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September 1999 by R. Cousins (UCLA), October 2001 and October
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31.1.

An abstract definition of probability can be given by considering
a set S, called the sample space, and possible subsets A, B, ..., the
interpretation of which is left open. The probability P is a real-valued
function defined by the following axioms due to Kolmogorov [9]:

General [1-8]

1. For every subset A in S, P(A4) > 0.
2. For disjoint subsets (i.e., AN B =0), P(AU B) = P(A) + P(B).
3. P(S)=1.

In addition one defines the conditional probability P(A|B) (read P of
A given B) as

P(ANB)

PUAIB) = =5

(31.1)
From this definition and using the fact that AN B and BN A are the
same, one obtains Bayes’ theorem,

P(B|A)P(A)

PAIB) = =5

(31.2)

From the three axioms of probability and the definition of conditional
probability, one obtains the law of total probability,

P(B) =) P(B|4;)P(4) (31.3)

for any subset B and for disjoint A; with U;A; = S. This can be
combined with Bayes’ theorem Eq. (31.2) to give

P(B|A)P(A)
Yi(BlA)P(Ay)’

where the subset A could, for example, be one of the A;.

P(A|B) = (31.4)

The most commonly used interpretation of the subsets of the sample
space are outcomes of a repeatable experiment. The probability P(A)
is assigned a value equal to the limiting frequency of occurrence of A.
This interpretation forms the basis of frequentist statistics.

The subsets of the sample space can also be interpreted as
hypotheses, i.e., statements that are either true or false, such as
‘The mass of the W boson lies between 80.3 and 80.5 GeV’. In the
frequency interpretation, such statements are either always or never
true, i.e., the corresponding probabilities would be 0 or 1. Using
subjective probability, however, P(A) is interpreted as the degree of
belief that the hypothesis A is true.

Subjective probability is used in Bayesian (as opposed to
frequentist) statistics. Bayes’ theorem can be written

P(theory|data) o P(dataltheory)P(theory) , (31.5)

where ‘theory’ represents some hypothesis and ‘data’ is the outcome of
the experiment. Here P(theory) is the prior probability for the theory,
which reflects the experimenter’s degree of belief before carrying out
the measurement, and P(dataltheory) is the probability to have gotten
the data actually obtained, given the theory, which is also called the
likelihood.

Bayesian statistics provides no fundamental rule for obtaining the
prior probability; this is necessarily subjective and may depend on
previous measurements, theoretical prejudices, etc. Once this has
been specified, however, Eq. (31.5) tells how the probability for the
theory must be modified in the light of the new data to give the
posterior probability, P(theory|data). As Eq. (31.5) is stated as a
proportionality, the probability must be normalized by summing (or
integrating) over all possible hypotheses.

31.2. Random variables

A random wvariable is a numerical characteristic assigned to an
element of the sample space. In the frequency interpretation of
probability, it corresponds to an outcome of a repeatable experiment.
Let & be a possible outcome of an observation. If z can take on any
value from a continuous range, we write f(x;6)dz as the probability
that the measurement’s outcome lies between z and z + dz. The
function f(xz;0) is called the probability density function (p.d.f.), which
may depend on one or more parameters f. If x can take on only
discrete values (e.g., the non-negative integers), then f(z;6) is itself a
probability.

The p.d.f. is always normalized to unit area (unit sum, if discrete).
Both x and € may have multiple components and are then often
written as vectors. If # is unknown, we may wish to estimate its
value from a given set of measurements of z; this is a central topic of
statistics (see Sec. 32).

The cumulative distribution function F(a) is the probability that
z < a:

a
Fa) = [ fa)ds. (316)
—00
Here and below, if = is discrete-valued, the integral is replaced by a
sum. The endpoint a is expressly included in the integral or sum. Then
0 < F(z) <1, F(z) is nondecreasing, and P(a < z < b) = F(b) — F(a).
If z is discrete, F(z) is flat except at allowed values of z, where it has
discontinuous jumps equal to f(z).

Any function of random variables is itself a random variable, with
(in general) a different p.d.f. The ezpectation value of any function
u(z) is

Flu(2)] = /OO (@) f(@) dz , (31.7)

—00

assuming the integral is finite. For u(z) and v(z) any two functions of
z, Elu+v] = E[u]+ E[v]. For c and k constants, E[cu+k] = cE[u]+ k.

The n'" moment of a random variable is

ap = E[2"] = /OO 2" f(z)dx , (31.8a)

—o0
and the n'” central moment of 2 (or moment about the mean, ay) is

oo

mp = E[(v —a1)"] = / (z —a1)"f(z)dx . (31.8b)

—0o0

The most commonly used moments are the mean p and variance
2
o°:

L=, (31.9a)
o2 =Vzl=my=ay—p?. (31.90)

The mean is the location of the “center of mass” of the p.d.f., and
the variance is a measure of the square of its width. Note that
Viex+k] = 2V[z]. Tt is often convenient to use the standard deviation
of z, o, defined as the square root of the variance.

Any odd moment about the mean is a measure of the skewness
of the p.d.f. The simplest of these is the dimensionless coefficient of
skewness 1 = m3 /0.

The fourth central moment my4 provides a convenient measure of
the tails of a distribution. For the Gaussian distribution (see Sec. 31.4)
one has my = 30*. The kurtosis is defined as o = m4/t74 -3, ie.,
it is zero for a Gaussian, positive for a leptokurtic distribution with
longer tails, and negative for a platykurtic distribution with tails that
die off more quickly than those of a Gaussian.
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Besides the mean, another useful indicator of the “middle”
of the probability distribution is the median, xyeq, defined by
F(2meq) = 1/2, i.e., half the probability lies above and half lies below
ZTmed- (More rigorously, yeq is a median if P(x > ®peq) > 1/2 and
P(z < xmeq) > 1/2. If only one value exists it is called ‘the median’.)

Let « and y be two random variables with a joint p.d.f. f(z,y).
The marginal p.d.f. of z (the distribution of z with y unobserved) is

oo
f@) = [~ sy, (31.10)
—00
and similarly for the marginal p.d.f. fa(y). The conditional p.d.f. of y
given fixed « (with fi(z) # 0) is defined by f3(y|z) = f(z,y)/f1(z)
and similarly f4(z|y) = f(z,y)/f2(y). From these we immediately
obtain Bayes’ theorem (see Egs. (31.2) and (31.4)),

_ B AE) Sl fi@)
MW= "5 T ThuoaEw - O
The mean of z is
o= [ [ atwpasay= [ spwar, Gl
and similarly for y. The covariance of x and y is
coviz, y] = El(x — pa)(y — py)] = Elzy] — papy - (31.13)

A dimensionless measure of the covariance of z and y is given by the
correlation coefficient,

Pay = cov[z,yl/ozoy , (31.14)

where o5 and oy are the standard deviations of x and y. It can be
shown that —1 < pgy < 1.
Two random variables z and y are independent if and only if

f(zy) = fi(@)fa(y) -

If 2 and y are independent then p;, = 0; the converse is not necessarily
true. If  and y are independent, E[u(z)v(y)] = E[u(z)]E[v(y)], and
Viz +y] = Viz] + V]y]; otherwise, V{z +y] = V]z] + V]y] + 2cov[z, y]
and E[uv] does not necessarily factorize.

(31.15)

Consider a set of n continuous random variables z = (z1,...,zy)
with joint p.d.f. f(z) and a set of n new variables y = (y1,...,yn);
related to @ by means of a function y(x) that is one-to-one, i.e., the
inverse x(y) exists. The joint p.d.f. for y is given by

9(y) = fx@)II]

where |J| is the absolute value of the determinant of the square matrix
Jij = 0x;/0y; (the Jacobian determinant). If the transformation from
T to y is not one-to-one, the x-space must be broken in to regions
where the function y(z) can be inverted and the contributions to g(y)
from each region summed.

(31.16)

Given a set of functions y = (y1,...,¥m) with m < n, one can
construct n —m additional independent functions, apply the procedure
above, then integrate the resulting g(y) over the unwanted y; to find
the marginal distribution of those of interest.

To change variables for discrete random variables simply substitute;
no Jacobian is necessary because now f is a probability rather than a
probability density. If f depends on a set of parameters 6, a change
to a different parameter set 77(@) is made by simple substitution; no
Jacobian is used.

31.3. Characteristic functions

The characteristic function @¢(u) associated with the p.d.f. f(z) is
essentially its Fourier transform, or the expectation value of e***:

o0
o(u) = E [e“””] = / T f(z) da . (31.17)
—00
Once ¢(u) is specified, the p.d.f. f(z) is uniquely determined and vice
versa; knowing one is equivalent to the other. Characteristic functions
are useful in deriving a number of important results about moments
and sums of random variables.

It follows from Eqs. (31.8a) and (31.17) that the n'” moment of a
random variable z that follows f(z) is given by

o 0

oL (31.18)

= /OO " f(z)dz = an, .
u=0 —00

Thus it is often easy to calculate all the moments of a distribution
defined by ¢(u), even when f(z) cannot be written down explicitly.

If the p.d.fis fi(z) and fa(y) for independent random variables
z and y have characteristic functions ¢1(u) and ¢o(u), then the
characteristic function of the weighted sum az + by is ¢1(au)p2(bu).
The addition rules for several important distributions (e.g., that the
sum of two Gaussian distributed variables also follows a Gaussian
distribution) easily follow from this observation.

Let the (partial) characteristic function corresponding to the
conditional p.d.f. fo(z|z) be ¢2(u|z), and the p.d.f. of z be f1(z). The
characteristic function after integration over the conditional value is

b(u) = /¢2(u|z)f1(z) dz . (31.19)
Suppose we can write ¢9 in the form
$a(ulz) = A(u)ed(W)? (31.20)
Then
d(u) = A(u)d1(g(u)) - (31.21)
The semi-invariants ,, are defined by
K
é(u) = exp |:Z ﬁ(zu)"] = exp (imu — Lrgu® + .. ) . (31.22)
n=1 "

The values k,, are related to the moments o, and m,,. The first few
relations are

k1 = a1 (= p, the mean)
Ko =my =ag —af (=02, the variance)

K3 =m3 = a3 — 3ayay + 2a7 . (31.23)
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Table 31.1. Some common probability density functions, with corresponding characteristic functions and
means and variances. In the Table, I'(k) is the gamma function, equal to (k — 1)! when £ is an integer.

