both batteries contained tasks as-
sessing perceptual speed (the speed at which simple, abstract information is processed), fluid
intelligence (basic cognitive abilities such as reasoning, independent of prior learning and acquisi-
tion), crystallized intelligence (higher-order abilities to use cultural, educational, and vocational
knowledge and experience to learn new information), and memory (verbal and visual types).
Table [1] outlines these tasks, classified according to the cognitive domain assessed, and accom-
panied by the abbreviations, to which we refer hereafter. Participants were tested in groups
of 5-20 by two trained experimenters in well-lit, comfortable and quiet rooms. At each testing
occasion, tasks were administered across two sessions of about 90 minutes each. Further detail
is available in [I7] and [7].

Domain Task Abbreviation
Perceptual speed Visual search VS
Perceptual speed Alphabet coding task act
Perceptual speed Semantic reasoning ST
Fluid intelligence Heim intelligence test 1 aha
Fluid intelligence Heim intelligence test 2 ahb
Fluid intelligence Cattell’s culture fair test cft
Crystallized intelligence Raven Mill Hill vocabulary A mha
Crystallized intelligence Raven Mill Hill vocabulary B mhb
Crystallized intelligence  Wechsler’s Adult Intelligence Scale - vocabulary waisv
Verbal memory Verbal free recall vir
Verbal memory Cumulative verbal recall cvr
Verbal memory Immediate verbal free recall ivir
Verbal memory Propositions about people pap
Verbal memory Memory objects mo
Visual memory Picture recognition pr
Visual memory Shape + spatial locations shspl

Table 1: Cognitive tasks assessed in the University of Manchester Longitudinal Study.

We performed all analyses in the open source and freely available R language and environ-
ment. In a series of preliminary analyses we applied linear mixed-effects models to analyze
cognitive performance as a function of age. This is typical in developmental psychology, where
an age-appropriate description of phenomena is of major theoretical interest. This analytical ap-
proach allowed us describing both the sample average trajectory (fixed effects) of each cognitive
task and the individuals deviations (random effects) from the sample average trajectory. The
analyses thus characterized individuals with respect to their overall average performance and
also their rate of linear change (typically decline) in performance across the repeated measures
(i.e., as individuals aged). From those analyses we estimated each participant’s intercept and
linear slope score, to be used here as markers of cognitive performance to predict survival. The
association between cognitive decline and mortality is a theme of long-lasting interest in the
psychological literature (for a recent review see [6l [7]). Note that for two tasks (mhb and waisv)
there were no reliable interindividual differences in change, hence no estimate of linear slope
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could be obtained. The usual assumptions of linear mixed-effects models (normality of random
effects and of residuals, homoskedasticity of residuals; [15]) were not violated (clearly the large
sample size was advantageous for estimation).

3 Survival analysis

Next, we estimated survival using the well-known Cox proportional-hazards model [4]. Given
that we had no a-priori hypothesis concerning interactions between predictor variables, we only
tested their main effects. In a first model we included participants’ (a) initial age upon entry into
the study, (b) sex, (c) city of origin, (d) socio-economic status, and (e) cognitive performance,
in terms of intercept and linear slope scores for each cognitive variable. We used the package
survival (version 2.37-7) of the R (version 3.1.0) language and environment [16].

When we checked the proportional-hazards assumption of this first model, it was clear that
the hazards were non-proportional for initial age, sex, and city. We thus specified a second sur-
vival model that included interactions of survival time with age, sex, and city. The proportional-
hazards assumption of this second model was met for all predictors (except, as expected, for the
interactions with time). Furthermore, there were no particularly influential observations, nor
evidence of nonlinearity (for a full description of model diagnostics see [5]).

Table [2] shows the parameter estimate of each predictor of the second survival model. For
space reasons, we only include predictors whose parameter estimate appears, according to the
z-test, to be different from zero.

Predictor estimate exp(est.) lower 95% upper 95% z-value p-value(> |z|)
AgeFirst_Aprox 1.654e+00 5.227e400 4.771e4+00 5.726e4+00 35.534 < 2e-16
AgeFirstLast -1.972e-02  9.805e-01  9.794e-01  9.815e-01 -36.773 < 2e-16
Female -2.005e4+00  1.346e-01  2.794e-02  6.485e-01  -2.500 0.012427
FemaleAgeLast 2.255e-02  1.023e+00 1.004e+00 1.042e4+00  2.386 0.017040
Newcastle 3.901e4+00 4.944e+01 9.020e+00 2.710e+02  4.494 7.00e-06
NewcastleAgeLast -4.897e-02  9.522e-01  9.333e-01  9.715e-01  -4.792 1.65e-06
LinearSlope.aha 8.161e-01  2.262e+00 1.191e+00 4.295e+00  2.494 0.012631
LinearSlope.ahb -6.256e-01  5.349e-01  3.119e-01  9.175e-01  -2.273 0.023046
Intercept.mha 5.197e-02  1.053e+00 1.020e4+00 1.088e+400  3.145 0.001659
LinearSlope.mha  -3.258e¢4+00 3.846e-02  2.290e-03  6.459e-01  -2.264 0.023593
Intercept.mhb -2.207e-02  9.782e-01  9.587e-01  9.980e-01  -2.154 0.031256
Intercept.vfr 3.340e-02  1.034e4+00 1.005e4+00 1.063e4+00  2.338 0.019398
Intercept.cvr -2.250e-02  9.778e-01  9.595e-01  9.963e-01  -2.346 0.018955
LinearSlope.cvr 1.117e+00 3.057e4+00 1.602e4+00 5.833e+00  3.389 0.000702
LinearSlope.cft -1.757e-01  8.389e-01  7.617e-01  9.239e-01  -3.567 0.000361
Intercept.shspl -7.982e-02  9.233e-01  8.555e-01  9.965e-01  -2.050 0.040316

Table 2: Results from a survival analysis (only significant estimates are shown). These estimated
effects correspond to the “hazard” of death as an outcome (i.e., the log-odds change in probability
of death, with smaller values indicative of relatively longer projected life span).

As expected, initial age influences the hazard of death (for each additional year, the hazard
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increases by over 400%). This effect, however, diminishes with age (by about 2% per year).
Females have a hazard of dying that is 87% that of males. This proportion, however, diminishes
by 2% per year. The hazard of death of residents of Newcastle-upon-Tyne is nearly 5000% that
of Mancunians, and this disadvantage diminishes by 4% each year. Finally, performance on
several cognitive variables, both in the intercept and in the linear slope, is related to survival.

Although the diagnostics of this model were satisfying and no estimation issues appeared,
the very high estimates of a age and city may indicate the fragility of this solution. This may
be due, in part, to a bad specification with respect to interactions among predictors [19]. We
thus turn to induction trees and ensemble methods to verify these doubts.

4 Survival tree

To test for complex, asymmetric interactions we computed a survival tree on the same data, using
the package party (version 1.0-13)[9]. This package computes survival trees based on accelerated
failure time models, rather than Cox proportional-hazards model, mainly because of four specific
issues: (a) to handle both censored and uncensored data within the same model; (b) to remove
restrictive model assumptions (in particular that hazards may not be proportional but rather
accelerate linearly or nonlinearly with time); (c) to deal with problems of high dimensionality
(when a large number of predictors is tested); and (d) to accommodate selection and evaluation
of models with strict statistical criteria (for more details see [10]).

A survival tree classifies observations into groups based on the proximity of their survival
information, contingent upon the predictors of the model. For each predictor, the cutoff value
that maximally discriminates the survival information into two groups is found. This procedure
is dictated by well-defined statistical criteria such as entropy measures (e.g., Gini Index, Shannon
Entropy). A predictor may intervene multiple times in the overall tree, and may thus interact
with other predictors that also produce a separation into two groups.

The resulting survival tree is shown graphically in Figure In the end, 19 groups are
distinguished based on their survival information. These are arranged from left to right in
ascending survival order. As can be seen, these groups are defined based on complex interactions
among several predictors. For instance, the group with the lowest survival is composed of 59
individuals younger than 67 years, males, with a linear slope score of cft lower than or equal
to -3.265, and a linear slope score of sr lower than or equal to -0.427. The group with the
highest survival is composed of 18 individuals older than 85 years (the package also displays this
information in a text output, not shown for space reasons). This analysis shows that relatively
older individuals at the start of the study were less likely to die at an earlier age than more
youthful participants (a manifest selectivity effect).

Sex appears three times as an important discriminant variable, in interaction with initial
age and with several cognitive predictors. Five cognitive variables also appear as discriminant,
mainly with respect to their change information (linear slope rather than intercept). This indeed
confirms that individuals with accelerated rates of cognitive decline have lower probabilities of
survival into old age than those with shallower rates of cognitive loss.
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Figure 1: Results from a survival tree

5 Random survival forest

A wary data analyst will quickly worry about overfitting when applying a survival tree. That
is, the tree may classify observations not only with respect to their survival information (i.e.,
signal), but also as a function of sampling randomness present in the data (i.e., noise) [3, [19].
Breiman [3] therefore proposed a systematic, repetitive tree procedure called random forests to
avoid problems of overfitting.

Random forests have two highly desirable properties. First, they bootstrap subsamples to
compute separate trees, thereby checking the robustness of results. Second, random forests check
the robustness of the predictors in discriminating observations with respect to the outcome.
Indeed, in a random forest, at each branch of the tree a randomly chosen predictor from a
limited number of predictors is chosen to discriminate observations. This guarantees that the
final results are not only valid across a large number of subsamples, but also that they point to
a consistent set of important (discriminant) predictors.

In a typical forest a large number of trees is computed (generally the default value is 1’000).
Each tree is derived from a portion of the complete data (usually two thirds of the total ob-
servations), and the validity of the structure implied by the tree is then checked against the
data not used in its generation (called out-of-bag observations). By combining this information
across all trees of a forest, it is possible to estimate the relative influence, or importance, of
each predictor in relation to the survival outcome. This procedure is robust to overfitting and
outperforms many other classifiers, such as discriminant analysis, support vector machines, and
neural networks [3, [13].

To compute random survival forests and obtain variables’ importance measures we used the
randomForestSRC package (version 1.4.0) [II], 12]. Results of a random forest are summarized
over a high number of trees, each computed on different bootstrapped observations and based on
a different subset of predictors. As such, these results cannot be simply displayed graphically.
It is, however, possible to estimate two pieces of information: the overall error rate (based
on the prediction of the out-of-bag observations) and a relative importance measure for each
predictor. These can conveniently be displayed, as in Figure We see that the error rate of
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the forest (estimated at 34.75%) is minimized after about 900 trees, which indicates that 1’000
trees are sufficient to obtain a stable solution. Moreover, we see that by far initial age is the
most important variable, followed by several markers of cognitive change.

In a follow-up analysis we recomputed a random survival forest but excluded initial age. We
observed that the most important cognitive predictors remained unchanged. Also, to check the
robustness of the initial survival forest, we computed a number of additional analyses, in which
we systematically altered the number of variables randomly sampled from all predictors at each
branch. As suggested by Breiman (see [I3]), we estimated forests, which used either twice the
default or half the default number of predictors for each branch. In all cases, the error rate was
subject to minor changes (less than 1%) and the relative importance of the predictors remained
virtually the same. Moreover, 1’000 trees always resulted in stable estimates of error rate and

variable importance.
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Figure 2: Results from a survival tree

6 Conclusions

In this application, we wanted to explore the robustness of the results of a Cox proportional-
hazards model, despite the fact that the model’s diagnostics were reassuring (indicating that
the assumptions were probably met). Moreover, we wanted to avoid overfitting the model to
our data. The statistical approach illustrated here allowed us obtaining further evidence in
favor of the psychological hypothesis stating that individuals with steeper cognitive decline are
more likely to die at an earlier age than individuals with age-resistant trajectories of cognitive
performance. Furthermore, this predictive effect appears pervasive across multiple cognitive
domains, rather than specific to a given domain.

Modern computational means allow implementing easily random survival forests even on
basic, inexpensive portable computers. This statistical procedure, which relies heavily on re-
sampling techniques, can thus be used to complement classical “one-shot” predictive analyses or
even replace them when adequate. Finally, the R language and environment allows implementing
induction trees and random forests on a wide variety of operating systems. Examples and tuto-
rials are available on the internet and will certainly become more numerous in the near future.
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For all these reasons we think that induction trees and random forests, and, more generally,
ensemble methods are a readily available opportunity that should not be ignored by modern
data analysts.
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Abstract. Markowitz portfolios often result in an unsatisfying out-of-sample performance, due
to the presence of estimation errors in inputs parameters, and in extreme and unstable asset
weights, especially when the number of securities is large. Recently, it has been shown that
imposing a penalty on the 1-norm of the asset weights vector not only regularizes the problem,
thereby improving the out-of-sample performance, but also allows to automatically select a
subset of assets to invest in. Here, we propose a new, simple type of penalty that explicitly
considers financial information and consider several alternative non-convex penalties, that allow
to improve on the 1-norm penalization approach. Empirical results on U.S.-stock market data
support the validity of the proposed penalized least squares methods in selecting portfolios with
superior out-of-sample performance with respect to several state-of-art benchmarks.

Keywords. Penalized Least Squares, Regularization, LASSO, Non-convex penalties, Minimum
Variance Portfolios

1 Introduction

The Markowitz mean-variance portfolio model [I] is the cornerstone of modern portfolio the-
ory. Given a set of assets with expected return vector g and covariance matrix ¥, Markowitz’s
model aims to find the optimal asset weight vector that minimizes the portfolio variance, sub-
ject to the constraint that the portfolio exhibits a desired portfolio return. Since p and 3 are
unknown, some estimates g and 3 must be obtained from a finite sample of data to compute
the optimal asset allocation vector. As financial literature has largely shown, using sample es-
timates can hardly provide reliable out-of-sample asset allocations in practical implementations
[21,[31,[41,15],[6]. [7], [8], [2], and [9] already provided strong empirical evidence that estimates of
the expected portfolio return and variance are very unreliable. Here, we focus on the minimum-
variance portfolio (MVP), which relies solely on the covariance structure and neglects the es-
timation of expected returns altogether [10],[11],[12],[13],[14],[15],[16]. Somewhat surprisingly,
MVPs are usually found to perform better out-of-sample than portfolios that consider asset
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means [I7, [I11 [6], because the (co)variances can be estimated more accurately than the means.
A superior performance also prevails when performance measures consider both portfolio means
and variances. Nevertheless, MVPs still suffer considerably from estimation errors [10],[11],[12].

One stream of research has recently focused on shrinking asset allocation weights by using
penalized least squares methods. Among the first contributors, [I8] and [19] use ¢;-penalization
to obtain stable and sparse (i.e. with few active weights) portfolios, which is an adaptation of
the Least Absolute Shrinkage and Selection Operator (LASSO) by [20]. The LASSO relies on
imposing a constraint on the £;-norm the regression coefficients 3 € R, where ¢; = |31| +
... + |Bk|. Recently, [14] provide both theoretical and empirical evidence supporting the use of
{1-penalization to identify sparse and stable portfolios by limiting the gross exposure, showing
that this causes no accumulation of estimation errors, the result of which is an outperformance
compared to standard Markowitz portfolios. Further examples of penalised methods applied in
the Markowitz framework are [21], 22, 23], and [15].

Despite the appeal of using ¢;-penalization in portfolio optimization to estimate (numerically
stable) asset weights and select the portfolio constituents in a single step by solving a convex
optimization problem, [24] show that the ¢1-penalty, as a linear function of absolute coefficients,
tends to produce biased estimates for large (absolute) coefficients. As a remedy, they suggest
using penalties that are singular at the origin, just like the ¢;1-penalty, in order to promote
sparsity, but non-convex, in order to countervail bias. Ideally, a good penalty function should
result in an estimator with three properties: unbiasedness, sparsity, and continuity. Then, new
non-convex penalties such as the so-called Smoothly Clipped Absolute Deviation (SCAD) , the
Zhang-penalty, the Log-penalty and the ¢, -penalties with 0 < ¢ < 1 were introduced (e.g. see
[25] for a comparison). The seemingly nice properties of non-convex penalties come at the
cost of posing a difficult optimization challenge, which, however, can nowadays be solved quite
efficiently by using a dual-convex appraoch, as suggested by [25]. An alternative to non-convex
approaches, which can still retain the oracle property, has been suggested by [26]. His approach
is now known as the adaptive LASSO and has proven to be able to prevent bias while preserving
convexity of the optimization problem, and thus clearly alleviates the optimization challenge as
compared to the non-convex approaches.

This work contributes to the literature on portfolio regularization by proposing a new, simple
type of convex penalty, which is inspired by the adaptive LASSO and explicitly considers financial
information to optimally determine the portfolio composition. Moreover, we are the first to apply
non-convex penalties in the Markowitz framework to identify sparse and stable portfolios with
desiderable out-of-sample properties, when dealing with a large number of assets.

2 Penalized Approaches for Minimum Variance Portfolios

Given a set of K assets and a penalty function p(-), the regularized minimum-variance problem
can be stated as:

K
w* = argmin {'w’Ew +A Z p(wi)} (1)
weRK i=1
subject to Vew =1, (2)

where w* is the optimal (and potentially sparse) (K x 1)-vector of asset weights, 1 is a (K x 1)-
vector of ones and A is the regularization parameter that controls the intensity of the penalty and
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thereby the sparsity of the optimal portfolio. The optimization problem can be re-written
as a penalized least square problem.

Assuming we estimate X by > and we set A=0, the solution to problem — is the MVP,
where the optimized portfolio weights vector w* is (over)fitted to the correlation structure in
E, thereby assuming absence of estimation error and unlimited trust in the precision of the
estimate E, which is obviously very naive. On the contrary, whenever A >0, the penalty term
Zfil p(w;) will allow to control for the estimation error by selecting only few active weights.
The larger A, the smaller the number of active weights and the total amount of shorting. The
optimal solution w* is thus determined by a trade-off between the estimated portfolio risk and
the corresponding penalty term, whose magnitude is controlled by A.

In this work, we focus on penalty functions p(-) that are singular at the origin and thus allow
a shrinkage of the components in w to exactly zero. Hence, the corresponding approaches not
only stabilize the problem to improve the out-of-sample performance, but simultaneously also
conduct the asset selection step. Table [I] reports the definition of the six penalties functions we
consider.

The Least Absolute Shrinkage and Selection Operator (LASSO) has already received consid-
erable attention in the portfolio optimization context and therefore we choose it as a benchmark
to test the validity of the newly proposed approaches. Due to the budget constraint, the mini-
mum value that ||w||; can be shrunk to is one. This is possible only when the portfolio weights
are shrunk towards zero until they are all non-negative, identifying the so-called no-shortsale
portfolio. Increasing values of A cause the construction of portfolios with less shorting, or more
precisely, with a shrunken ¢;-norm of the portfolio weight vector. This prevents the estimation
errors contained in ¥ from entering unhindered in the portfolio weight vector. Note that while
the intensity of shrinkage is controlled by the value of A, the decision as to which assets to shrink
and to which relative extent is determined by the estimated correlation structure.

The weighted Lasso approach, henceforth w8Las, was proposed in its statistical formulation
by [26] to countervail the difficulties of the LASSO that are related to potentially biased esti-
mates of large true coefficients [24]. The idea is to replace the equal penalty that is applied to all
coefficients (here portfolio weights) with a penalization-scheme that can vary among the K port-
folio weights. This can be achieved by introducing a weight w; for each of the absolute portfolio
weights |w;|. In general, the intuition is to over- or underweight some assets in comparison to
the LASSO in order to improve performance. Specifically, this intuition depends on the method
used to determine the w;, for which no “blueprint” exists in a portfolio optimization context. We
suggest determining the (individual) regularization weights A; by considering specific financial
time series properties that are ignored when many, e.g. 7'=250, historical observations are used
to estimate one (constant) covariance matrix. In particular, we focus on comparing short-term
and log-term estimates of the volatilities to extract some signals, such that if the short term
volatility is below the long-term volatility estimate, a smaller penalty A; is applied and, con-
sequently, a larger portfolio weight in comparison to the LASSO. Due to space limitations, we
refer to [27] for a detailed description of the implementation of the w8Las penalty.

While LASSO and w8Las are convex penalties, as Figure [I| shows, the remaining four penal-
ties (i.e. SCAD, Zhang, Log and ¢, with 0 < ¢ < 1) are non-convex and allow to deal with
the potentially biased LASSO estimates of large absolute coefficients. The economic intuition
behind the non-convex penalties is as follows: if the true correlation of assets is high, shorting
can reduce the risk, since it accounts for true similarities of the assets instead of being the result
of overfitting. Analogously, large portfolio weights tend to be appropriate if the true correlations
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Table 1: Penalties
penalty Ap(w;) domains
LASSO = Xws]| all
w8Las = Aw;|w;] all
)\|wi| 2 2 ‘wzl S A
SCAD = ¢ =—hmlfBadlwd =22 3 | < ad
(a+1)A2 aX < |w;|
2
Aw; )
Zhang = w;| lwi| <n
An n < |w|
Lg = w9, 0<g<1 all
_ Aln(jwi|+¢)
Log = _\n(¢) all
Lasso-penalty w8Las—penalty SCAD-penalty
0.02 0.02 0.02
0.015 0.015 0.015
0.01 0.01 0.01
0.005 0.005 0.005
(0) (0) = (0]
-0.25 -0.13 0 0.13 0.25 -0.25 -0.13 0 0.13 0.25 -0.25 -0.13 0 0.13 0.25
W W W
Zhang-penalty Lg-penalty Log—penalty
0.02 0.039 0.75
0.015 0.029 0.563
0.01 0.02 0.375
0.005 0.01 0.188
0, 0, (0)
-0.25 -0.13 0 0.13 0.25 -0.25 -0.13 0 0.13 0.25 -0.25 -0.13 0 0.13 0.25
w w w

Figure 1: The six (non-)convex penalty functions under consideration in this work.
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Table 2: U.S. stock market datasets for the period 23.08.02 to 27.03.08

~ A 2

dataset source obs K 3 o S K
S&P200: largest firms (w.r.t. ME)  Datastream 1401 200 6.57 14.79 0.0487 5.32
S&P500: largest firms (w.r.t. ME)  Datastream 1401 500  6.57 14.77 0.0410 5.13
S&P1036: largest firms (w.r.t. ME)  Datastream 1401 1036 6.39 14.88 0.0380  4.99

Table reports the datasets under consideration, the source of the data, the number of assets (K), and the number
of observations (obs) in each dataset. For the S&P datasets, value weighted indices are computed whose return
distributions are characterized by the mean p.a. 7, the standard deviation p.a. (o), the skewness (S), and the

kurtosis (E ) given in the last four columns. The S&P indices are market value weighted. The weighting schemes
are updated daily and applied the following day.

are small. Now, if a correlation structure is “strong enough” to grow absolute portfolio weights
— against the counteracting penalty — large enough, it is considered reliable and should therefore
enter the portfolio to a greater extend. The main differences between them, as pointed out by
Figureis on the intensity on penalizing the different asset weights. The £4- and the Log-penalty
provide a particularly strong incentive to avoid small and presumably dispensable positions in
favor of selecting a small subset of presumably indispensable assets. This tendency to construct
very sparse and less diversified portfolios coincides with the suggestion of [28] to use the ¢;-norm
as a diversity measure for portfolios.

3 Empirical Analysis

Data and Experimental Set-Up

We consider daily observations of five different datasets shown in Table [2that represent the U.S.
stock market at different levels of aggregation. Datasets are characterized by a different number
of constituents, which include the 200, 500, and 1036 largest individual firms (with respect to
the market value on March 27, 2008) of the S&P 1500, which we label as large datasets. We
refer to [27] for results also on the 48 industry portfolios and the 98 firm portfolios provided by
Kenneth French, which could be considered as small dataset.

We backtest the out-of-sample performance of the proposed methods with a moving time
window procedure, where =250 in-sample observations (corresponding to one year of market
data) are used to form a portfolio. The optimized portfolio allocations are then kept unchanged
for the subsequent 21 trading days (corresponding to one month of market data) and the out-
of-sample returns are recorded. After holding the portfolios unchanged for one month, the time
window is moved forward, so that the formerly out-of-sample days become part of the in-sample
window and the oldest observations drop out. The updated in-sample window is then used to
form a new portfolio, according to which the funds are reallocated. The T'= 1401 observations
allow for the construction of I'=>54 portfolios with the corresponding out-of-sample returns.

Table [3| shows the different measures we use to evaluate the out-of-sample performance and
the composition of the portfolios, where F/=!(p) is the value of the inverse cumulated empirical
distribution function of the daily out-of-sample returns at point p.

For comparative evaluations, we also implement the following standard benchmarks: (i)
the shortsale-unconstrained MVP, denoted MVPssu, the shortsale-constrained MVP, denoted
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Table 3: Portfolio evaluation measures

Measures based on the out-of-sample portfolio returns
Portfolio variance (s2) Sharpe ratio (SR) 95% Value-at-Risk (VaR)
T _ 7 —
T+7_1 P (T 7)? —— |F"(0.05)]

Measures based on the portfolio composition
No. active positions (No. act.) Shorting (Short) Turnover (TO)

1 T . . 1 1 I K
T 27:1 {i | wiy #0V i} T Zj:{i | wi <0V i} Wiy T—1 szz D im1 Wiy — Wiy—1

MVPssc, the market value weighted portfolio, denoted mvw, and the equally weighted portfolio,
denoted 1oK.

To determine the optimal minimum variance portfolio, we choose to focus on three types of
frequently used covariance matrix estimators: (i) the sample estimator, (ii) a three-factor model
estimator [10] and (iii) the Ledoit-Wolf estimator [12]. However, we report in the following
results related to the three-factor model and refer the reader to [27] for a complete empirical
analysis.

Determining the Regularization Parameter

Prior to optimizing problem formulation ([I)-(2) for any of the six penalization approaches, a
value of the regularization parameter A must be chosen. Since the optimal values A* for the
various penalties are unknown, we try for each approach a set of 30 ascending values starting
from zero. The largest element in each set is chosen such that the resulting portfolios exhibit
only few active positions and a high out-of-sample portfolio variance. In this manner, it is most
likely that the intervals spanned by zero and the largest regularization parameters cover \*.

Each of the 30 regularization parameters corresponds to one specific (optimized) portfolio,
which demands a decision about in which one to eventually invest. This difficult decision is the
reason we split the empirical experiments into two setups: (i) we keep track of all 30 portfolios
that correspond to the entire spectrum of 30 regularization parameters over all periods; (ii)
we invest in only one portfolio by applying ten-fold cross-validation to choose a suited value
of A\ prior to the investment decision in each period. While procedure (ii) is more realistic
from an investment perspective,® procedure (i) provides valuable insights into the potential
benefit of regularization and how different values of A\ affect the portfolio performance. However,
due to space limitations, we refer the reader to [27] for results related to the entire spectrum
of regularization parameters and we focus in the next section on results related to the cross-
validation procedure.

