An Automatic Method for finding the Greatest or Least

Value of a Function
By H. H. Rosenbrock

The greatest or least value of a function of several variables is to be found when the variables
are restricted to a given region.

compared with possible alternatives.

A method is developed for dealing with this problem and is
The method can be used on a digital computer, and is

incorporated in a program for Mercury.

1. Introduction

The problem of finding maxima or minima of a function
arises in a number of ways. For example, one method!
of solving the nonlinear simultaneous equations

filx, Xa o0 x,) =0, i=12....n D

is to form the function
n

ux) = X [0

i=1

)

which will have a minimum (equal to zero) whenever
equations (1) are satisfied. A second example? arises
in finding the best operating conditions for a chemical
process, where the function is determined experimentally.

The work described in this paper arose from a need to
design chemical processes in such a way that they produce
the most economical result. This usually will be defined
to mean the cheapest product, taking intc account the
capital and operating costs of the plant, but may some-
times be defined in other ways. The problem is then to
vary the available parameters (flows, pressures, tem-
peratures, etc.) until the cost of the product is a mini-
mum. The type of calculation which is needed in order
to obtain the cost of product from the parameters is
illustrated by an example in the Appendix. Here there
are five parameters, and up to two or three times this
number may be needed in similar problems.

A number of things are obvious from a brief study of
the Appendix. The first is that it will be quite imprac-
ticable to differentiate the expressions in order to find
the gradient at any point: this must be done numerically.
Secondly, a method must be found for putting in limits*
such as the inequality (63). These limit the possible
solutions to a region in ‘‘parameter-space,” and nearly
always the best obtainable solution will lie on the
boundary of this region. Thirdly, if there is strong
“interaction’ between the parameters? the problem will
be a severe one, and it will be desirable to have a fully-
automatic method of dealing with it on a digital computer.

In the next Section some of the difficulties will be dis-
cussed. The development of a practical solution is
described in Section 3.

* “Limit” is used throughout in its ordinary, and not in its
special mathematical sense.

175

2. Preliminary Discussion

The problem discussed in the last Section can be
stated in the following way. A function u(x) of the
parameters x;, X5, . . ., X, iS to be a maximum or mini-
mum (for definiteness we take the latter) subject to

gi(xp, Xa, oo x,) < xp < (g, Xy o X)
Xy, Xa oo X,) < X (X XL x,) 3)
gn(xlv X2y v es Xn) S Xn < hn(xl* X5 o v ey .\',,)
— 3

&n I(Xh Xoa v oy X,,) = Xy l(xh X2s o v ey Xn) '

< hn l(xl* XZ* REEIRR) '\‘n) .
&n Z(Xh X2 o v s Xn) < Xy 2(xl~ X5 oo Xn)

< h, o(X X2y X)) 0 (4)
g (xp Xar oy Xy) XX Xl X))

h,(x]. R O TR \'”)

In any given problem many of the inequalities (3)
may be absent in the formulation, and there will usually
be a small number (say three or four) of inequalities (4).
The reason for keeping the first set separate and com-
plete, instead of including them in the second (more
general) form is to exclude meaningless solutions. Even
though they may not be stated explicitly in the first
formulation of the problem, there are almost always
engineering restrictions on the parameters. These may
become important in defining the solution, and it is
therefore desirable to include them in the specification.
We thus avoid, for example, gas compositions with
negative amounts of one constituent, or pressures out-
side the range of existing technology. Where a limit
would be meaningless, it can always be made a very
large or very small constant, or can be stated in the form,
for example,

g =x —1 (5)

Leaving aside for the present the limits (3) and (4),
the simplest way of finding a minimum of u(x) would be
to change x,;, X5, . . ., X, in turn, reducing u as far as
possible with each variable and then passing on to the

Finding the Greatest or Least Value of a Function

Fig. 1.—Method of changing one parameter at a time

next. This is illustrated for two parameters in Fig. 1.
The method works well if the contours of constant u are
nearly circular, but for an obvious reason becomes very
slow when there is interaction. In two dimensions, the
existence of interaction corresponds to the presence of a
long, narrow ridge. If this is not parallel to one of the
two axes, progress can only be made by small steps in
x; and x, in turn.