Probability density function

Characteristic )

Distribution f (variable; parameters) function ¢(u) Mean Variance o
1/(b—a a<z<b ibu _ iau N2
Uniform f(z;a,b) = / ) - " ath =97
0 otherwise (b—a)iu 2 12
Binomial f(r;N,p) = M PV (g + pe)N Np Npq
B ri(N —r)!
r=0,12...,N; 0<p<1l; qg=1-p
VeV ;
Poisson flnyv) = — n= 0,1,2,...; v>0 exp[v(e™ — 1)] v v
n!
1
Normal fz;p,0%) = T exp(—(x — p)2/202) exp(ipu — %UZUQ) 1 o?
(Gaussian) gV
—o<r<oo; —oco<pu<oo; o>0
Multivariate fla;p, V) = % exp [ip-u— %uTVu] m Vik
Gaussian @m)n2\/|V]
xexp [ g(x — )TV @ — )]
—0o<zj<oo; —oo<puj<oo; detV >0
2-1,-2/2
2 _ 22 le -\ /2
Zin) = —m——— 1— 2iu n 2n
X f(zm) P (n)2) > ( )
— 1)/2
, 1 Tn+1)/7 2\ "t 0 n/(n—2)
Student’s ¢ f(t;n) = T T2 1+ w for n > 2 forn>3
—00<t<o0; n not required to be integer
k=1 \ke—Az
Gamma flz; A k) = 0<z<oo; (1 —du/\)~k k/A k/\?

O
k not required to be integer

31.4. Some probability distributions

Table 31.1 gives a number of common probability density functions
and corresponding characteristic functions, means, and variances.
Further information may be found in Refs. [1- 8] and [10]; Ref. [10] has
particularly detailed tables. Monte Carlo techniques for generating
each of them may be found in our Sec. 33.4. We comment below on
all except the trivial uniform distribution.

31.4.1.

A random process with exactly two possible outcomes which occur
with fixed probabilities is called a Bernoulli process. If the probability
of obtaining a certain outcome (a “success”) in each trail is p, then
the probability of obtaining exactly r successes (r =0,1,2,...,N) in
N independent trials, without regard to the order of the successes and
failures, is given by the binomial distribution f(r; N,p) in Table 31.1.
If r and s are binomially distributed with parameters (N;,p) and
(Ns,p), then t = r + s follows a binomial distribution with parameters
(Nr + Ns,p).

Binomizal distribution :

31.4.2. Poisson distribution :

The Poisson distribution f(n;v) gives the probability of finding
exactly n events in a given interval of z (e.g., space and time) when
the events occur independently of one another and of = at an average
rate of v per the given interval. The variance o2 equals v. It is the
limiting case p — 0, N — oo, Np = v of the binomial distribution.
The Poisson distribution approaches the Gaussian distribution for
large v.

31.4.3. Normal or Gaussian distribution :

The normal (or Gaussian) probability density function f(z;u,02)
given in Table 31.1 has mean E[z] = p and variance V[z] = o2.
Comparison of the characteristic function ¢(u) given in Table 31.1
with Eq. (31.22) shows that all semi-invariants x, beyond ko vanish;
this is a unique property of the Gaussian distribution. Some other

properties are:
P(z in range pu + o) = 0.6827,
P(z in range p + 0.67450) = 0.5,
El|lz — p|] = /2/m0 = 0.79790,
half-width at half maximum = v21n 20 = 1.1770.

For a Gaussian with u = 0 and ¢? = 1 (the standard Gaussian),
the cumulative distribution, Eq. (31.6), is related to the error function
erf(y) by

F(a;0,1) =1 [1 +erf(x/\/§)] . (31.24)
The error function and standard Gaussian are tabulated in many
references (e.g., Ref. [10]) and are available in libraries of computer
routines such as CERNLIB. For a mean p and variance o2, replace
by (x — p)/o. The probability of z in a given range can be calculated
with Eq. (32.43).

For z and y independent and normally distributed, z = ax + by
follows f(2; ajig + bpy,a?o2 + bZU;f); that is, the weighted means and
variances add.

The Gaussian derives its importance in large part from the
central limit theorem: If independent random variables z1,...,z, are
distributed according to any p.d.f.s with finite means and variances,
then the sum y = Y}'; z; will have a p.d.f. that approaches a
Gaussian for large n. The mean and variance are given by the sums
of corresponding terms from the individual ;. Therefore the sum of a
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large number of fluctuations z; will be distributed as a Gaussian, even
if the x; themselves are not.
(Note that the product of a large number of random variables is not

Gaussian, but its logarithm is. The p.d.f. of the product is log-normal.
See Ref. [8] for details.)

For a set of n Gaussian random variables & with means g and
corresponding Fourier variables u, the characteristic function for a
one-dimensional Gaussian is generalized to

¢(u;p, V) =exp [iu cu— %uTVu] . (31.25)
From Eq. (31.18), the covariance of z; and z; is
E [(z; — pi)(zj — py)] = Vij - (31.26)

If the components of x are independent, then V;; = 51-]'01-2, and
Eq. (31.25) is the product of the c.f.s of n Gaussians.

The covariance matrix V' can be related to the correlation matrix
defined by Eq. (31.14) (a sort of normalized covariance matrix) as
pij = Vij/oioj. Note that by construction ps; = 1, since V;; = aiz.

The characteristic function may be inverted to find the correspond-
ing p.d.f.,

flap, V) = i@ -wTV i@ -w] G127)

1
PoREV R

where the determinant |V'| must be greater than 0. For diagonal V'
(independent variables), f(x;u,V) is the product of the p.d.f.s of n
Gaussian distributions.

For n =2, f(x;pu,V) is

1
f(z1,29; p1,p2,01,02,p) = ———F——
( ) H ) ) b b) ) 27{_0-10-2 1_p2

-1 (w1 — )% 2p(w1 — py) (w2 — pa)
) eXp{?(lw?) { 2

o1 0102

4 72#2)2]} .

73

(31.28)

The marginal distribution of any z; is a Gaussian with mean p; and
variance Vj;. V' is n X n, symmetric, and positive definite. Therefore
for any vector X, the quadratic form XTV~1X = C, where C is
any positive number, traces an n-dimensional ellipsoid as X varies. If
X; = x; — pij, then C is a random variable obeying the x? distribution
with n degrees of freedom, discussed in the following section. The
probability that X corresponding to a set of Gaussian random
variables x; lies outside the ellipsoid characterized by a given value of
C (= x?) is given by 1 — sz(C;n), where F» is the cumulative X2
distribution. This may be read from Fig. 32.1. For example, the “s-
standard-deviation ellipsoid” occurs at C' = s2. For the two-variable
case (n = 2), the point X lies outside the one-standard-deviation
ellipsoid with 61% probability. The use of these ellipsoids as indicators
of probable error is described in Sec. 32.3.2.3; the validity of those
indicators assumes that g and V' are correct.

31.4.4. x?2 distribution :

If z1,...,z, are independent Gaussian random variables, the
sum z = S0 (z; — ;)% /o follows the x? p.d.f. with n degrees of
freedom, which we denote by x2 (n). Under a linear transformation to
n correlated Gaussian variables 2, the value of z is invariant; then
z=X"TV—1X" as in the previous section. For a set of z;, each of
which follows x2(n;), 3 2; follows x2(3_ n;). For large n, the x2 p.d.f.
approaches a Gaussian with mean p = n and variance o2 = 2n.

The x2 p.d.f. is often used in evaluating the level of compatibility
between observed data and a hypothesis for the p.d.f. that the data
might follow. This is discussed further in Sec. 32.2.2 on tests of
goodness-of-fit.

31.4.5. Student’s t distribution :

Suppose that z and z1,...,z, are independent and Gaussian
distributed with mean 0 and variance 1. We then define

n

Z:Zx? and t= ——

= Vz/n ’

The variable z thus follows a x2(n) distribution. Then ¢ is distributed
according to Student’s t distribution with n degrees of freedom,
f(t;n), given in Table 31.1.

The Student’s ¢ distribution resembles a Gaussian with wide tails.
As n — oo, the distribution approaches a Gaussian. If n = 1, it is
a Cauchy or Breit—-Wigner distribution. The mean is finite only for
n > 1 and the variance is finite only for n > 2, so the central limit
theorem is not applicable to sums of random variables following the ¢
distribution for n =1 or 2.

(31.29)

As an example, consider the sample mean T = > z;/n and the
sample variance s> = Y (z; — T)2/(n — 1) for normally distributed
x; with unknown mean g and variance 2. The sample mean
has a Gaussian distribution with a variance 0%/n, so the variable
(T — u)/+/0?/n is normal with mean 0 and variance 1. Similarly,

(n — 1)s?/0? is independent of this and follows x%(n — 1). The ratio

N VN
V(n—1)s2/c2(n—-1) +/s2/n
is distributed as f(¢t;n — 1). The unknown variance o cancels, and

t can be used to test the probability that the true mean is some
particular value p.

(31.30)

2

In Table 31.1, n in f(¢;n) is not required to be an integer. A
Student’s ¢ distribution with non-integral n > 0 is useful in certain
applications.

31.4.6.

For a process that generates events as a function of z (e.g.,
space or time) according to a Poisson distribution, the distance in
z from an arbitrary starting point (which may be some particular
event) to the k' event follows a gamma distribution, f(z; A, k). The
Poisson parameter p is A per unit z. The special case k = 1 (i.e.,
flz; A1) = /\e*)‘z) is called the ezponential distribution. A sum of &’
exponential random variables x; is distributed as (3 z;; A, k).

Gamma distribution :

The parameter k is not required to be an integer. For A = 1/2 and
k = n/2, the gamma distribution reduces to the x2(n) distribution.
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32. STATISTICS

Revised April 1998 by F. James (CERN); February 2000 by R. Cousins
(UCLA); October 2001, October 2003, and August 2005 by G. Cowan
(RHUL).

This chapter gives an overview of statistical methods used in High
Energy Physics. In statistics we are interested in using a given sample
of data to make inferences about a probabilistic model, e.g., to assess
the model’s validity or to determine the values of its parameters.
There are two main approaches to statistical inference, which we may
call frequentist and Bayesian. In frequentist statistics, probability is
interpreted as the frequency of the outcome of a repeatable experiment.
The most important tools in this framework are parameter estimation,
covered in Section 32.1, and statistical tests, discussed in Section 32.2.
Frequentist confidence intervals, which are constructed so as to cover
the true value of a parameter with a specified probability, are treated
in Section 32.3.2. Note that in frequentist statistics one does not
define a probability for a hypothesis or for a parameter.