4The cross-validation procedure is as follows: 21 observations are randomly picked from the in-sample data,
portfolios are optimized on the remaining 229 observations for all 30 regularization parameters, and the portfolio
variance is computed using the 21 picked observations. This is done ten times and the A is chosen that corresponds
to smallest average portfolio variance.
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Table 4: Three-factor model covariance matrix (cross-validation experiment)

MVPssu MVPssc mvw 1oK Lasso w8Las Log Ly Zhang  SCAD

Panel A: S&P 200 individual firms

s?.10° 3.007 3.162 6.023 6.524 2.843 2.808 3.017 3.009 2.777 2.942
VaR-10*>  0.885 0.898 1.312 1.348 0.828 0.824 0.893 0.916 0.843 0.881

SR 0.054 0.062 0.018 0.050 0.049 0.050 0.054 0.048 0.049 0.054
No. act.  200.0 54.9 200.0 200.0 82.6 91.1 66.1 65.6 93.9 64.8
Short 0.75 0.00 0.00 0.00 0.26 0.29 0.38 0.38 0.32 0.39
TO 0.57 0.52 0.04 0.00 0.59 0.68 0.96 0.98 0.73 0.90

Panel B: S&P 500 individual firms

s2-10° 2.883 3.796 6.081 6.799 2.529 2.495 2.617 2.601 2.538 2.643
VaR-10*  0.923 1.071 1.335 1.385 0.834 0.835 0.794 0.814 0.847 0.842

SR 0.031 0.042 0.018 0.045 0.043 0.043 0.043 0.049 0.042 0.036
No. act.  500.0 278.6 500.0 500.0 131.9 147.6 102.8 108.1 151.6 101.0
Short 0.83 0.00 0.00 0.00 0.20 0.24 0.33 0.35 0.24 0.33
TO 0.61 0.22 0.04 0.00 0.69 0.75 1.11 1.04 0.80 1.09

Panel C: S&P 1036 individual firms

s2.10°  2.649 4.593 6.254 9.001 2.382 2.379 2.343 2.356 2.485 2.369
VaR-10*> 0.833 1.166 1.352 1.566 0.802 0.792 0.775 0.789 0.819 0.754

SR 0.031 0.031 0.016 0.028 0.054 0.050 0.041 0.045 0.050 0.044
No. act. 1036.0 572.4  1036.0  1036.0 276.7 308.3 179.6 153.8 298.7 161.3
Short 0.84 0.00 0.00 0.00 0.26 0.30 0.33 0.31 0.28 0.31
TO 0.65 0.22 0.04 0.00 0.84 0.89 1.30 1.13 0.87 1.26

Table [4] shows results of the four benchmarks and the six regularization approaches for the three large datasets
and the three-factor model covariance matrix.

Empirical Results

Table [4] shows that the cross-validation approach works well for the considered large datasets.
The out-of-sample variances of the penalized approaches are always lower than the constraned
minimum variance approach (MVPssc) and the equally weighted (mvw) and often also than the
unconstrained minimum variance portfolio (MVPssu). This shows that the possibility of having
a stronger shrinkage in some periods but not in others is beneficial. The only exception is for
the S&P 200 dataset in Panel A, where the Log- and the ¢,-regularized portfolios exhibit even
higher risks than the MVPssu. However, this fits the picture that the non-convex approaches
perform the better the larger the number of constituents compared to the number of observations,
which corresponds to a window size of 250. The w8Las reaches the smallest variance for both
S&P200 and S&P500, while the Log-penalty outperforms for S&P1036. In terms of Sharpe
Ratio, the equally weighted portfolio is a tough benchmark, especially for S&P500, where only
the /,-penalty allows to reach a slightly larger value by using just an average subset of 108.1
active components. Lasso, w8Las and Zhang penalty reach the largest Sharpe Ratios values for
S&P1036, while still investing in an average number of assets much larger than the Log, ¢, and
SCAD penalties. Clearly, as the non-convex penalties lead often to sparser solutions than other
methods, they end up paying a price in terms of turnover rates and identify optimal portfolios
with larger shorting amounts, while the extreme risks, as captured by VaR and ES, are still
often smaller than the MVPssu, MVPssc and Mvw portfolios.
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4 Conclusions

Introducing a penalty in the Markowitz minimum variance framework can allow to determine
optimal portfolios that better control for estimation error and have superior out-of-sample per-
formances than the unconstrained approach and the equally weighted benchmark. In particular,
we propose a new type of a (convex) penalty whose construction allows for easy processing of
all kinds of signals to optimized portfolios, may they be gained from (time series) econometrics,
fundamental or technical analysis, or expert knowledge. Moreover, we consider four non-convex
penalty functions that have not yet been examined in a portfolio optimization context. It turned
out that these approaches perform very well when dealing with very large datasets, where they
not only outperformed standard benchmarks but also the (convex) “state-of-the-art” LASSO
approach. The success of these approaches stems from their ability to maintain relevant as-
sets in the portfolio with large absolute weights, while only the weights of the remaining assets
are shrunk. This allows for a better exploitation of the higher potential to diversify portfolio
risk in larger datasets. Further research aims to further develop the underlying signal extraction
that could be operationalized in the w8Las approach and investigate alternative cross-validation
criteria, which likely will allow for a further improvement of the results.
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Abstract. In the last two decades the literature has been focusing on the development of
dynamic models for predicting conditional covariance matrices from daily returns and, more
recently, on the generation of co-volatility forecasts by means of dynamic models directly fitted
to realized measures. Despite the number of contributions on this topic some open issue still arise.
First, are dynamic models based on realized measures able to produce more accurate forecasts
than standard MGARCH models based on daily returns? Second, which is the impact of the
choice of the volatility proxies on forecasting accuracy? Is it possible to improve the forecasts
accuracy by combining forecasts from MGARCH and models for realized measures? Finally, can
combining information observed at different frequencies help to improve over the performance
of single models? In order to gain some insight about these research questions, in this paper we
perform an extensive forecast comparison of different multivariate volatility models considering
both MGARCH models and dynamic models for realized covariance measures. Furthermore,
we investigate the possibility of increasing predictive accuracy by combining forecasts generated
from these two classes of models, using different combination schemes and mixing forecasts based
on information sets observed at different frequencies.

Keywords. Forecast combination, multivariate GARCH, realized covariance, model confidence
set.

1 Introduction

The literature on multivariate volatility prediction from vector time series of daily returns is
relatively recent, originating at the end of the 80s with the paper by Bollerslev et al. (1988)
proposing the VECH model. The general version of their model is very flexible but, even for
moderately large dimensions, it is characterized by a large number of parameters. The subse-
quent research on multivariate generalizations of the standard GARCH model (MGARCH) has
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focused on two main issues. First, the need for more parsimonious specifications allowing the
analysis of large dimensional datasets without paying a too high price in terms of model’s flexi-
bility. Second, substantial efforts have been dedicated to the derivation of parameter constraints
inducing well defined, positive definite and stable, sequences of estimated covariance matrices.
A comprehensive review of the literature on MGARCH models can be found in Bauwens et al.
(2006).

More recently, the increasing availability of high-frequency data on financial transactions has
stimulated a new stream of research proposing to use dynamic models, directly fitted to time
series of realized covariance matrices, in order to predict future conditional variances and co-
variances. Bauwens et al. (2012) provide a review of these contributions. The predictive
performances of these two sets of approaches have been recently empirically compared by Boudt
et al. (2014) considering an application to Value at Risk (VaR) estimation. Their results pro-
vide evidence in favour of the hypothesis that dynamic models for realized covariance measures,
henceforth RC models, can be more accurate than standard MGARCH models in predicting
conditional variance and covariance matrices.

One of the main drawbacks of the approach based on RC models is related to the choice of the
discretization frequency used for computing the realized covariance estimator and, more gener-
ally, to the choice of the realized estimator used for approximating the volatility matrix. This
issue has been recently addressed in the paper by Varneskov and Voev (2013) who also find that
substantial accuracy gains can be obtained moving from a plain approach based on simple daily
returns to the use of high-frequency information.

Our aim in this paper is, first, to compare the predictive performances of MGARCH models
and RC models estimated at different frequencies. Second, and more important, we are inter-
ested in assessing the profitability, in terms of forecasting accuracy, of a forecast combination
scheme merging forecasts from models estimated at different frequencies. Our approach extends
the algorithm discussed by De Pooter at al. (2010) to the prediction of conditional covariance
matrices. We compute the combined predictor averaging the forecasts generated by the models
included in the time-varying set of optimal models which is identified applying the Model Confi-
dence Set (MCS) approach of Hansen and Lunde (2011) over a rolling window. The results show
that the combined predictor can improve over each of the single models separately considered.

The paper is structured as follows. Section 2 describes the MGARCH and RC models used for
our analysis while the forecast combination strategy is illustrated in Section 3. The results of
an empirical application to a portfolio of U.S. stocks are presented in Section 4 while section 5
concludes.

2 Candidate Models

Forecast combinations require the take up of two important decisions related to which forecasts
should be included in the analysis and to the approach that should be adopted for determiming
the weights assigned to the included models. The first task is, therefore, related to what is often
called the design of the model universe. The models that have been considered in this paper can
be classified into two groups. The first group includes MGARCH models that do not exploit
intra-daily information and are fitted to time series of daily returns. Namely, we consider two
different variants of the Dynamic Conditional Correlation (DCC) model of Engle (2002) and a
scalar version of the BEKK model proposed by Engle and Kroner (1995), the RiskMetrics (RM)
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model (J.P.Morgan, 1996) and a Moving Covariance (MC) estimator. Differently, the models
included into the second group are directly fitted to time series of realized covariance matrices.
In particular, these include the Conditionally Autoregressive Wishart, CAW, model proposed
by Golosnoy et al. (2012) and realized versions of the RM and MC estimators.

MGARCH models
The DCC model, in the original formulation of Engle (2002), is defined as:

Hy = DiRiDy
Dy = diag(ht) hz‘,t =/ Hz‘z‘,t
Hiiy = ag;+ a1,z‘7“i2,t_1 +b1:Hii i1

Ry = (diag(Qy)) 2Qu(diag(Q))
Q = 1-a-8)Q+ a(6t71€;—1) + BQi-1

where ¢ = D, Ly is the (n x 1) vector process of standardized residuals and Q = S =
(1/T) L, €se; is the sample covariance matrix of €. Aielli (2013) points out that, for con-
sistent targeting, @ should be (asymptotically) equal to E(Q;) which is not the case in the
Engle’s formulation. This motivates his corrected DCC (¢cDCC) model that differs from the
basic DCC in the specification of the dynamic updating equation for @y that is defined as

Qi=(1-a—-p)¥+ 04(77t—177;:—1) + BQ—1

where
m = diag(Q:)"%e;
and
¥ = E(nmy).

One point to note is that ¥ depends on the correlation parameters (a, 8)’. So, at the estimation
stage, the log-likelihood function must be simultaneously maximized with respect to («, 8)" and
V. This makes the estimation unfeasible for vast dimensional models. To deal with applications
to large datasets, Aielli (2013) proposes to use a generalized profile Quasi Log-Likelihood esti-
mator. Simulation results show that parameter estimates for both the DCC and ¢cDCC models
can be severely biased in large dimensional systems. To reduce this bias, Engle et al. (2008)
propose to use a Gaussian Composite Quasi Maximum Likelihood (CQML) estimator. Their
simulation results show that the CQML estimator outperforms the standard Gaussian QML in
large dimensional systems.

An alternative approach to bias reduction in the estimation of DCC models in large dimensions is
proposed by Hafner and Reznikova (2012) who derive an alternative formulation of the standard
DCC model in which the targeting matrix @ is obtained by shrinkage estimators

Q=M+ (1-90)S
where $ is the sample covariance matrix of standardized residuals e;, M is the targeting matrix

and 0 denotes the shrinkage intensity. M can be chosen in different ways. If we set M = I,,, an
identity matrix of order n, and 0 = dru, where p = trace(S)/n is the Frobenius inner product,
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the resulting estimator is called a shrinkage to identity estimator. Alternatively, we will get a
shrinkage to equicorrelation estimator if we set 6 = dg and M = F, a (n X n) matrix such that

Eij =p giigjj with

1 n—1 n
P 2n(n —1) ; j:zi;H Pis
where p;; = S’ij / S’“S']] Finally, Hafner and Reznikova (2012) suggest a single-index factor
models in order to estimate the shrinkage targets. From a Monte Carlo simulation study it arises
that i) for problems of small to medium dimension, the shrinkage to equicorrelation estimator
outperforms the QML and CQML estimators of the standard DCC model ii) for large dimensional
problems, the most accurate estimator is that based on Gaussian CQML.

Finally, we consider the Dynamic Equicorrelation (DECO) model proposed by Engle and
Kelly (2008) as an alternative to the standard DCC model for the estimation of the conditional
covariance matrices of large dimensional portfolios. The DECO model differs from the standard
DCC in the specification of the conditional correlation matrix R; which is defined as

Ri=(1—p)In+ pen

where J,, is a (n x n) matrix of ones and p; is the dynamic equicorrelation coefficient given by
the average of the off-diagonal elements of the DCC conditional correlation matrix

ﬁzénf z": Gy
2n(n —1) & S V@i Qtjj

Estimates of correlation parameters can be easily obtained by maximizing a Gaussian QML
function.

As a simple alternative to DCC estimators, we consider a scalar BEKK model. In the BEKK
model proposed by Engle and Kroner (1995), assuming homogeneous dynamics, the dynamic
equation for the conditional covariance matrix is given by:

H = (1- a? — ,6’2)FI + a2rt,1r;_1),82Ht,1

where H = (1/T) S°F_, rr;. Estimates of a and 3 can be obtained by Gaussian QML. As for
the DCC model, Engle et al. (2008), however, show that these estimates are severely biased in
large dimensional models. By Monte Carlo simulations they also show that this bias does not
affect CQML estimators of the parameters of BEKK models.

The RM estimator can be derived as a special case of an integrated scalar BEKK model in which
%2 =1 —a? = 0.94. Finally, the h-days MC estimator is a simple tool used by practitioners for
obtaining a quick and preliminary estimated of the conditional covariance matrix of returns and
can be defined as:

h
1 /
H:fE Ty_iTy_ for 7 > m.
t hiiltltz

Dynamic RC models

Let us denote by >, t = 1,...,T a time series of realized covariance matrices. CAW models
(Golosnoy et al., 2012) are based on the assumption that, conditional on past information I;_1,
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the matrix ¥; follows a n-dimensional central Wishart distribution:
Silly—1 ~ Wy(v, Hy/v), (1)

where v > n— 1 is the degrees of freedom parameter, H;/v is a n X n symmetric positive definite

scale matrix. It follows that
E(3|I;—1) = Hy

where H; can be interpreted as the latent conditional covariance matrix of returns. The dynamic
updating equation for H; is specified using a BEKK formulation with covariance targeting:

Hy=(1-a*-pH)E+a?% 1+ B2H (2)

where a? + 82 < 1 and ¥ = 1/TY L %;. QML estimates of the parameters in can be
obtained by maximization of a Wishart QL function. Furthermore, Bauwens and Storti (2013)
have derived an alternative CQML estimator that allows for computationally efficient estimation
of the model parameters in large dimensional problems.

In addition, we consider the Realized RiskMetrics (RRM) estimator

H; = 0.065_1 + 0.94H;_4 (3)

and a Realized Moving Covariance (RMC) estimator given by:
1
Hy =+ > S
i=1

3 The forecast combination approach
Assume that r;, t = 1,...,7 is a time series of returns generated by the model
T‘t:StZt tzl,...,T

where z % (0,1,) and S; is any (n x n) positive definite (p.d.) matrix such that Sy = S(I;—1,0).
From the above specification it follows that H; = StS’é is the conditional covariance matrix of
returns given past information I;_;. The shape of the dynamic process generating S;, which is
the shape of S(.), is unknown.

Also assume that k candidate models for the prediction of H; are available and denote by Ht(j )
the forecasts, symmetric and p.d., of the covariance matrix of r;, conditional on I;_1, generated
by the j-th candidate model. In general a combined predictor based on the available k£ candidate

models is defined as .
o=, B

where C/(.) is an appropriately chosen combination function and wy is a vector of combination
parameters. Different combination functions C(.) can in principle be used and there is no a
priori valid procedure for selecting the optimal function. Among all the possible choices of C(.),
the most common is the linear combination function

ﬁt = ’U}tlet(l) + ...+ wtkat(k) wt,j 2 0 (4)
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MMM ABT AA AAPL
ALL MO AXP AIG
AMGN T BAC BK

Table 1: Symbols identifying the 12 NYSE stocks included in the analyzed portfolio.

where w; coincides with the vector of combination weights. The assumption of non-negative
weights is required in order to guarantee the positive definiteness of Hj.

The approach we pursue in this paper is based on the use of a linear combination function where
the weights are determined by the MCS approach. In practice, the combined predictor is defined
as a simple average of the candidate models included in the MCS while a weight equal to 0 is
assigned to all the other models excluded from the MCS.

Namely, our approach is based on a fixed-rolling window forecasting scheme. Let us denote
by T, the in-sample size for estimating the model parameters, our forecasting procedure is based
on the following steps

1. Estimate all the candidate models over the window including observations from 1 to Tj,

2. Conditional on the estimated parameters, generate static 1-step ahead forecasts of the
conditional covariance matrix for the following m observations

3. Re-estimate the candidate models over the window including observations from m + 1 to
Tin +m

4. Tterate 2 and 3 until the end of the series.

At each re-estimation we then compute the MCS including the best performing models according
to some adequately chosen loss function. The combined predictor H, is then computed as the
equally weighted average of the models included in the MCS ®. It follows that our forecasting
strategy allows the structure of the combined predictor to vary over time.

4 Empirical results

In this section we present the results of an application to a portfolio of 12 NYSE stocks (table
1).

Our raw data are composed of price quotations observed every minute, from 9.30 a.m. to
4.00 p.m., from May 12, 1997 to July 18, 2008 6 for a total of 2780 observations. The raw
returns have then been aggregated over intervals of 5, 10, 15 and 30 minutes, respectively, in
order to compute the associated time series of daily realized covariance matrices. Our choice of
using open-to-close returns follows the approach of Andersen et al. (2010) who argue that the
overnight return can be interpreted as a deterministically occurring jump. Hence the open-to-
close return can be considered as the daily return adjusted for the overnight jump.

5In order to initialize the computation of the MCS, in the first estimation rounds, in-sample estimates of the
conditional covariance matrices are used. These are then gradually replaced by out-of-sample forecasts.
5The data are available online at www.tickdata.com.
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Our aim is i) comparing the performances of the members of our set of candidate models in
generating one-step-ahead predictions of the conditional covariance matrix of daily returns ii)
evaluating the ability of forecast combinations to improve the performance of the single candi-
date models.

The ¢cDCC and BEKK models have been estimated by means of a Gaussian QML estimator as
well as a CQML estimator based on the whole set of feasible bivariate sub-systems. Similarly,
the CAW model has also been estimated by both QML and CQML estimators. In this way our
combined predictor allows to account for model as well as estimation uncertainty. The length
of the moving window for the calculation of the MC and RMC estimator has been set equal to
m = 100.

The RC based predictors have been computed for each of the above considered intradaily sam-
pling frequencies. This gives an overall number of 24 candidate predictors to be used for forecast
combination. The accuracy of each of these models in predicting the conditional covariance ma-
trix is assessed using a loss function based on the Frobenius norm

1 1 j 1 j
L = o[ - HOY (2 - 5]

where 29 is the realized covariance matrix computed from d-minutes intradaily returns, with
d = 5,10,15,30 minutes. So the rolling MCS is performed four times, one for each value of ¢,
yielding four different combined predictors Ht(d).

Figure 1 reports, for each re-estimation step, the size of the MCS comparing it with ﬁj

B 1 Ting 1 12 )
hj = T Z (12 Z ht,z‘)
M =T (—1)+1 i=1

which is the average volatility of the assets included in our portfolio over the j-th estimation
window. The plot shows that the size of the MCS is related to the average volatility level. This
is particularly evident in the last part of the sample, approximately corresponding to the long
low volatility period immediately preceding the financial crisis started in summer 2008. The
composition of the MCS, under the four different volatility proxies considered, is summarized
by the plots in figure 2. The analysis of these plots reveals that the composition of the MCS is
not particularly sensitive to the intra-daily sampling frequency for § > 5 minutes.

Finally, in order to compare the predictive accuracy of the candidate models we have re-
computed the MCS on the whole out-of-sample forecasting period (from observation 501 to
observation 2780). The set of candidate predictors is now composed of 28 predictors, obtained
from the merging of the initial set of 24 candidate models with the 4 combined predictors
computed by the rolling-window MCS. In all cases it turns out that the estimated whole-period
MCS includes only one predictor given by the combined predictor Ht(?,o)‘ This result suggests that
combining predictions generated from different models, possibly using information at different
frequencies, can improve over the forecasting performance of single, misspecified, forecasting
models.

5 Concluding remarks

In this paper we have compared the predictive accuracy of MGARCH and RC models estimated
at different frequencies. Furthermore, we have investigated the possibility of improving the
forecast accuracy of single misspecified models by using forecast combination techniques.
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Figure 1: Size of the MCS computed over 40 re-estimations versus the average volatility level

over the same period (h).

The empirical results of our analysis suggest that it is not possible to identify a clearly winning
approach between MGARCH and RC models. This is evident looking at the composition of the
MCS which is not stable over time but is characterized by the alternance of models from the two
different groups. These results appear to be quite robust to the choice of the sampling frequency
of the RC matrix used for assessing the forecast accuracy.

The main finding achieved within the paper is that combining forecasts from models esti-
mated at different frequencies can allow to improve over the predictive ability of single models.
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CAWLL-L 101+ + + + + + + + + + et B CAWLL-L_10H + + + + + + + + + et B
RMC_5 - + b RMC_5|- + b
RRM_5 ++ + + 1 RRM_5 ++ + o+ttt 1
CAW11-C_5[+ + + + + o+t b CAW11-C_5 +++ + b
CAW11-L 5+ + + 4+ At B CAW11-L_5H + + +H 4+ B
. . . . . I . I . . . . .
5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40

Figure 2: Composition of the MCS computed over 40 re-estimations under 4 different RC mea-
sures. From left to right and from top to bottom: E§5), Zglo), 27515), Z§3O). Circles (o) indicate

that a given model is included in the MCS at the corresponding estimation round.
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Abstract. A drawback of the sparse principal component analysis (PCA) procedures using
penalty functions is that the number of zeros in the matrix of component loadings as a whole
cannot be specified in advance. We thus propose a new sparse PCA procedure in which the
least squares PCA loss function is minimized subject to a pre-specified number of zeros in the
loading matrix. The procedure is called unpenalized sparse matrix PCA (USMPCA), as it does
not use a penalty function and obtains component loadings matrix-wise, i.e., simultaneously
rather than sequentially. The key point of USMPCA is to use the fact that the PCA loss
function can be decomposed into sum of two terms, one of them irrelevant to loadings, and
another one being a function easily minimized under the considered cardinality constraint. This
decomposition makes it possible to construct an efficient alternate least squares algorithm for
USMPCA. Another useful feature is that the PC score matrix is column-orthonormal, which
helps to define naturally the percentage of explained variance by the sparse PCs. USMPCA is
illustrated with real data examples.

Keywords. Sparse component loadings, loss function decomposition, constrained matrix com-
plexity.

1 Introduction

For an n—observations x p—variables column-centered data matrix X, principal component
analysis (PCA) can be formulated as minimizing

F(E,A) =X — FAT|? (1)

over an n x m PC score matrix F and a p x m component loading matrix A, with || ||? indicating
the squared Frobenius norm and the number of components m < min(n,p). The resulting
solution is interpreted by noting the loadings in A which quantify the relationships between
the p variables and m components. It is desired for A to be sparse, i.e., to have a number of
zero elements, since a sparse matrix is easily interpreted by focusing only on the variables and
components linked with nonzero elements. However, such sparse A cannot be obtained by the
standard PCA. For this reason, a number of modified PCA procedures have been proposed in
the last decade, which produce sparse solutions [8]. Such procedures are called sparse PCA.
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Almost all existing sparse PCA procedures are using penalized approaches: they are formu-
lated by combining a PCA objective function with penalty functions that penalize A to have
nonzero elements. Such examples are SCOTLASS [3], SPCA [10], and sPCA-rSVD [I1], where
the relative importance of penalty functions is controlled by tuning parameters. That is, they
control the number of nonzero elements, which is called cardinality. Though a number of other
penalized procedures have been developed for improving the preceding ones [4} 14, [§], they are
formulated by the same format.

A common drawback of the penalized sparse PCA is that the appropriate value of the tuning
parameter which corresponds to the desired cardinality is not obvious. Thus, the penalized sparse
PCA is not convenient for users who wish to have a loading matrix with a specified number of zero
elements. The procedures studied in [I] and [5] avoid such a difficulty. Their authors presented
efficient heuristic algorithms called ”greedy” search to find component loadings sequentially with
direct cardinality constraint. In this paper, we also propose a directly constrained cardinality
procedure without using a penalty function. However, our proposed procedure differs from the
"greedy” search approaches in that all component are extracted simultaneously (not sequentially),
i.e., F and A are obtained matrix-wise (not column-wise). We, thus, refer to our proposed
procedure as unpenalized sparse matrix PCA (USMPCA). Moreover, the resulting PC scores are
uncorrelated, which helps to define naturally the percentage of explained variance as described
in Section 4.

2 Unpenalized Sparse Matrix PCA

In USMPCA, the PCA loss function is minimized subject to the column-orthnormality
condition for n~'/2F and the constraint on card(A) which denotes the cardinality of A. That
is, USMPCA is formulated as

1
I}lif{l f(F,A)=||X — FA"|? , subject to EFTF = I,,, and card(A) = ¢ (2)

with I,,, denoting the m x m identity matrix and ¢ being a specified integer.
The key point of USMPCA is to use the fact that the orthonormality %FTF = I,, allows
the loss function to be decomposed as

IX —FA'|? = | X~ FB' + FB' = FA'|? = || X —= FB||” +n||B - A , 3)

with B being the cross-product matrix of p—variables xm—components:

1

n

B=-X"F. (4)

The decomposition , which is derived from (X — FBT)(FBT — FAT) being the zero
matrix, shows that a simple function |B — A|? is only relevant to A, which allows us to easily
attain the cardinality constrained minimization of as found in the next section.

3 Algorithm

The USMPCA problem can be solved by alternately performing the two steps:
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A-step minimizing over A subject to card(A) = ¢ with F' being kept fixed;
F-step minimizing over F' subject to %F TF = I, with A kept fixed.