Because of this well-known difficulty, the method of
steepest descent is usually recommended. In its pure
form, this consists in finding the direction of steepest

descent from
N . 2yt
f- w5 G}

where &; are the components of a unit vector £° in the
required direction. The value of u is then calculated at
new points along a line from the first point parallel to E°,
until the least value is attained. Starting from this
lowest point, the process is repeated: equation (6) is
evaluated again and progress is made along a line
parallel to the new vector E!.

At first sight this process seems attractive, but the
apparent advantages are easily seen to be in large part
illusory. The vector E° will be perpendicular to the
contour at the starting-point (Fig. 2), and progress will
be made until the local contour is parallel to E0. At
this point &' will be found, and it is perpendicular to the
local contour, and therefore to E°. Similarly €2 will be
perpendicular to ! and hence parallel to E°. Thus with
two variables the method of steepest descent is equivalent
to the method of changing one parameter at a time.
The two directions which will be used are fixed once for
all by the choice of starting point, and need bear no

(6)

176

123’
/
N
N
e‘/ 1
\J/
| M
\ —
\
,,,,, \\\ ¥ i‘

Fig. 2.—Method of steepest descent

relation to the direction of any ridges that may be
present. If the contours are nearly circular, the method
of steepest descent will have a small advantage, but this
has no practical importance.

When there are more than two variables, the two
methods are no longer equivalent: each vector § in the
method of steepest descent is normal to the preceding
vector, but n successive vectors do not necessarily form
a mutually orthogonal set. Nevertheless, there is no
reason to believe that the method of steepest descent will
have much advantage: certainly it will not if the difficulty
in a problem arises chiefly from the interaction of only
two variables.

To overcome this defect, it has been proposed! that
the method of steepest descent should be modified. The
vector E° is found as before, and progress is made
parallel to it until the least value is attained. The dis-
tance from the starting point is then multiplied by 0-9,
and E! is evaluated at the point so found (Fig. 3). After,
say, four repetitions of this procedure one step of full
length is taken.

This would be a possible method for our problem, but
there is a further difficulty. The partial derivatives of u
must be obtained numerically at the beginning of each
step. This can be done by evaluating u at two neigh-
bouring points and using, for example,

duu(xy + hyxy o x,) — u(xy, X,
v i

o X,)

(7)

2 2

Here & must be small enough so that 3 32 can be neg-

lected. It will be found later that a simple way to deal

Finding the Greatest or Least Value of a Function

Fig. 3.—Modified method of steepest descent

with the limits (3) and (4) is to modify u near the boun-
daries of the permitted region. When this is done the
last restriction limits / to, say, the last two significant
figures if we are working with eight decimal digits. If
h is as small as this, however, we shall fail to detect any
value of du/dx which is less than about 1/200.

Because of these difficulties with the method of steepest
descent a new method was developed. It is better suited
than the former to automatic calculation on a digital
computer. It also turns out to be faster in some
circumstances.

3. Development of New Method

There are three difficulties which have to be met in
developing a practical method for dealing with the
proposed problem. These are dealt with separately
below.

3.1 Determining Length of Step

The simplest problem is to decide the length of step
to be taken in the desired direction, assuming this
direction to be known. The principle adopted was to
try a step of arbitrary length e. If this succeeded, e was
multiplied by « > 1. If it failed, e was multiplied by —f8
where 0 << 8 << 1. ““Success” here was defined to mean
that the new value of u was less than or equal to the old
value. Thus if ¢ was initially so small that it made no
change in u, it would be increased on the next attempt.
Each such attempt will be called a “trial.”

177

3.2 Determining Direction of Step

The next problem is to decide when and how to
change the directions & in which the steps e are taken.
It was decided to work throughout with n orthogonal
directions &, &,, . . ., §,, rather than choose a single
direction in which to progress at each stage. It is
necessary anyway to examine neighbouring points in
each of n directions, in order to determine the best
direction of advance. If one of the points examined in
this way makes u less than the previous value, we might
as well accept it as a new starting point.

It was also decided to make one trial, of the kind
described in Section 3.1, in each of the n directions in
turn. An alternative procedure would be to make the
number of trials in any direction depend on their result.
It was thought that this would not generally speed up the
process, but no systematic test was made of this
assumption.

A number of different methods were tried for deter-
mining the point at which to compute new directions E.
The one finally chosen was to go on until at least one
trial had been successful in each direction, and one had
failed. It will be noticed that a trial must in the end
succeed because e becomes so small after repeated failures
that it causes no change in u. The set of trials made
with one set of directions, and the subsequent change of
these directions, will be called a “‘stage.”