Frequentist statistics provides the usual tools for reporting
objectively the outcome of an experiment without needing to
incorporate prior beliefs concerning the parameter being measured or
the theory being tested. As such they are used for reporting essentially
all measurements and their statistical uncertainties in High Energy
Physics.

In Bayesian statistics, the interpretation of probability is more
general and includes degree of belief. One can then speak of a
probability density function (p.d.f.) for a parameter, which expresses
one’s state of knowledge about where its true value lies. Bayesian
methods allow for a natural way to input additional information such
as physical boundaries and subjective information; in fact they require
as input the prior p.d.f. for the parameters, i.e., the degree of belief
about the parameters’ values before carrying out the measurement.
Using Bayes’ theorem Eq. (31.4), the prior degree of belief is updated
by the data from the experiment. Bayesian methods for interval
estimation are discussed in Sections 32.3.1 and 32.3.2.5

Bayesian techniques are often used to treat systematic uncertainties,
where the author’s subjective beliefs about, say, the accuracy of the
measuring device may enter. Bayesian statistics also provides a
useful framework for discussing the validity of different theoretical
interpretations of the data. This aspect of a measurement, however,
will usually be treated separately from the reporting of the result.

For many inference problems, the frequentist and Bayesian
approaches give the same numerical answers, even though they are
based on fundamentally different interpretations of probability. For
small data samples, however, and for measurements of a parameter
near a physical boundary, the different approaches may yield different
results, so we are forced to make a choice. For a discussion of Bayesian
vs. non-Bayesian methods, see References written by a statistician[1],
by a physicist[2], or the more detailed comparison in Ref. [3].

Following common usage in physics, the word “error” is often
used in this chapter to mean “uncertainty”. More specifically it can
indicate the size of an interval as in “the standard error” or “error
propagation”, where the term refers to the standard deviation of an
estimator.

32.1. Parameter estimation

Here we review point estimation of parameters. An estimator 0
(written with a hat) is a function of the data whose value, the estimate,
is intended as a meaningful guess for the value of the parameter 6.

There is no fundamental rule dictating how an estimator must be
constructed. One tries therefore to choose that estimator which has
the best properties. The most important of these are (a) consistency,
(b) bias, (c) efficiency, and (d) robustness.

(a) An estimator is said to be consistent if the estimate @converges to
the true value ¢ as the amount of data increases. This property is so
important that it is possessed by all commonly used estimators.

(b) The bias, b= E[g] — 6, is the difference between the expectation
value of the estimator and the true value of the parameter.
The expectation value is taken over a hypothetical set of similar
experiments in which 6 is constructed in the same way. When b = 0

the estimator is said to be unbiased. The bias depends on the chosen
metric, i.e., if g is an unbiased estimator of 0, then 6 92 is not in general
an unblased estimator for 62. If we have an estimate b for the bias

we can subtract it from g to obtain a new ' = § — b. The estimate

b may, however, be subject to statistical or systematic uncertainties

that are larger than the bias itself, so that the new estimator may not
be better than the original.

(c) Efficiency is the inverse of the ratio of the variance V[a] to
its minimum possible value. Under rather general conditions, the
minimum variance is given by the Rao-Cramér-Frechet bound,

ﬁm=@+@>ﬂm (32.1)

where

I10)=E (32.2)

2
(%}:mﬂmﬂo

is the Fisher information. The sum is over all data, assumed
independent and distributed according to the p.d.f. f(z;6), b is the
bias, if any, and the allowed range of  must not depend on 6.

The mean-squared error,
= Vi) + 07,

MSE = E[(6 — 6)?] (32.3)

is a convenient quantity which combines the uncertainties in an
estimate due to bias and variance.

(d) Robustness is the property of being insensitive to departures from
assumptions in the p.d.f. owing to factors such as noise.

For some common estimators the properties above are known
exactly. More generally, it is possible to evaluate them by Monte
Carlo simulation. Note that they will often depend on the unknown 6.

32.1.1.

Suppose we have a set of N independent measurements z; assumed
to be unbiased measurements of the same unknown quantity p with a
common, but unknown, variance 62, Then

Estimators for mean, variance and median :

L
= Z T (32.4)
i=1
2 _ ~\2
=5 Zl(xz - r) (32.5)
=

are unbiased estimators of y and 62. The variance of fi is 62 /N and

the variance of o2 is

) 1 N -3
a2 = _ 4
‘["]_N(W N—IU>’
where my is the 4th central moment of z. For Gaussian distributed z;
this becomes 204 /(N —1) for any N > 2, and for large N the standard

deviation of & (the “error of the error”) is o/v2N. Again if the z;
are Gaussian, fi is an efficient estimator for p and the estimators f

(32.6)

and o2 are uncorrelated. Otherwise the arithmetic mean (32.4) is not
necessarily the most efficient estimator; this is discussed in more detail
in [4] Sec. 8.7

If 02 is known, it does not improve the estimate [i, as can be
seen from Eq. (32.4); however, if p is known, substitute it for 7 in
Eq. (32.5) and replace N —1 by N to obtain a somewhat better
estimator of o2. If the z; have different, known variances 0’ , then the
weighted average

(32.7)

= %Zwm

i=1
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is an unbiased estimator for p with a smaller variance than an
unweighted average; here w; = 1/0? and w = 3, w;. The standard
deviation of fi is 1/v/w.

As an estimator for the median x,.q one can use the value ZTyeq
such that half the z; are below and half above (the sample median).
If the sample median lies between two observed values, it is set by
convention halfway between them. If the p.d.f. of x has the form
f(z — p) and p is both mean and median, then for large N the
variance of the sample median approaches 1/[4N f2(0)], provided
f(0) > 0. Although estimating the median can often be more difficult
computationally than the mean, the resulting estimator is generally
more robust, as it is insensitive to the exact shape of the tails of a
distribution.

32.1.2.

“From a theoretical point of view, the most important general
method of estimation so far known is the method of maximum
likelihood” [5]. We suppose that a set of N independently measured
quantities x; came from a p.d.f. f(z;0), where 8 = (61,...,0y) is set
of n parameters whose values are unknown. The method of maximum
likelihood takes the estimators @ to be those values of € that maximize
the likelihood function,

The method of maximum likelihood :

]\’r'
L(O) =[] f(xi;6) . (32.8)
=1

The likelihood function is the joint p.d.f. for the data, evaluated with
the data obtained in the experiment and regarded as a function of the
parameters. Note that the likelihood function is not a p.d.f. for the
parameters @; in frequentist statistics this is not defined. In Bayesian
statistics one can obtain from the likelihood the posterior p.d.f. for 6,
but this requires multiplying by a prior p.d.f. (see Sec. 32.3.1).

It is usually easier to work with In L, and since both are maximized
for the same parameter values €, the maximum likelihood (ML)
estimators can be found by solving the likelihood equations,

OlnL .
a0, =0, i=1,...,n.

(32.9)

Maximum likelihood estimators are important because they are
approximately unbiased and efficient for large data samples, under
quite general conditions, and the method has a wide range of
applicability.

In evaluating the likelihood function, it is important that any
normalization factors in the p.d.f. that involve 8 be included. However,
we will only be interested in the maximum of L and in ratios of L
at different values of the parameters; hence any multiplicative factors
that do not involve the parameters that we want to estimate may be
dropped, including factors that depend on the data but not on 6.

Under a one-to-one change of parameters from 6 to n, the
ML estimators 6 transform to 1(€). That is, the ML solution is
invariant under change of parameter. However, other properties of
ML estimators, in particular the bias, are not invariant under change
of parameter.

The inverse V! of the covariance matrix Vij = cov[@', g]} for a set
of ML estimators can be estimated by using

0%InL

- . 2.1
00;00; |; (32.10)

(Vi =

For finite samples, however, Eq. (32.10) can result in an underestimate
of the variances. In the large sample limit (or in a linear model with
Gaussian errors), L has a Gaussian form and In L is (hyper)parabolic.
In this case it can be seen that a numerically equivalent way of
determining s-standard-deviation errors is from the contour given by
the ' such that

InL(#") = In Lipax — 52/2 , (32.11)
where In Limax is the value of In L at the solution point (compare with
Eq. (32.46)). The extreme limits of this contour on the 6; axis give

an approximate s-standard-deviation confidence interval for 6; (see
Section 32.3.2.3).

In the case where the size n of the data sample 21, ...,z is small,
the unbinned maximum likelihood method, i.e., use of equation (32.8),
is preferred since binning can only result in a loss of information and
hence larger statistical errors for the parameter estimates. The sample
size n can be regarded as fixed or the user can choose to treat it as
a Poisson-distributed variable; this latter option is sometimes called
“extended maximum likelihood” (see, e.g., [6, 7, 8]). If the sample
is large it can be convenient to bin the values in a histogram, so
that one obtains a vector of data n = (ny,...,ny) with expectation
values v = E[n] and probabilities f(n;v). Then one may maximize
the likelihood function based on the contents of the bins (so i
labels bins). This is equivalent to maximizing the likelihood ratio
A(0) = f(n;v(0))/f(n;n), or to minimizing the quantity [9]

N
—2luA(0) =2Y [u,-(e) — i+ niln— (32.12)
i=1

vi(0) ’

where in bins where n; = 0, the last term in (32.12) is zero. In the
limit of zero bin width, maximizing (32.12) is equivalent to maximizing
the unbinned likelihood function (32.8).

A benefit of binning is that it allows for a goodness-of-fit test (see
Sec. 32.2.2). The minimum of —21In X as defined by Eq. (32.12) follows
a x2 distribution in the large sample limit. If there are N bins and
m fitted parameters, then the number of degrees of freedom for the
x2 distribution is N — m — 1 if the data are treated as multinomially
distributed and N —m if the n; are Poisson variables with viot = 3,
fixed. If the n; are Poisson distributed and vet is also fitted, then
by minimizing Eq. (32.12) one obtains that the area under the
fitted function is equal to the sum of the histogram contents, i.e.,
> i vi = »_;n;. This is not the case for parameter estimation methods
based on a least-squares procedure with traditional weights (see, e.g.,
Ref. [8]).

32.1.3.