First, let us consider the A-step, which is equivalent to minimizing g(A) = ||B — A||?> under
card(A) = ¢, since of ([3). Using A = (as;) and B = (b;;), we can rewrite g(A) as

g A) =B-APP= Y b+ > (a—by)P= > b (5)
(i,§) €O (i,j) €0+ (4,9)€0

Here, O denotes the set of the ¢ = pm — ¢ indexes (i, j)’s indicating the locations of the loadings
aij to be zero, while the complement set O+ contains the ¢ (i, j)’s of nonzero a;;. The inequality
in shows that g(A) attains its lower limit > (i.j)e0 b?j when the non-zero loadings a;; with
(i,5) € O™ are taken equal to the corresponding bij. Moreover, the limit }7; o b?j is minimal,
when O contains the indexes for the g smallest b?j among all squared elements of B. Thus, g(A)
is minimized for A = (a;;) being

lal (6)

b;; otherwise

{ 0 if bg; < b?
Qi3 =

with b[Qq} the gth smallest value among all bfj.
Next, let us consider the minimization in F-step. It is attained for

F=ynKL" = XALA"'LT, (7)
where K and L are given by the singular value decomposition (SVD) of X A defined as
1
——XA=KALT 8
N ®)
with KTK =LTL = I, and A a diagonal matrix. However, it is shown in the next paragraph
that the update of F' by can be skipped.
Using %F TF =1, and , the loss function 1} can be expanded as
fF,A) =trX "X +trAFTFAT —2tr X "FA = ntrS + ntrAT A — 2ntrBT A | (9)

with §' = %X TX. Noting that @ is a function of B and the use of in 1) leads to
1
B=—-X"XALA'LT = SALAT'LT | (10)
n

we can find that or @ is minimized for B given by and this B is also used for @: F
may not be obtained in F-step. Moreover, the original data matrix X may not be available and
only the sample covariance matrix S suffices for minimizing , since LAT'LT in can be
obtained through the eigenvalue decomposition (EVD)

ATSA=LAL", (11)

following from : X is found to vanish in @, (10), and .
It should be noted that the A resulting in (6)) satisfies trAT A = trBT A. We can use it in
@ to find that the value of loss function after the update @ is expressed as

f(A) = ntrS — ntrAT A = ntrS x fn(A) . (12)

Here, fn(A) =1 —trAT A/trS is normalized so as to take a value within [0, 1], thus convenient
for checking convergence. Thus, the USMPCA algorithm can be formed as follows:
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1. Initialize A.
Perform EVD to obtain B with .
Obtain A with @
Finish if fy(A) < e ; otherwise go back to

> W N

Here, fx(A) denotes the change in fy(A) from the previous round. In this paper, e = 0.17 and
the algorithm is repeated fifty times with random initialization. Among the resulting solutions,
we select the one with the lowest fn(A) value as the optimal solution, in order to avoid local
minimizers. After those procedures, F' can be obtained using .

4 Percentages of Explained Variances

The loss function value ([12)) allows us to define the goodness of the resulting A as
PEV = 100trA" A/trS | (13)

with trATA = L|FAT|? following from 1FTF = I,,. The statistic can be called total
percentage of explained variance (PEV), since trS in is the total variance of the variables,
while trAT A = L||FAT||? is the total variance of FAT, since @ shows that F' is column-centered
as X is so.

The total PEV can be decomposed as the sum of

PEV(j) = 100a a;/trS (14)

over j = 1,...,m. It serves as the PEV index for each component. On the other hand, the PEV
for each variable is derived from the fact that can be rewritten as n S°F_ (s;; — [|ai||?) =
n P si(1—||a@il|?/si) > 0, with @, the ith row of A and s;; the variance of variable i. It gives
the percentage of ||a;[|? = L||Fa; ||* to s,

PEV([i] = 100]|;]|* /i - (15)

In the same forms as (13), (14), and (15), PEV indices are defined for the standard PCA,
which is formulated as minimizing with %F TF =1, and A" A being a diagonal matrix. The
same forms of definitions facilitate the comparison of solutions between USMPCA and PCA
in goodness-of-fit. Since PCA is the best rank m approximation of X, the value of the total
PEV for USMPCS cannot exceed the one for PCA. However, if the former value is not
substantially less than the latter, the USMPCS solution can be considered to be acceptable. It
should be noted that USMPCS can be superior to PCA in and , as illustrated in Section
6.1.

5 Nonzero Loadings as Covariances

The matrix B defined in contains the covariances of p variables to m components, since
X and F' are column-centered. By taking this fact into account in @, the nonzero loadings
in A are found to equal the corresponding covariances in B: nonzero a;; equals the covariance
between variable ¢ and component j. It implies that the nonzero loadings equal the correlation
coefficients of variables to components, when the columns of X have unit variances or S is a
correlation matrix, since of %FTF = Ip.
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6 Two Examples

The first example is the Pitprop data set [2] given as the correlation matrix obtained from a
180 x 13 data matrix. We set m = 6 following the previous studies to perform USMPCA. The
solution subject to card(A) = pm/2 = 39 is shown left in Table 1 with blank indicating zero
loadings. There, the total PEV 86.7 is found to be almost equivalent to the PEV 87.0 for PCA:
USMPCA approximated the data as well as PCA with a half of loadings vanishing in the former
solution. We further performed USMPCA with decreasing card(A) one by one, to find that the
PEV for the solution with card(A) = 17 nearly exceeded 80, a benchmark percentage not being
very lower than 87.0 for PCA. That solution is shown right in Table[I] Bold font is used for the
PEV for variables and components which exceed the corresponding ones for PCA. One notes
that the USMPCA components with 7 = 4, 5,6 explain more variance than the PCA ones.

Vars USMPCA: card(A) = 39 USMPCA: card(A) = 17 PCA
1 2 3 4 5 6 PEV 1 2 3 4 5 6 PEV PEV
topdiam .86 .40 90.4 .89 79.2 90.9
length .90 .33 92.0 91 82.9 92.5
moist .98 -.10 97.5 .96 92.4 97.8
testsg .90 -.40 97.5 .94 88.6 97.5
ovensg =17 -.93 88.7 .81 65.0 86.8
ringtop .32 .19 .59 -.55 0.29 87.1 .37 .79 76.6 86.4
ringbut .61 .61 -.41 -.14 93.1 .67 .62 83.4 92.7
bowmax .54 .15 -0.60 67.8 .61 .51 63.4 68.4
bowdist .75 .15 -0.20 62.9 .80 63.5 64.0
whoris .66 .33 -0.38  -.42 86.8 .75 44 75.1 87.2
clear .15 97 96.9 -.98 95.3 95.9
knots -.11 .25 .25 0.80 77.5 -.92 85.5 80.4
diaknot .15 .00 -.87 .10 0.31 88.6 -.96 91.6 90.7
PEV 25.8 17.1 12.5 12.0 10.5 8.8 86.7  29.1 13.9 12.8 8.8 8.6 7.0 80.2 87.0
PEVpcoa 32.5 18.3 14.5 8.5 7.0 6.3 87.0 32.5 18.3 14.5 8.5 7.0 6.3 87.0

Table 1: USMPCA solutions for Pitprop data with PCA’s PEV in the final row and column.

The variables are well clustered with every variable loading only one or two components. It
makes sense to compare the USMPCA solutions with the classic (subjective) interpretation of
the Pitprop component loadings [2], which is summarized in Table The adopted notations
mean that the first component is determined by topdiam, length, ringbut, bowmax, bowdist
and whoris, the second — by moist and testsg, and etc. The ringbut value for component four in
[2, Table 4, p.229] seems incorrect, by inspecting the corresponding eigenvalue. The corrected
"classic” interpretation is given in [8], where ringbut is dropped off the fourth component.

Clearly, the USMPCA solution with card(A) = 17 suggests identical interpretation of the first
three components as the one given in [2, p.230]. The fourth component is, indeed, a contrast, but
between clear and whoris. The fifth component is also a contrast between knots and bowmax,
and the sixth component is a direct measure of diaknot (the average diameter of the knots in
inches).

The second example concerns the gene expression data matrix of n = 17 time points by
p = 384 genes presented by [9] and available at http://faculty.washington.edu/kayee/pca.
The 384 genes are categorized into five phases of cell cycles, with each phase containing 67,
135, 75, 52, and 55 genes, respectively. It suggests m = 5, but this choice yielded one trivial
component in preliminary trials. We thus reduced m to 4. For card(A), we first used the
integer nearest to the one-third of pm, then increase card(A) one by one to find that the total
PEV of the solution with card(A) = 538 = 0.35pm nearly exceeds a benchmark 70, which is not
considerably lower than the PEV 81.2 for PCA with m = 4. The resulting A with card(A) = 538
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Vars 1 2 3 4 5 6
topdiam
length
moist X
testsg b X
ovensg
ringtop
ringbut
bowmax
bowdist
whoris
clear X

knots X
diaknot b'q

wom

]
]

E T ]

Table 2: Classic interpretation of the Pitprop component loadings [2, p.229-30).

are presented block-wise in Figure [I} There, the blocks correspond to the five phases, with the
block for the second one divided into two, and positive/negative nonzero loadings represented as
filled squares/triangles, respectively. The solution is considered to be reasonable, as each phase
has a unique feature of loadings: [a] Phases 1, 2, and 4 are characterized by positive loadings
for Components 1, 2, and 3, respectively; [b] Phases 5 are characterized by positive loadings for
Component 4 and negative ones for 2; [c|] Phases 3 consists of the genes positively loaded by
Component 2 or 3 and by both.

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5
123 4 1234 123 4 1234 1234 1234
L] L) L] Y L]
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L ] 3 - - - - -
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3 is am i
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=w ] . -
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Figure 1: USMPCA solution for gene expression data with blank indicating zero

COMPSTAT 2014 Proceedings



Kohei Adachi and Nickolay T. Trendafilov 203

7 Final Remarks

In this paper, we proposed the penalty-free sparse PCA procedure USMSPCA and presented its
alternate least squares algorithm. An advantage of USMPCA over the penalized sparse PCA is
that the cardinality of loadings can be set to a specified integer in advance. For that integer we
can use the one conceived easily such as a half or the one-third of the number of loadings, which
can be flexibly changed for finding a better solution, as illustrated in the examples. There, it was
also illustrated that a solution obtained can be validated by comparing the PEV value with the
corresponding one for the standard PCA. The reasonableness of this PEV comparison follows
from that the PEV indices for USMPCA are defined in the same manner as in PCA.
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Abstract. In model averaging a weighted estimator is constructed based on a set of models,
extending model selection where a single estimator is constructed from one selected model found
via an information criterion. Several studies discuss the weight choice for linear models only
and almost all studies assign weights to models by using optimization routines, specifically
quadratic programming and nonlinear optimization. None of these studies worried about the
unicity of the estimated weights, while in fact, with those methods the chosen weight is often
non-unique, resulting in difficulties with interpretations of weighted averages. Our contribution
is threefold: (1) We minimize an estimator for the mean squared error in a local misspecification
framework from which unique weights can be assigned to a set of ‘linearly independent design
matrix’ models. (2) The weight choice applies to a broad range of models including generalized
linear models. (3) In linear models the computational complexity of averaging may be reduced
since weighted predictions from nested and singleton models are equal. In a simulation study
in Poisson regression the performance of our method of averaging is compared with other such
methods. The simulation results show that the proposed method performs well.

Keywords. Model averaging, Likelihood, Mean squared error, Choice of weights, Smoothed
AIC, Smoothed BIC.

1 Introduction

Model averaging is an alternative to model selection in which a new estimator of a population
quantity is constructed based on a weighted average of estimators in each candidate model.
Most of the model averaging literature considers the least squares framework, [4] proposed the
Mallows criterion for model averaging which was extended by [9] for non nested models. Unlike
most of the theoretical results for least squares model averaging with the homoscedasticity
assumption, [5] challenged this assumption and defined a jackknife model averaging estimator
with heteroskedastic errors and they proved the optimality of their estimator. [§] proposed a new
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model averaging estimator in the local asymptotic framework for linear regression and derived
the asymptotic distribution of a plug-in averaging estimator.

We consider the choice of weights for model averaging in likelihood regression models. Several
models are available for the estimation of a population parameter p. Various models, including
parts, or all, of the covariates might be considered, each one coming with its own estimator of
1, say, fis for a model indexed by S. So, the model averaging estimator is

M
flw =Y wiils;. (1)
j=1

Using the likelihood framework, which has so far received scant attention, [6] studied the prop-
erties of the averaging estimator when random weights are used to construct a compromised
estimator; [7] went one step further and used an estimator for the mean squared error (MSE)
of a non-random weighted estimator which they minimized in a special class of random data
dependent weights. Their method is also applicable for least squares estimations. Logistic re-
gression was considered by [I0] who minimized a plug-in estimator of the asymptotic squared
error to define weights for ordered logit models.

In this paper we consider averaged estimators obtained by general maximum likelihood es-
timation, with an application to Poisson regression. The studied choice of the weights is by
minimizing an estimated mean squared error of [i,, under local misspecification. Our main con-
tributions are (i) to define a method for averaging estimators in a general likelihood framework,
(ii) to find a set of models for which we can assign unique weights for each model in that set
and (iii) our proposed method is computationally attractive. Unlike other methods, we do not
need quadratic programming for minimizing risk ([4} [5, §]) nor heavy nonlinear optimization
routines ([7]). We derive the theoretical formula for the weights in a general case. Also, (iv)
we show the equality of prediction values for our method in models with linearly independent
design matrices in linear regression. Hence singleton models (with only a single covariate in each
model) perform as well as any other linearly independent design matrix models. This result is
promising for high dimensional data. Moreover, our weights are not restricted to lie in the unit
simplex set but the sum of weights should be equal to one which is a necessary assumption for
consistency of the averaging estimator ([6]).

2 Notation and setting

In a regression setting, take Y7, ..., Y, independent with density function f,(y;x) = f(y; x, 0o, y0+
d/+/n), where in a variable selection context, the p-vector 6 is included in every model and com-
ponents of the g-vector v may or may not be relevant (e.g. these are coefficients corresponding
to irrelevant covariates). The true values of (6,~) are (6,0 + d/1/n) under the local misspec-
ification setting, and (6p,v0) under a narrow model when only @ is included in the model and
v =70 a known value (e.g. zero).

We here phrase some further notation for the regression setting. In the case of i.i.d. data,
the covariate vector x is not present and the averages reduce to a single term. Define the vector
of first derivatives of the log-likelihood

(U(y;fﬂ)) _ (310gf(y; z, 90,%)/39>
V(y;x) dlog f(y;x,00,7)/0v)
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and let the information matrix
U(Y;x) 1 &
J(x) = Var (V(Y; ac)) and J, = - Zz:; J(xi),

be partitioned according to the lengths of § and v as
J(z) = Joo() Jor(x)\ 5 (Jnoo Jnor) o1 DA A
Jio(x) Ju(x)) " \dnao Jaar)’ " JO g
In a regression context, the information matrix .J,, (and submatrices thereof) are all averages
over the different observations, assumed to converge to a matrix J when n — oco. Submatrices
of the limit matrices J and its inverse J ! are defined as above, though without the subscript
n.
Let S be a subset of {1,..., ¢}, indicating a submodel of the full model. We wish to estimate
a population quantity u = u(6,v) (a focus parameter), for which we assume that its derivatives
with respect to 6 and ~ exist in a neighborhood of (fy,70). This case is more general than
averaging the regression coefficients, we may also average predictions of the form z!3 in this
way.
Maximum likelihood estimators are used for estimation in each submodel. We then know
that in each submodel estimators are normally distributed in the limit ([6])

Vilfis = prue) % As = Ao +w!(8 — GsD). 2)

Here, w = JigJog 0p/00 — O /0y, Ao ~ N(0,78) with 78 = (Ou/00)t Jyy 01/, D ~ N, (6, Q)
with Q@ = J! and Gs = Q%Q ™ = 7LQsmsQ ™! with Qs = (msQ'7%)™! and 7g is a |S] x ¢
projection matrix selecting the rows with an index belonging to S.

Note that the matrices Q% are ‘partial’ inverses of Q~!. The ‘0’ superscript denotes by
definition the following construction. First select of @' those rows and columns with indices
in S, then invert that matrix. Next, place this in a full ¢ X ¢ matrix in the rows and columns
indicated by S and set all other entries equal to zero. In particular, when S = {1,..., ¢} (full
model), Q% = Q. Some possibilities of sets of models to average over are all possible subsets
(M = 29), nested models (M = ¢ + 1) and singleton models (M = ¢+ 1).

3 The mean squared error expression

In this section, we state the mean squared error (MSE) of the averaged estimator and its asymp-
totic distribution. From , it immediately follows that the MSE of a single submodel estimator
is converging to

MSE(fis, 8) = 7¢ + w'Q4w + w!(I, — Gs)08' (I, - Gs)'w.

For the weighted estimator , with M a finite number of models, not depending on the sample
size, and with a non-random set of weights wy, ..., wys that sums to 1, it follows that (see [6])

M M
Vi(fiw — tirae) 2 > wids, = S wi{Ag +w!(6 — Gs, D)},
=1 j=1
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from which follows that MSE(ji,) = 7¢ + R(J) with the same 7¢ as before (since the weights
sum to 1) and

M M M M
R(8) = w{ (I, — 3 w;Q%,Q796" (I, — > w; QL Q7 + (- w;Q%)Q 7 (X w;Q%) b, (3)
J=1 j=1 j=1 j=1

or equivalently R(6) = w'Fw where the (4, k)th entry of F is given by (j,k =1,..., M)

1\t _ _
Fij, = wt{(zq - Q%Q ) o0 (1, - Q%,Q7") + (Q%.Q ngk)}w. (4)
Hence, the theoretically optimal weights that minimize the MSE are
Winse = argmin w' Fw. (5)
weH

where H = {(wl,...,wM) : Zj]‘/ile = 1}.

Some properties of the plug-in estimator

Calculating the weights in requires to estimate all quantities in or . Almost all
unknown parameters in can be estimated consistently except the 6. The unbiased estimator
for § which is 6 = V(Y gur — Y0) —a D ~ Ng(6,Q) may be used in estimation of the MSE. By
plugging in estimators, it follows that (j,k =1,..., M)

ﬁjjk = @t(]’q - @\%J Q\_l)tggt(]—q - Q\%k@_l)&} + C’Tjt(/Q\%J Q\_lQ\%k)&} (6>

For interpretation purposes, it is important to know whether the obtained weights are unique
or not. In [I] we obtain and prove the following useful results. Property 1 presents sufficient
conditions for the unicity of the weights.

Property 1 If Q is positive definite, w is not equal to Op; and the matrices Q%j (j =
1,..., M) are linearly independent, then the M x M matrix @ with (j, k)th element (,u’tQ%jQ*1 %kw
1s positive definite.

Considering equation @, the first term is always positive semi-definite and under the con-
ditions of Property 1 it is positive-definite which results in a positive-definite matrix F'. So, by

solving

= 14, F1
W— = argminw'Fuw= M (7)
weH 1§\4F_11M

where 1;; denotes a vector of ones with length M.

The main conclusion of Property 1 is that the number of models for having unique weights
cannot exceed ¢+ 1 where ¢ is the number of potential covariates, plus one for the narrow model.
Several sets of models with at most ¢+ 1 independent design matrices can be considered such as
nested models and singleton models. The main challenging part of using nested models is the
order of the regressors, whereas singleton models are independent of regressor orders, see also
the simulation study.

It should be noted that our method can also consider any set of models like all possible
models, but the weights are not longer unique. In these cases, our method is similar to other
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proposed model averaging methods in linear regression, e.g., [5], [§] and [10] where they used
quadratic programming. There are some other methods like [7] in which they used nonlinear
constrained optimization method to define the weights in a specific class of weights. In their
method, the weights may not be unique even not when considering only ¢+ 1 models. The main
problem of non unique weights is that the prediction values are not unique, so with the same
method one can get different predictions for population parameter.

It can be shown that the matrix F' in @ converges in distribution to F* for which the (j, k)th
element (j,k=1,..., M) is equal to

Fiy =!I, = Q%,Q7)DD' (I, - Q4,Q7") w + (9%, Q7' Q8, Jw.
with D ~ N(6,Q).

While the explicit form of the weights in is useful for direct computation, it hints at a
complicated limiting distribution. Using that F' —; F*, we get a limiting distribution of w,,se
in terms of F* too, see [1].

Property 2 Assume that F and F* are invertible. Let W—— = argmin,cy w'Fw and
w* = argmingcqy w F*w. Then W—— —q w*. Also, by using the joint convergence in distribution
of all \/ﬁ(ﬂgj — Htrue) and W to corresponding Ag; and w*, the model averaging estimator has a
limiting distribution

M
\/ﬁ(ﬂfu\/\ - ,U*true) i ZM;AS]

mse _
Ji

—_

Note that by the randomness of the weights w* the limiting distribution is not normal. For
deterministic weights, the limiting distribution is normal.

The third result, see [I], states that in linear regression the prediction values for the mean of
the response vector (E(Y) = Xf3) for averaging over nested models and over singleton models
with our method are equal.

Property 3 Ifp > 1 and q > 2, then the prediction values in linear models for nested
model averaging and singleton model averaging are equal when MSE optimal weights (w—) for
weighted prediction are used.

This has promising consequences for models with a large number of covariates where an all
subsets model averaging would be time consuming, while singleton models are much easier to

fit.

4 Simulation Study for Poisson Regression

We now investigate the finite sample performance of the proposed plug-in estimator of the
MSE (PMSE) via a Monte Carlo simulation in nested and singleton models. Our goal for this
simulation is twofold: (i) compare the MSE estimator model averaging scheme with other model
averaging schemes, (ii) examine the effect of the number of non-zero coefficients for the auxiliary
Tegressors.

Four estimators are considered to be compared with our estimator: AIC and BIC post-model
selection methods and model averaging estimators corresponding to their smoothed estimator,
SAIC and SBIC, with the weights for the mth model

saic __ €xXp <_%AICm>
"o 23:% exp (—%AIC']-) 7

sbic __ exp <_%BICm>
"o 232 exp (—%BIC}) '
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The response values Y; have a Poisson distribution with mean u; = exp(x!§) with the fol-
lowing specifications: p = 0 (i.e. no core regressors), ¢ = 8 with (z1;,...,28;) ~ Np14(0,Q) in
which Q;; =1 for ¢ = j and §;; = p for i # j. The value of p varies in the set {0,0.25,0.5,0.75}.
The value of 7 is set to zero and § values are considered according to the following scenarios:

scenario 1A: 01 =(-1,-4,3,-4,0.6,4,0,5)
scenario 2A: 02 = (—1,—4,3,-4,0,0,0,0)

For nested models, the order in which the variables enter the model is important. There are
two other scenarios, scenarios 1B and 2B. In the construction of the weighted estimator in
scenarios 1B and 2B we use the same random samples as above, but construct the design
matrix for these scenarios (and take the implied order for constructing nested models) as X =
(5, 6, 7,8, T1, T2, T3, x4) and the § values corresponding each regressor stay the same. The
sample sizes are varying in the set {100,500,1100}. All Monte Carlo simulations are based on
2000 replications. We generate n + 1 observations in which the last observation is used as test
data set. The focus parameter is the mean of the response value for the test data set. Each
method is assessed based on the median of the squared prediction error for the test data sets
over 2000 replications which can be written as

MSPE = median{(fiz, — ;)% : i = 1,...,2000}

where for each test data set with values x,

M
iz = exp {Z w;z's;}.
j=1

Table[I] presents the results for the simulations. For singleton models, the AIC and BIC values
are identical (the penalty does not have an effect in singleton models), hence, we show the results
for AIC, SAIC and the PMSE methods. As Table [I]shows, the order of the regressors for nested
models is important and within the same data set, the results are varying from one order of
regressors to another order and determining an in some sense ‘optimal’ order of regressors is
challenging. So, it is not that informative to interpret the results for nested averaging in general
when the regressors are not naturally ordered. In contrast, singleton models are independent
of regressor order and the PMSE method performs the best for singleton averaging. Moreover,
PMSE singleton averaging for scenarios 1A, 1B and 2B in almost all situations performs better
than all other methods in singleton and nested averaging. Another interesting property of
singleton averaging by PMSE is that it performs quite independently of correlation between
regressors. Other things being equal, changing the p reduces the MSPE for other methods in
singleton models, while PMSE works equally well for all considered values of p. For example,
for n = 500 in scenario 2A, increasing the p from 0 to 0.75 cause a reduction in the MSPE from
0.023 to 0.006 for the SAIC method, whereas in our method the MSPE is always around 0.005.
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nested singleton
p n Scen. | AIC BIC SAIC SBIC PMSE AIC SAIC PMSE
1A | 0.019 0.019 0.019 0.019 0.030 0.283 0.257  0.019
100 1B | 0.018 0.019 0.019 0.019 0.031
2A | 0.011 0.009 0.012 0.010 0.025 0.108 0.091 0.019
2B | 0.020 0.023 0.022 0.025 0.029
1A | 0.005 0.006 0.005 0.006 0.006 0.052 0.049  0.005
0 500 1B | 0.005 0.006 0.006 0.006 0.006
2A | 0.003 0.002 0.003 0.003 0.006 0.026  0.023  0.005
2B | 0.005 0.011 0.006 0.011 0.006
1A | 0.003 0.003 0.003 0.003 0.003 0.025 0.023  0.002
1100 1B | 0.003 0.003 0.003 0.003 0.003
2A | 0.001 0.001 0.002 0.001 0.003 0.012 0.011  0.003
2B | 0.003 0.007 0.003 0.006 0.003
1A | 0.019 0.020 0.019 0.020 0.027 0.198 0.190 0.017
100 1B | 0.019 0.021 0.020 0.023 0.028
2A | 0.011 0.010 0.012 0.010 0.024 0.073  0.067  0.020
2B | 0.022 0.028 0.023 0.028  0.028
1A | 0.005 0.006 0.005 0.006 0.006 0.043 0.041  0.005
0.25 500 1B | 0.005 0.006 0.005 0.007 0.005
’ 2A | 0.003 0.003 0.003 0.003 0.005 0.020 0.018  0.005
2B | 0.005 0.012 0.005 0.012 0.005
1A | 0.003 0.003 0.003 0.004 0.003 0.019 0.019  0.003
1100 1B | 0.003 0.004 0.003 0.004 0.003
2A | 0.001 0.002 0.001 0.002 0.002 0.009 0.008  0.002
2B | 0.003 0.008 0.003 0.008 0.003
1A | 0.025 0.031 0.027 0.033 0.030 0.140 0.132  0.023
100 1B | 0.026 0.035 0.028 0.035 0.031
2A | 0.014 0.015 0.015 0.016 0.029 0.067 0.056  0.026
2B | 0.028 0.045 0.030 0.045 0.031
1A | 0.005 0.009 0.006 0.009 0.005 0.030  0.028  0.005
05 500 1B | 0.005 0.013 0.006 0.011 0.006
’ 2A | 0.003 0.004 0.003 0.004 0.005 0.013 0.011  0.005
2B | 0.006 0.018 0.006 0.016 0.005
1A | 0.002 0.007 0.003 0.006 0.002 0.013 0.012  0.002
1100 1B | 0.003 0.009 0.003 0.008 0.003
2A | 0.002 0.003 0.002 0.003 0.003 0.006  0.005  0.003
2B | 0.003 0.011 0.003 0.010 0.003
1A | 0.028 0.056 0.028 0.046 0.026 0.071 0.070  0.021
100 1B | 0.028 0.061 0.028 0.052 0.026
2A | 0.014 0.021 0.014 0.018 0.025 0.035 0.027  0.023
2B | 0.030 0.059 0.028 0.047 0.028
1A | 0.006 0.019 0.007 0.017  0.006 0.016 0.015  0.005
0.75 500 1B | 0.007 0.019 0.007 0.016 0.006
’ 2A | 0.004 0.007 0.003 0.006 0.005 0.007 0.006  0.005
2B | 0.007 0.015 0.007 0.014 0.005
1A | 0.003 0.009 0.003 0.008 0.003 0.007  0.006  0.003
1100 1B | 0.003 0.009 0.003 0.008 0.003
2A | 0.002 0.004 0.002 0.003 0.003 0.003 0.003  0.003
2B | 0.003 0.008 0.004 0.007 0.003

Table 1: MSPE of nested and singleton models based on AIC, BIC, SAIC, SBIC and PMSE.
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Abstract. A family of graphical hidden Markov models that generalizes hidden Markov chain
(HMC) and tree (HMT) models is introduced. It is shown that global uncertainty on the
state process can be decomposed as a sum of conditional entropies that are interpreted as local
contributions to global uncertainty. An efficient algorithm is derived to compute conditional
entropy profiles in the case of HMC and HMT models. The relevance of these profiles and
their complementarity with other state restoration algorithms for interpretation and diagnosis
of hidden states is highlighted. It is also shown that classical smoothing profiles (posterior
marginal probabilities of the states at each time, given the observations) cannot be related to
global state uncertainty in the general case.