The method chosen for finding the new directions of
g was the following. Suppose that d, is the algebraic
sum of all the successful steps e, in the direction &, etc.

Then let
Al - ({Ig([) + (izg(z) - .. ‘ (/"E_g i
A, = B3 ...+ dE IV (8)
N f
AII - ({Hgg ‘5
Thus A4, is the vector joining the initial and final points
obtained by use of the vectors EY, &9, . . ., EO, 4, is the

sum of all the advances made in directions other than

the first, etc.
1

Orthogonal unit vectors &, El, . . ., E!, are now
obtained in the following way:
B, = 4, 7{
gi - Bl/|31| !
Bz:Az—Awg{g{ |
£ — BB | o)

n—1

Bn = An - Z An . gjlgjl
Jj=1
y = BI1/|BH| ’

n J

No ambiguity is likely to arise, since the method used
ensures that no d can be zero. It is of course possible
that one or more of the ¢ are so small that they are lost
in the summations of equations (8), but this is unlikely
in practice. The result of applying equations (8) and (9)
several times is to ensure that &, lies along the direction

Finding the Greatest or Least Value of a Function

3-5

/)

[

Fig. 4.—Contours of the function used in developing the
program

of fastest advance, §, along the best direction which can
be found normal to §,, and so on.

The numerical work of developing this process was
carried out with the function

u(xy, x;) = 100(x; — x3)? + (1 — x))2 (10)

This has a minimum value ¥ = 0 at x;, = x, = |, with a
curved valley following the parabola x, = x? as shown
in Fig. 4. Computer runs were started from x; = —1-2,
X, = 1, so that the current point had to descend into
the valley, and then follow it around its curve to the
point (1, 1). Two hundred trials were used, and the
values of x,, x, and u were printed out after each stage.
The initial values of e, and e, were +0-1, with §;
parallel to the axis of x,, and &, parallel to the axis of x,.

A set of calculations was made to determine the best
values of o and B. Table 1 shows the values of x,, x,
and u achieved after 200 trials with given values of «
and B. Too great refinement is not justified, as the
results must depend to some extent on the particular
problem. The values « = 3, 8 = 0-5 were therefore
adopted.

For comparison, 200 trials were made without
changing the directions §: this is the first process men-
tioned in Section 2. The result was

Xy = 0-945, u — 3-882.

The method of steepest descent was tried first in its
simple form. The direction was obtained analytically
from equation (6), and the length of step was determined
by the method of Section 3.1, with « = 3 and 8 = 0-5.
Trials in any given direction were continued until there

x, = —0-970,

178

Table 1

x p X1 X> u
1-5 0-2 —0-004 —0-015 1-030
1-5 0-5 0-416 0-212 0-290
1-5 0-7 0-989 0-977 0-00027
1-5 0-8 0-964 0-929 0-00135
2 0-3 0-448 0-201 0-305
2 0-5 0-987 0-972 0-00043
2 0-7 0-983 0-963 0-00107
2 0-8 0-970 0-946 0-00280
3 0-2 0-752 0-557 0-068
3 0-4 0-980 0-962 0-00050
3 0-5 0-995 0-991 0-000022
3 0-7 0-928 0-854 0-0113
3 0-8 0-843 0-712 0-025
5 0-2 0-717 0-523 0-089
5 0-3 0-962 0-927 0-00186
5 0-4 0-885 0-776 0-0160
5 0-5 0-99989 0-99978 0-00000001

had been at least one success, followed by five failures.
This ensured that the least value along the chosen line
was found with reasonable accuracy. After 200 trials
the result was

X, = —0-605, x, — 0-371,

In comparing this last result with those quoted in
Table 1, some uncertainty arises because of the method
used for determining the point at which to compute a
fresh vector E—some other method might have produced
a better result in 200 trials. This would certainly be true
if one of the available methods' for interpolating or
extrapolating was used to find the lowest point along the
chosen line of advance. We exclude this possibility
because it would lead to great difficulty with the method
used later for putting in limits. The best way of com-
paring results then seems to be on the basis of an equal
number of stages for each method.

The results in Table 1 for « =3, B —0-5 were
obtained in 21 stages (one incomplete). A further test
of the method of steepest descent was therefore made in
which 21 stages were used, and each stage was terminated
when at least one success had been followed by ten
failures. This ensured that the least value along the
chosen direction was found with good accuracy. The
result was

x, = —0-235, x, = 0-068,
and 340 trials were needed.