The method of least squares (LS) coincides with the method of
maximum likelihood in the following special case. Consider a set of N
independent measurements y; at known points z;. The measurement
y; is assumed to be Gaussian distributed with mean F(z;;60) and
known variance 022. The goal is to construct estimators for the
unknown parameters 6. The likelihood function contains the sum of
squares

The method of least squares :

N

o P2
x2(8) = —2In L(0) + constant = Z M (32.13)
i=1 7

The set of parameters @ which maximize L is the same as those which
minimize x2.

The minimum of Equation (32.13) defines the least-squares
estimators @ for the more general case where the y; are not
Gaussian distributed as long as they are independent. If they are not
independent but rather have a covariance matrix V;; = cov(y;, y;],
then the LS estimators are determined by the minimum of

X*(0) =(y—F(@6)"'V'(y-F@), (32.14)
where y = (y1,...,yn) is the vector of measurements, F(0) is the
corresponding vector of predicted values (understood as a column
vector in (32.14)), and the superscript T denotes transposed (i.e.,
row) vector.

In many practical cases one further restricts the problem to the
situation where F(z;; ) is a linear function of the parameters, i.e.,

F(x;;0) = iejhj(-ri) . (32.15)
J=1
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Here the hj(z) are m linearly independent functions, e.g.,
1,z,22,..., 2™ L or Legendre polynomials. We require m < N
and at least m of the x; must be distinct.

Minimizing x? in this case with m parameters reduces to solving a
system of m linear equations. Defining H;; = hj(x;) and minimizing
X2 by setting its derivatives with respect to the 6; equal to zero gives
the LS estimators,

0=H"V'H)'HTV ly=Dy . (32.16)

The covariance matrix for the estimators Uy; = cov[@, g]] is given by

U=pvDT =HTV'H)~ (32.17)
or equivalently, its inverse U ~1 can be found from
1 8%y2 N
-1 r—1
i = = = h;(xy, h; . 2.1
Ui =5 06,00 |, D hilwg) (V) ghy() (32.18)
k=1
The LS estimators can also be found from the expression
6="Ug, (32.19)
where the vector g is defined by
N
gi= Y yihilw) (V" )k . (32.20)

Jik=1

For the case of uncorrelated y;, for example, one can use (32.19) with

Wy, = 3 )

S (32.21)
k=1 Tk
N
hi(x
gi=Y 3”“72’“) (32.22)
=1 %k

Expanding x2(0) about 5, one finds that the contour in parameter
space defined by

-~

X (0) = x*(0) + 1= xiyin + 1

has tangent planes located at plus or minus one standard deviation o

[4
from the LS estimates 6.

In constructing the quantity XZ(B), one requires the variances or,
in the case of correlated measurements, the covariance matrix. Often
these quantities are not known a priori and must be estimated from
the data; an important example is where the measured value y;
represents a counted number of events in the bin of a histogram. If,
for example, y; represents a Poisson variable, for which the variance
is equal to the mean, then one can either estimate the variance from
the predicted value, F(z;;0), or from the observed number itself,
y;. In the first option, the variances become functions of the fitted
parameters, which may lead to calculational difficulties. The second
option can be undefined if y; is zero, and in both cases for small y; the
variance will be poorly estimated. In either case one should constrain
the normalization of the fitted curve to the correct value, e.g., one
should determine the area under the fitted curve directly from the
number of entries in the histogram (see [8] Section 7.4). A further
alternative is to use the method of maximum likelihood; for binned
data this can be done by minimizing Eq. (32.12)

(32.23)

As the minimum value of the x2 represents the level of agreement
between the measurements and the fitted function, it can be used for
assessing the goodness-of-fit; this is discussed further in Section 32.2.2.

32.1.4.
Consider a set of n quantities 8 = (61,...,6,) and a set of
m functions 17(0) = (m(0),...,mm(@)). Suppose we have estimates
0= (01, .. Hn), using, say, maximum likelihood or least squares, and
we also know or have estimated the covariance matrix Vj; = cov[@7 §J]
The goal of error propagation is to determine the covariance matrix
for the functions, U;; = cov[7;,7;], where 77 = n(@). In particular, the
diagonal elements U;; = V[7;] give the variances. The new covariance
matrix can be found by expanding the functions (@) about the

estimates @ to first order in a Taylor series. Using this one finds

o Z anz 877]
00y, 99, 13

Propagation of errors :

(32.24)

This can be written in matrix notation as U ~ AV AT where the
matrix of derivatives A is

8771

Aij = 60

(32.25)

and AT is its transpose. The approximation is exact if 7(@) is linear
(it holds, for example, in equation (32.17)). If this is not the case the
approximation can break down if, for example, () is significantly
nonlinear close to Oina region of a size comparable to the standard
deviations of .

32.2. Statistical tests

In addition to estimating parameters, one often wants to assess
the validity of certain statements concerning the data’s underlying
distribution. Hypothesis tests provide a rule for accepting or rejecting
hypotheses depending on the outcome of a measurement. In goodness-
of-fit tests one gives the probability to obtain a level of incompatibility
with a certain hypothesis that is greater than or equal to the level
observed with the actual data.

32.2.1.

Consider an experiment whose outcome is characterized by a vector
of data @. A hypothesis is a statement about the distribution of x. It
could, for example, define completely the p.d.f. for the data (a simple
hypothesis) or it could specify only the functional form of the p.d.f.,
with the values of one or more parameters left open (a composite
hypothesis).

Hypothesis tests :

A statistical test is a rule that states for which values of @ a given
hypothesis (often called the null hypothesis, Hp) should be rejected.
This is done by defining a region of a-space called the critical region;
if the outcome if the experiment lands in this region, Hy is rejected.
Equivalently one can say that the hypothesis is accepted if x is
observed in the acceptance region, i.e., the complement of the critical
region. Here ‘accepted’ is understood to mean simply that the test
did not reject Hy.

Rejecting Hy if it is true is called an error of the first kind. The
probability for this to occur is called the significance level of the test,
«, which is often chosen to be equal to some pre-specified value. It
can also happen that Hy is false and the true hypothesis is given by
some alternative, Hy. If Hy is accepted in such a case, this is called an
error of the second kind. The probability for this to occur, 3, depends
on the alternative hypothesis, say, Hy, and 1 — /3 is called the power
of the test to reject Hy.

In High Energy Physics the components of & might represent the
measured properties of candidate events, and the acceptance region
is defined by the cuts that one imposes in order to select events
of a certain desired type. That is, Hy could represent the signal
hypothesis, and various alternatives, Hi, Ho, etc., could represent
background processes.

Often rather than using the full data sample x it is convenient
to define a test statistic, t, which can be a single number or in any
case a vector with fewer components than . Each hypothesis for the
distribution of & will determine a distribution for ¢, and the acceptance
region in x-space will correspond to a specific range of values of .
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In constructing ¢ one attempts to reduce the volume of data without
losing the ability to discriminate between different hypotheses.

In particle physics terminology, the probability to accept the
signal hypothesis, Hy, is the selection efficiency, i.e., one minus the
significance level. The efficiencies for the various background processes
are given by one minus the power. Often one tries to construct a test
to minimize the background efficiency for a given signal efficiency.
The Neyman Pearson lemma states that this is done by defining the
acceptance region such that, for « in that region, the ratio of p.d.f.s
for the hypotheses Hy and Hi,

f(x|Ho)

f(a|Hy)

is greater than a given constant, the value of which is chosen to give
the desired signal efficiency. This is equivalent to the statement that
(32.26) represents the test statistic with which one may obtain the

highest purity sample for a given signal efficiency. It can be difficult
in practice, however, to determine A(x), since this requires knowledge
of the joint p.d.f.s f(xz|Hp) and f(z|H;). Instead, test statistics based
on neural networks or Fisher discriminants are often used (see [10]).

Az) = (32.26)

32.2.2. Goodness-of-fit tests :

Often one wants to quantify the level of agreement between the data
and a hypothesis without explicit reference to alternative hypotheses.
This can be done by defining a goodness-of-fit statistic, t, which is
a function of the data whose value reflects in some way the level
of agreement between the data and the hypothesis. The user must
decide what values of the statistic correspond to better or worse levels
of agreement with the hypothesis in question; for many goodness-of-fit
statistics there is an obvious choice.

The hypothesis in question, say, Hy, will determine the p.d.f.
g(t|Hp) for the statistic. The goodness-of-fit is quantified by giving
the p-value, defined as the probability to find ¢ in the region of
equal or lesser compatibility with Hg than the level of compatibility
observed with the actual data. For example, if ¢ is defined such that
large values correspond to poor agreement with the hypothesis, then
the p-value would be

p= /too g(t|Ho) dt , (32.27)

obs

where f,, is the value of the statistic obtained in the actual
experiment. The p-value should not be confused with the significance
level of a test or the confidence level of a confidence interval
(Section 32.3), both of which are pre-specified constants.

The p-value is a function of the data and is therefore itself a random
variable. If the hypothesis used to compute the p-value is true, then
for continuous data, p will be uniformly distributed between zero and
one. Note that the p-value is not the probability for the hypothesis;
in frequentist statistics this is not defined. Rather, the p-value is the
probability, under the assumption of a hypothesis Hy, of obtaining
data at least as incompatible with Hy as the data actually observed.

When estimating parameters using the method of least squares,
one obtains the minimum value of the quantity x? (32.13), which can
be used as a goodness-of-fit statistic. It may also happen that no
parameters are estimated from the data, but that one simply wants
to compare a histogram, e.g., a vector of Poisson distributed numbers
n = (n1,...,ny), with a hypothesis for their expectation values
v; = E[n;]. As the distribution is Poisson with variances 02 = v;, the
X2 (32.13) becomes Pearson’s x? statistic,

2

=3 (ng ;il’i)

i=1

(32.28)

If the hypothesis v = (v1,...,vy) is correct and if the measured
values n; in (32.28) are sufficiently large (in practice, this will be a
good approximation if all n; > 5), then the y? statistic will follow the
X2 p.d.f. with the number of degrees of freedom equal to the number
of measurements N minus the number of fitted parameters. The same
holds for the minimized x? from Eq. (32.13) if the y; are Gaussian.
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Figure 32.1: One minus the x? cumulative distribution,
1— F(x?%;n), for n degrees of freedom. This gives the p-value
for the x2 goodness-of-fit test as well as one minus the coverage
probability for confidence regions (see Sec. 32.3.2.3).