Keywords. Hidden Markov models, State inference, Conditional entropy.

1 Introduction

Hidden Markov models (HMMs) have been used frequently in sequence analysis for modeling
various types of latent structures, such as homogeneous zones or noisy patterns (Ephraim &
Mehrav, 2002). They have been extended from sequences to more general structures, particularly
tree structures. In HMMs, inference for model parameters can be distinguished from inference
for the state process given parameters. This work focuses on state process inference.

State inference is particularly relevant in numerous applications where the unobserved states
have a meaningful interpretation. In such cases, the state sequence has to be restored. The
restored states may be used, typically, in prediction, in segmentation or in denoising (Ephraim
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& Mehrav, 2002). Such use of the state sequence relies on the assumption that uncertainty on
the state process given observations should be reasonably low. Not only is state restoration
essential for model interpretation, it is generally used for model diagnostic and validation as
well, for example by visualising some functions of the states — typically, to compare histograms
with conditional densities given the states. The use of restored states in the above-mentioned
contexts makes assessment of state sequence uncertainty a critical step of the analysis.

Global quantification of such uncertainty has been addressed by Hernando et al. (2005).
However, this is insufficient for detailed state interpretation: knowledge of the distribution of
that global uncertainty along the structure is also of primary importance. Quantification of local
state uncertainty given observed sequence X = x for a known HMC model has been adressed by
either enumeration of state sequences, or by state profiles, which are state sequences summarised
in a K x T array, T being the sequence length and K the number of states (Guédon, 2007).

We here address quantification of state uncertainty in an HMM with observed process X =
(Xy)vey indexed by a fixed Directed Acyclic Graph (DAG) G with vertex set )V and edge set €.
This family of HMMs is referred to as graphical hidden Markov models (GHMMs). This family
contains hidden Markov chain (HMC) and tree (HMT) models. Let S = (S,)yey denote the
associated hidden state process, S, taking values in the set {0,..., K — 1}. Let @ be a possible
realization of X . Let pa(v) denote the parent of vertex v and for any subset U of V, let X7 (resp.
xy) denote the family of random variables (X, )ycy (resp. observations (xy)yecr). It is assumed
that: S satisfies the Markovian factorization property associated with DAG G, where the vertex
set V is assimilated to the family of random variables (S,),ep (Lauritzen, 1996); the distribution
of S is parametrized by the transition probabilities ps . & = P(Sy = k|Spaw) = Spa(v)) and
for the source vertices (vertices with no parent) v in G, by the initial probabilities (P (S, = k))k;
given S, the random variables (X,), are independent and X, is independent from (Sy)y-£y-

Usually, profiles of smoothed probabilities (P(S, = k|X = @)),ep with k =0,..., K — 1
have been used for quantifying state uncertainty. This approach suffers from two main short-
comings: as will be shown later, perception of state uncertainty associated with those profiles
leads to overestimating global uncertainty of S given X = x. Moreover, visualization of those
multidimensional profiles is made difficult by the graphical nature of arbitrary DAGs G, provided
that K > 2. In our approach, entropy H is considered as the canonical measure of uncertainty.
Thus, H(S|X = x) quantifies state process uncertainty given observations. This entropy can
be decomposed into a sum of entropies. Every term of that sum is associated with one vertex
in V. Hence, these entropies can be interpreted as local contributions to global uncertainty.
Since these profiles are unidimensional, they can be drawn whatever the graphical structure G.

In what follows, this decomposition is made explicit. Then efficient algorithms are given in
the HMC and HMT model cases to compute the elements of the decomposition. It is shown using
synthetic and real-case data that the obtained local entropy profiles are relevant for state uncer-
tainty diagnosis and state interpretation. These algorithms are complementary with approaches
that enumerate the L most likely state restorations (so-called generalized Viterbi algorithm),
and with approaches that compute profiles of alternative states to the most likely state pro-
cess value. This so-called Viterbi forward—backward algorithm formally solves the optimization
problem

(arg) (sm)ai P((Sy = 5¢)uztv, Sv = k| X = ).
It is also shown that usual smoothed probability profiles are not relevant for quantifying global
state uncertainty, due to their inherent marginalization property.
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2 Conditional entropy profiles

Let X be a GHMM as defined in Section [Il It is assumed that the associated hidden state
process S satisfies the factorization associated with the Markov property on G :

VS, P(S = 8) = H P(SU = SU‘Spa(U) = Spa(v)), (1)
veVY
where P (S, = 5,]Spa() = Spa(v)) refers to P(Ss = s;) if pa(v) = 0.

The decomposition of entropy H(S|X = x) comes from the conditional distribution of S
given X = «x also satisfying the factorization property of G:

PS=sX=x) = HP(SU = 50|Spa() = Spa(), X = T),

with the same convention as before if pa(v) = 0.

Proof. This property is proved by induction on the vertices of G (as would be proved factorization
(1)). The random variables (S, X) satisfy the Markov property on DAG G’ which edge set &’
is defined as a € &' < {[a = (S, Sy) and (u € pa(v))] or a = (Sy, Xu)}. Let u in G be a sink
vertex (vertex without children): then S, is separated from (Sy)yLuvgpa(u) PY Spa(u) in the
moral graph of G’. Thus, the following factorization holds:

P(S = s|X = z) = P(Su = sulSpau) = Spau)s X = T)P((Sv)vtu = (Sv)vzu| X = ).
]

The additive decomposition of entropy is obtained by applying the chain rule (Cover &
Thomas, 2006, chap. 2)

H(S|X:w):ZH(S’U|Spa(v)7XZa:)7 (2)

with the same convention as before if pa(v) = (). As a consequence, the global state process
uncertainty is decomposed as a sum of conditional entropies (H (Sy|Spa(w), X = ))vey, which
define an entropy profile. Hence, each term of the sum is interpreted as a local uncertainty that
contributes additively to global uncertainty.

In contrast, marginal entropies (H(S,|X = x))yey quantify uncertainty associated with
smoothed probabilities &,(k) = P(S, = k|X =) for v € V and 0 < k < K. These marginal
entropies are upper bounds of the conditional entropies (Cover & Thomas (2006), chap. 2).
Hence,

H(S|X =x) <) H(S,|X =)
v

As a consequence, smoothed probability profiles do not represent uncertainty on the value of S.
The particular case of HMC models is considered. Here G is a linear graph with 7" vertices,
and for any t <T, Xg = xg,..., Xy = x¢ is denoted by Xé = :E6. Here can be rewritten as

T-1

H(S|X =x)=H(S|X =x)+ Y_ H(S|S%-1,X =x),
t=1
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with

H(S|S-1, X =) ==Y P(S; =j,Si-1 = i|X =) log P(S; = j|S-1 =i, X = x).
i,

This results from definition H(S¢|Si—1, X = @) = E[—log P(S¢|Si—1,X = )|, where expec-
tation is under P(S;,S;—1|X = x). The usual forward recursion computes o (j) = P(S; =
JIXE = xb) and v (j) = P(S; = j|X5" = ') for each time ¢ and each state j and com-
bine them in the backward recursion to yield the smoothed probabilities & (j) = P(S; = j|
X = x). Thus, computation of the conditional entropy profile H(S;|S;—1,X = x) with
0 <t < T —1 can be integrated in the backward recursion by computing P(S; = j|
Si-1 = 4, X = x) = &(f)pijeu—1(8)/{n(j)&-1(4)} where p;; = P(S; = j|Si—1 = i) is the
transition probability. This approach can be seen as an alternative to the algorithm of Her-
nando et al. (2005). It allows the computation of H(S|X = x) with the same complexity in
O(TK?), but the advantage of our approach is to provide the conditional entropy profile.

In the case of HMTs indexed by tree G = T the smoothed probabilities &, (k) = P(S, = k|
X = x) are computed for v € T by an upward—downward algorithm. A numerically stable
iterative algorithm was proposed by Durand et al. (2004). It relies on an upward recursion,
initialized at the leaf vertices of 7. The computed quantities are 8,(k) = P(S, = k| X, = &,)
and Bpae)w(k) = P(X, = &y|Spaqy) = k)/P(X, = &) for each vertex v and each state j,
where X, denotes the subtree rooted in v. These quantities are computed as a function of
Bu and Bpa(y), for the children u of v. The algorithm complexity is in O(K?) per iteration.
The smoothed probabilities are computed using a downward recursion initialized at the root
vertex of 7. In this recursion, the §,(k) are computed as a function of Epa(v)s Bv and Bpa(), -
The complexity is in O(K?) per iteration as well. Similarly to the HMC case, adding the
computation of

H(Sy|Spa@), X =x) = = > P(Sy = j, Spa) = i|X = ) 1log P(Sy = j|Spaw) = 1, X = )
irj

to the downward recursion, with P(S, = j|Spa) = i, X = ) = Bu(4)pis /{P(Sv = ) Bpaw),0 (1) }
and pyj = P(Sy = j|Spa(w) = 1), allows for extracting conditional entropy profiles, while keeping
the complexity per iteration of the algorithm in O(K?).

3 Applications

Synthetic examples

A two-state HMC family is considered. Its transition probability matrix is parametrized by
e=P(S; = 1|Si—1 = 0) = P(S; =0|S;—1 = 1), € € [0,0.5]. The initial state distribution 7 is
P(So=0) = P(Sp=1) = 0.5. The observation process takes values in {0, 1,2} and the emission
distributions (conditional probabilities of observations given the states) are P(X; = 0|S; = 0) =
1—p; P(X; =1]S = 0) =p; P(X;y = 1|5y =1) =p; P(X; =2[S; =1) =1 —p where p € [0, 1]
is an additional parameter.

In a first experiment, p is fixed at 0.5 and the considered observed sequence is x; = 1 for
t=0,...,7 — 1. The smoothed probabilities are &(0) = &(1) = 0.5 for t =0,...,7 — 1. Thus,
for any value of €, marginal entropy is log2 and the sum of these entropies over t is T log 2. In
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contrast, global entropy of the hidden state sequence is a strictly increasing function of €. Its
minimum log 2 is reached for € = 0, whereas its maximum 7 log 2 is reached for ¢ = 0.5.

Marginal and conditional entropy profiles are represented in Figure |1} a). For ¢ = 0, the
conditional entropy profile is interpreted as follows: global uncertainty is log2, which corre-
sponds to uncertainty concerning the first state only. Given this first state, every subsequent
state is deterministic and does not contribute to global uncertainty. The marginal entropy pro-
file highlights equiprobability of both states at each time ¢ given the observations. The same
statement would hold under an independent mixture assumption for (X;);>o. Marginal entropy
results from uncertainty concerning state S; due to observing X; = x;, but also to propagation
of uncertainty from past states. As a consequence, marginal entropy cannot be interpreted in
terms of local contributions to global uncertainty. In contrast, conditioning by the past state in
entropy withdraws the effect of uncertainty propagation.

In a second experiment, the effect of p and € on global state entropy is assessed by simulating
100 sequences of length T' = 300 for each p € [0,1] and each € € [0,0.5] on a regular grid with
40 x 40 points. The mean global entropy over the 100 sequences is represented in Figure [1| b).
As expected, entropy increases with the emission distribution overlapping (p — 1) and as the
rows of the transition probability matrix tend to m (¢ — 0.5), so that maximal entropy 7 log 2
is obtained in the independence case ¢ = 0.5 with full overlapping p = 1.0.

200

0.7 150

100

Adonua

¢ conditional entropy
€= 0.0) 50
- conditional entropy
(e=0.05)
-®- conditional entropy
(e=0.15)

02 -8 marginal entropy 1.0
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"??rssfbn ?.4

0.4
02 3.
0.2 0.1 {rans'\ﬂof\ g
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a) b)

Figure 1: a) Marginal and conditional entropy profiles for a 2-state HMC model with transition
probabilities ¢ = 0.0, ¢ = 0.05 and ¢ = 0.15. b) Mean global state entropy for simulated
sequences as a function of transition probability ¢ and emission probability p.

Analysis of the structure of Aleppo pines

The aim of this study was to build a model of the architectural development of Aleppo pines.
The dataset contained seven branches of Aleppo pines, issued from different individuals. They
were described at the scale of annual shoots v (segment of stem established within a year). Each
branch was assimilated with a (mathematical) tree. Each tree vertex v (shoot) was characterized
through one observed 5-dimensional vector X, composed of the: number of growth cycles (from
1 to 3), presence of male sexual organs (binary variable), presence of female sexual organs
(binary variable), length in cm, number of branches per tier. The parameters were estimated
by maximum likelihood using the EM algorithm. The number of states was chosen by the
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ICL-BIC criterion (see Section [4]), leading to selection of a 6-state HMT model. The Markov
tree is initialized in state 0 with probability one. A summary of the state transitions and an
interpretation of the hidden states are provided in Figure

As a first step, profiles of conditional entropies were represented using a colormap (mapping
between entropy values and color intensities) — see Figure [3|a). This step highlighted location of
the vertices with least ambiguous states along the branch main axes, and location of the vertices
with most ambiguous states at the peripheral parts of branches. Then, state profiles were drawn
along paths extending from the root vertex to leaf vertices. These paths were chosen so as to
contain vertices with high conditional entropies. On the one hand, a detailed analysis of state
uncertainty along the paths were obtained by Viterbi upward-downward profiles. This provided
local alternative state values to the most likely tree states given by the Viterbi algorithm.
On the other hand, the generalized Viterbi algorithm was used to characterize how clusters
of neighbor vertices had simultaneous state changes in alternative state configurations. These
results highlighted that the paths with most ambiguous states were composed of successions of
unbranched, sterile shoots with one single growth cycle.

signature of the state emission distributions

male cones
3 5 @ female cones
I I I I * branches

= probability of
a 2™ growth cycle

. transition diagram

Figure 2: 6-state HMT model: transition diagram and symbolic representation of the state sig-
natures (conditional mean values of the variables given the states, depicted by typical shoots).
The separation between growth cycle is represented by a horizontal red segment, which intensity
is proportional to the probability of occurrence of a second growth cycle. Dotted arrows cor-
respond to transitions with associated probability < 0.1. Mean shoot lengths given each state
are proportional to segment lengths, except for state 0 (which mean length is slightly more than
twice the mean length for state 1).

The application of this methodology is illustrated below on a path containing successive
monocyclic, sterile shoots. This path belongs to the fourth individual (for which H(S|X = x) =
47.5). It is composed by 5 vertices, referred to as {0,...,4}. Shoots 0 and 1 are long and highly
branched, and thus are in state 0 with probability ~ 1 (also, shoot 0 is bicyclic). Shoots 2
to 4 are monocyclic and sterile. Shoots 2 and 3 bear one branch, and can be in states 1 or 2
essentially. Shoot 4 is unbranched and from the Viterbi profiles in Figure ), it can be in states
2, 3 or 5. This is summarized by the conditional entropy profile in Figure )

This conditional entropy profile can be further interpreted, in relation with mutual infor-
mation I(Sy;Spa(u)|X = ). On the one hand, I(S1; S2|X = x) = 0. This results from state
S1 being known. Thus, conditioning by S; does not provide further information on its children
state Sa. On the other hand, I(Ss;S4|X = x) = 0.2. Uncertainty associated with the posterior
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distribution of Sy is high, since H(S4|X = «) = 0.67. However, knowledge of its parent state
S3 would reduce the uncertainty on Sy: if S3 = 1 then Sy = 5; if S3 = 2 then Sy = 2 (or less
likely, Sy = 3) and if S3 = 3 then S4 =5 (or less likely, Sy = 2).

Using an extension of (2]) to subgraphs of 7, the contribution of the vertices of the considered
path P to global state tree entropy can be computed as Y ,cp H (Su|Spa(u), X = @) and is equal
to 1.41 in the above example (that is, 0.28 per vertex on average). The global state tree entropy
for this individual is 0.24 per vertex, against 0.20 per vertex in the whole dataset. This is
explained by the lack of information brought by the observed variables (several successive sterile
monocyclic shoots, which can be in states 1, 2, 3 or 5).

The contribution of P to the global state tree entropy corresponds to the sum of the heights
of every point of the profile of conditional entropies in Figure [3p).

Note that the representation of state uncertainty using profiles of posterior state probabilities
induces a perception of global uncertainty on the states along P equivalent to that provided by
marginal entropy profile in Figure ) The mean marginal state entropy for this individual is
0.37 per vertex, which strongly overestimates the global state tree entropy per vertex (0.24).

4 Concluding remarks

In this work, conditional entropy profiles are proposed to assess both local and global state
uncertainty in GHMMs. As shown in the examples, these profiles allow deeper understanding
of the local roles of the model parameters, the neighbouring states and the observed data,
concerning state uncertainty. These profiles are a valuable tool to analyse alternative state
restorations, which may involve zones of connected vertices. Such situations are characterised
by high mutual information between connected vertices. Moreover, the examples highlight that
the posterior state probability profiles introduce confusion between (i) local state uncertainty due
to overlap of emission distributions for different states and (ii) mere propagation of uncertainty
from past to future states. Contrary to conditional entropy profiles, they suggest strong local
contributions to global state uncertainty in zones where such uncertainty is in fact far more
limited.

In the perspective of model selection, entropy may also be useful. If irrelevant states or
variables are added to GHMMSs, global state entropy is expected to increase. This explains
why several model selection criteria based on a compromise between log-likelihood and state
entropy were proposed. Among these is the Normalised Entropy Criterion introduced by Celeux
& Soromenho (1996) in independent mixture models, and ICL-BIC introduced by McLachlan &
Peel (2000, chap. 6). Their generalization to GHMMs is rather straightforward. By favouring
models with small state entropy and high log-likelihood, these criteria aim at selecting models
such as the uncertainty of the state values is low, whilst achieving good fit to the data.
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Abstract. Mixture models have been widely used in marketing research and epidemiology
to capture heterogeneity in endogenous latent variables among individuals. However, when
collinearity between endogenous latent variables at the component level is present, some component-
specific path coefficients will be zero. In this paper, a systematic computational algorithm is
developed to identify parameters that need to be constrained to be zero and to address other
issues including the initialization procedure, the provision of standard errors of estimates, and
the method to determine the number of components. The proposed algorithm is illustrated
using simulated data and a real data set concerning emotional behaviour of preschool children.

Keywords. Mixture models, Latent variables, Regression models, Sparse coefficients, EM al-
gorithm

1 Introduction

Regression models involving latent variables (or constructs) are very common in the marketing
research and epidemiology [2 B]. With this approach, simultaneous regression equations are
adopted to model the relationships between multiple dependent (endogenous) latent variables
and independent (exogenous) latent variables. Let n; and §; denote the vectors of endogenous

and exogenous latent variables for the jth individual (5 = 1,...,n), respectively. The “inner”
model is specified in terms of ¢ simultaneous regression equations as
Bn; +T€; = ¢, (1)

where B is a ¢ X ¢ matrix with ¢ being the number of endogenous latent variables, T' is a
g X p matrix where p is the number of exogenous latent variables, and ¢; is a random vector
of residuals. The matrices B and I represent the (path) coefficients relating to the endogenous



224 Mixture of sparse regression models

and exogenous latent variables, respectively, in the inner model. The relationships between the
latent variables and the manifest variables, either reflective indicators or formative measures,
are specified in the “outer” model [3]. Estimation of model parameters and values for latent
variables can be proceed with two different approaches. The structural equation modelling
(SEM) approach attempts to reproduce the covariance matrix of the observed measures, while
the partial least squares (PLS) approach focuses on maximizing the variance of the endogenous
variables explained by the exogenous variables.

In many real problems, the presence of heterogeneity among individuals in terms of different
path coefficients is prevalence. Such kind of heterogeneity is due to different individual perception
of latent variables and can be captured in the regression modelling via a finite mixture model
approach [3,[10]. With the PLS approach to regression models with latent variables, it is assumed

that the endogenous latent variables n; (j = 1,...,n) come from a mixture of a finite number,
say g of multivariate normal distributions in some unknown proportions 71, .., T, that sum to
one:
g
f(nj;‘y)zzﬂi¢(nj;uij72i) (jzlv"‘7n)7 (2)
i=1

where p;; = (I - Bi)ﬂj —I';€; is the mean vector of the ith component, where I is an identity
matrix, and X; = diag(a?) is a diagonal matrix constructed from the vector Ug, which represents

the variance of the random residuals ¢;; (i = 1,...,g). In (2)), ¥ is the vector of all the unknown
parameters containing 7y, ...,m,—1 and the free parameters in B;, I';, and X; fori =1,...,g.
From , the conditional multivariate normal density is given by
| Bi _
¢(le§ Hij, %) = ——— eXP{_%(Bﬂ?j + Fiﬁj)Tzi 1(Bi77j + FiEj)}v (3)
(2m)9| %]

where the superscript 1" denotes vector transpose.

While mixtures of multivariate normal distributions are generically identifiable (that is, the
model is unique up to a permutation of the component labels; see [4] [7]), mixtures of regression
models with latent variables arisen from and are not identifiable unless some elements of
matrices B; and I'; (i =1,...,g) are constrained to zero [3]. In practice, the links between the
latent variables represented by simultaneous regression equations in the inner model are usually
hypothetical models pre-specified based on a researcher’s own experience. When collinearity
between endogenous latent variables at the component level is present, some component-specific
path coefficients will be zero. However, the setting up of such parameter constraints at present is
somewhat arbitrary. There are also issues of initialization procedure, provision of standard errors
of parameter estimates for statistical inference, and determination of the number of components
g in the mixture model [7]. In this paper, we tackle these issues by developing a systematic
computational algorithm for the implementation of mixtures of regression models with latent
variables and sparse coefficient parameters as presented in and .

The rest of the paper is organized as follows: Section 2 describes the expectation-maximization
(EM) algorithm for the iterative computation of maximum likelihood (ML) estimates of the mix-
ture model and the procedure to identify sparse coefficient parameters. Also, we show how to
initialize the algorithm, to obtain standard errors using a bootstrap resampling approach, and
to determine the value of g. In Section 3, we present simulation studies to illustrate the appli-
cability of the proposed algorithm in terms of the accuracy of the final model derived and the
corresponding estimate biases. We show in Section 4 the application of the proposed method to
a real data set. Section 5 ends the paper with further discussion.
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2 Algorithm for fitting mixture of sparse regression models

The proposed algorithm applies directly to the scores of endogenous and exogenous latent vari-
ables, n; and &, calculated using an iterative scheme of standard PLS on the observed manifest

variables with specification based on the constraints of B and T for all individuals (j = 1,...,n);
see [3, [10]. The “aggregate” predictors of B and I estimated in the PLS procedure may also be
used to guide the initial estimates for B; and I'; (i = 1,...,g) in the mixture model.

Maximum likelihood estimation and parameter constraint

The fitting of the mixture model to latent variables n; and §; (j = 1,...,n) obtained by
PLS can be implemented using ML. An estimate ¥ is obtained by solving the log likelihood
equation iteratively via the EM algorithm [8]. An appealing property of the EM algorithm
is that the likelihood is not decreased after each iteration. Within the EM framework, each
individual is conceptualized to have arisen from one of the g components of the mixture model
and the unobservable component-indicator vector z; is treated as missing data. Precisely, the
ith element z;; of z; is taken to be one or zero according as the jth individual does or does not
come from the ith component (i =1,...,g; j=1,...,n). On the (k+ 1)th iteration of the EM
algorithm, the E-step computes the so-called Q-function, which is the conditional expectation
of the complete-data log likelihood using the current fit for W:

g n
Q(¥; \I’(k ZZTl {10g7r,+10g¢(77j,uz]72')}’ (4)
i=17=1

where we simply have to calculate

k k k
() _ s )¢(nj;“§j)721( )
Tijg = k k
! Zh 17 ¢(77]>H§U)72( ))

which is the posterior probability that the jth individual belongs to the ith component of the
mixture; see [7].

The M-step updates the estimate of ¥ by the new value W+ of ¥ that maximizes the
Q-function with respect to W. It can be seen from that the maximization with respect to
the mixing proportions and coefficient parameters can be obtained separately as follows:

(t=1,...,9; j=1,...,n), (5)

n n (k) ( ) (k)
(k+1 ZTk)/n 25k+1) _ Zj:l Tij (B TI]+F EJ) (B z +T; éj)

j=1 Zj:l Tz]
1 —1
kH Z F(k 53773 {Z njnyr} kH Tzk "7353 {Z 5151 } (6)

J=1

In addition to the parameter constraints specified under the hypothetical model in under
(2), extra constraints at the component level may be required in the formulation of the final
mixture model when collinearity between some endogenous variables is present. In this paper, we
propose the following systematic scheme to determine which additional component-parameters
in B; (i=1,...,9) need to be constrained to be zero:
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1. Perform model estimation without any additional constraints;

2. Monitor the log likelihood values at each iteration and the parameter estimates of B; (i =
17 ety g);

3. Determine if the algorithm converges or not (failure to convergence is indicated by either
singularity of B; or decrease of log likelihood values due to estimate in B, say b;,, being
very close to zero, such as being less than 0.000001 in absolute value”);

4. Constrain the parameter b, if convergence fails to achieve in (3), to be zero and then
rerun the model estimation;

5. Repeat (2) and (4) to constrain one parameter at a time®

estimation is achieved.

until convergence of model

Initialization, computation of standard errors, and model selection

With applications where the log likelihood equation has multiple local maxima, the EM algorithm
should be implemented from a wide choice of initial parameter values in an attempt to search
for all local maxima [7, [§]. The proposed algorithm provides three options to initialize the EM
algorithm, where the user can either (a) specify initial estimates of the unknown parameters
(such as those guided by estimates obtained by the standard PLS); (b) use random groupings of
the data to get initial estimates of the unknown parameters; or (c¢) run the EM algorithm from
different random starts as in (b) and use the set of parameter estimates corresponding to the
largest likelihood value as initial values for obtaining the final model.

With the proposed algorithm, the standard errors of the estimates of ¥ are obtained using
the bootstrap resampling method with replacement, where the number of bootstrap replications
is taken to be 100 [7].