Another test was made with the method of steepest
descent, in which the progress in each stage was reduced
to nine-tenths of its original value before a new vector §
was calculated. Ten failures were again allowed in
every stage. In 21 stages (338 trials) the result obtained
was

u — 2-578.

u=1-542

x; =0-219, x, =0-046, wu = 0-611.

Finding the Greatest or Least Value of a Function

The new process with « = 3, 8 =0-5 made slightly
more progress than this (to ¥ = 0-569) in nine stages.
Finally, a test was made in which four successive stages
were reduced by the factor 0-9, and the next was of full
length. Allowing ten failures in each stage the result
after 21 stages (344 trials) was

xp = —0-180. x; = 0-036, u = 1-393.

A further comparison was made using a problem
which has been studied by Booth.® This is solve the
equations

Xp+2x, = 7]
2x; + x5 =5

(1)

by finding the minimum of
u—=(x; —2x, — 7)2 + (2x; + x, — 5)? (12)

starting from x, = x, = 0. The required answer is
x; = 1, x, = 3, and Booth quotes the following results
for three different methods:

(1) “Southwell’s method™ in 18 stages gave
x; =098, x,=3-02, w=0-0008.
(i) The “tangent descent” method in 5 stages gave
x, =104, x,=12-97, u=0-003.
(iii) The “‘interpolative descent” method in 4 stages
gave
x; =100, x,=3-00, u=0.
In four stages (44 trials) the new method gave
x; = 1-040, x, = 2-970, u = (-0028.
After five stages (54 trials) the result was
x, = 1-017, x,=2-991, u = 0-00065.
Six stages (59 trials) gave

X, = 0-996, x, — 3-0009, u — 0-00001.

For the last comparison, the introductory section of
a problem quoted by Box and Coutie* was used. This
involves the adjustment of parameters in two simul-
taneous differential equations until the computed solution
agrees as well as possible with experimental results. The
Runge-Kutta routine available with the Mercury auto-
code was used for solving the differential equations:
320 time-steps were used for each solution. The variables
x, and x, were 6, and 6, of Ref. 4, and their starting
values were x;, =1-19, x, =1-19, with ¢; = ¢, = +0-1.
Using the method of steepest descent, Box and Coutie,
after integrating the differential equations 23 times, find
a minimum at

x, = 1:0779, x, = 0-8061, wu = 0-00738.

They interpolate at the end of each of the three stages
(which gives some advantage in the comparison), but the
interpolation in the last stage has been neglected here.

The new method, after 24 integrations (three stages, one
incomplete), gave

x; = 1-0759, x,=0-8196, u

and 17 further trials failed to reduce this value of wu.
The time taken on the computer was 8 minutes for
41 trials, including the printing of x,, x, and u at each
trial.

We may conclude from these examples that the pro-
posed method is not significantly slower than the avail-
able alternatives in simple problems (the possibility of
interpolating or extrapolating not being admitted). In
difficult problems it may be a good deal faster. It is
well adapted to automatic calculation, and is not easily
upset by minor irregularities in u (for example, by
asymmetrical ridges). It does rely, as do the alternative
methods, upon the continuity and smoothness of u.

0-00739

3.3 Inserting Limits

It is slightly easier in dealing with limits to think about
maxima rather than minima, and most of the develop-
ment work with limits was done with the following
simple problem:

A rectangular parcel is to be sent by post. The
length must not exceed 3 ft. 6 in., and the length and
girth combined must not exceed 6 ft. What shape of
parcel gives the greatest volume? (24 in. < 12 in. X
12 in. = 3,456 cu. in.)

This gives

U= X| X3 X3
0< x; <42 ,
0< x,< 42 (13)
0 < x3< 42 1
0<< x; +2x, = 2x;< 72,

&

| |

9, 94 hgn h,

x,’

Fig. 5.—Function ¢ used in the first attempt to insert limits

Finding the Greatest or Least Value of a Function

where x,, x, and x; are respectively the length, breadth
and depth, and u is to be as large as possible. The
inequalities have been completed in an obvious way.

One way to deal with the inequalities is to multiply u

(which is positive) by / functions, each of which has the
following properties:

(i) It is equal to O if its associated variable is outside
the limits, for example if x; << 0 or x; > 42.

(ii) It is equal to 1 when the variable is within the
permitted range, from which two narrow boun-
dary regions are excluded: for example when
0-0001 << x,/42 < 0-9999.