Alternatively one may fit parameters and evaluate goodness-of-fit by
minimizing —21In A from Eq. (32.12). One finds that the distribution
of this statistic approaches the asymptotic limit faster than does
Pearson’s Y2 and thus computing the p-value with the x? p.d.f. will in
general be better justified (see [9] and references therein).

Assuming the goodness-of-fit statistic follows a x2 p.d.f., the p-value
for the hypothesis is then

p= /X  fGn)dz, (32.29)

where f(z;nq) is the x? p.d.f. and ng is the appropriate number of
degrees of freedom. Values can be obtained from Fig. 32.1 or from the
CERNLIB routine PROB. If the conditions for using the x? p.d.f. do
not hold, the statistic can still be defined as before, but its p.d.f. must
be determined by other means in order to obtain the p-value, e.g.,

using a Monte Carlo calculation.

If one finds a x2 value much greater than n4 and a correspondingly
small p-value, one may be tempted to expect a high degree of
uncertainty for any fitted parameters. Although this may be true
for systematic errors in the parameters, it is not in general the
case for statistical uncertainties. If, for example, the error bars (or
covariance matrix) used in constructing the y? are underestimated,
then this will lead to underestimated statistical errors for the fitted
parameters. But in such a case an estimate # can differ from the
true value # by an amount much greater than its estimated statistical
error. The standard deviations of estimators that one finds from, say,
equation (32.11) reflect how widely the estimates would be distributed
if one were to repeat the measurement many times, assuming that
the measurement errors used in the x2 are also correct. They do
not include the systematic error which may result from an incorrect
hypothesis or incorrectly estimated measurement errors in the 2.

Since the mean of the X2 distribution is equal to ng, one expects
in a “reasonable” experiment to obtain x2 ~ nq. Hence the quantity
x?%/nq is sometimes reported. Since the p.d.f. of x?/ng depends on
nq, however, one must report ngq as well in order to make a meaningful
statement. The p-values obtained for different values of x%/nq are
shown in Fig. 32.2.

32.3. Confidence intervals and limits

When the goal of an experiment is to determine a parameter 6,
the result is usually expressed by quoting, in addition to the point
estimate, some sort of interval which reflects the statistical precision
of the measurement. In the simplest case this can be given by the
parameter’s estimated value 6 plus or minus an estimate of the
standard deviation of 6, oy If, however, the p.d.f. of the estimator
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is not Gaussian or if there are physical boundaries on the possible
values of the parameter, then one usually quotes instead an interval
according to one of the procedures described below.

In reporting an interval or limit, the experimenter may wish to

e communicate as objectively as possible the result of the
experiment;

e provide an interval that is constructed to cover the true value of
the parameter with a specified probability;

o provide the information needed by the consumer of the result to
draw conclusions about the parameter or to make a particular
decision;

e draw conclusions about the parameter that incorporate stated
prior beliefs.

With a sufficiently large data sample, the point estimate and
standard deviation (or for the multiparameter case, the parameter
estimates and covariance matrix) satisfy essentially all of these goals.
For finite data samples, no single method for quoting an interval
will achieve all of them. In particular, drawing conclusions about the
parameter in the framework of Bayesian statistics necessarily requires
subjective input.

In addition to the goals listed above, the choice of method may
be influenced by practical considerations such as ease of producing
an interval from the results of several measurements. Of course the
experimenter is not restricted to quoting a single interval or limit;
one may choose, for example, first to communicate the result with
a confidence interval having certain frequentist properties, and then
in addition to draw conclusions about a parameter using Bayesian
statistics. It is recommended, however, that there be a clear separation
between these two aspects of reporting a result. In the remainder of
this section we assess the extent to which various types of intervals
achieve the goals stated here.

32.3.1.

Suppose the outcome of the experiment is characterized by a vector
of data x, whose probability distribution depends on an unknown
parameter (or parameters) 6 that we wish to determine. In Bayesian
statistics, all knowledge about € is summarized by the posterior p.d.f.
p(B)x), which gives the degree of belief for @ to take on values in
a certain region given the data z. It is obtained by using Bayes’
theorem,

The Bayesian approach :

SBla) — L)

~ JL(x|6")x(6") a6’ (32.30)

where L(x|6) is the likelihood function, i.e., the joint p.d.f. for the
data given a certain value of 6, evaluated with the data actually
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Figure 32.2: The ‘reduced’ x2, equal to x2/n, for n degrees
of freedom. The curves show as a function of n the x2/n that
corresponds to a given p-value.

obtained in the experiment, and 7(6) is the prior p.d.f. for 6. Note
that the denominator in (32.30) serves simply to normalize the
posterior p.d.f. to unity.

Bayesian statistics supplies no fundamental rule for determining
(60); this reflects the experimenter’s subjective degree of belief about
6 before the measurement was carried out. By itself, therefore, the
posterior p.d.f. is not a good way to report objectively the result of an
observation, since it contains both the result (through the likelihood
function) and the experimenter’s prior beliefs. Without the likelihood
function, someone with different prior beliefs would be unable to
substitute these to determine his or her own posterior p.d.f. This
is an important reason, therefore, to publish wherever possible the
likelihood function or an appropriate summary of it. Often this can be
achieved by reporting the ML estimate and one or several low order
derivatives of L evaluated at the estimate.

In the single parameter case, for example, an interval (called a
Bayesian or credible interval) [f),,6up] can be determined which
contains a given fraction 1 — « of the probability, i.e.,

Oup
1704:/ p(flx)do .
[4

lo

(32.31)

Sometimes an upper or lower limit is desired, i.e., 6|, can be set to
zero or fyp to infinity. In other cases one might choose 6, and yp
such that p(f|x) is higher everywhere inside the interval than outside;
these are called highest posterior density (HPD) intervals. Note that
HPD intervals are not invariant under a nonlinear transformation of
the parameter.

The main difficulty with Bayesian intervals is in quantifying the
prior beliefs. Sometimes one attempts to construct m(€) to represent
complete ignorance about the parameters by setting it equal to a
constant. A problem here is that if the prior p.d.f. is flat in 0,
then it is not flat for a nonlinear function of @, and so a different
parametrization of the problem would lead in general to a different
posterior p.d.f. In fact, one rarely chooses a flat prior as a true
expression of degree of belief about a parameter; rather, it is used as
a recipe to construct an interval, which in the end will have certain
frequentist properties.

If a parameter is constrained to be non-negative, then the prior
p.d.f. can simply be set to zero for negative values. An important
example is the case of a Poisson variable n which counts signal events
with unknown mean s as well as background with mean b, assumed
known. For the signal mean s one often uses the prior

W(s):{(l)

As mentioned above, this is regarded as providing an interval whose
frequentist properties can be studied, rather than as representing a
degree of belief. In the absence of a clear discovery, (e.g., if n =0
or if in any case n is compatible with the expected background),

one usually wishes to place an upper limit on s. Using the likelihood
function for Poisson distributed n,

s<0

N (32.32)

L(7L|S) — (S +'b)ne—(s+b) ,

- (32.33)

along with the prior (32.32) in (32.30) gives the posterior density for
s. An upper limit syp at confidence level 1 — a can be obtained by
requiring

_[sup _ [P L(n|s) m(s) ds
1-a= /_OO p(s|n)ds = W , (32.34)

where the lower limit of integration is effectively zero because of the
cut-off in 7(s). By relating the integrals in Eq. (32.34) to incomplete
gamma functions, the equation reduces to

. Yom—o(sup + 0)™/m!

o =
m—o b™/m!

(32.35)
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This must be solved numerically for the limit syp. For the special
case of b = 0, the sums can be related to the quantile F;zl of the X2

distribution (inverse of the cumulative distribution) to give

Sup = %Ff)l(l —a;ng) , (32.36)
where the number of degrees of freedom is nq = 2(n+1). The quantile
of the x?2 distribution can be obtained using the CERNLIB routine
CHISIN. It so happens that for the case of b = 0, the upper limits from
Eq. (32.36) coincide numerically with the values of the frequentist
upper limits discussed in Section 32.3.2.4. Values for 1 — a = 0.9
and 0.95 are given by the values vyp in Table 32.3. The frequentist
properties of confidence intervals for the Poisson mean obtained in
this way are discussed in Refs. [2] and [11].

Bayesian statistics provides a framework for incorporating sys-
tematic uncertainties into a result. Suppose, for example, that a
model depends not only on parameters of interest @ but on nuisance
parameters v, whose values are known with some limited accuracy.
For a single nuisance parameter v, for example, one might have a p.d.f.
centered about its nominal value with a certain standard deviation
oy. Often a Gaussian p.d.f. provides a reasonable model for one’s
degree of belief about a nuisance parameter; in other cases more
complicated shapes may be appropriate. The likelihood function, prior
and posterior p.d.f.s then all depend on both @ and v and are related
by Bayes’ theorem as usual. One can obtain the posterior p.d.f. for 8
alone by integrating over the nuisance parameters, i.e.,

p(0]z) = / (0, v|z) du . (32.37)
If the prior joint p.d.f. for @ and v factorizes, then integrating the
posterior p.d.f. over v is equivalent to replacing the likelihood function
by (see Ref. [12]),

/(2]6) = /L(acw, V)r(v) du . (32.38)

The function L'(x|@) can also be used together with frequentist
methods that employ the likelihood function such as ML estimation
of parameters. The results then have a mixed frequentist/Bayesian
character, where the systematic uncertainty due to limited knowledge
of the nuisance parameters is built in. Although this may make it
more difficult to disentangle statistical from systematic effects, such a
hybrid approach may satisfy the objective of reporting the result in a
convenient way.

Even if the subjective Bayesian approach is not used explicitly,
Bayes’ theorem represents the way that people evaluate the impact
of a new result on their beliefs. One of the criteria in choosing a
method for reporting a measurement, therefore, should be the ease
and convenience with which the consumer of the result can carry out
this exercise.

32.3.2.

The unqualified phrase “confidence intervals” refers to frequentist
intervals obtained with a procedure due to Neyman [13], described
below. These are intervals (or in the multiparameter case, regions)
constructed so as to include the true value of the parameter with
a probability greater than or equal to a specified level, called the
coverage probability. In this section we discuss several techniques for
producing intervals that have, at least approximately, this property.

Frequentist confidence intervals :

32.3.2.1.