In the absence of any prior information as to the number of components present in the data,
we can monitor the increase in log likelihood function as the value of g increases in order to
determine an appropriate value of g. At any stage, the choice of g = gy versus g = gy + 1 can
be made by using some information-based criterion, such as the Bayesian Information Criterion
(BIC) [9] or by a bootstrap resampling approach to assess the null distribution (and hence the
p-value) of the likelihood ratio test statistic [7]; see also [5] and [6]. There is also the integrated
classification likelihood (ICL) criterion [I]. Other criteria for the determination of g, including
the Akaike Information Criterion (AIC), the consistent AIC (CAIC), and the entropy measure
(EN), have been considered specifically within the marketing research [3| [I0]. Comparison of
these methods in the general context of mixture models has been reported [7].

3 Simulation experiments

In this section, we study the performance of the proposed computational algorithm for fitting
mixtures of sparse regression models. We consider a marketing research setting with p = 5
exogenous and ¢ = 7 endogenous variables. Let £ = (&1,...,&)T and 9 = (n1,...,17)7 be the
scores of exogenous and endogenous variables, respectively, with the subscript j that indicates
the jth individual dropped, the 7 simultaneous regression equations that define the path model
are given by

" Other thresholds close to zero may be used and the choice should not affect the results.
8 If constraints in multiple parameters are needed, sensitivity analysis may be used to determine the order.
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m =111 + C1; n5 = Y5464 + C5;

N2 = 72282 + C2; n6 = Y6555 + C6;

N3 = bsana + (35 N7 = brana + bzsns + brene + (7,

Na = bam + baznz + 74383 + 4 (7)

which imply that the specifications for B; and I'; (i = 1,...,g) are:

1 0 0 0 0 0 0] [y O 0 0 0
0 1 0 0 0 0 O 0 -y O 0 0
0 -biz 1 0 0 0O O 0 0 0 0 0
B, = | -bju 0 -bis3 1 0 0 0 and T; = 0 0 -7Yi43 0 0
0 0 0 0 1 0 0 0 0 0 -7Yi54 0
0 0 0 0 0 1 0 0 0 0 0 -5
0 0 0 -bia -bis b 1| 0 0 0 0 0

(8)
In the simulation experiments, it is assumed that there are g = 3 groups of individuals and
the total number of individuals is n = 1000. Each vector of the exogenous latent variable scores

§; (j =1,...,1000) was generated independently from a multivariate normal distribution with
mean vector and covariance matrix as
-0.063 { 1.14 0.66 0.72 0.45 0.57 -I
-0.131 0.66 1.19 0.53 0.29 0.43
Mean = -0.012 and Cov. = | 0.72 0.53 1.01 048 0.58 |. (9)
0.080 0.45 0.29 0.48 0.99 0.47
-0.013 0.57 0.43 0.58 0.47 1.01

The parameter values for ¥ with reference to are given in Table[l} these parameter values are
based on a fitted mixture model we have obtained on a real data set. Realizations of component
membership were generated in which an individual has a probability of m; to belong to the
ith component (i = 1,2,3). Given the component membership, realizations of n; were then
generated from the corresponding component density qﬁ(nj\uij, ¥,;) as in under .

To illustrate the proposed scheme presented in Section 2 for the constraint of additional
component-parameters in B; (1 = 1,2, 3), we consider collinearity between the seventh 7; and
the forth 74 endogenous latent variables in for the first component. This implies that both
parameters b175 and by7g are zero, with a very small 0%7; see Table Using a data set of n. = 1000
scores generated as above, we first consider a mixture model without any additional constraints
on parameters in B; (see Equation ) The algorithm fails to converge as the estimate of by75
has a value smaller than 0.000001. We then consider a model with an additional constraint of
bi175 = 0. The algorithm again fails to converge as the estimate of bi7¢ has a value smaller than
0.000001. We thus constrain bi7¢ = 0 as well. This final model with two additional constraints
(b175 = 0 and b7 = 0) converges.

Ten independent simulation experiments were conducted to assess the generalization perfor-
mance of the proposed algorithm for fitting mixtures of sparse regression models. Such evaluation
is based on the accuracy of the final model derived, the misclassification rate, and the bias of
estimates. In all ten experiments, the algorithm identifies the correct final model with two addi-
tional constraints in bi75 and bi7g (the rate of correctly identifying sparse coefficients is 100%).
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Parameter 1=1 =2 =3 Parameter i=1 =2 ¢=3
e 042 046 0.12 Y54 0.63 0.50 0.17
bis2 097 0.64 0.67 Yi65 1.02 094 -0.80
bis1 0.60 0.14 0.27 o2 0.07 0.64 0.39
b;a3 0.32 040 0.32 0% 0.09 0.89 0.68
bi74 0.87 020 049 0223 0.07 0.60 0.44
bi7s 0.00 0.27 0.11 o2 0.02 047 0.35
bize 0.00 0.24 0.21 o 0.58 0.82  0.82
Yil1 091 067 0.74 0% 0.01 0.01 0.73
Yi22 1.16 049 0.29 o2 1E-6 0.86 0.87
Yid3 0.03 0.39 0.22

Table 1: Parameter values for a 3-component mixture model (Simulation experiments).

Parameter i=1 i1=2 =3 Parameter =1 +=2 =3
e -0.001  0.010 -0.009 Yisa -0.003  0.008 -0.017
biso 0.001  0.018 -0.043 Yi65 0.001  0.001 -0.048
bia1 -0.002  0.003 0.003 0?1 -0.001  0.006 0.031
bias -0.004 0.002 0.010 0122 0.003 -0.005  0.022
bi74 -0.001 -0.008 0.045 02-23 0.002 -0.003 -0.018
bits — -0.011 0.016 0124 0.001 -0.005 -0.011
bite — 0.001 0.040 0225 0.006 -0.001 -0.033
Yi11 0.001 -0.006  0.003 0?6 0.001  0.001  0.009
Y22 0.002 0.011  0.008 0227 0.000 -0.006 0.067
Yi43 0.001 -0.004 -0.011

Table 2: Average bias of estimates for a 3-component mixture model (Simulation experiments).

The average misclassification rate is 0.0137. The average bias of estimates are presented in Table
2. It can be seen that no appreciable bias is observed in the estimation of W.

4 Real example: Emotional behaviour of preschool children

This real example is based on the Early Head Start Research and Evaluation (EHSRE) project
conducted from 1996 to 2001. The data set is available from the Inter-University Consortium for
Political and Social Research (ICPSR) at http://www.icpsr.umich.edu. It contains data about
2977 children under 3 years who were randomized to receive designed Early Head Start (EHS)
services or to seek their own early childhood care in their community; see, for example, [12].

In the current study, we considered n = 1498 individuals with complete observations in
eight manifest variables and focus on the conceptual model described in [12] for hypothesized
relationships among maternal mental health, parenting stress, parent-child routines, and child
emotional development. The endogenous and exogenous latent variables of the hypothetical
model are presented in Figure In the inner model, there are p = 1 exogenous (maternal
mental health) and ¢ = 3 endogenous (parenting stress, parent-child routine and child emotional
development) latent variables. The 3 simultaneous regression equations that define the path
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model are given by
m =& + G n3 = baim + bsana + (3.
n2 = barm + G2 (10)

The standard PLS analysis is implemented using the “plspm” package in R [I1] to obtain
the scores for the 4 latent variables corresponding to the path model presented in Figure[ll The
proposed algorithm is then used to fit mixtures of regression models to the scores of the latent
variables with ¢ = 1 to ¢ = 5. No additional parameter constraints are necessary. Using the BIC,
we identified two groups of individuals. The larger group (i = 1, n; = 1434) of individuals have
all links in the hypothetical inner model significant; see Table [3| for the estimates of the path
coefficients. Comparing to the majority, the smaller group (ny = 64) of individuals have smaller
impact from maternal mental health on parenting stress (7211), and from parenting stress and
parent-child routine on child emotional development (b23; and bes2). A post-hoc analysis finds
that these two groups are significantly different in RACE (p-value = 0.001; see Table , but not
in the program allocated, child gender, child overweight indicator, and maternal age at birth.

Maternal
mental health Parent-child
routine
Y11 b2y
bs2
Parenting
stress hl\»

Figure 1: Hypothetical inner model relating maternal mental health, parenting stress, parent-
child routines, and child emotional development

Child emotional
development

Group bi21 bis1 bisa Yi11 Race = Hispanic
i=1 -0.178 (0.032) -0.194 (0.033) 0.142 (0.028) 0.423 (0.021)  312/1357* (23.0%)
i=2 -0.159 (0.039) -0.074 (0.035) 0.071 (0.062) 0.237 (0.105) 26/61* (42.6%)

Table 3: Estimates (standard errors) of path coefficients for a 2-component mixture model and
proportion of Hispanic children (* Missing data exist in both groups).

5 Discussion

We have developed a computational algorithm for fitting mixtures of regression models with
latent variables and sparse coefficient parameters. The algorithm adopts a systematic scheme
to determine which additional component-parameters in the matrices of path coefficients B;
need to be constrained to be zero. Simulated and real data sets have been used to illustrate
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the applicability of the proposed algorithm. The method can be readily adopted for component
distributions that are not multivariate normal.
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Abstract. In the present framework, a tensor is understood as a multi-way array of complex
numbers indexed by three (or more) indices. The decomposition of such tensors into a sum
of decomposable (i.e. rank-1) terms is called “Polyadic Decomposition” (PD), and qualified as
“canonical” (CPD) if it is unique up to trivial indeterminacies. The idea is to use the CPD to
identify the location of radiating sources in the far-field from several sensor subarrays, deduced
from each other by a translation in space. The main difficulty of this problem is that noise is
present, so that the measurement tensor must be fitted by a low-rank approximate, and that
the infimum of the distance between the two is not always reached.

Our contribution is three-fold. We first propose to minimize the latter distance under a
constraint ensuring the existence of the minimum. Next, we compute the Cramér-Rao bounds
related to the localization problem, in which nuisance parameters are involved (namely the trans-
lations between subarrays). Then we demonstrate that the CPD-based localization algorithm
performs better than ESPRIT when more than 2 subarrays are used, performances being the
same for 2 subarrays. Some inaccuracies found in the literature are also pointed out.

Keywords. multi-way array ; localization ; antenna array processing ; tensor decomposition ;
low-rank approximation ; complex Cramer-Rao bounds

1 Introduction

The goal is to estimate the Directions of Arrival (DoA) of R narrow-band radiating sources, which
impinge on an array of sensors, formed of L identical subarrays of K sensors each. Subarrays do
not need to be disjoint, but must be distinct. The hypotheses are [I}, 2, [3]: (H1) sources are in
the far-field, so that waves are plane; (H2) taking one subarray as reference, every subarray is

deduced from the reference one by an unknown translation in space, defined by some vector

of R3 1< (<L, def 0; (H3) measurements are recorded on each sensor k of each subarray ¢

and for various time samples m, 1 < m < M. In hypothesis (H2), the fact that translations are
not exactly known is legitimate, if subarrays are arranged far away from each other, or when
their location is changing with time [4]. With these hypotheses, the observation model below
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can be assumed [2, [3] 4]:

R
Z(k,t,m) =Y Apy Ber Cp + N(k, £, m) (1)
r=1
where N (k, ¢, m) is a measurement/background noise that will be assumed normally distributed.
In addition, (H4) parameters {Ag,, 1 < k < K, 1 < r < R} are complex numbers of unit
modulus, and By, = 1 = Ay, Vr. In the present framework, we shall consider subarrays that
are formed of equispaced sensors, so that the following can also be assumed (H5):

3 wr : Akr = eXp(]ﬂ'(k - 1) CoS 1/}7") (2)

where ), is the so-called Direction of Arrival (DoA) of the rth source as illustrated in Figure
and 7 = v/—1. Space is lacking to explain the physical context, but further details can be found
in [I, 2, B, 4]. The literature is abundant about DoA estimation, but most approaches have
been based on second-order moments; see e.g. [5] and references therein. On the other hand,
the use of space diversity via more than two subarrays is much more recent, and is due to [2].
The key originality therein is that the approach is not based on moments but proceeds by direct
parameter estimation from the data.

A key ingredient in this problem is the use of complex random variables, which turn out to
be very useful because the formalism is much simpler when working in baseband with complex
envelopes of transmitted signals. Among the useful ingredients, we have at disposal matrix
differentiation [6], Kronecker and tensor calculus [7, 8], complex differentiation and the derivation
of complex Cramér-Rao bounds (see Section [3)).

Notation. R and C designate the real and complex fields, respectively. Bold lower case letters,
e.g. z, always denote column vectors, whereas arrays with 2 indices or more are denoted by bold
uppercase symbols, e.g. V or Z. Array entries are scalar numbers and are denoted in plain
font, e.g. z;, Vij or Zigyy,. The gradient of a p-dimensional function f(x) with respect to a
n-dimensional variable x is the p x n matrix [0f /0x];; = 0fi/0x;.

2 Tensor formalism and constrained optimization

In this framework, what is meant by temnsor is just a multi-way array of coordinates; this is not
restrictive as long as the coordinate system is fixed [8]. The noiseless part of is a sum of
decomposable tensors, whose coordinates are of the form Dy, = ag be . Any tensor can be
decomposed into a sum of decomposable tensors, and the minimal number of terms necessary
to obtain an exact decomposition is called tensor rank. Hence nonzero decomposable tensors
have a rank equal to 1. Because of the presence of noise, the best rank-R tensor approximate of
Z needs to be found, for instance in the sense of the Frobenius norm, which is consistent with
the log-likelihood in the presence of additive Gaussian noise. However, as pointed out in
[3, 8, [4] and references therein, the infimum of

R
T(A,B,C) ¥ [|IZ-) asbec,’

r=1

may not be reached. Here, a,, b,, ¢, denote the columns of matrices A, B, C defined in ,
respectively, and & is the tensor outer product.
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It has been proved in [3] that a sufficient condition ensuring existence of the best rank-R

approximation is that

1
Babphc < p—7 (3)

where ji4 = suplajlag|, up = sup [bybyl, pe = sup [cfiel.
k£ ket kel

Therefore, the following differentiable constraint, proposed in [4], can be imposed:

1/2p
def _ _ _ def
Cob = 1— R+ pu(A,p) ' u(B,p) tu(Cop) ™t >0, u(A,p) = <Zlaﬂaq2”> (4)
r<q

In fact, the inequality between LP norms

[x]lo0 = max{a} < llxll, & (3 af)/?, Var € RY, p > 1,

k

guarantees that constraint implies condition . In practice, the following penalized objective
function has been minimized in subsequent computer simulations:

T(AvBaC) +77 eXp(—’pr(X)) (5)

with p=13,1076<n<1,vy=5.

3 Complex Cramér-Rao bounds

When parameters are complex, expressions of Cramér-Rao bounds (CRB) depend on the defini-
tion of the complex derivative. Since a real function is never holomorphic (unless it is constant)
[9], this definition is necessary; this has been overlooked in [I0]. Originally, the derivative of a
real function h(€) € RP with respect to a complex variable 8 € C", 8 = o + 303, a, 8 € R", has
been defined as the p x n matrix [9]:

Oh qf Oh , Oh
90 ~ oa 98

Even if the numerical results are independent of the definition assumed for theoretical calcula-
tions, we shall subsequently assume the definition proposed in [I1], for consistency with [12]:

96 200 208 ©)

With this definition, one has for instance that da/00 = %I, and 083/00 = —11. This is a key

difference with [9], where we had instead: da/06 = I, and 93/90 = jI. Assume that parameter

0 is wished to be estimated from an observation z, of probability distribution £(z; @), and denote
s(z; @) the score function. Then we have for any function h(8) € RP:
T def O

E{h(z)s(z;0)"} = %E{h(z)}, with s(z;0)" = %log L(z;0) (7)
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This is a direct consequence of the fact that E{s} = 0, valid if derivation with respect to 6
and integration with respect to R(z) and (z) can be permuted. Now let t(z) be an unbiased
estimator of @. Then, following [9], one can prove that E{ts'} = E{(t — 8)s"} = I and
E{ts"} = 0. Finally, by expanding the covariance matrix of the random vector (t — ) — F~ls*,
one readily obtains that:

V>F ! withVEE{(t—0)t—0)"}and F < E{s*sT} (8)

Note that the definition of the Fisher information matrix is the complex conjugate of that of
[9], because of a different definition of the complex derivation (and hence a different definition
of the complex score function).

4 Cramér-Rao bounds of the localization problem

In the presence of R sources, the observations can be stored in a three-way array unfolded in

vector form:
R

z=)Y a,Xb,Nc, +n, z € CKIM 9)
r=1

where X denotes the Kronecker product, and the additive noise n is assumed to follow a
circularly-symmetric complex normal distribution. Let

0= [¢1,...,¢R,f)-1r,...,E)T,C-lr,...,C-II:Z,Bll—',...,C}Hz] (10)
P 13 '

denote the unknown parameter vector, where b, def [Bay,...,B LW]T. It is useful to include both

¢ and £, in case the distribution of the estimate £ is not circularly-symmetric, i.e. E{€ ET} # 0.
The aim here is to derive the CRB of the parameters in 8. The CRB for factor matrices have
been computed in [12]. However, it should be emphasized that, unlike [I2], no assumption is
needed on the elements of matrix C to derive the CRB. In fact, assuming that the first row of A
and B is fixed to [1,...,1]1xg is sufficient. The latter assumption is satisfied in the considered
array configuration (hypothesis: H4). The log-likelihood then takes the form:

log £(z,0) = ~K LM og(0”r) ~ 5 (z — u(6))" (z — () (1)

where p1(0) is the noise free part of z. The CRB for unbiased estimation of the complex pa-
rameters 6 is equal to the inverse of the Fisher information matrix F, defined in equation (8)).
Then, a straightforward calculation yields:

1 op* 8;1,}
T_ L | TOK HOH
S T2 {n a0 "™ be (12)

where n = z — u. By substituting the score function s by its expression, and since E {nnH} =

o?Igrar and E {nnT} = 0, the Fisher information matrix can be written as:

Pz (%) (50)+ (o) () a3
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Since parameters in 1) are real and those in & are complex, a first writing of the derivatives

in is:

g’e‘ - 2’1;, g’g, 0} and aa’g - {(;’2) 0, (?Z” (14)
Therefore, the Fisher information matrix becomes:
[ZRe {G11} G2 GT2-|
F= % GH, G O (15)

T *
G12 0 22

ou\" (0 -
where Gy; = (85) (8;) , (1,7) € {1,2} x {1,2}, 61 = ¢ and 05 = €. (16)

In view of , it is clear that the introduction of £ in the parameter vector was not necessary.
With a non circular complex gaussian noise, this would not have been the case. To complete the
calculation of F, it remains to give partial derivative expressions of p with respect to ¥ and &.

Derivatives of pu with respect to ¥

op [ op (0af
oy (aa}> (Wf) (7

and [Op/ 8a}—] can be computed using complex derivative formulas. Then, we obtain:

Using the chain rule we have

aiT:IKxbfxcf € CKLMXK 1 < f <R, (18)
f

To calculate [(9aJTc /0], we use the expressions of the considered sensor array configuration,
namely equation , which yields:

Oaj _ i o 19
%——stmw (ar Dvk) (19)

where v = [0,1,..., K —1]T . By substituting and in , we get

0 . e
&ZLf = —ymsinyy (Ix @by Rey) (ar Hvi) = ¢y, (20

and = [Py, s 0y,) € CHFMXE (21)

ol
p
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Derivatives of pu with respect to &

Taking partial derivatives of g with respect to BJTc and c}, we obtain:

0 e _
8géT) — (ay BT (I, R )T, def o, € CELMx(L-1) (22)
f
ou() def KLMxM
W—&f&bf@l]w—qﬁcf eC (23)

where Jy, = [0(z_1)1 I,_1]" € CEx(E=1) s a selection matrix. To sum up,

0 _
£ = [¢617' . '7¢BR7¢C17 . '7¢CR} € CKLMXR(L+M 2 (24)

DoA Cramér-Rao bound

The CRB related to DoAs only is obtained as the first leading R x R block in matrix F~1,
where F is defined in . Doing this assumes that translations §, are nuisance parameters, i.e.
unknown but not of interest. This realistic context has been overlooked in the literature.

5 Computer results

To evaluate the efficiency of the proposed method, we compare its performances to two other
algorithms, ESPRIT and MUSIC [13, 14]. The performance criterion is the total mean square
error (total MSE) of the DoA: 7 S°F SN (@ — r)? where 9., is the estimated DoA at
the n-th Monte-Carlo trial and N is the number of trials. The deterministic CRB computed
in the previous section is reported as a benchmark. The considered scenario on which the
proposed algorithm is tested can be of interest in numerous applications, where translations &y
are unknown. Note that the CRB of the DoA where locations of all sensors are known can be
found in [13, [I4]. The three examples we study in this section are reported in the table below:

Subarrays Translations DoA

Example 1 | L =2 82 = [0,25),0]7 40°,64°,83°
Example 2 | L=3 [ & =][0,25),0]T, d3 =[0,37.5),5)\]T | 40°,64°,83°
Example 3 L=3 d2 = [0,25),0]T, 83 = [0,37.5), 5] | 7°,64°,83°

where A = w/27¢ is the wavelength and ¢ the wave celerity. In all examples, each subarray is
an ULA array of 4-element with half-wavelength spacing (see Figure [1]), and the narrowband
source signals have the same power.

In all experiments, M = 200 time samples are used, and 200 Monte-Carlo simulations are
run for each SNR level. Figures and [ report the MSE of the DoA obtained in examples 1,
2 and 3, respectively.

Example 1. This experiment shows that: (i) the proposed CP algorithm exhibits the same
performances as ESPRIT, which makes sense, (ii) MUSIC performs the best, but exploits more
information, namely the exact knowledge of sensor locations, whereas this information is actually
not available in the present scenario. Hence MUSIC performances just serve as a reference.
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Example 2. This experiment shows that the proposed algorithm yields better results
than EPSRIT. The reason is that ESPRIT uses at most two subarrays, whereas the proposed
algorithm uses all of them. Again, MUSIC is reported just as a reference benchmark.

10" : :
—+&— CP (2 subarrays)
: — o ESPRIT
—+— MUSIC
— — -CRB
E—
°
w
n
=
s
o
Reference
subarray
Yy
107° ‘ ‘ ‘ ‘
0 10 20 30 40 50
SNR(dB)
Figure 1: One source (R = 1) radiating on Figure 2: Total DoA error versus SNR, with
a sensor array with L = 3 subarrays. L = 2 subarrays, ¥ = [40°,65°,83°].

Example 3. This experiment shows the same results as in example 2, except for an increase
in MSE at low SNR, which is due to the direction of arrival ¢» = 7°. Actually, for an ULA,
the source localization accuracy degrades as the DoA come closer to the end-fire, so that the
so-called threshold region (which always exists at low SNR) becomes visible.

2
10 T T 10 T T
—&— CP (3 subarrays) g —&— CP (3 subarrays)
—o— ESPRIT —S—ESPRIT
—+— MUSIC 102l —+—MUSIC
1078 - — -CRB | - — -CRB
1
> 1 > ., RS
5 510
& 10° %)
= =
© © -6
5 5 10
[ [
-8
10 10_8 )
10710 n n n n 10710 n n n n
0 10 20 30 40 50 0 10 20 30 40 50
SNR(dB) SNR(dB)

Figure 3: Total DoA error versus SNR, with Figure 4: Total DoA error versus SNR, with
L = 3 subarrays, 1 = [40°,65°,83°]. L = 3 subarrays, ¢ = [7°,65°,83°].

6 Conclusion

The source localization problem is taken as an illustration of the interest in resorting to CP
tensor decomposition. We took the opportunity of this illustration to emphasize the usefulness
of complex formalism when computing the CRB. Our contributions include the computation of
CRB of DoAs when space translations are unknown (section [4), and an original algorithm to
compute the CP decomposition under a constraint ensuring the existence of the best low-rank

approximate (section .
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Some inaccuracies on this subject may be found in the literature: (i) in [I0], functions of
the complex variable are assumed holomorphic, whereas real functions never are; (ii) in [12],
CRB are derived, but without assuming that factor matrix A is parameterized by angles of
arrival; moreover, additional constraints have been added therein to fix permutation ambiguities,
whereas they are not necessary; (iii) in [I4], CRB are computed for the ESPRIT technique, but
translations are assumed known whereas they are actually unknown nuisance parameters; if they
are known, ESPRIT cannot perform better than MUSIC.

Acknowledgement This work has been funded by the European Research Council under the
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Abstract. estimated response probabilities are used to compute a two-phase estimator of
the population total. Simulations are performed in order to compare the proposed estimators
with other estimators currently used. The advantages in terms of bias and variance of the
proposed approaches are confirmed through these simulations. We consider a setup in which
nonignorable nonresponse is present in the survey. In such a case, the unit response probabilities
depend on the variable of interest. When the variable of interest follows a mixture distribution
(a typical example of such a variable is income), it is possible to highlight latent homogeneous
response groups based on the variable of interest and auxiliary information. Two approaches
are discussed. In both approaches, response probabilities are estimated through logistic regres-
sion. The estimated response probabilities are then used to compute a two-phase estimator of
the population total. Simulations are performed in order to compare the performance of the
proposed estimators with that of other estimators currently used. The advantages in terms of
reduction of nonresponse bias and variance of the proposed approaches are confirmed through
these simulations.

Keywords. Survey sampling, Unit response probability, Two-phase estimation

1 Introduction

Reweighting procedures are commonly used to compensate for unit nonresponse in surveys.
The main idea is to increase the sampling weights of each respondent in order to compensate
for the nonrespondents. One refers to such procedures as nonresponse weighting adjustment
(NWA) methods. Nonresponse can be viewed as a second phase of the survey. Theory of
two-phase sampling hence suggests a two-phase estimator which extends the usual Horvitz-
Thompson estimator by multiplying the sampling weights of the respondents by the inverse
of their response probabilities. As the response probabilities are unknown, a preliminary step
consists of estimating them. The sampling weights of the respondents are then multiplied by
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the inverse of their estimated response probabilities and a two-phase estimator adjusted for
nonresponse is obtained. In the literature, several approaches have been used to estimate the
response probabilities, as for example response homogeneity groups, calibration, or parametric
modelling as in [2] and [7]. Auxiliary information available at the sample or population level
plays a central role in the estimation process. It can simultaneously decrease variance and
nonresponse bias of estimators if it is adequately used in the response probabilities estimation.
The reader may refer to [L1] for an overview of NWA methods.

Nonignorable nonresponse refers to a nonresponse mechanism which depends on the variable
of interest itself (see [9] for a formal definition). It is particularly difficult to handle as the process
that leads to nonresponse is defined through characteristics of interest which are partially or
completely missing. Sophisticated techniques must therefore be used to control for nonresponse
bias and variance in this framework. The problem of nonignorable nonresponse in surveys has
already been addressed as for instance in [6], [I0], [I], and [4].

We propose two NWA procedures for handling nonignorable nonresponse, when the variable
of interest follows a mixture distribution with different components. The goal is to reduce
nonresponse bias and variance of estimators. Latent homogeneous response groups based on
both auxiliary information and the variable of interest are highlighted for respondents and
are imputed using auxiliary information for nonrespondents. In the presented procedures, the
response probabilities are modelled through logistic regression including information about the
groups (observed or imputed). The estimated response probabilities are then used in a two-phase
estimator for the total of the variable of interest. The inclusion of information about the groups
in the estimation of the response probabilities allows to control simultaneously nonresponse bias
and variance of the two-phase estimator.