(iii) Within the narrow boundary regions it goes
parabolically from 1 to 0.

This is illustrated in Fig. 5. If the boundary regions.for
x; extend from g; to g, .; and from h, . ; to h;, the function

described is

b, =0, x; < g 1
.2
¢ — 1 — (Z/L{TT’:) 28 <X < g
b =1, g _‘I- < x; < hy ;* (14)
bt Gy s
b, =0, h; < x;. ,i

The product

u = ¢iby. .. pu (15)

will then be zero if any variable does not satisfy the
limits, and will equal u if all the variables are in their
permitted range and not in the boundary zone. Within
the boundary zone u’ goes from u to 0. The maximum
value of u’ will be a good approximation to the required
answer if the boundary zone is narrow enough.

To see how narrow the boundary zone should be, we
consider a function u of one variable x;. Near a maxi-
mum within the interior region g, | < x, < h; |,

u==u, — A(XI - xlm)z (16)

where u,, is the maximum value of u and x;,, is th_e
corresponding value of x. If the Mercury autqcode5 is
used, all quantities will be held in floating-point form
with an accuracy of about 8 decimal digits. If u,, and
X,,, are scaled to unit magnitude (which does not .af’fect
the problem), and if u is less than u,, by one unit in the
last decimal place, then

A(Xl - xlm)z ::: 10 8

Xy = Xy 10704 (17

Depending on the value of A, we can therefore find x,,,
with the following accuracy:

about two decimal places if 4 = 104
three A=10"2
four A=1
five A = 102, etc.

180

X5 4

. . .
he +1 by

Fig. 6.—Long narrow ridge produced by method of inserting
limits

In practice we may expect to get three decimal places or
more on most occasions, but sometimes only two
decimal places. The extension when there are several
variables, x|, x5, . . ., x,. is obvious.

If now the maximum is in the boundary zone, and if
this has a width of about 10 “x,,, there will be no
significant loss of accuracy in the final value of x, from
the use of the zone. The value of u will be in error by
an amount depending on its gradient at the boundary,
but we can expect to get an accuracy of three decimal
figures in # on many occasions. Since the values of
Xim» Xa, €tC., are not at first known, our criterion would
lead us to use a width of boundary zone equal to
10 #|h;| or 10 % g;|, whichever was the greater. In
many cases, however, it will be good enough to use
10~%(h; — g;) and this was done in the following work.

The problem already described was now attacked,
using

g i — & =h ;i —h; =10 %h; —g). (18)

A difficulty was immediately found, and it is illustrated
in Fig. 6. This shows the boundary region of a function
u(xy, x,) which has been treated in the above way.
There is a long, narrow, slowly rising ridge, and the
contours are drawn at intervals of one unit in the last
decimal place of u’. Between two contours the machine
finds successive values of u’ which are equal, and these
trials count as successes. The current point will wander
about within a contour, more or less at random. until it
chances to find a higher value of «’. Until this happens
there is nothing to show what direction should be pre-
ferred. Evidently, if the ridge rises slowly enough, the
probability of further progress will become very small.

Finding the Greatest or Least Value of a Function

|
|
i
|
|

-

7w

|
L S D

=h€+l h :

Fig. 7.—Modified procedure for inserting limits

This will always happen as the maximum of u’ is
approached, and progress may stop at a considerable
distance from the required point. In the problem
described, 600 trials (that is, 200 for each variable) gave

Xy =23-794, x, = 12:257, x, — 11-842,
u = 3.453-75431

and v had not increased after the 337th trial.

A number of methods were tried in an attempt to
remove this difficulty. For example, the width of the
boundary zone was made large at first and decreased
as the solution proceeded. This was unsuccessful,
apparently because the line to be followed moved side-
ways, making it difficult for the current point to advance.

A more promising method was to reduce u’ at the
boundary not to zero but to the highest value of u so
far found at a permitted point not in the boundary zone.
This is illustrated in Fig. 7. In practice the method
works less well than would be expected. as the current
point often enters the boundary zone at an early stage
and then remains inside it.

The method finally adopted was to force the current
point out of the boundary region of each x; after a certain
amount of progress had been made. When the current
point left the boundary region a parameter gy . ; or
hy; - ; was set to the highest value u, so far found for u.
Thus the following process was carried out for each X;
on every trial:

(i) Count the trial as “failed” if x, < g;orh; < x;.