Consider a p.d.f. f(z;0) where x represents the outcome of the
experiment and € is the unknown parameter for which we want
to construct a confidence interval. The variable z could (and often
does) represent an estimator for 6. Using f(x;6) we can find for a
pre-specified probability 1 — a and for every value of # a set of values
z1(0, @) and z2(6,a) such that

The Neyman construction for confidence intervals:

)
Pz <z < z2;0) = l—a:/ f(z;0) dz . (32.39)
z

This is illustrated in Fig. 32.3: a horizontal line segment
[z1(0,a),22(8,a)] is drawn for representative values of . The
union of such intervals for all values of 8, designated in the figure as
D(a), is known as the confidence belt. Typically the curves z1 (6, a)
and z2(6, ) are monotonic functions of 6, which we assume for this
discussion.

® % x,(6), B,(x)
% R e ERLLERLLERERLRLRIERES L,
ERREACKCNENG
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Possible experimental values x

Figure 32.3: Construction of the confidence belt (see text).

Upon performing an experiment to measure z and obtaining a value
zg, one draws a vertical line through zg. The confidence interval for 6
is the set of all values of 6 for which the corresponding line segment
[21(6, a),z2(8, )] is intercepted by this vertical line. Such confidence
intervals are said to have a confidence level (CL) equal to 1 — a.

Now suppose that the true value of 6 is 6, indicated in the figure.
We see from the figure that 6g lies between 61(z) and #2(x) if and
only if z lies between x1(fp) and z2(fy). The two events thus have
the same probability, and since this is true for any value 6y, we can
drop the subscript 0 and obtain

l—a=P(x1(0) <z <wx2(8)) = P(62(z) <0 <01(x)). (32.40)
In this probability statement 6;(z) and 62(z), i.e., the endpoints of
the interval, are the random variables and 6 is an unknown constant.
If the experiment were to be repeated a large number of times, the

interval [0y, 602] would vary, covering the fixed value 6 in a fraction

1 — a of the experiments.

The condition of coverage Eq. (32.39) does not determine 1 and
z9 uniquely and additional criteria are needed. The most common
criterion is to choose central intervals such that the probabilities
excluded below z; and above zg are each a/2. In other cases one
may want to report only an upper or lower limit, in which case the
probability excluded below x; or above x5 can be set to zero. Another
principle based on likelihood ratio ordering for determining which
values of x should be included in the confidence belt is discussed in
Sec. 32.3.2.2

When the observed random variable z is continuous, the coverage
probability obtained with the Neyman construction is 1 — «, regardless
of the true value of the parameter. If = is discrete, however, it is
not possible to find segments [z1(6,a),z2(6, )] that satisfy (32.39)
exactly for all values of §. By convention one constructs the confidence
belt requiring the probability P(z1 < x < x2) to be greater than or
equal to 1 — a. This gives confidence intervals that include the true
parameter with a probability greater than or equal to 1 — a.
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32.3.2.2.

An equivalent method of constructing confidence intervals is to
consider a test (see Sec. 32.2) of the hypothesis that the parameter’s
true value is . One then excludes all values of § where the hypothesis
would be rejected at a significance level less than a. The remaining
values constitute the confidence interval at confidence level 1 — a.

Relationship between intervals and tests:

In this procedure one is still free to choose the test to be used; this
corresponds to the freedom in the Neyman construction as to which
values of the data are included in the confidence belt. One possibility
is use a test statistic based on the likelihood ratio,

(32.41)

where 8 is the value of the parameter which, out of all allowed values,
maximizes f(x;6). This results in the intervals described in [14] by

Feldman and Cousins. The same intervals can be obtained from the

Neyman construction described in the previous section by including in
the confidence belt those values of x which give the greatest values of
A

Another technique that can be formulated in the language of
statistical tests has been used to set limits on the Higgs mass from
measurements at LEP [15,16]. For each value of the Higgs mass, a
statistic called CLg is determined from the ratio

_ p-value of signal plus background hypothesis

CLs (32.42)

" 1 — p-value of hypothesis of background only

The p-values in (32.42) are themselves based on a goodness-of-fit
statistic which depends in general on the signal being tested, i.e.,
on the hypothesized Higgs mass. Smaller CLg corresponds to a lesser
level of agreement with the signal hypothesis.

In the usual procedure for constructing confidence intervals, one
would exclude the signal hypothesis if the probability to obtain a value
of CLs less than the one actually observed is less than a. The LEP
Higgs group has in fact followed a more conservative approach and
excludes the signal at a confidence level 1 — o if CLg itself (not the
probability to obtain a lower CLg value) is less than a. This results
in a coverage probability that is in general greater than 1 — «. The
interpretation of such intervals is discussed in [15,16].

32.3.2.3.

An important example of constructing a confidence interval is when
the data consists of a single random variable z that follows a Gaussian
distribution; this is often the case when x represents an estimator for
a parameter and one has a sufficiently large data sample. If there is
more than one parameter being estimated, the multivariate Gaussian
is used. For the univariate case with known o,

Gaussian distributed measurements:

l-a=

1+0 .

! /! ’ e~ @=1)?/20% qo — o (L) (32.43)
210 Ju—s ﬂa

is the probability that the measured value = will fall within 6 of the
true value pu. From the symmetry of the Gaussian with respect to x
and g, this is also the probability for the interval z &+ § to include

p. Fig. 32.4 shows a § = 1.640 confidence interval unshaded. The

choice § = o gives an interval called the standard error which has

1—a=6827% if o is known. Values of « for other frequently used

choices of ¢ are given in Table 32.1.

We can set a one-sided (upper or lower) limit by excluding above
z + 9 (or below z — J). The values of a for such limits are half the
values in Table 32.1.

In addition to Eq. (32.43), a and ¢ are also related by the
cumulative distribution function for the y? distribution,

a=1-F(x%n), (32.44)

f(x; u,0)

o/2

0
(x-w)/o

Figure 32.4: Illustration of a symmetric 90% confidence interval
(unshaded) for a measurement of a single quantity with Gaussian
errors. Integrated probabilities, defined by «, are as shown.

Table 32.1: Area of the tails o outside +6 from the mean of a
Gaussian distribution.
« ) « )
0.3173 lo 0.2 1.280
4.55 x1072 20 0.1 1.640
2.7 x1073 30 0.05 1.960
6.3x107° 40 0.01 2.580
5.7x10~7 50 0.001 3.290
2.0x107Y 60 10~4 3.890

for 2 = (6/0)? and n = 1 degree of freedom. This can be obtained
from Fig. 32.1 on the n = 1 curve or by using the CERNLIB routine
PROB.

__ For_multivariate measurements of, say, n parameter estimates
0 = (61,...,0n), one requires the full covariance matrix V;; =
cov[f;,0;], which can be estimated as described in Sections 32.1.2
and 32.1.3. Under fairly general conditions with the methods of
maximum-likelihood or least-squares in the large sample limit, the
estimators will be distributed according to a multivariate Gaussian
centered about the true (unknown) values 6, and furthermore the
likelihood function itself takes on a Gaussian shape.

The standard error ellipse for the pair (6;,6;) is shown in Fig. 32.5,
corresponding to a contour x2 = Xr2nin +1orInL =1InLpax —1/2.
The ellipse is centered about the estimated values 6, and the tangents
to the ellipse give the standard deviations of the estimators, o; and
oj. The angle of the major axis of the ellipse is given by

tan2¢ = 2797 (32.45)

where p;; = cov[(’fi, @}] /oioj is the correlation coefficient.

The correlation coefficient can be visualized as the fraction of the
distance o; from the ellipse’s horizontal centerline at which the ellipse
becomes tangent to vertical, i.e. at the distance p;jo; below the
centerline as shown. As p;; goes to +1 or —1, the ellipse thins to a
diagonal line.

It could happen that one of the parameters, say, 6;, is known from
previous measurements to a precision much better than o so that the
current measurement contributes almost nothing to the knowledge of
6. However, the current measurement of of 6; and its dependence
on §; may still be important. In this case, instead of quoting both
parameter estimates and their correlation, one sometimes reports the
value of 6; which minimizes y2 at a fixed value of 0, such as the PDG
best value. This 6; value lies along the dotted line between the points
where the ellipse becomes tangent to vertical, and has statistical
eITor Oinper as shown on the figure, where ojpper = (1 — p?j)l/ 2¢;.

Instead of the correlation p;;, one reports the dependency dgi /db;
which is the slope of the dotted line. This slope is related to the
correlation coefficient by df;/df; = p;; x %
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Figure 32.5: Standard error ellipse for the estimators 5, and
6. In this case the correlation is negative.

Table 32.2: Ax2 or 2AInL corresponding to a coverage
probability 1 — « in the large data sample limit, for joint
estimation of m parameters.

(1-a) (%) m=1 m=2 m=3
68.27 1.00 2.30 3.53
90. 2.71 4.61 6.25
95. 3.84 5.99 7.82
95.45 4.00 6.18 8.03
99. 6.63 9.21 11.34
99.73 9.00 11.83 14.16

As in the single-variable case, because of the symmetry of the
Gaussian function between 0 and 6, one finds that contours of constant
In L or x? cover the true values with a certain, fixed probability. That
is, the confidence region is determined by

InL(0) >InLypax — Aln L, (32.46)

or where a x2 has been defined for use with the method of least
squares,

X2(0) < Xoin + AX? - (32.47)
Values of Ax? or 2A1n L are given in Table 32.2 for several values of
the coverage probability and number of fitted parameters.

For finite data samples, the probability for the regions determined
by Equations (32.46) or (32.47) to cover the true value of 6 will
depend on 6, so these are not exact confidence regions according to
our previous definition. Nevertheless, they can still have a coverage
probability only weakly dependent on the true parameter and
approximately as given in Table 32.2. In any case the coverage
probability of the intervals or regions obtained according to this
procedure can in principle be determined as a function of the true
parameter(s), for example, using a Monte Carlo calculation.

One of the practical advantages of intervals that can be constructed
from the log-likelihood function or x2 is that it is relatively simple to
produce the interval for the combination of several experiments. If NV
independent measurements result in log-likelihood functions In L;(6),
then the combined log-likelihood function is simply the sum,

N
InL(6) =Y InL(6) . (32.48)
=1

This can then be used to determine an approximate confidence interval
or region with Equation (32.46), just as with a single experiment.