A typical example of application where the proposed methods can be used is a survey whose
variable of interest is the income. Indeed, it is customary and sensible to suppose that the
willingness to answer questions related to income depends on the income itself. On the other
hand, income data typically shows heterogeneity and mixture distributions represent a powerful
tool to model such data (see [5]). It follows that a natural assumption is the existence of
homogeneous response groups depending on the underling income mixture groups and auxiliary
information.

The paper is organized as follows. Section [2| introduces the framework and notation. Sec-
tion [3| discusses the response probabilities estimation for nonignorable nonresponse using logistic
regression. The proposed procedures are presented in Section Next, in Section [5|, the per-
formance of the proposed procedures is tested and compared to that of other NWA procedures
through a simulation study. Finally, Section [6] closes the paper with brief concluding remarks.

2 Framework

Consider a finite population U of size N, indexed by ¢ from 1 to N. Let x; = (z;1, s2, - . . ,xiq)T
be a vector of ¢ auxiliary variables attached to unit ¢ and suppose that the parameter of interest
is the population total Y = >,;cy vi, for some continuous or categorical variable of interest y. In
a first phase, a sample s of size n is selected from the population U using a sampling design p (s).
Let m; = Y 4.5, P (s) denote the first-order inclusion probability of unit < and suppose thereafter
that m; > 0 for all i« € U. The vector of auxiliary variables x; is assumed to be available for
each population unit ¢ € U or at least for each sampled unit ¢ € s. In the presence of unit
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nonresponse, some selected units do not respond to the survey. This results in two subsets
which form a partition of s: the survey respondents (the set r) and the survey nonrespondents
(the set 7). The value y; of the variable of interest is then observed for each respondent i € r but
is missing for each nonrespondent ¢ € 7. For ¢ € s, let R; be the response indicator of y; which
takes value 1 if unit ¢ is a respondent (i.e. if i € r) and 0 if unit ¢ is a nonrespondent (i.e. if i € 7).
Let p; be the response propensity of unit 4, that is p; = Pr (i € r|s;7 € s). It is supposed that
units respond independently from each other. The response indicator R; is therefore generated
from a Bernoulli random variable with parameter p;. Moreover, it is thereafter assumed that
p; > 0 for all 7 € U. In the ideal case of complete response, the Horvitz-Thompson estimator

Vo= S 1)
€S i

is a design unbiased estimator for Y. In the presence of nonresponse, however, this latter is
intractable as the values y; of the variable of interest are missing for nonrespondents i € 7.
Nonresponse can be viewed as a second phase of the survey. A subsample r of s is indeed
selected according to a Poisson sampling design ¢ (r[s) = [[ie, pi [lier (1 — pi). Theory of two-
phase sampling proposes, in this case, the double expansion estimator Yz , = > ;. %@_p%yi, which
extends the estimator in Expression (). This estimator would be unbiased for Y if the response
probabilities p; were known. Unfortunately, this is never the case. A preliminary step therefore
consists of estimating the response probabilities. Those are then replaced by the estimated
response probabilities p; in the previous estimator and the two-phase estimator adjusted for
nonresponse

Yoo=2 —=un 2)

is obtained. If the response probabilities are parametrically modeled, then it is shown in [7]
that estimator }A/WA is more efficient than estimator ?mp when maximum likelihood is used to
estimate the parafneters. In Section [3] the question of the response probabilities estimation for
nonignorable nonresponse is discussed.

3 Estimating response probabilities

Under nonignorable nonresponse, a solution to estimate the response probabilities consists of
modelling them with logistic regression in which the variable of interest plays the role of a
covariate. Hence, the following two models can be considered:
1
pi = IE (R;|yi) = 3
= PR = T T ot Br) )
1
pi = IE (Rilyi, x;) = ; (4)
1 +exp [— (ﬁo + by + Xl-Ta)]
where 8y, 81, and « are parameters. In the presence of nonresponse, however, these parameters
can not be estimated as the values y; of the variable of interest are missing for the nonrespondents.
A solution is proposed in [2] and is presented below. It consists of considering only the
auxiliary variables as covariates. This results in the following model

1
o[ (o r <))

pi = IE(Rilx;) = (5)
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where By and o are parameters. As the values x; of the auxiliary variables are known for
each sampled unit i € s, the parameters can now be estimated considering (R;,x;) for i € s.
Consider Bo and @ the maximum likelihood estimates of parameters 3y and «, and estimate
the response probabilities by replacing the parameters by their estimates in Expression (5)), that
isp =1/ {1 + exp [— (BO +xja)}} . If the auxiliary variables are good predictors for the
variable of interest or for the response probabilities, then this procedure provides protection
against nonresponse bias (see [2]).

4 Latent homogeneous response groups

We assume that the variable of interest y follows a mixture distribution with ¢ components
yi ~ S h_q Mefe(vilxi, 00), e >0, S°_ Ap = 1, where )y is the prior probability of component ¢
(y; is drawn from a mixture of densities of underlying groups or clusters or subpopulations in
unknown proportions A1, ..., \:) and 6y is the specific parameter vector for the density function
fe in the fth component. If f; is a univariate normal density and 6, = (g, 07)’, one describes
a mixture of standard linear regression models, also called latent class regression or cluster-wise
regression (see [3]). Other f, densities can also be used.

A typical example of such a variable y is income. Models based on mixed distributions better
explain the income heterogeneity in different subpopulations. When nonresponse treatment is
added, latent homogeneous response groups can be highlighted based on these subpopulations.
These response groups depend on the variable of interest and the auxiliary information. An
important gain in terms of reduction of nonresponse bias and variance can be derived from
including information about these groups in the estimation of the response probabilities. In
the presence of nonresponse, however, these groups are not fully observed as the values y; of
the variable of interest are unknown for nonrespondents. In the current section, a procedure
to reconstruct these latent homogeneous response groups is presented. Then, two solutions to
include them in the response probabilities estimation are proposed.

As stated above, homogeneous response groups are observed for respondents only. A proce-
dure to reconstruct the group membership of the nonrespondents is provided here. The main
idea is to impute the missing groups by nearest neighbor imputation. Suppose that & homoge-
neous groups are observed for the respondents. Moreover, let ¢; € {1,2,...,k} be the observed
group membership value of respondent ¢ € r and consider ¢f € {1,2,...,k} the reconstructed
membership group value of a unit ¢ € s. As the membership group value is observed for each
respondent, we set ¢; = ¢; for ¢ € r. For a nonrespondent, however, the membership group value
is unobserved and that one is reconstructed by nearest neighbor imputation using auxiliary infor-
mation. Hence, for i € 7, consider ¢} = ¢;(;) where j(i) satisfies d(x;, x;(;)) = minje, d(x;,%;) for
some distance measure d(-,-). Therefore, observed group membership values are combined with
imputed group membership values. This leads to a reconstructed group membership variable
whose values ¢ are available for every sampled unit ¢ € s.

Two different models can be constructed. In the first one, the reconstructed group mem-
bership variable (observed or imputed) is added as a categorical covariate. This results in the
following model

1

e ) o T (o w1+ et Bt

(6)
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where By, 81, P2, and B3 are parameters. The maximum likelihood estimation is then apphed
to fit this model considering (Rz,xz, z) for i € s. This leads to estimates Bo, ,81, Bg, ,83,
and p; = 1/ {1 + exp { (ﬁo +x; ﬂl + Bgc + XT,@3C )” If the auxiliary variables are good
predictors of the variable of interest or good predictors of the response probabilities and moreover
if the reconstructed groups are homogeneous with respect to the variable of interest or with
respect to the response probabilities, then this procedure provides additional protection against
nonresponse bias and variance compared to Model .

In the second proposed procedure, the missing values of the variable of interest are im-
puted in each reconstructed group. The response probabilities are estimated using logistic
regression and the variable of interest (observed or imputed); see also [§]. Hence, let y
denote a reconstructed value of the variable of interest of a unit ¢ € s. For a respondent
it € r, this value corresponds to the observed value of the variable of interest, that is y; = ;.
Then, for the nonrespondents, the missing ¥;’s are reconstructed by using regression imputa-
tion independently in each reconstructed group. Hence, for each nonrespondent ¢ € 7 we set
Yy = (Zjeﬂcj:c; ﬂijxjx;r) ' <Z€€r|cz=c;“ Tr%xzyg) x;. Therefore, observed values of the variable
of interest are combined with imputed values. This leads to a reconstructed variable of interest
whose values y; are available for every sampled unit ¢ € s. This variable then plays the role
of covariate in the logistic regression used to estimate the response probabilities. Hence, the
parameters dg and d; of the logistic regression model

1
1 +€Xp[ (50 + 51y:‘)}’

pi = IE (Rily;) = (7)
are estimated by maximum likelihood considering (R;,y}) for i € s. This leads to estimates
gg, 51, and p; = 1/ {1 + exp [— (30 + glyl* )}} If the auxiliary variables are good predictors of
the variable of interest within the reconstructed groups but not necessarily within the whole
population, then this procedure provides additional protection against nonresponse bias and
variance compared to Model . Even though y; is essentially a linear combination of the outer
product of the auxiliary variables and the (imputed) latent groups, Model is different from
the model including x; and ¢ as covariates as in Expression @, because it uses the original y;
for the respondents and performs closer to the assumed response model.

5 Simulations

A simulation study was conducted to evaluate the performance of the procedures proposed
in Section Two different settings were considered. In each setting, a population of size
N = 1000 divided into two groups of equal size, a variable of interest y generated from a
mixture distribution, and an auxiliary variable x were considered. A census was considered in
both cases, which implies that we set U = s and m; = 1 for each i € s. Ten thousand simulations
were conducted.

For each setting, the simulations were conducted as follows. First, for each unit ¢, the
response probabilities were obtained from the logistic function p; = 1/ {1 4 exp [— (Bo + 51vi)]},
where 3y and 8; were fixed to obtain a mean response rate close to 65%. Then, 10000 response
sets were created by generating 10000 response indicator vectors R. Each component R;,i € U
of R was generated from a Bernoulli distribution with parameter p;. For each response set
generated, the population total for the variable of interest was estimated through the two-phase
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estimator adjusted for nonresponse of Expression by considering different choices for the
estimated response probabilities p; as follows:

/\

1. Y D) estimator proposed in [2], i.e. response probabilities estimated through logistic
regression with the auxiliary variables as covariates as in Model ( .

2. ?ﬁ(x, s first proposed procedure, i.e. response probabilities estimated through logistic
regression with the auxiliary variables and the reconstructed membership groups variable
as covariates as in Model @,

3. %(y*): second proposed procedure, i.e. response probabilities estimated through logis-
tic regression with the values of the variable of interest (observed or imputed through
regression imputation in the reconstructed groups) as covariates as in Model ,

—~

4. Y;;(y,m): response probabilities estimated through logistic regression with the vector of
observed and imputed by nearest neighbor values of the variable of interest y™" as covariate.
The coefficients of y"" are thus defined as y;"" = y; if i« € r and y;"" = y;(;) where
|-Ti — $3(1)| = minj@n |x2 — xj] ifi er,

—~

5. Y,: true response probabilities considered in the two-phase estimator.

The following comparison measures were considered for these five estimators, here generically
denoted by Y:

e The Monte Carlo relative bias: RB = B/Y, where B = Eszm(?) -Y, IESW(?) =
SM.Y;/M, Y; is the estimate of Y obtained at the i-th simulation, and M is the number
of simulations,

e The Monte Carlo variance: VAR = ﬁ sM [2 — Egm (?)]2,
e The Monte Carlo mean square error: MSE = B? + VAR.

Details and results from the two considered settings are presented below.

Setting 1: A single auxiliary variable z = (avl)f\;l was considered. Its coefficients were
generated by independent draws of a uniform distribution with parameters 0 and 1 for units
that belong to the first group, and by independent draws of a uniform random variable with
parameters 2 and 3 for units that belong to the second group. Next, the variable of interest
y = (yi)X, was generated as follows: y; = 5 + 5x; + 3¢; if i belongs to the first group and
yi =40 — (z; — 5)2 + 3g; if i belongs to the second group, where ¢; are independent draws of a
normal random variable with mean 0 and variance 1. Simulations were then conducted according
to the scheme described above. The results are presented in Table [1

The two proposed estimators (Ap( %) and Y~ Sy )) display a decrease in relative bias compared

to estimators Yp( ) and Y( ny- The gap between the relative bias of Y( ) and that of Y( n)
is not large and makes it difficult to clearly rank these two estimators. The proposed estimators,
however, imply a clear decrease in variance compared to estimators Yp( 2) and Yp(y ny- Estimator

?p is clearly the best in terms of bias, which is not surprising. Indeed, it uses the true response
probabilities and is therefore unbiased for the total (the small relative bias is due to the simulation
process). Finally, the four estimators with estimated probabilities imply a huge decrease in
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Table 1: Comparison measures for five estimators in setting 1.

Estimator RB (x1073) Var (x10%) MSE (x10%)

Yaim) 6.96 7.59 2.83
Y ) 4.63 5.10 1.43
Yo 3.25 5.17 0.97
Yo 5.56 9.34 2.25

v —0.13 226.90 22.69

variance compared to the estimator with the true probabilities (}Afp), which confirms the result
in [7].

Setting 2: The values y; of the variable of interest y = (yi)i]il were generated independently
from a gamma distribution with parameters 10 and 1 for units that belong to the first group
and from a gamma distribution with parameters 40 and 1 for units that belong to the second
group. Next, values of an auxiliary variable z = (7;)Y; were generated as follows. We set
x; = 5+ p1y; + €;, where p; = 0.7 and where ¢; was drawn from a normal random variable with
mean 0 and variance 10(1— p?) if 4 belongs to the first group. Moreover, we set z; = 5+ pay; + ¢,
where po = 0.93, and where ¢; was drawn from a normal random variable with mean 0 and
variance 40(1 — p3) if unit ¢ belongs to the second group. Simulations were then conducted
according to the scheme described above. The results are presented in Table [2, These results

Table 2: Comparison measures for five estimators in setting 2.

Estimator RB (x1073) Var (x103) MSE (x10%)

Vo 11.04 13.61 9.01
Y ) 6.69 10.02 3.82
Yo 5.44 9.83 2.84
Yoy 6.94 14.93 4.52

) 0.02 267.78 26.78

follow a fairly similar pattern to those of setting 1. The two proposed estimators (?A and

p(z,c*)

Yﬁ(y*)) display a decrease in relative bias compared to estimators Y]g( 2) and Y;( yny- However, the

gap between the relative bias of ?ﬁ(w, *) and that of %(y"”) is very small and does not allow us
to rank these two estimators. The proposed estimators again imply a clear decrease in variance
compared to estimators Yﬁ( 2) and Y;A)(ym). Finally, estimator Y), also displays by far the smallest
relative bias and the largest variance.

6 Conclusion

We have proposed two NWA procedures for handling nonignorable nonresponse when the vari-
able of interest follows a mixture distribution. Homogeneous response groups can be constructed
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based on the hidden structure of the variable of interest; they include information about the
variable of interest and the auxiliary information. Benefits in terms of reduction of nonresponse
bias and variance of the total estimator can be obtained if these groups are taken into account in
the response probability estimation. Our results are confirmed through a simulation study. We
have not considered the problem of variance estimation of the total estimator when the proposed
methods are applied. This problem is currently under investigation.
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Abstract. A logistic regression model, complementary log-log model and probit model are fre-
quently used for a generalised linear model of binary data. We consider deviance (log likelihood
ratio statistic) as a goodness-of-fit statistic. In this paper, using the continuous term of asymp-
totic expansion for the deviance under the null hypothesis that each model is correct, we obtain
the Bartlett adjusted deviance statistic for each model that improves the speed of convergence
to chi-square limiting distribution of deviance. Performance of each adjusted deviance statistic
is also investigated numerically.

Keywords. Asymptotic expansion, Bartlett adjustment, Complementary log-log model, De-
viance, Generalized linear model, Logistic regression model, Probit model

1 Introduction

We consider generalized linear models (Nelder and Wedderburn [5]) in which the response vari-

ables are measured on a binary scale. Let random variables Y,, a = 1,...,S be the number
of successes in S different subgroups, which are independent distributed according to binomial
distributions B(nq,ma), o = 1,...,S. If we use a monotone and differentiable function g(-) as a
link function, we obtain a generalized linear model for binary data as

g(ma) = z.3, a=1,...,8, (1)
where o = (Ta1,...,%ap),a = 1,...,S, are covariate vectors and B8 = (f1,...,0p) is an

unknown parameter vector and (p < .S). When g(¢) is a canonical link function, that is,

g(t) =1og ().
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model (1) is a logistic regression model. When

g(t) = gp(t) = 27(1),

where )
T

o= [ (L)

model (1) is a probit model. When

g(t) = log{—log(1 — 1)},

model (1) is a complementary log-log model.
We consider the null hypothesis

Hy: 7o = 70(B) = g1 (), 3), a=1,...,5. (2)
The deviance (log likelihood ratio statistic) is

Y,

s 1-—=
Y. Y. Y.
D=2 na g los (8] (1o Jlog | 5 |
= Ng NaTq Ng 1—7q
where T, = WQ(B), a=1,...,5 and 3 = (Bl, e ,Bp)’ is the maximum likelihood estimator of

B under Hy given by (2). Under the null hypothesis Hy, it is known that the deviance D has a
X%_, limiting distribution if

Na/n — pia (0 < po < 1) for each o, as  n — oo, (3)

where n = Zgzl nq and Zgzl o = 1. Usually, using large sample results, we test Hy by using
the statistic D for a goodness-of-fit test statistic of each model.

However, in the case in which all ny,a = 1,...,5 are not large enough, such an approxi-
mation by a X?;_p limiting distribution to the distribution of D under Hy becomes poor. So,
there are risks that the hypothesis test based on large sample theory will give results opposite
to those of an exact test. In this paper, in order to reduce the risks, we propose a new adjusted
statistic DP of D whose speed of convergence to a chi-square distribution is quicker than that of
D. To construct D, we use the following procedure. First, we formally obtain the asymptotic
expansion of the original statistic D assuming a continuous distribution of D. Next, we obtain
adjusted statistic DP by performing Bartlett adjustment to D on the basis of the asymptotic
expansion assuming a continuous distribution of D.

2 An asymptotic approximation for the distribution of D

under H,

With regard to evaluation of the lower probability of the deviance D under Hy, we obtain the
followig theorem (a special case of Taneichi et al. [13]). Here, we consider the following As-
sumption 2.1 instead of the assumption given by (3).

Assumption 2.1. n, > o0, a=1,---,5, as n — 0o, with n, depending on n in such a way
that na/n = pa, @ =1,...,5, where 0 < po < 1 and S5_; po = 1.
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Theorem 2.1. When ¢! is a fourth time continuously differentiable function, under Assump-
tion 2.1 and assuming that D is continuously distributed, the lower probability of the deviance
D under Hj is evaluated as

Pr{D < z|Hy} = Pr{xs » < x}+ Z”J Pr{xs _pt2j < z}+ O(n *2)
] =0
where X? denotes a chi-square random variable with degrees of freedom f,

1

vy = —ﬂ(QAl —6A9 +12A3 —3A4 +4B1 — 12By + 6B3 — 3B4)
U1 = —o,
where 5
1 — 7, + w2 po(l — 374 + 372) 4

A=~ Z G1(@)oq,

hy l,uoﬂra(l Ta) 3 (1 —7q)3
S S
pa(l = 274) o 2
As = G G —G
8= X T @G0, A= 1y Ga@)ot
B — i i pa(l — 2mq) piny (1 — 271'7)G ( )GB( )
b — m2(1 = m)? m2(1 — 7m,)? oy

S
By=Y %t 72 0 060(0)GR )l

Ta(l — 7o) 2 (1 — 7))

S S
By=% S —Me B G ()Ga(a)Gr (1) Ga (7)o,

Ta(l = ma) my (1 = 75)

Evaluation for the logistic regression model is given by applying

Lo el
l(x) - 1 —I—exp(aj)’

Gi(a) = m4(1 — my), a=1,...,8,

9

and
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to Theorem 2.1. Similarly, evaluation for the probit model is given by applying
g (x) = D(x),

_ 2
Gi(a) = L exp[{@l(m‘)}], a=1,...,5,

V2r 2
and B )
Ga(a) = —\/127;1)_1(7704) exp [—W] , a=1,...,8

and evaluation for the complementary log-log model is given by applying

g '(w) =1 —exp{—exp()},
Gi(a) = —(1 — ma) log(1 — my), a=1,...,5,

and
Ga(a) = —(1 — mo){log(1l — o) H{1 + log(1 — 74) }, a=1,...,8

to Theorem 2.1, respectively.

We consider the appropriateness of using the Edgeworth approximation assuming a con-
tinuous distribution like Theorem 2.1. Yarnold [14] obtained an asymptotic expansion for the
null distribution of X? (Pearson’s chi-square statistic). The expansion consists of continuous
and discontinuous terms. Yarnold [I4] numerically examined the accuracy of approximations
based on the expansion, y? approximation, and Edgeworth approximation assuming a continu-
ous distribution for the null distribution of X? and concluded that the Edgeworth approximation
assuming a continuous distribution should never be used when random variable has a lattice dis-
tribution. In a similar fashion to X? statistic, approximations based on asymptotic expansions
for null distributions of the log likelihood ratio test statistic and the Freeman-Tukey statistic
were obtained by Siotani and Fujikoshi [9], that of the power-divergence statistics was obtained
by Read [6] and that of the ¢-divergence statistics was obtained by Menéndez et al. [4]. The
numerical accuracy of the approximation was shown by Yarnold [I4] for X2 statistic and by Read
[7] for power-divergence statistics. When the discontinuous term in the asymptotic expansion
can be expressed in a simple form as the discontinuous term for the null distribution of above
statistics, we must respect Yarnold’s recommendation.

On the other hand, from the numerical results obtained by Yarnold [14], we notice that the x>
approximation rarely performs better than the Edgeworth approximation assuming a continuous
distribution. Thus, the Edgeworth approximation assuming a continuous distribution appears
to be an effective approximation when the discontinuous term in the asymptotic expansion
cannot be expressed in a simple form. Unlike in the case of the null distribution of above
statistics, it is very difficult to represent the discontinuous term in a simple form in the case of
the distribution of statistics under alternative hypothesis and in the case of that for more general
multinomial models such as contingency tables. The reason for the results are shown in Taneichi
et al. [1I] and Taneichi and Sekiya [12], mathematically. Edgeworth approximations of the
distributions of some kinds of multinomial goodness-of-fit statistics under alternative hypotheses
have been investigated Taneichi et al. [11} [I0] and Sekiya and Taneichi []]. Taneichi and Sekiya
[12] discussed approximations for the distribution of statistics for the test of independence in
r X s contingency tables. Based on numerical investigations, we found that an omission of the
discountinuous term does not lead to a serious error.
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3 Bartlett adjusted deviance statistic

In this section, we propose the Bartlett adjusted deviance statistic for improving small sample
accuracy of x? approximation of the distribution of a random variable.
Suppose that a nonnegative random variable T" has an asymptotic expansion such that

12
Pr{T <z} = Pr{X?c <z}+ - E aj Pr{x?urgj <z} +0(n2).
=0

Also suppose that the coefficients a;, (j = 0,1) do not depend on the parameter n(> 0) and
must satisfy the relation ag + a; = 0.

In order to increase the accuracy of x? approximation of a random variable 7', we consider
Bartlett adjustment of random variable T defined by Tg.

2ag
T = <1 —) T. 4
B + n (4)
Then, it holds that

Pr{Tp <z} = Pr{x} <z} + O(n™?).

Lawley [3], Barndorff-Nielsen and Cox [1], and Barndorff-Nielsen and Hall [2] discussed Bartlett
adjustment for the log likelihood ratio statistic. Applying Theorem 2.1 to T given by (4), we
obtain the Bartlett adjusted deviance statistic D5.

DB:{1+H(§UEP)}D.

Practically, we must use estimate 0y obtained by substituting the maximum likelihood estimate
B for true value B in vy. Therefore, we propose the statistic D that is obtained by substitutig
0o for vy in DE.

4 Numerical studies

In this section, we compare the performance of the Bartlett adjusted deviance statistic D? with
that of the original deviance D using the Monte Carlo procedure.

We consider a generalized linear model given by (1) with p = 2 and x4, = 1 and z42 =
Za, =1,...,5. Let the true values of parameters 5, and 3 be 87 and 35, respectively. Then,
the true value of m, is

e =g (B + Biza), a=1,...,8S.

As a link fuction g(+), we consider the logit link, complementary log-log link and probit link. We
give a design matrix
X = (1,vec{x})

and execute the following procedure.

For each «, we generate n,, o = 1,...,S5 binomial random numbers that are distributed
according to B(1,7}). From them, we calculate the number of successes Y,,a = 1,...,S and
the maximum likelihood estimates 31 and Bg for the parameters 8; and B2 by Fisher scoring
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method. Using the estimates, we calculate the values WQ(B), a=1,...,5, where 3 = (/5’1, Bg)’,
and the observed values of the statistics D and DP. This process is repeated J times.

Among the J times, let V' be the number of times that the observed values of the statistic
exceed the upper € point of the x? distribution with degrees of freedom S — p, that is, x%fp(s).
The performance of x? approximation for the distribution of each statistic can be evaluated on

the basis of the index
I= v_ €
=5 .

We consider the following two true parameters
(i) B = —0.1,85 = 0.1,
(ii) gy =0.1,55 = —0.1,

and investigate the performance of the following four cases of design matrix when S = 8.
(I) vec{x} = (2.7,3.0,3.3,3.6,3.9,4.2,4.5,4.8)".

(
(I1) vec{x} = (2.85,3.05,3.25, 3.45, 3.65, 3.85,4.05,4.25)".
(III) vec{x} = (log(2.7),log(3.0),10g(3.3),log(3.6),10g(3.9),log(4.2),log(4.5),log(4.8))’.
(IV) vec{z} = (log(2.85),l0og(3.05),log(3.25),log(3.45), log(3.65), log(3.85), log(4.05), log(4.25))".
For each case, we consider the following two sample designs
(A) n1=--=ng=na,

(B) ny=---=nNyg =ng, n5:---:n8:2n3.

We investigate the performance for all combinations of two true parameters (i) and (ii), four
design matrices (I), (IT), (III), and (IV), and sample design (A), where n4 = 10, 20, and 30, and
sample design (B), where np =10, 20, and 30. In the investigation, the number of repetitions is
J = 10%. Figure 1 shows the absolute values of index I in the cases of true parameters (i) and
(ii), design matrices (I)-(IV) and significance level ¢ = 0.01, 0.05, and 0.10 when the model is
given by the complementary log-log link , sample design is (A) and n4 = 10, 20, and 30. Figure
2 shows those for the model that is given by the probit link in the same situation as that in
Figure 1. When models are given by complementary log-log link and probit link with sample
design (B) and when the model is given by logit link with sample designs (A) and (B), results
of simulation are almost the same as those in Figure 1 and Figure 2.