(i) Leave u unchanged if g, , < X; << h; ; and put

g i = hy = uy.
(i) If g, < x;, < g, , replace u by

U=y i+ (u—gy)1 =3y + 452 — 2% (19)

10 -
ot E-(A+BY)(1-3Y + 4Y2-2Y?)
)8 -
A- 7581
c7
:‘_5 A 5.8 1
24 A-315 8
03 ~
A-25 B
V2 A5, 800
=}
A-0.B~I
N\
“ I 2 3 4 Y 5 A ’ 8 v o
Fig. 8.—The function E in the boundary zone
& i — X
where == . (20)
g0 — &i

(iv) If hy ; < x; < h;, replace u by
u = hy i+ U — hy)1 — 394 492 — 293%) (21)

_xi*h/ i
K F—

where

(22)
Within the boundary region we can write, approxi-

mately,
U—gy ;= A+ By (23)

or u—hy ;=A-+ By (24)

as the case may be, where 4 and B are constants. Then
for example,

E = (A4 4 By)(1 — 3y + 4y% — 297 (25)
has the following properties:

(i) When y = 0, £ = 4 + By, so that v’ = u.

(i) When y =1, E=0, and v’ = g,, ;. Since the
successive values of u, form a non-decreasing
sequence, and g,, ; is equal to a previous value
of uy, u’ is less than or equal to the highest value
of u so far found.

(i) If 4 = 0,

E = $A[1 — (1 — 2y)4] (26)

sothatat y = 4 E'= E”" = E”" = (.
(iv) For a given B, as A4 increases. the maximum of E

moves towards smaller values of y, as shown in
Fig. 8.

Suppose now that the current point is within the

Finding the Greatest or Least Value of a Function

Fig. 9.—Behaviour of current point on emerging from the
boundary zone

boundary region for x, at the point a in Fig. 9. It finds a
sloping ridge which, by equation (26), will have a flat top.
This makes it easy for progress to be made along the
ridge, and the vector &, will after a time be lined up with
the ridge. The current point will therefore issue from the
boundary region into the interior part, and two things
can then happen:

(1) If the ridge slopes upward steeply enough, as
shown by the full-line contours in Fig. 9, progress
will be possible in the direction of §,.

(11) If the ridge slopes only gradually, as shown by
the broken lines in Fig. 9, progress in the direction
of &, will not be possible in the interior of the
region. The value of g,, | or &y, . will, however,
have been re-set when the point leaves the boun-
dary region. It can therefore re-enter this region,
and will do so with a small value of A. The
process can thus continue.

It is not necessary for u to be positive, and the pro-
cedure described above can therefore be used for minima
simply by changing the sign of w. This is done internally
by the program described later.

This method was applied to the example, with

182

g .i— & = 0-0001(h; — g;)., etc., and the result after
600 trials was
x; = 23-9873, x, = 12-0026, x; = 12-0017,
u = 3,455-09.

When the same problem was solved with the starting
points 15, 10, 10 and 5, 10, 10 instead of 10, 10, 10, the
results were respectively,

X, = 24-0086, x, — 11-9990, x, — 11-9936,
u = 3,455-00,

X, — 239984, x, — 119996, x; — 11-9987
u = 3,455-05.

In this example only one limit, namely
Xy + 2x; + 2x3 < 72 is effective. As a second example
x; was limited to 20in. and x, to 11in. Here three
limits are effective, and the result after 600 trials was

xp = 19-9987, x, = 10-9989, x; ="14:9979,
u = 3,298-83.
The correct result is
x; =20, x,=11, x;=15 u= 3,300.

A solution was found for the problem given in the
Appendix using a late (but not the final) form of the
program. It is difficult to be quite certain that the result
found could not be improved, but from the engineering
point of view it was satisfactory. A total of 1,000 trials
was used.

4. Computer Program

The final program is available in Mercury autocode.
Chapters 1 and 2 contain the organization for seeking
the best result. A third chapter is added to define the
particular problem, and chapter 0 contains data.