32.3.2.4. Poisson or binomial data:

Another important class of measurements consists of counting a
certain number of events n. In this section we will assume these
are all events of the desired type, i.e., there is no background. If n
represents the number of events produced in a reaction with cross
section o, say, in a fixed integrated luminosity £, then it follows a
Poisson distribution with mean v = ¢/£. If, on the other hand, one
has selected a larger sample of N events and found n of them to have

a particular property, then n follows a binomial distribution where the
parameter p gives the probability for the event to possess the property
in question. This is appropriate, e.g., for estimates of branching ratios
or selection efficiencies based on a given total number of events.

For the case of Poisson distributed n, the upper and lower limits on
the mean value v can be found from the Neyman procedure to be

F 3 oo 2n) (32.49q)

SE

Vo =

XZ
vop = 45 (1~ aupi2(n +1)) (32.490)

where the upper and lower limits are at confidence levels of 1 — ay, and
1 — ayp, respectively, and FXEI is the quantile of the y? distribution

(inverse of the cumulative distribution). The quantiles F' }1 can
be obtained from standard tables or from the CERNLIB routine
CHISIN. For central confidence intervals at confidence level 1 — «, set
Q) = ayp = a/2.

It happens that the upper limit from (32.49a) coincides numerically
with the Bayesian upper limit for a Poisson parameter using a uniform
prior p.d.f. for v. Values for confidence levels of 90% and 95% are
shown in Table 32.3.

Table 32.3: Lower and upper (one-sided) limits for the mean
v of a Poisson variable given n observed events in the absence of
background, for confidence levels of 90% and 95%.

1—a=90% 1—a=95%

n Ylo Vup Ylo Vup
0 2.30 3.00
1 0.105  3.89 0.051 4.74
2 0.532 5.32 0.355 6.30
3 1.10 6.68 0.818 7.75
4 1.74 7.99 1.37  9.15
5 243 9.27 1.97 10.51
6 3.15 10.53 261 11.84
7 3.89 1177 3.29  13.15
8 4.66  12.99 3.98  14.43
9 543 14.21 4.70 1571

10 6.22 15.41 543  16.96

For the case of binomially distributed n successes out of IV trials
with probability of success p, the upper and lower limits on p are
found to be

nFEl[alo; 2n,2(N —n + 1)]

N—n+1+ nF; a2n,2(N —n+1)]’
(n+1)F 1 — aup; 2(n + 1), 2(N — n)]

(N =n) + (n+1)Fz 1 — ayp;2(n + 1), 2(N — n)]

Plo = (32.50a)

. (32.500)

Pup =

Here FF_l is the quantile of the F distribution (also called the
Fisher Snedecor distribution; see Ref. [4]).

32.3.2.5.

A number of issues arise in the construction and interpretation
of confidence intervals when the parameter can only take on values
in a restricted range. An important example is where the mean
of a Gaussian variable is constrained on physical grounds to be
non-negative. This arises, for example, when the square of the
neutrino mass is estimated from m2 = E2 — p2, where E and p
are independent, Gaussian distributed estimates of the energy and
momentum. Although the true m?2 is constrained to be positive,

Difficulties with intervals near a boundary:
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random errors in E and P can easily lead to negative values for the

estimate m2.

If one uses the prescription given above for Gaussian distributed
measurements, which says to construct the interval by taking the
estimate plus or minus one standard deviation, then this can give
intervals that are partially or entirely in the unphysical region. In
fact, by following strictly the Neyman construction for the central
confidence interval, one finds that the interval is truncated below zero;
nevertheless an extremely small or even a zero-length interval can
result.

An additional important example is where the experiment consists
of counting a certain number of events, n, which is assumed to
be Poisson distributed. Suppose the expectation value E[n] = v
is equal to s + b, where s and b are the means for signal and
background processes, and assume further that b is a known constant.
Then § = n — b is an unbiased estimator for s. Depending on true
magnitudes of s and b, the estimate § can easily fall in the negative
region. Similar to the Gaussian case with the positive mean, the
central confidence interval or even the upper limit for s may be of zero
length.

The confidence interval is in fact designed not to cover the
parameter with a probability of at most a, and if a zero-length
interval results, then this is evidently one of those experiments. So
although the construction is behaving as it should, a null interval is
an unsatisfying result to report and several solutions to this type of
problem are possible.

An additional difficulty arises when a parameter estimate is not
significantly far away from the boundary, in which case it is natural
to report a one-sided confidence interval (often an upper limit). It
is straightforward to force the Neyman prescription to produce only
an upper limit by setting 9 = oo in Eq. 32.39. Then 2z is uniquely
determined and the upper limit can be obtained. If, however, the
data come out such that the parameter estimate is not so close to
the boundary, one might wish to report a central (i.e., two-sided)
confidence interval. As pointed out by Feldman and Cousins [14],
however, if the decision to report an upper limit or two-sided interval
is made by looking at the data (“flip-flopping”), then the resulting
intervals will not in general cover the parameter with the probability
1-a.

With the confidence intervals suggested in [14], the prescription
determines whether the interval is one- or two-sided in a way which
preserves the coverage probability. Intervals with this property are
said to be unified. Furthermore, the Feldman-Cousins prescription is
such that null intervals do not occur. For a given choice of 1 — «, if
the parameter estimate is sufficiently close to the boundary, then the
method gives a one-sided limit. In the case of a Poisson variable in the
presence of background, for example, this would occur if the number
of observed events is compatible with the expected background. For
parameter estimates increasingly far away from the boundary, i.e., for
increasing signal significance, the interval makes a smooth transition
from one- to two-sided, and far away from the boundary one obtains a
central interval.

The intervals according to this method for the mean of Poisson
variable in the absence of background are given in Table 32.4. (Note
that « in [14] is defined following Neyman [13] as the coverage
probability; this is opposite the modern convention used here in which
the coverage probability is 1 — a.) The values of 1 — a given here refer
to the coverage of the true parameter by the whole interval [v1,15].
In Table 32.3 for the one-sided upper and lower limits, however, 1 — a
refers to the probability to have individually vyp > v or v, < v.

A potential difficulty with unified intervals arises if, for example,
one constructs such an interval for a Poisson parameter s of some
yet to be discovered signal process with, say, 1 — a = 0.9. If the true
signal parameter is zero, or in any case much less than the expected
background, one will usually obtain a one-sided upper limit on s. In
a certain fraction of the experiments, however, a two-sided interval
for s will result. Since, however, one typically chooses 1 — a to be
only 0.9 or 0.95 when searching for a new effect, the value s = 0
may be excluded from the interval before the existence of the effect
is well established. It must then be communicated carefully that in

Table 32.4: Unified confidence intervals [v1, vo] for a the mean
of a Poisson variable given n observed events in the absence of
background, for confidence levels of 90% and 95%.

1-a=90% 1—a=95%

n v Vo v Vo
0 0.00 2.44 0.00 3.09
1 0.11 4.36 0.05 5.14
2 0.53 5.91 0.36 6.72
3 1.10 7.42 0.82 8.25
4 1.47 8.60 1.37 9.76
5 1.84 9.99 1.84 11.26
6 221  11.47 221 1275
7 3.56  12.53 2.58 13.81
8 3.96 13.99 294 15.29
9 4.36  15.30 4.36 16.77
10 5.50 16.50 4.75 17.82

excluding s = 0 from the interval, one is not necessarily claiming to
have discovered the effect.

The intervals constructed according to the unified procedure in [14]
for a Poisson variable n consisting of signal and background have the
property that for n = 0 observed events, the upper limit decreases
for increasing expected background. This is counter-intuitive, since
it is known that if n = 0 for the experiment in question, then no
background was observed, and therefore one may argue that the
expected background should not be relevant. The extent to which
one should regard this feature as a drawback is a subject of some
controversy (see, e.g., Ref. [18]).

Another possibility is to construct a Bayesian interval as described
in Section 32.3.1. The presence of the boundary can be incorporated
simply by setting the prior density to zero in the unphysical region.
Priors based on invariance principles (rather than subjective degree of
belief) for the Poisson mean are rarely used in high energy physics;
they diverge for the case of zero events observed, and they give upper
limits which undercover when evaluated by the frequentist definition
of coverage [2]. Rather, priors uniform in the Poisson mean have been
used, although as previously mentioned, this is generally not done to
reflect the experimenter’s degree of belief but rather as a procedure
for obtaining an interval with certain frequentist properties. The
resulting upper limits have a coverage probability that depends on the
true value of the Poisson parameter and is everywhere greater than
the stated probability content. Lower limits and two-sided intervals
for the Poisson mean based on flat priors undercover, however, for
some values of the parameter, although to an extent that in practical
cases may not be too severe [2, 11]. Intervals constructed in this way
have the advantage of being easy to derive; if several independent
measurements are to be combined then one simply multiplies the
likelihood functions (cf. Eq. (32.48)).

An additional alternative is presented by the intervals found from
the likelihood function or x? using the prescription of Equations (32.46)
or (32.47). As in the case of the Bayesian intervals, the coverage
probability is not, in general, independent of the true parameter.
Furthermore, these intervals can for some parameter values undercover.
The coverage probability can of course be determined with some extra
effort and reported with the result.

Also as in the Bayesian case, intervals derived from the value of the
likelihood function from a combination of independent experiments can
be determined simply by multiplying the likelihood functions. These
intervals are also invariant under transformation of the parameter; this
is not true for Bayesian intervals with a conventional flat prior, because
a uniform distribution in, say, # will not be uniform if transformed to
62. Use of the likelihood function to determine approximate confidence
intervals is discussed further in [17].

In any case it is important always to report sufficient information
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so that the result can be combined with other measurements. Often
this means giving an unbiased estimator and its standard deviation,
even if the estimated value is in the unphysical region.

Regardless of the type of interval reported, the consumer of that
result will almost certainly use it to derive some impression about the
value of the parameter. This will inevitably be done, either explicitly
or intuitively, with Bayes’ theorem,

p(O|result) oc L(result|d)w () , (32.51)

where the reader supplies his or her own prior beliefs 7 (6) about
the parameter, and the ‘result’ is whatever sort of interval or other
information the author has reported. For all of the intervals discussed,
therefore, it is not sufficient to know the result; one must also know
the probability to have obtained this result as a function of the
parameter, i.e., the likelihood. Contours of constant likelihood, for
example, provide this information, and so an interval obtained from
InL =In Lmax — Aln L already takes one step in this direction.