From the results of our simulation, we find that the performance of the Bartlett adjusted
deviance statistic DP is better than that of the original deviance statistic D.
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Figure 1: Absolute value of index I when the model is given by the complementary log-log link
function for true parameters (i) and (ii) and sample design (A) with n4 = 10, 20, 30: o, { and A
are the values for D when ¢ = 0.01, 0.05 and 0.10, respectively, and o.4¢ and A are the values for
D® when & =0.01, 0.05 and 0.10, respectively. The 1st column is for design matrix (I), the 2nd
column is for design matrix (II), the 3rd column is for design matrix (III), and the 4th column
is for design matrix (IV).
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Figure 2: Absolute value of I when the model is given by the probit link function for true
parameters (i) and (ii) and sample design (A) with n4 = 10, 20, 30: o, ¢ and A are the values
for D when € =0.01, 0.05 and 0.10, respectively, and e, 4 and A are the values for DB when
e =0.01, 0.05 and 0.10, respectively. The 1st column is for design matrix (I), the 2nd column
is for design matrix (II), the 3rd column is for design matrix (III), and the 4th column is for
design matrix (IV).
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Abstract. Nonlinear principal components analysis with optimal scaling (NLPCA-OS) is useful
for analyzing mixed measurement level data. The algorithm in NLPCA-OS is based on the
alternating least squares (ALS) algorithm, where optimal transformation and low-rank matrix
approximation are alternated until convergence. We have proposed an accelerated ALS algorithm
using the vector e algorithm (ve-ALS) which increases the speed of convergence, and have
observed that computational costs by ve-ALS are less expensive than those by ordinary ALS
in small examples in which all variables are categorical. In this paper, we try to evaluate the
performance of proposed ve-ALS by simulation, in which NLPCA with ve-ALS is applied to
several simulated datasets which have large numbers of variables with a variety of mixing rates
of numerical and categorical variables. The simulation study indicates that the performance of
approximation by ve-ALS is improved for all simulated datasets and that the larger the number
of categorical variables is and the higher the mixing rate is, the more the ve-ALS reduces the
computational costs.

Keywords. Vector ¢ algorithm, Acceleration of convergence, Alternating least squares, Mixed
measurement level data, Simulation study.

1 Introduction

Nonlinear principal components analysis with optimal scaling (NLPCA-OS) is useful for analyz-
ing mixed measurement level (nominal, ordinal and numerical) data. The algorithm in NLPCA-
OS is based on the alternating least squares (ALS) algorithm, where optimal transformation and
low-rank matrix approximation are alternated until convergence, that is, the algorithm alter-
nates between optimal scaling for quantifying nominal and ordinal data and ordinary PCA for
the optimally scaled data. PRINCIPALS [6] and PRINCALS [1] are the typical ALS algorithms
for NLPCA.



258 Performance of acceleration of ALS in NLPCA

Kuroda et al. [2] have proposed an accelerated ALS algorithm for NLPCA using the vector
e (ve) algorithm of Wynn [7] which increases the speed of convergence. We have applied the
method to some numerical examples (e.g., [2] and [3]) and have proposed some more accelerated
methods (e.g., two-step algorithm in [5] and re-starting method in [4]), and observed that com-
putational costs of NLPCA with the ve alternating least squares (ve-ALS) are less expensive
than those of NLPCA with ordinary ALS.

In the previous studies, we applied the proposed methods to datasets with small number
of variables (the number of variables is 20 at most) and all datasets we used consist of only
categorical (nominal) variables but not a mixture of numerical and categorical ones. In this
paper, we try to evaluate the performance of ve-ALS in further detail to clarify how well the
algorithm performs for large data and mixed measurement level data. To do this, we conduct
some simulations in which NLPCA with ve-ALS is applied to several artificial datasets which
have large numbers of variables with a variety of mixing rates of numerical and categorical
variables.

We give an overview of NLPCA-OS and its acceleration by ve-ALS in Section [2] and illustrate
numerical experiments on sixteen different types of datasets generated artificially (four different
sizes of datasets with four different mixing rates of categorical variables) in Section We discuss
the performance of NLPCA with ve-ALS in Section [4

2 Nonlinear PCA and its acceleration by vector ¢ ALS

Let X = (X1 X3 -+ X,,) be an n x p standardized matrix of observations on n objects and p
numerical variables. PCA postulates that X is approximated by the bilinear form

X=ZAT, (1)

where Z is an n X r matrix of n component scores on r (1 < r < p) components and A isap X7
matrix of p component loadings on r components.

In order to handle any categorical data or mixture of numerical and categorical data, NLPCA
requires the optimal scaled data X* , in addition to estimating Z and A, in which categorical
variables in X are optimally scaled and satisfies restrictions

X*TX*

X*'1, =0, and diag
n

=1L, (2)

where 1,, and 0, are vectors of ones and zeros of length n and p, respectively. Thus NLPCA is
a least square problem to estimate optimal scaling parameter X* and model parameters Z and
A simultaneously, which minimize

0 =tr(X* —X)T(X* - X) =tr(X* —ZAT)T(X* —ZAT). (3)

The ALS algorithm can be used in NLPCA-OS. It alternates between ordinary PCA and
optimal scaling, and minimizes 6* in under restriction . For given initial data X*0) the
procedure based on PRINCIPALS [6] is to iterate the following two steps until convergence:

Step 1 Model parameter estimation step: Obtain A® by solving an eigenvalue problem

{X*(t)'rx*(t)

~—

n

} A = AD,, (4
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where ATA =1, and D, is an r x r diagonal matrix of eigenvalues. Compute Z®) from
71 = X A®)

Step 2 Optimal scaling step: Calculate X+ = ZOAOT from Equation . Find X*(t+1)
such that

X*(t—‘rl) _ aI‘gH)l(i*Htl“(X* _ X(t—i—l))T(X* - X(t+1))

for fixed X(#+1) yunder measurement restrictions on each of the variables. Since X*(t+1) ig

obtained by separately estimating X for each j (j=1,...,p),scale X+t by columnwise

centering and normalizing. Re-compute X;Hl) by an additional transformation to keep

the monotonicity restriction for ordinal variables and skip this computation for numerical
variables.

The superscript (¢) indicates the t-th iteration. From the above iteration, we obtain a conver-
gence sequence {X*(t)}tzo. Although the true limit points are theoretically obtained at ¢ = oo,
the solutions by NLPCA-OS are parameters based on X*® obtained when the iteration con-
verges by the criterion 6.

Here we accelerate the above NLPCA with ALS using the ve algorithm of Wynn [7] which
is very effective to accelerate the slow convergence of a linearly convergent vector sequence.
Let {X®};50 = {X© X1 X} be the accelerated sequence of {X")1};9. We define the
inverse of vector X by [X]™! = X /(X,X), where {-,-) is the inner product of vectors. Then,
the ve algorithm generates {X(®)};>( by using

veeX*(t1) = yeex*(®) 4 HVeC(X*(Fl) — X*(t))} B + [VeC(X*(tH) _ X*(t))} 71] - ) (5)

where veeX* = (Xj' X537 ... X*T)T. It is expected that this new sequence {X®},50 converges
to a limit point X () of {X®)};5 faster than {X®)},50. Our previous numerical experiments
(e.g., 2], [3], [] and [5]) demonstrated that its speed of convergence is significantly higher than
that of the ordinary ALS algorithm .

The procedure to accelerate the ALS algorithm in PRINCIPALS described above iterates
the following two steps:

Step 1 PRINCIPALS step: Compute model parameters A®) and Z(*) and determine optimal
scaling parameter X*(t+1),

Step 2 Acceleration step: Calculate X*(—1) using {X*(t_l),X*(t),X*(tH)} from Equation
and check the convergence by

. . 2
vee(X 1) — X*(t_z))H <4, (6)

where 0 is a desired accuracy.

3 Numerical experiments

We examine the performance of the proposed acceleration for PRINCIPALS using ve-ALS by
employing simulated data generated as below, and demonstrate the advantage of ve accelerated
PRINCIPALS (ve-ALS in NLPCA) over ordinary PRINCIPALS (ordinary ALS in NLPCA) in
terms of the number of iterations and CPU time (in second) required for convergence.
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Data generation

Since we are interested in the performance of the proposed ve accelerated PRINCIPALS when
it is performed for data which have large numbers of variables and include both numerical and
categorical variables, we generate random data matrices with the following four types of number
of observations (n) and variables (p): (A) n=100, p=20, (B) n=100, p=>50, (C) n=500, p=100
and (D) n=200, p=150. All categorical variables have 10 levels (10 categories). To each of the
datasets we further set four kinds of mixing rates of categorical variables: 0.25, 0.50, 0.75 and
1.00. The mixing rate 0.25 means that 25% of variables (rounded) are processed as categorical
data and 75% as numerical data, and so on. The number of components (r) is two for all
datasets.

We apply ordinary PRINCIPALS and ve accelerated PRINCIPALS to the above datasets.
Consequently we execute thirty-two types of experiments ({four data types} x {four mixing
rates of categorical variables} x {ALS and ve-ALS}).

Results of experiments

For all experiments, & for convergence is set to 1072, and PRINCIPALS terminates when
\9(t+1) —6®| < 1072, where 0 is the ¢-th update of 6 calculated from Equation 1' Each
algorithm also stops when the number of iterations exceeds 10,000. The procedure is replicated
100 times. All computations are performed with the statistical package R executing on Intel
Core i5 3.3 GHz with 4 GB RAM. CPU times taken are measured by the function proc.time.

Table [I] is summary statistics of the numbers of iterations from thirty-two 100 simulations.
Figure (1| shows the same thirty-two simulations in boxplots. The first graph from the left in
Figure (1| displays boxplots of eight simulations ({four mixing rates of categorical variables} x
{ALS and ve-ALS}) for data type (A), the second for (B), the third for (C) and the last for (D).
The CPU times are similarly summarized in Table [2| and Figure

From these tables and figures, as the data size is increasing, a greater number of iterations
and more CPU time are required, but ve-ALS greatly reduces the number of iterations and
CPU time. In case of 0.25 mixing rate, for example, ordinary ALS needs 178 iterations with
1.9 seconds for dataset (A) (p=20) but 639 iterations and 140 seconds for dataset (D) (p=150).
On the other hand, ve-ALS needs 49 iterations and 0.7 seconds for (A) but 188 iterations and
45 seconds for (D). We can observe similar results as the mixing rate of categorical variables
increases. The increase of the number of categorical variables requires computational cost and
the acceleration by ve-ALS is therefore effective. In case of dataset (D) (p=150), for example,
ordinary ALS needs 639 iterations with 140 seconds for 0.25 mixing rate but 1697 iterations
and 805 seconds for 1.00 mixing rate. On the other hand, ve-ALS needs 188 iterations and 45
seconds for 0.25 mixing rate but 644 iterations and 314 seconds for 1.00 mixing rate.

It can be observed that the ve-ALS converges almost 3 times faster than ordinary ALS in all
simulations. The tables also show the average speed-up rates in [SpeedUp| row of each data type,
which is computed by dividing the number of iterations (CPU time) required for ordinary ALS
divided by the number of iterations (CPU time) required for ve-ALS. In Figure |3| we illustrate
the speed-up rates of 100 simulations only for dataset (D) in boxplot. The similar boxplots
of the speed-up rate can be obtained for other datasets. Regardless of the data size and the
mixing rate of categorical variables, ve-ALS is smaller 2.62 — 3.61 times of iterations and shorter
2.50 — 3.13 times of CPU time than those of ordinary ALS, although the speed-up rates slightly
decrease according to the increase of mixing rate.
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0.25 0.50 0.75 1.00

Data type Stats ALS ve-ALS ALS ve-ALS ALS ve-ALS ALS ve-ALS
(A) n=100  Min. 51 17 89 29 125 40 180 65
p=20  1st Qu. 88.5 27 150.8 47.75 225.8 72.75 332.5 103.8
Median 123.5 35 210 60 323 96 474.5 154.5

Mean 178.2 49.33 302 93.81 448 133.69 605.7 193.8

3rd Qu. 182.2 50.5 308.8 86 532.5 147.5 737.5 241

Max. 2687 623 2464 1344 2752 935 3578 820

[SpeedUp] [3.61] (3.22] 3.35] [3.13]

(B) n=100  Min. 85 26 170 58 254 101 296 94
p=50  1st Qu. 150 48.75 290.5 97.5 476.8 147 586.5 194
Median 218 68.5 435 133 674 224.5 798 285

Mean 294.4 90.22 505.7 170.4 780.5 266.7 1032 372.3

3rd Qu. 334.5 95.25 580.8 208.5 922.5 337.5 1200.5 410

Max. 1799 409 1777 1267 3717 783 4894 1959

[SpeedUp] [3.26] [2.97] [2.93] [2.77]

(C) n=500  Min. 83 27 150 53 228 85 307 105
p=100 1st Qu. 181.8 61 308.8 100.2 468.5 152 615.8 227
Median 261 83 414.5 135 593 207.5 792.5 304.5

Mean 345.4 103.8 548.2 179.5 697.3 245.8 1147.2 437.6

3rd Qu. 357.5 111 672.8 216.8 875.2 297.5 11785 418.8

Max. 2187 499 3474 793 1708 1051 10000 2752

[SpeedUp] [3.33] [3.05] [2.84] [2.62]

(D) =200  Min. 190 63 378 116 418 179 501 202
p=150  1st Qu. 341 107.8 619.8 224 898 329.8 1058 397
Median 468.5 143.5 867 329.5 1194 431 1436 569.5

Mean 639 187.7 1090.3 388.1 1411 527.3 1697 644.2

3rd Qu. 670.8 212 1297 448.2 1638 601.8 1987 785.5

Max. 8329 1263 3667 1534 4406 2354 7416 2192

[SpeedUp] [3.40] [2.81] [2.68] [2.63]

Table 1: Summary of statistics of the numbers of iterations of ordinary ALS and ve accelerated
ALS for four data types and four mixing rates of categorical variables.

1000

Figure 1: Boxplots of the number of iterations for data type (A) to (D) (from left to right in

order).

4 Concluding remarks

In this paper, we examined the performance of the ve-ALS algorithm which accelerates the
convergence of the sequence generated from ordinary ALS. To do this, we applied ordinary
ALS and ve-ALS to several simulated datasets generated from four different data sizes and four
different mixing rates of categorical variables. The numerical experiments for comparing the
number of iterations and CPU time by ordinary ALS and ve-ALS demonstrated that the larger
the number of categorical variables is and the higher the mixing rate is, the more the ve-ALS
reduces the computational costs. They also indicated that the performance of approximation
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0.25 0.50 0.75 1.00

Data type Stats ALS ve-ALS ALS ve-ALS ALS ve-ALS ALS ve-ALS
(A) n=100 Min. 0.66 0.34 1.21 0.55 1.96 0.77 3.07 1.26
p=20 1st Qu. 1.018 0.4475 1.992 0.7775 3.37 1.258 5.593 1.948
Median 1.35 0.53 2.695 0.92 4.745 1.6 7.855 2.795

Mean 1.898 0.6744 3.775 1.3441 6.489 2.141 10.015 3.448

3rd Qu. 1.925 0.685 3.86 1.2525 7.697 2.345 12.133 4.258

Max. 26.15 6.43 29.44 16.8 38.88 13.83 58.15 13.93

[SpeedUp] [2.81] [2.81] [3.03] [2.90]

(B) n=100 Min. 2.9 1.22 7.09 2.8 13 5.55 17.75 6.05
p=>50 1st Qu. 4.76 1.907 11.81 4.402 23.9 7.875 34.78 12.04
Median 6.675 2.465 17.42 5.785 33.77 11.675 47.29 17.36

Mean 8.887 3.104 20.22 7.246 39.02 13.812 60.95 22.53

3rd Qu. 10.053 3.237 23.17 8.797 46.09 17.288 71.05 24.76

Max. 52.24 12.5 70.13 50.84 184.89 39.74 287.42 116.24

[SpeedUp] [2.86] [2.79] [2.83] [2.71]

(C) n=500 Min. 18.68 9.67 39.34 17.85 70.56 30.75 114.2 43.34
p=100 1st Qu. 36.31 15.82 77.09 29.22 142.03 51.48 224 87.26
Median 50.32 20.01 101.38 37.49 179.84 67.65 285.1 115.35

Mean 65.14 23.84 132.91 48.49 209.99 79.31 410.4 164.23

3rd Qu. 66.58 25.62 163.34 57.05 262.47 94.36 420.7 157.34

Max. 392.5 96.43 825.62 197.59 507.83 323.42 3489.6 991.63

[SpeedUp] [2.73] [2.74] [2.65] [2.50]

(D) n=200 Min. 43.41 16.78 115.4 38.93 163.9 74.04 238.9 101
p=150 1st Qu. 75.57 26.95 188 72.22 348.6 133.48 501.9 195.4
Median 103.07 35.03 261.6 104.67 463.4 173.78 681 278.1

Mean 139.57 44.66 329 122.92 545.9 211.73 805.1 313.9

3rd Qu. 146.21 49.99 392.7 141.39 630.3 241.1 942.5 382.1

Max. 1788.1 284.06 1096.7 476.74 1714.3 932.91 3508.4 1062.2

[SpeedUp] [3.13] [2.68] [2.58] [2.56]

Table 2: Summary of statistics of CPU times of ordinary ALS and ve accelerated ALS for four
data types and four mixing rates of categorical variables.

cpu

4

=100, p=20, cat=10

=100, p=50, cat=10

=500, p=100, cat=10

=200, p=150, cat=10

Figure 2: Boxplots of CPU time for data type (A) to (D) (from left to right in order).

by ve-ALS is improved about 3 times of ordinary ALS for any number of categorical variables
in data.

For future problems, we have to investigate how much the proposed acceleration improves
computational efficiency when it is applied to more complex situations; such as variable selection
problem. Since we are developing faster algorithms (e.g., re-starting ALS in [4]), we are trying to
evaluate the performances of such algorithms in detail. Furthermore, there exist many other ALS
types of algorithms, so we are attempting to speed up the convergence of their ALS algorithms
by incorporating the proposed acceleration.
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Figure 3: Boxplots of the speed-up rates of 100 simulations for data type (D) (Left: the number
of iterations, Right: CPU time).
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Abstract. In this paper we propose finite-sample multivariate tests for ARCH effects in the
errors of vector autoregressive (VAR) models using Monte Carlo testing techniques and the boot-
strap. The tests under consideration are combined equation-by-equation LM tests, multivariate
LM tests and LM tests of constant error covariance matrix. We use a parametric bootstrap
to circumvent the problem that the test statistics in VAR models are not free of nuisance pa-
rameters under the null hypothesis. The tests are evaluated in simulation experiments and the
bootstrap tests are found to have excellent size and power properties. The LM tests of constant
error covariance matrix outperform the combined LM tests and multivariate LM tests in terms
of power.

Keywords. Conditional heteroskedasticity, Vector autoregressive model, Monte Carlo test,
Bootstrap

1 Introduction

The Lagrange multiplier (LM) test for autoregressive conditional heteroskedasticity (ARCH)
by [0] is widely used as a diagnostic test in time series models. It is easy to compute from
an auxiliary regression involving the squared least squares (LS) residuals. The LM statistic is
asymptotically distributed as x? under the null hypothesis. The multivariate generalisation of
the test (see e.g. [6]) requires estimating a large number of parameters in the auxiliary regression.
The test performs poorly for small and moderate sample sizes, particularly when the dimensions
are large (see e.g. [0]). Other multivariate LM tests for ARCH have been proposed (see [3] and
[]), but these have not been much used.

Monte Carlo (MC) test techniques may be used to overcome some of the problems with
multivariate tests for ARCH. MC testing techniques deliver exact finite-sample tests in regression
models when the regressors are exogenous. In this paper we propose finite-sample multivariate
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LM tests for ARCH in vector autoregressive (VAR) models by following a suggestion in [3] of
replacing an exact test by a bootstrap test when the model includes lags. Our paper differs from
[3] because we consider VAR models instead of regression models with exogenous regressors. We
consider multivariate LM tests, whereas [3] consider combined equation-by-equation univariate
LM tests and multivariate Portmanteau tests for ARCH. The paper is organised as follows.
Multivariate LM tests for ARCH are described in Section 2. The bootstrap algorithm is outlined
in Section 3. The results of MC experiments investigating the properties of the tests in finite
samples are reported in Section 4. The tests are applied to credit default swap (CDS) prices in
Section 5. Section 6 concludes.

2 Multivariate LM Test for ARCH

We consider multivariate LM tests for conditionally heteroskedastic (ARCH) errors in the n-
variate vector autoregressive (VAR) model

yvi=Ihy, 1+ +Iy—p+u, t=1,...,T. (1)

The null hypothesis is that the errors u; are IID(0, Q) against the alternative hypothesis that

they are conditionally heteroskedastic: u; = H; /?¢,, where H, = E(uzu}|F;—1) is the conditional
covariance matrix of the errors u;, F;_1 is the o-field generated by all available information until
time ¢t — 1 and {&;} is a sequence of IID(0, I,,) random variables.

Combined Univariate Tests

The Lagrange multiplier (LM) test for ARCH [5] of order h in equation 7 is a test of by = - -+ =
by, = 0 in the auxiliary regression 4% = by + blaz%t—l +--- bhﬁzt_h + ejr. The test statistic has
the form LM, = TRZZ, where RZ2 is the coefficient of determination in the auxiliary regression for
equation 4. The LM statistic is asymptotically distributed as x?(h) under the null hypothesis.
Following [3], standardised versions of the test statistics are obtained by replacing u; by the
Cholesky-standardised residual w;. The combined statistic is constructed as follows (see [3]):

LM =1— min (p(LM,), (2)

where p(m i) are the individual p-values associated with the standardised LM statistics LM;.
The p-values may be derived from the asymptotic distribution of LM i, which is a x?(h) distribu-
tion. The combined test is closely related to a Bonferroni-type testing procedure, but different
from the Bonferroni bound the MC procedure delivers a simulated joint p-value [3].

Multivariate LM Tests
The multivariate LM test for ARCH is based on the auxiliary regression

vech(ti;1}) = by + Byvech(t;_11}_;) + - - - + Bpvech(U;_x1}_,,) + e;. (3)

The operator vech stacks the elements on and below the main diagonal of an n X n matrix into a
%n(n + 1)-dimensional vector. The null hypothesis is that B; = --- = By, = 0. The multivariate
LM statistic can be shown to be of the form

1 o~ —~
MLM = STn(n +1) — Ttr(Qvecn ), (4)

COMPSTAT 2014 Proceedings



Niklas Ahlgren and Paul Catani 267

where ﬁvcch is the estimator of the error covariance matrix from the auxiliary model and
Q=T1"! S°F | G4 is the estimator of the error covariance matrix from the VAR model 1}
[6]. Following [3], a standardised version of the test statistic is obtained by replacing u; by
w¢, the multivariate standardised residual. The MLM statistic is asymptotically distributed as
X2 (hn?%(n + 1)%/4) under the null hypothesis.

[4] propose a test for constant error covariance matrix. When testing for ARCH, a suitable
alternative is the constant conditional correlation autoregressive conditional heteroskedasticity
(CCC-ARCH) process of order h. Then H; = D;PD;, where D; = diag(h}{Q, . .,hif) is a
diagonal matrix of conditional standard deviations of the errors u;. Further, D, Ly, = €+, Where
g¢ ~ 1ID(0,P) and P is a positive definite matrix of conditional correlations. The conditional
variance hy = (hit, ..., hyt) follows a CCC-ARCH(h) process

h
2
hy=ap+ Y Aguy’y, (5)
k=1
where ag is an n-dimensional vector of positive constants, Ay, ..., Ay are n xn diagonal matrices
and u§2) = (u?;,...,u2,)’. The null hypothesis is A; = --- = A; = 0. The LM statistic is
LMcce = Tsp(0)I:' (0)sr(6), (6)

where §7(0) and Ip(0) are the relevant blocks of the average score vector and information
matrix, respectively, estimated under the null hypothesis (see [4]). The LMccco statistic is
asymptotically distributed as x?(nh) under the null hypothesis.

3 Bootstrap Tests for ARCH

In this section we present the Monte Carlo (MC) testing technique and bootstrap algorithm. [3]
develop a framework for MC tests which employs Cholesky-standardised multivariate residuals
from the multivariate linear regression model

Y =XB+ U, (7)
where Y = (yq,...,¥yn) is a T x n matrix, X is a T x k matrix of full column rank, Bis a k xn
parameter matrix and U = (uy,...,u,) is a T' x n matrix of errors. The VAR model can be

written in the linear regression form @ with X; = (y¢—1,...,¥t—p) a typical row of X and B
is an np x n parameter matrix. The distribution of test statistics in the VAR model based on
Cholesky-standardised multivariate residuals are not free of nuisance parameters.

The bootstrap algorithm is a modification of the algorithm in [3] to autoregressions. Fol-
lowing a suggestion in [3], the LS estimator B of B under the null hypothesis is used in the
parametric bootstrap in step 3. The tests based on the parametric bootstrap are not exact in
finite samples. They are only exact as the sample size tends to infinity.

Algorithm 3.1.
Bootstrap Monte Carlo tests for ARCH

—_ —(0
Step 1 From the observed data, compute LM in (@/ and denote it LM( ).

Step 2 Obtain N draws from W1, ..., Wy ~ NID(0,1,) and denote the drawn variates w),
j=1,...,N.
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Step 3 For each draw j, conditional on the observed regressor matrix X, the Cholesky factor
Sﬁ of the residuals U and the LS estimator B of B, construct a bootstrap replication

Y(j)ZXﬁ—f-W(j)Sﬁ, j=1,...,N.

Regress YU) on X and obtain the associated residual matriz ﬁ(j), covariance matriz V) =
T-1UWTUY) and its Cholesky factor S%). Obtain the simulated standardised residuals

W) — ﬁ(j)(sg))—l =&Y, W)y,
where W

O _ @9 gy i1,

Step 4 Compute the LM statistic for equation i and MC draw j, denoting it ZJ\?E”. Compute

oY —1- min1§z‘§n(P(m£J))) using (@ as in step 1.

Step 5 Given ZMU)

equal to EM(O) (denoted N@N(m(o))). The MC p-value is

, 3 =1,...,N, compute the number of simulated values greater than or

P ~ (0
Pn(LM) = [NGN(LM ") + 1]/(N +1).

The null hypothesis is rejected at the significance level « if p, N(m ) < . The same algorithm
is used with the multivariate LM tests M LM and LMccc. The asymptotic validity of the
bootstrap tests follows from Theorem 1 of [3] and consistency of the LS estimator B of B.