Chapter 3 must contain instructions for calculating
u, from x;, x,, . . ., x,. It must also compute any of
the g, or h; which are not constant, and all of x, _,.
Xpi2 - - - X;. Chapter O contains starting values for
Xy, X3, ..., X,, and for g,, g5, . . ., g;and A, hy, . . ., Ay
The values of n and /, and the number of trials & for each
variable must be given. An index is set to 1 for a maxi-
mum and to —1 for a minimum, and the number of
decimal places in the print-out of x; and of « must be

specified.
After each stage results are printed in the form
dy u b, b,
X1
X2
X

n

Here d, is the number of trials, u, is the best value so far
found for u’, and x,, x,, . . ., x, are the corresponding x;.
The progress during the stage is b, :

b1:|A1‘

Finding the Greatest or Least Value of a Function

and b, is defined by
by = |4y =+ |4,]

where 4, and A, are given by equations (8). If progress
is steadily in one direction, b, will be small, and if b,
remains generally less than 0-3 it should be suspected
that the best value has not yet been reached, even though
b, may be small.

The time taken will be about T sec, where

T = kn(0-6 + 1)

and 7 is the time in seconds to compute chapter 3 once.

5. Conclusions

The program described in Section 4 will find the
greatest or least value of a function in an arbitrarily
restricted region, and it may be useful as it stands for
some practical applications. It is most unlikely that the
process given here cannot be improved, and in work
directed to this end the program may be useful as a
standard of comparison.

The work showed forcibly the virtues of autocode.
Well over fifty different programs were run in the course
of development, and this would have been impracticable
in any other way.

6. Acknowledgement

Acknowledgement is made to the Directors of Con-
structors John Brown Ltd. for permission to publish
this paper.

7. Appendix—Example

Given x,, E, H., H,, P, S., S;, K., B. and B, find
the least value of u(R, eg, e,, G, L,), where

K

" (Np -+ Ne + Ny

0-0216Y -
EPx; 0-051G
u— A * gy, (O
and X, — (I — R)x, (31
x, = Ex, (32)
L - R(ﬁ:ﬁ Y/) (33)
Xp— X,
Ye ‘%’Y (34)
LA+ Sy
"E T GA - Hy) (33)
Yo = Yr + mg(x; — x,) (36)
Y,
n:%ﬂ (37)

Ly— (L, — PX1 — H,S) -+ G(H, — H,) (38)

Ly= Ly + GH,— H,) (39)
P. L
X = %f‘x" (40)
0
Yl + H) x(H,— H)
Yo ~H, 1+H, (@D
o X('(l + Sh) Y('(Sc - Sh)

A AR) (42
br = Yr — mgm, 43)
(l 7 IBh’”R)xw - Blle:l l
Ng — |log . DHCRZw 7 PAOR e —T
K |:0g (1 — Bumg)x, — Bybr|log Bumg)

Y S
Y=y Sc[] K — x(K. — 1)] @5)
Gy =G+ Li(S. — S (46)
X, — Gl(l + Hc)Xé
L+ S)B.
LIX('(l —‘ Sh) - GY((I + Ht)
o Larsy W
L1+ S.
m,. = Gﬁlr((l iih' : (48)
1 14
GY[(1 + H) — Lix(1 +S),)
b. —= i L ‘ 49
; G,(1 + H,) (49)
o (B("W(' 7])xll + B('bc 1
Ne= ["’g (Bam — 1)x + BbJiog Bom. Y
o Ly = H,S) + G X (Hy — Ho) — Px,(1 — H)S.)
! L —HS)+G(H,— H.)— P(1 — H,S,)
(51
Xl,Bh(l + SL)
X, — ———— (52
Bl = SO — H,yS) + (S, — St + Hy 7
(S(' - Sh)(Ll - P) + GHIIS('
G, — G+ o 53)
2 L H,S, ‘
L1 + Sy
— . 4
ny, GO H,) (34
by, = Yo — myx, (55)
_ (r— /8h”7h)xh - Bhbh - J
N [log (i - Bé’”h)/\/r - Bhbh log ,811”7/: (36)
Subject to
0<R<1 (57)
0 <ep <1 (58)
0<e, <1 (59)
0 < G <500 (60)

Finding the Greatest or Least Value of a Function

(1 S)xys — X,] 0 < X, <B.Y, 62
G*g’(+)(Y, P e < B (62)
(1 Hy) (E[=0 | -
; ¢ ’) Beewer(l - Hy)X(1 — R)
| S))(x, — x,)(1 — H,S, 1 R S T e O
) Ctoutn . HiS) L {RBz(l SO = HY+ R, BT+ S(Hy— H)
1+ H) (S —Yy)— (H,— H) - S)X,—x;,) !
[D (5 o)~ (Hy,— HX1 4 S)(X,) et R
(61) /BIIR(I + Sh) }
8. References
1. BooTH, A. D. (1957). Numerical Methods, Butterworths, pp. 95-100, 154-160.
2. Davigs, O. L. (Editor) (1956). The Design and Analysis of Industrial Experiments, Oliver & Boyd, pp. 495-578.
3. BooTH, A. D. (1949). ““An Application of the Method of Steepest Descents to the solution of Systems of Non-linear Simul-

taneous Equations,” Quart. Journ. Mech. and Applied Math., Vol. 11, Part 4, pp. 460-8.
. Box, G. E. P., and CouTig, G. A. (1956). **Application of Digital Computers in the Exploration of Functional Relationships,”
Proc. I.LE.E., Vol. 103, Part B, pp. 100-7.
5. BROOKER, R. A. (1958). *The Autocode Programs developed for the Manchester University Computers,” Computer Journal,
Vol. 1, pp. 15-21. *Further Autocode Facilities for the Manchester (Mercury) Computer,” ibid., pp. 124-7.

»

Correspondence (continued from p. 174) where S is the number of storage locations available. It is
If the data is not random, but contains long strings of possible to arrange to refer to the keywords im_iirectly through
consecutive items, the merge-sorting time is reduced some- an index of addresses. As the addresses will occupy only
what, whereas with the tree-sorting method it is substantially a fraction of a word (a third on Pegasus) it is quite easy
increased. In the worst case, if all the data is in order, a to keep the effective number S large compared with N.
merge-sort discovers this fact in one pass, whereas a tree If, for example, the keywords are referred to by three 13 bit
sort takes O(N?2) steps [instead of O(N log N) steps] to deal tags in a 39 bit Pegasus word, and if there is one tag word for
with the data. This has turned out to be a serious problem each keyword, then at worst N cannot exceed jS. The
in practice. There are two ways round the difficulty. One {'esult is that at worst about 24 accesses per item are involved,
is to modify the tree process to prevent the growth of exces- including access to the index.
sively long branches going continuously to the right or left. If the data consists of one item per keyword, then the
Lane of 1.C.1. has done this successfully in a statistical pro- normal tree-sorting time computed by Windley must be
gram. The other way is to use a random-access procedure added to this involving
for storing the data, and then to sort the randomly-stored 1-4(N - 1)log, N = (I +)N accesses.
data before output. If, however, as is frequently the case, one wants to accu-
With the random access method, the sorting can be avoided mulate totals against keywords (e.g. costs against cost col-
altogether if an index of all possible keywords already exists. lection numbers), then there is a substantial economy as the
The procedure is as follows. During input, a pseudo-random result of random accessing the data and only tree-sorting the
function of the keyword is used to determine an address in a totals. If 7 is the number of totals into which the N items
strip of locations from which to start searching for a vacant fall, the number of accesses will be
place in which to put the next keyword. The keyword is put 25N+ 14T~ Dlogy, T+ (1 + T
in the first available location from this point onwards, treating as compared with 1:4(N = l)loga N =~ (1 + y)N)
the strip as joined end to end. During output, the successive for the number of accesses if the raw (consumed) data is
possible keywords are read in from the index and the corre- tree-sorted on input. If an index is available, the number of
sponding starting address on the drum is generated by the accesses becomes
pseudo-random function. The strip is searched from this 2:5(N —T) .
point onwards, until either the required keyword is found, In practice, in either case, the random access time arising
or until a vacant location is found. In the first case the from N will usually dominate the analysis.
required data is output, in the second case the next keyword C. M. BERNERS LEE
from the index is input. Author’s reply

If, however, no index is available, the tree-sorting method
may be used to sort the data stored by the random access
procedure. As this procedure will have broken up any long
strips in the data, the tree-sorting method will be efficient.

The time taken by the random access procedure depends
on the emptiness of the storage strip. If N items with
different keywords are accessed, the mean number of store
accesses for each keyword may be shown to be about:

If the keys are very long (several complete words, say)
then a merging method cannot use block transfers. If a
key and an address can be packed into one word, then 1
agree that merging is the process to be used on a machine
with a magnetic drum main store with block transfer facilities
to a high-speed store. It is, of course, well known that the
tree method is slow if the data already contain long strings
of ordered keys before sorting commences, and it should not
~(5) be used in these cases.

(S — N) P. F. WINDLEY

184

Slo
N 125