4 Simulations

We conduct Monte Carlo simulations for size and power of the multivariate tests for ARCH with
n = 2. The samples sizes are T' = 100, 200 and 400. The number of Monte Carlo replications
is 5000 for T" = 100 and 200, and 2000 for T" = 400. In the bootstrap tests the number of
replications is N = 499. The model for the conditional mean is a stationary VAR(2) model
with IT; = diag(0.5) and IIy = diag(0.3). Five different data generating processes (DGPs)
are considered for the errors w;. In DGP 1, uy ~ NID(0,1,). In DGPs 2 and 3, u; follows
CCC-GARCH(1, 1) processes:
w =H"%, H,=DPD,, D,=diaghi,....h"%), hy=ao+Au”, +Bih,_;.

s 'int

Furthermore, ¢; ~ NID(0, P), where P = (p;;). The parameter values for A; and B; are A} =
diag(0.08) and B; = diag(0.90) in DGP 2 and A; = diag(0.5) and B; = 0 in DGP 3. The
constant vector ag has all its elements ag; = 0.02, ¢ = 1,...,n. The conditional correlation
parameter is p;; = 0.5 for i # j. DGP 4 is a diagonal BEKK-GARCH(1, 1) model given by

Ht =C+ Aﬁut_lu;,1A1 + BllHt_lBl,

where C is a matrix with elements 0.1 on the main diagonal and off-diagonal elements 0.2,

A, = diag(1/0.08) and B; = diag(1/0.9). DGP 5 is an Extended CCC (ECCC) GARCH model
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DGP 1 2 3 4 5 1 2 3 4 )

Test h=2 h=5

T =100
LM, 0.035 0.120 0.596 0.120 0.119 0.035 0.145 0.466 0.144 0.148
LM, 0.030 0.104 0.482 0.111 0.065 0.034 0.123 0.394 0.130 0.063

LM 0.040 0.165 0.737 0.175 0.137 0.049 0.215 0.636 0.223 0.173
MLM  0.045 0.166 0.736 0.148 0.125 0.039 0.199 0.549 0.169 0.157
MLM* 0.036 0.143 0.708 0.130 0.110 0.040 0.201 0.551 0.169 0.160
LMcce 0.024 0.151 0.780 0.144 0.107 0.026 0.183 0.696 0.186 0.137
LM¢§oe 0.040 0.180 0.813 0.178 0.139 0.048 0.235 0.743 0.236 0.176
T =200
LM, 0.039 0.319 0.919 0.312 0.326 0.046 0.393 0.854 0.405 0.414
LMo, 0.039 0.275 0.820 0.275 0.115 0.040 0.361 0.731 0.366 0.144

LM 0.046 0.432 0.976 0.429 0.329 0.049 0.537 0.936 0.555 0.422
MLM  0.052 0417 0977 0419 0.324 0.049 0.532 0.927 0.520 0.409
MLM* 0.046 0.389 0.974 0.389 0.301 0.045 0.519 0.921 0.503 0.393
LMcoe 0.038 0.456  0.988 0.441 0.330 0.038 0.563 0.975 0.568 0.424
LMoo 0.046 0479 0.989 0.463 0.352 0.048 0.586 0.977 0.594 0.449
T = 400
LM, 0.046 0.392 0.994 0.652 0.634 0.042 0.519 0987 0.752 0.767
LM, 0.042 0.352 0.972 0.588 0.243 0.046 0.466 0.951 0.731 0.305
LM 0.048 0.533 1.000 0.803 0.640 0.047 0.672 0.997 0.890 0.765
MLM  0.052 0.521 1.000 0.841 0.619 0.048 0.650 0.998 0.925 0.757
MLM* 0.045 0.498 1.000 0.825 0.598 0.043 0.639 0.997 0.923 0.746
LMcce 0.042 0.574 1.000 0.837 0.668 0.046 0.702 1.000 0.918 0.776
LMo 0.049 0.578 1.000 0.846 0.679 0.050 0.714 1.000 0.921 0.787

Table 1: Simulated size and power of LM tests for ARCH when n = 2. The nominal significance
level is 5%.

similar to DGP 2, but with off-diagonal elements a1 = 0.001, a1 = b12 = 0.004 and b1 = 0.02
All estimations and numerical calculations are done using code written in R, version 2.15.2.
Table 1 presents the results for testing against ARCH of orders h = 2 and 5 in bivariate
models. In addition to the multivariate tests, the table shows the results for the individual
LM tests (denoted LM; and LM, respectively). The multivariate tests for ARCH tend to be
slightly undersized, with the exception of the multivariate LM test M LM . In particular LM¢coc
is undersized, with size against h = 2 of 2.4% when N = 100, 3.8% when N = 200 and 4.2%
when N = 400. Bootstrapping the test brings its size closer to the nominal level. Turning to
power, we see that LMgoc is the most powerful test when the DGP is a CCC-GARCH model.
Despite being slightly undersized in small samples, the asymptotic LMccco test performs well
in terms of power. If the errors are CCC-ARCH (DGP 3), then LM¢ccc is outperformed only
by its bootstrap version LM . The test also has the highest power when the correlations are
not constant as in DGP 4 and when there is volatility interaction between the errors in DGP 5,
although the differences between the tests are small in the latter case. The combined LM test
LM has lower power. The multivariate LM tests M LM and M LM* have lower power than the
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other multivariate tests with the exception DGP 4 and T = 400.

Outliers frequently occur in time series with conditional heteroskedasticity. We investigate
the robustness of the tests to outliers in DGPs 1 and 2, when T' = 200 and h = 2. Following
[7] we consider additive and innovational outliers with outlier parameter w = (3.5,3.5)" and
w = (8,8)" (see [7] for details). We concentrate on the case where there is a simultaneous outlier
in both series at ¢ = 101. We find that all tests are oversized in the presence of additive outliers,
in particular the combined test LM and the multivariate tests M LM and LM¢ooc have size
17.9%, 29.6% and 22.6%, respectively, when the nominal significance level is 5%. Innovational
outliers, on the other hand, have little impact on the size of the tests. The univariate tests and
the combined test are slightly undersized, the size of LMy, LM and LM being 2.0%, 3.0% and
3.1% respectively, while the size of the multivariate tests increases by about 1 percentage point
compared to the case with no outliers. In DGP 2 for power, LM , MLM and LMcoc have
rejection probabilities 53.5%, 55.1% and 78.5% in the presence of additive outliers and 27.5%,
28.6% and 33.0% in the presence of innovational outliers. The full set of results are reported in
the full length paper.

5 Application to Credit Default Swap Prices

We apply the multivariate LM tests for ARCH to VAR models estimated on credit spread and
credit default swap (CDS) prices data. We take a subsample of the companies in Table 1 of
[1]. The companies in our subsample are Bank of America, Citigroup, Goldman Sachs, Barclays
Bank and Vodafone. We use 5-year maturity CDS prices and credit spreads from Datastream.
The data are daily observations from 1 January 2009 to 31 January 2012. The number of daily
observations for each company is T' = 804. In addition to the whole sample period, we divide
the data into 2 sub-periods of T' = 402 observations and 4 sub-periods of T" = 201 observations.
The reason for considering sub-periods is that we want to detect differences between the tests for
smaller values of T than the full sample size T' = 804. The lag length of the VAR model is p = 2
for Bank of America, p = 3 for Citigroup, p = 3 for Goldman Sachs, p = 4 for Barclays Bank
and p = 3 for Vodafone. The estimated VAR models contain dummy variables taking the value
1 for the date in question and 0 otherwise: 25 February 2009, 10 April 2009 and 8 June 2009
for Citigroup, 9 April 2009 for Goldman Sachs, 6 February 2009 and 4 June 2009 for Barcalys
Bank, and 8 June 2009 for Vodafone. There is evidence that the bond and CDS markets share
periods of high volatility; for all companies large movements in one series is matched by large
movements in the other series. This suggests that multivariate tests for ARCH effects will be
more powerful than either univariate tests or combined tests. For the full sample period of
T = 804 observations, all tests are significant at the 5% level and all tests are significant at
the 1% level, except the univariate LM test for A = 5 in the equation for the credit spread
for Bank of America. In fact, most p-values are either 0.000 or 0.001. For the sub-period of
T = 402 observations, the multivariate tests M LM, MLM*, LMccc and LMF - are almost
all significant at the 5% and 1% levels.

The results for sub-periods of T' = 201 observations (p-values reported in Table [2| for sub-
periods 2 and 3) are more interesting from the point of view of being able to detect differences
between the tests. We observe that the p-values of the asymptotic M LM tests are larger than the
p-values of the bootstrap M LM* tests, whereas the opposite holds for the asymptotic LMccc
tests and bootstrap LM tests, which is in agreement with the findings in the simulations
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Company h LMcps LMcs MLM LMcce LM MLM*  LMpqo

Sub-period 2

Bank of America 2 0.000 0.044  0.000 0.000  0.001  0.001 0.001
5 0.000 0.007  0.000 0.000  0.001  0.001 0.001

10  0.000 0.085  0.000 0.000 0.001 0.001 0.001

Citigroup 2 0.333 0.737  0.014 0.020 0.551  0.033 0.022
5 0.103 0.803  0.004 0.000 0.167  0.009 0.001

10 0.280 0.980  0.000 0.000 0.427  0.001 0.001

Goldman Sachs 2 0.053 0.003  0.000 0.000 0.010 0.001 0.001
5 0.001 0.037  0.000 0.000 0.001  0.001 0.001

10 0.000 0.221  0.000 0.000 0.002 0.001 0.001

Barclays Bank 2 0.000 0.000  0.000 0.000 0.001  0.001 0.001
5 0.000 0.000  0.000 0.000  0.001  0.001 0.001

10  0.000 0.001  0.000 0.000 0.001  0.001 0.001

Vodafone 2 0.000 0.000  0.000 0.000  0.001  0.000 0.001
5 0.000 0.000  0.000 0.000 0.001  0.001 0.001

10 0.000 0.008  0.000 0.000  0.001  0.001 0.001

Sub-period 3

Bank of America 2 0.119 0.013  0.005 0.000  0.020 0.009 0.001
5 0.148 0.065  0.020 0.000 0.100 0.032 0.001

10 0.431 0.342  0.020 0.000 0.566  0.021 0.001

Citigroup 2 0.103 0.015  0.005 0.000 0.031 0.014 0.001
5 0.340 0.036  0.049 0.000 0.064 0.044 0.001

10 0.029 0.237  0.013 0.000  0.057 0.010 0.001

Goldman Sachs 2 0.136 0.567  0.025 0.063 0.241  0.035 0.050
5 0.386 0.379  0.093 0.023 0.612 0.100 0.033

10 0.131 0.015  0.156 0.000 0.026 0.121 0.001

Barclays Bank 2 0.746 0.008  0.039 0.000  0.015  0.052 0.001
5 0.724 0.070  0.630 0.000 0.120 0.586 0.001

10 0.959 0.369  0.522 0.008  0.575  0.467 0.007

Vodafone 2 0.093 0.292  0.563 0.003  0.157  0.507 0.004
5  0.404 0.258  0.373 0.002 0.421 0.356 0.001

10 0.471 0.708  0.591 0.013  0.689 0.565 0.015

Table 2: Tests for ARCH in the estimated VAR models for CDS prices in sub-periods 2 and 3.

that the M LM test is slightly oversized, whereas LMgoc is conservative. On balance, the
univariate tests (denoted LM¢cps and LMcg for the CDS and credit spread series respectively)
and the combined test only detect ARCH effects in about half of the cases. The multivariate
tests find more evidence of ARCH. More rejections are recorded for LMccc and LME -~ than
for MLM and M LM?*, and the p-values of the former are smaller than the p-values of the latter.
The bootstrap test LM finds the most evidence of ARCH.
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6 Conclusions

In this paper we have introduced and evaluated multivariate bootstrap tests for ARCH in vector
autoregressive models. The tests are based on standardised multivariate least squares residuals
and are therefore easy to calculate. The results show that the bootstrap tests outperform the
asymptotic tests in terms of both size and power. Our results also show that a less frequently used
test against constant conditional correlation GARCH is more powerful than other multivariate
LM tests such as combined univariate LM tests and multivariate LM tests which assume no
particular alternative to the null hypothesis. The tests are applied to credit default swap (CDS)
prices. The multivariate tests find significant ARCH effects in almost all series.

Acknowledgement

P. Catani acknowledges financial support from The Society of Swedish Literature in Finland.

Bibliography

[1] Blanco, R., Brennan, S. and Marsh, I. W. (2005) An empirical analysis of the dynamic
relation between investment-grade bonds and credit default swaps. Journal of Finance 60,
2255-2281.

[2] Dufour, J.-M. (2006) Monte Carlo tests with nuisance parameters: A general approach to
finite-sample inference and nonstandard asymptotics in econometrics. Journal of Economet-
rics 133, 443-478.

[3] Dufour, J.-M., Khalaf, L. and Beaulieu, M.-C. (2010) Multivariate residual-based finite-
sample tests for serial dependence and ARCH effects with applications to asset pricing
models. Journal of Applied Econometrics 25, 263—-285.

[4] Eklund, B. and Teréisvirta, T. (2007) Testing constancy of the error covariance matric in
vector models. Journal of Econometrics 140, 753-780.

[5] Engle, R. F. (1982), Autoregressive conditional heteroskedasticity with estimates of the vari-
ance of United Kingdom inflation. Econometrica 50, 987-1007.

[6] Liitkepohl, H. (2006) New Introduction to Multiple Time Series Analysis. Berlin: Springer-
Verlag.

[7] Tsay, R. S., Pena, D. and Pankratz, A. E. (2000), Outliers in multivariate time series.
Biometrica 87, 789-804.

COMPSTAT 2014 Proceedings



Behaviour of the quality index in
acceptance sampling by variables:
computation and Monte Carlo
simulation

Miguel Casquilho, Department of Chemical Engineering, Instituto Superior Técnico, Universi-
dade de Lisboa (University of Lisbon), mcasquilho@tecnico.ulisboa.pt

Fatima Rosa, Department of Chemical Engineering, Instituto Superior Técnico, Universidade
de Lisboa (University of Lisbon), fatimacoelho@tecnico.ulisboa.pt

Abstract. Quality is nowadays indispensable in every activity, but its control has been cir-
cumvented by many, because of the statistical technicality of the subject and the apparent
uselessness of acceptance sampling (AS), dealt with in this study. With the current comput-
ing power and the access to the Internet, the control of Quality can be used where fit. For
Gaussian variables and their acceptance sampling by variables, the usual standards are based
on the quality index, the behaviour of which is addressed. Its computation is reviewed and, as
our main objective, made available directly on our open website. As the acceptance criterion is
based on the non-central t-distribution, its computation is commented and made available on
the Internet, through a computer program prepared for this purpose. A Monte Carlo solution
is also provided, which might be used if the computation of the distribution were not feasible.

Keywords. Quality Control, acceptance sampling, inspection by variables, Gaussian variable,
international standards, “Form 1”, non-central ¢-distribution.

1 Fundamentals and scope

Quality has become a necessity in every activity, manufacturing or services, the customer be-
ing a driving force that promotes the need for improvement, responsibility, competitiveness.
Achieving quality cannot dispense with measurement, hence statistic control. Although many
in business circumvent the harder, statistical aspects of Quality and its control, as clearly re-
marked by Gunter ([8]), there is no way to substitute them. Numerous studies were done by
researchers some decades ago, when the theory was being constructed (among many, e.g., [9],
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[13], [15]), and, in our own work, we have insisted (e.g., [3], [4]) in the importance of acceptance
sampling, which is a sharp example of a technique necessary to control the quality at the fron-
tiers of a production system, unless there is a solid connection with the suppliers or the clients,
which fortunately is becoming more frequent. Nowadays, the Internet can facilitate these control
actions, as will be seen in the present study.

Acceptance sampling (AS), and statistical process control are the two parts usually consid-
ered in Quality Control. In AS by variables, the quality index is key to take decisions in the
case of having to meet a single specification limit, such as it is dealt with in the standards for
quality control, such as the American standard of the year 2008 ([2], the successor of [12]) or its
equivalent international ISO standard of 2013 ([10]).

In this study, the computations underlying “Form 1” in the standard are addressed and made
available to a user on the Internet. Indeed, with the current availability of computing power
and access via the Internet, no simplifications are needed, such as the one ingeniously proposed
by Hamaker ([9]) in the past. Based on a Gaussian variable that is the quality characteristic of
interest, the procedure aims at controlling the quality of a lot by means of a random sample from
it, leading to a comparison that dictates the decision, the comparison between the quality index,
Q, and the acceptability constant, k, the lot being accepted if Q > k, and rejected otherwise.
This is, of course, the test of a hypothesis, and the essence of the technique is the knowledge of
the distribution of the statistic, @), to find its critical value, k.

Whenever, contrary to the present case, neither an analytical nor a reasonably feasible numer-
ical solution are available, a Monte Carlo approach is an alternative. Here, as an experimental
“confirmation” of the numerical solution, the computing by a Monte Carlo simulation is also
presented, both paths (numerical and simulated) being made solvable in our websites.

2 Acceptance criterion

The classical equations for Type I and Type II errors underlying inspection sampling lead to the

sampling plan, i.e., sample size, n, and acceptability constant, k (e.g., [3]):

Pi(w=AQL)=1-« (1)
P,.(ww = LTPD) = 3,

in which P,. is the probability of acceptance, w is the fraction defective (currently “fraction
nonconforming”), AQL (“Acceptance Quality Limit™) is the maximum percent defective (tradi-
tional for “fraction nonconforming”) with probability 1 — a;, and LTPD (“Lot Tolerance Percent
Defective”) is the maximum fraction defective for 5. Values such as the following can be found:
AQL = 1.5%, a = 5%, LTPD = 12%, 8 = 10%. The acceptance criterion is given by the follow-
ing condition, in which X and S are, respectively, the sample average and standard deviation.

X-L

Q=—5—2Fk (2)
where @ is the quality index, and k the acceptability constant. (The equals sign is important
because the practical comparison is made with ) rounded to the same number of significant
figures as in k.) Note that a different definition of the quality index,

9Instead of the historical “Acceptable Quality Level”.
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XL
S/v/n
might be more natural from a statistician’s standpoint. This, making @' = ¢ (¢ in Eq. [4] below),
would lead directly to a known distribution. Then, e.g., for n = 10 and AQL = 4%, instead of
testing @ > 1.23 (from Table , it would be Q" > 3.89 (= 1.231/10), which would, however,
make the calculations more cumbersome to the user. It has, nevertheless, since long been the
laudable intention of the founders of Quality, themselves statisticians, to make its rules easily
applicable by the general users.

When both specification limits, lower, L, and upper, U, are present, it is usual to write
Q1 and @, respectively, and in the case of the upper limit the numerator is changed to the
“symmetric” U — X, for obvious practical convenience. We arbitrarily chose here to work with
the lower specification limit just because it is closer to (X — p)/S. (The case of both limits is,
however, out or our present scope, and constitutes the so-called “Form 2”.)

Regarding the distribution of the statistic ), the seminal work by Resnikoff and Lieberman
([I1]) and the recent synthesis book by Schilling and Neubauer ([I4]) are solid sources: @ is
related to t, such that it is t = Q+/n, and t follows a non-central ¢-distribution,

Q= Qv >k (3)

t~ F(t; v, 9) (4)
where the parameters are, in this application, given by
v=n-—1
5=n ®71(1-AQL) (5)

with ® the standard Gaussian distribution (and ®~! its inverse function). From this will come
the acceptance criterion, for a single specification limit (in this case, the lower one), as mentioned.
For the non-central ¢-distribution, the cumulative distribution function (cdf), F', can be given

by (e.g., [])

F(t; v,0)=0C, /Oo D(tu/v/w — S)u’ e " 2du (6)
0

with
C, = [T(v/2) 2771 (7)

where I'(+) is the common Gamma function (extension of the factorial).

The criterion in Eq. [2] depends on the computation of the non-central ¢. This computation
is described in the next section, and, as is the objective of this study, is made available on our
website.

3 Computation

The computing of Eq. [6] was done numerically, as it appears that the integral in it is not
amenable to analytical treatment, with the details as follows.

The computation of C,, is easy, as the argument of the Gamma function in this application
(v/2, with v = n — 1) is always a positive integer or half-integer, so the function becomes a
factorial or a simple multiple of /7.
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Inside of the integrand, for the Gaussian integral, ®(-), in computer languages such as the
one used, Fortran 90, we relied on

B(z) = % {1 4 erf(é)} (8)

where ’erf’ is the error function, as given by the compiler.

The computation of Eq. [f] thus would boil down to a common numerical integration were it
not for the upper integration limit (cc0). For the purpose of this study, this difficulty was solved
by determining experimentally which would be a “sufficiently” large value, say, M, for the upper
integration limit (instead of co) for various possible, more or less favourable combinations of ¢,
v, and 6. We did not delve into a deeper search for accuracy in the values of k, provided full
agreement is obtained, as the values available for comparison are just those in the standards,
which of course are rounded.

The integral in Eq. |§| achieved subsequent agreement (all the figures in the numbers) with
the values of k in Table B-1 reproduced in Table |1} for an upper integration limit of

M=.V5n" (9)

(meaning rounding or nearest integer), integer for simplicity, which proved sufficient for all
the sample sizes tested. This heuristic expression that we propose for M is inspired in the
fact that Resnikoff and Lieberman ([11]) present their tables of F' (Eq. as a function of
(in their notation) x/\/f, with f the degrees of freedom (v here), and a still more prudent
(greater) n = v + 1.

a M| AQL=150 AQL=4.00

7 10% 6 1.50 1.15
10 10% 7 1.58 1.23
20 7.8% 10 1.69 1.33
3 6% 13 1.76 1.39
50 5% 16 1.80 1.42

Table 1: Values of k from Table B-1 in [2] (AQL in %), with their underlying values of «, for
verification.

In order to verify the values in Table [I], the computation of k as a function of n, AQL, and
the adequate «, with the proposed M (or a user-supplied one), can be done at our dedicated
webpage ([6]), through a computer program of ours that computes the non-central ¢-distribution.
(The computing done on the website, i.e., simply using a browser, is limited to about 30 s.)
The limit M, with an integration step of 2 x 1072, led to computing times of about 10-70 s,
in the Computing Center system of IST (CIIST) with Amd64 machines, at 2 GHz, running
Debian Linux. Preliminary computing experiments were done in a parallel, MPI computing
system (Milipeia), but the system was not considered indispensable, all the more because it
is not anonymously accessible via the Internet. The verification can also be experimentally
done, by Monte Carlo simulation, with numerical agreement, in another webpage of ours ([3]),
a concomitant website, [7], being available for the above cited “Form 2”.
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TABLE B-1 Standard Deviation Method

Master Table for Normal and Tightened :I‘-ISPEC“OH for Plans Based on Variability Unknown
(Single Specification Limit—Form 1)

y Acceptable Quality Levels (normal inspection)
Sample size |Sample
code letter | size T .10 .15 .25 .40 .65 100 | 1.50 | 2.50 | 4.00 6.50 |10.00
k k k k k k k k k k k k
B 3 I | l I | ‘ { \ i 112 | 958 | .765( .566
C 4 145 | 134 | 1.17 | 101 814 | 617
D 5 Y| v | ves | 153|140 124 | 107 | 874 675
E 7 1 2.00 | 1.88 1.75 1.62 | 1.50 | 1.33 | L.15 955 | .755
F 10 224 | 2.11 1.98 1.84 1.72 | 1.58 1.41 | 1.23 1.03 .828
G 15 | 253 | 242 | 232 | 220 | 206 | 191 1.79 | 1.65 | 1.47 | 1.30 1.09 .886
H 20 | 258 | 247 | 236 | 2.24 | 211 196 | 1.82 | 1.69 1.51 | 1.33 1.12 917
| 25 | 261 | 250 | 240 | 226 | 2.14 1.98 1.85 | 1.72 1.53 | 1.35 1.14 936
J 35 2.65 2.54 2.45 2.31 2.18 2.03 1.89 1.76 1.57 1.39 1.18 969
K 50 2.71 2.60 2.50 2.35 222 2.08 1.93 1.80 1.61 1.42 1.21 1.00
L 75 2717 2.66 2.55 2.41 227 2.12 1.98 1.84 1.65 | 1.46 1.24 | 1.03
M 100 2.80 2.69 2.58 243 2.9 2.14 2.00 1.86 1.67 | 1.48 1.26 | 1.05
N 150 (284 | 273 | 2.61 247 | 233 | 218 | 203 | 1.89 1.70 | 1.51 1.29 | 1L.07
P - 200 |285 | 273 | 262 | 247 | 233 | 218 | 2.04 | 1.89 | 1.70 | 1.51 1.29 | 1.07
.10 15 .25 .40 .65 1.00 | 1.50 | 2.50 | 4.00 | 6.50 | 10.00
Acceptable Quality Levels (tightened inspection)

All AQL values arc in percent nonconforming. T denotes plan used exclusively on tightencd inspection and
nrovides svmbol lor identification of apnropriate OC curve.

Figure 1: Table B-1 in [2] of k, given “sample size” (n) and “acceptable quality level” (AQL,
currently acceptance quality limit).

Conclusions

We think that the rigorous tools of Statistics as applied to Quality Control (QC) must be
brought to general attention, after an epoch in which they have been circumvented to facilitate
the matters of Quality. The advent of ubiquitous computing power, namely through the Internet,
makes QC accessible, even to non-specialists. Acceptance sampling (AS), one of the two branches
of statistical, the other being Statistical Process Control, can and should nowadays be applied
without restraints.

AS by variables, for the typical Gaussian random variable, was shown in its basic “Form 17, as
described in the generally adopted international standards, where a conveniently simple criterion
is available to the decision maker. The underlying computations were explained, and an open
website is available to anyone needing to assess a quality index, @), in its comparison with its
critical value, the acceptability constant, k.
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Abstract. Sparse principal component analysis is a very active research area in the last decade.
In the same time, there are very few works on sparse factor analysis. We propose a new con-
tribution to the area by exploring a procedure for sparse factor analysis where the unknown
parameters are found simultaneously.

Keywords. ¢; penalties, Matrix manifolds, Projected gradients.

1 Introduction

Exploratory factor analysis (EFA) is a model-based multivariate technique that aims to explain
the relationships among p manifest random variables by r (< p) latent random variables called
common factors. The EFA model assumes that some portion of the variation of each observed
variable remains unaccounted for by the common factors. Thus, p additional latent variables
called unique factors are introduced, each of which accounts for this portion of variance of the
corresponding manifest variable [12]. In formal terms, the EFA model represents/approximates
a given n x p data matrix Z of p observed (standardized) variables on n observations as a linear
combination of » common and p unique factors

Z~F\A" +UV, (1)

where A is a p X r parameter matrix of factor loadings. The choice of r is either subjective or
based on preliminary validation. In both case its value is subject to some limitations [I2]. The
r-factor model ((1)) assumes that all involved random variables (Z, F' and U) have zero means and
unit variances, and that both common and unique factors are uncorrelated. Most importantly,
they are also assumed mutually uncorrelated, and the p x p matrix ¥ is assumed diagonal with
non-zero diagonal entries. Following the r-model defined above and the assumptions made, it
can be found that the sample correlation matrix R is presented/approximated by EFA as:

R%RZZ:AAT—F\I’Q. (2)

Thus, the main problem of EFA is to find the pair {A, ¥} which gives the best fit in some
sense to the sample correlation matrix R (for certain r). If the data are assumed normally
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distributed the maximum likelihood principle can be applied [I2]. Then, finding {A, ¥} can be
formulated as minimizing the following negative loglikelihood function [9) 12]:

ming g log(det(AAT 4 ¥?)) + trace((AAT + U?)7'R) | (3)

which for short is called ML-EFA.

If nothing is assumed about the distribution of the data, the loglikelihood function can
still be used as a measure of the discrepancy between the model and the sample correlation
matrices, Rzz and R. There are a number of other discrepancy measures [9] which are used in
place of . A natural choice is the least squares approach for fitting the factor analysis model
, which can be formulated as the f