It can also be useful with a frequentist interval to calculate its
subjective probability content using the posterior p.d.f. based on one
or several reasonable guesses for the prior p.d.f. If it turns out to
be significantly less than the stated confidence level, this warns that
it would be particularly misleading to draw conclusions about the
parameter’s value without further information from the likelihood.
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33. MONTE CARLO TECHNIQUES

Revised July 1995 by S. Youssef (SCRI, Florida State Univer-
sity).Updated February 2000 by R. Cousins (UCLA) in consultation
with F. James (CERN); October 2003 by G. Cowan (RHUL) and
R. Miquel (LBNL), and September 2005 by G. Cowan (RHUL).

Monte Carlo techniques are often the only practical way to
evaluate difficult integrals or to sample random variables governed
by complicated probability density functions. Here we describe an
assortment of methods for sampling some commonly occurring
probability density functions.

33.1.

Most Monte Carlo sampling or integration techniques assume a
“random number generator” which generates uniform statistically
independent values on the half open interval [0,1). There is a
long history of problems with various generators on a finite digital
computer, but recently, the RANLUX generator [1] has emerged with
a solid theoretical basis in chaos theory. Based on the method of
Liischer, it allows the user to select different quality levels, trading off
quality with speed.

Sampling the uniform distribution

Other generators are also available which pass extensive batteries of
tests for statistical independence and which have periods which are so
long that, for practical purposes, values from these generators can be
considered to be uniform and statistically independent. In particular,
the lagged-Fibonacci based generator introduced by Marsaglia, Zaman,
and Tsang [2] is efficient, has a period of approximately 10%3, produces
identical sequences on a wide variety of computers and, passes
the extensive “DIEHARD” battery of tests [3]. Many commonly
available congruential generators fail these tests and often have
sequences (typically with periods less than 232) which can be easily
exhausted on modern computers and should therefore be avoided [4].

33.2. Inverse transform method

If the desired probability density function is f(z) on the range
—00 < & < 00, its cumulative distribution function (expressing the
probability that = < a) is given by Eq. (31.6). If a is chosen with
probability density f(a), then the integrated probability up to point
a, F(a), is itself a random variable which will occur with uniform
probability density on [0,1]. If z can take on any value, and ignoring
the endpoints, we can then find a unique x chosen from the p.d.f. f(s)
for a given u if we set

u=F(z), (33.1)
provided we can find an inverse of F', defined by
z=F"Y(u). (33.2)

This method is shown in Fig. 33.1a. It is most convenient when one
can calculate by hand the inverse function of the indefinite integral
of f. This is the case for some common functions f(z) such as
exp(z), (1 —z)", and 1/(1 4 22) (Cauchy or Breit-Wigner), although
it does not necessarily produce the fastest generator. CERNLIB
contains routines to implement this method numerically, working from
functions or histograms.

For a discrete distribution, F(z) will have a discontinuous jump of
size f(zy) at each allowed z,k = 1,2,--.. Choose u from a uniform
distribution on (0,1) as before. Find z;, such that

k
F(zg_1) <u < F(xg) = Prob (z <ap) = Y f(@i) ;
i=1

(33.3)

then wj, is the value we seek (note: F'(zg) = 0). This algorithm is
illustrated in Fig. 33.1b.

1 p—
a
(a) Continuous
Fx) distribution
[
0
X
x=F1(u
L )
(b) Discrete
F(x) distribution
U feeeerermmmmnennannnnnn, } f(xk)
0 1 1 1 1 1 1 1 1 1 1
X
Xp Xp+1

Figure 33.1: Use of a random number u chosen from a uniform
distribution (0,1) to find a random number z from a distribution
with cumulative distribution function F(z).

33.3. Acceptance-rejection method (Von Neumann)

Very commonly an analytic form for F(z) is unknown or too
complex to work with, so that obtaining an inverse as in Eq. (33.2) is
impractical. We suppose that for any given value of x the probability
density function f(x) can be computed and further that enough is
known about f(z) that we can enclose it entirely inside a shape which
is C times an easily generated distribution h(z) as illustrated in
Fig. 33.2.

Figure 33.2: Illustration of the acceptance-rejection method.
Random points are chosen inside the upper bounding figure, and
rejected if the ordinate exceeds f(z). Lower figure illustrates
importance sampling.

Frequently h(z) is uniform or is a normalized sum of uniform
distributions. Note that both f(z) and h(z) must be normalized
to unit area and therefore the proportionality constant C' > 1.
To generate f(z), first generate a candidate = according to h(x).
Calculate f(z) and the height of the envelope C h(z); generate u and
test if uC h(z) < f(z). If so, accept z; if not reject z and try again. If
we regard = and uC h(z) as the abscissa and ordinate of a point in a
two-dimensional plot, these points will populate the entire area C h(z)
in a smooth manner; then we accept those which fall under f(x). The
efficiency is the ratio of areas, which must equal 1/C; therefore we
must keep C as close as possible to 1.0. Therefore we try to choose
C h(z) to be as close to f(z) as convenience dictates, as in the lower
part of Fig. 33.2. This practice is called importance sampling, because
we generate more trial values of x in the region where f(x) is most
important.
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33.4. Algorithms

Algorithms for generating random numbers belonging to many
different distributions are given by Press [5], Ahrens and Dieter [6],
Rubinstein [7], Everett and Cashwell [8], Devroye [9], and Walck [10].
For many distributions alternative algorithms exist, varying in
complexity, speed, and accuracy. For time-critical applications, these
algorithms may be coded in-line to remove the significant overhead
often encountered in making function calls. Variables named “u” are
assumed to be independent and uniform on [0,1). (Hence, u must be

verified to be non-zero where relevant.)

In the examples given below, we use the notation for the variables
and parameters given in Table 31.1.

33.4.1.

This is a common application of the inverse transform method and
uses the fact that if « is uniformly distributed in [0, 1] then (1 — w) is
as well. Consider an exponential p.d.f. f(t) = (1/7)exp(—t/7) that is
truncated so as to lie between two values, a and b, and renormalized
to unit area. To generate decay times ¢ according to this p.d.f., first
let @ = exp(—a/7) and 8 = exp(—b/7); then generate u and let

t=—7In(B +u(a—-p)).

For (a,b) = (0,00), we have simply t = —7Inu. (See also Sec. 33.4.6.)

Exponential decay :

(33.4)

33.4.2.

Isotropy means the density is proportional to solid angle, the
differential element of which is df2 = d(cosf)d¢. Hence cosf is
uniform (2u; — 1) and ¢ is uniform (27ug). For alternative generation
of sin ¢ and cos ¢, see the next subsection.

Isotropic direction in 3D :

33.4.3.
Generate u; and ug. Then vy = 2u; — 1 is uniform on (—1,1), and

v9 = ug is uniform on (0,1). Calculate 72 = v% + ’U%. If r2 > 1, start
over. Otherwise, the sine (S) and cosine (C) of a random angle (i.e.,

uniformly distributed between zero and 27) are given by

Sine and cosine of random angle in 2D :

S =2vvy/r? and C = (@} —vd)/r?. (33.5)
33.4.4. Gaussian distribution :
If w; and ug are uniform on (0,1), then
21 = sin27u1/—2Ilnus and 29 = cos2muiy/—2Inwus (33.6)

are independent and Gaussian distributed with mean 0 and o = 1.

There are many faster variants of this basic algorithm. For example,
construct v; = 2uj; — 1 and v2 = 2ug — 1, which are uniform on (—1,1).
Calculate r2 = vf +v%, and if 2 > 1 start over. If r2 < 1, it is uniform

n (0,1). Then

—2Inr? —2Inr?
21 =1 2 and 29 = v9 2

are independent numbers chosen from a normal distribution with
mean 0 and variance 1. z; = u + oz; distributes with mean p and
variance o2. A recent implementation of the fast algorithm of Leva
Ref. 11 is in CERNLIB.

For a multivariate Gaussian with an n x n covariance matrix V', one
can start by generating n independent Gaussian variables, {n;}, with
mean 0 and variance 1 as above. Then the new set {z;} is obtained
as x; = p; + Ej Lijn;, where p; is the mean of z;, and L;; are
the components of L, the unique lower triangular matrix that fulfils
V = LLT. The matrix L can be easily computed by the following
recursive relation (Cholesky’s method):

(33.7)

i1 1/2
.. _ 2
Vii = > Li :
k=1

i—1
_Vij - a1 LikLjk
Ly ’

(33.8a)

=1,.,n;i=j+1,..,n,(33.8b)

where V;; = p;jo;0; are the components of V. For n = 2 one has

(o1 0

L=
(e V)

and therefore the correlated Gaussian variables are generated as
T = p1 + 0111, T2 = pg + poan + /1 — p? o9

(33.9)

33.4.5. x2(n) distribution :

For n even, generate n/2 uniform numbers u;; then

n/2

y=—2In Hul is x%(n) . (33.10)
i=1

For n odd, generate (n — 1)/2 uniform numbers u; and one Gaussian z
as in Sec. 33.4.4; then

(n—-1)/2
H u | +22 s ).
i=1

y=—2In (33.11)

For n > 30 the much faster Gaussian approximation for the x? may
be preferable: generate z as in Sec. 33.4.4. If z > —/2n — 1 use

y=[z+v2n— 1]2 /2; otherwise reject.
33.4.6.

All of the following algorithms are given for A = 1. For A # 1,
divide the resulting random number x by A.

Gamma distribution :

o If k =1 (the exponential distribution), accept x = —Inwu. (See
also Sec. 33.4.1.)

e If 0 < k < 1, initialize with v; = (e + k)/e (with e = 2.71828...
being the natural log base). Generate uj, ug. Define vo = viu;.

Case 1: vy < 1. Define x = v;/k. If us < e™*, accept x and
stop, else restart by generating new wup, ug.

Case 2: vy > 1. Define x = —In(Jv; — v2]/k). If ug < zh -1
accept = and stop, else restart by generating new wy, usg.
Note that, for k& < 1, the probability density has a pole at
z = 0, so that return values of zero due to underflow must be
accepted or otherwise dealt with.

e Otherwise, if £ > 1, initialize with ¢ = 3k — 0.75. Generate
u; and compute v; = u1(1 —uy) and v = (u1 — 0.5)/c/v;. If
z=k+wvy—1<0, go back and generate new wup; otherwise
generate ug and compute vz = 641}%11%. Ifog <1-— 21}%/3: or if
Inwz < 2{[k — 1]ln[z/(k — 1)] — v2}, accept = and stop; otherwise
go back and generate new u;.

33.4.7. Binomial distribution :

Begin with & = 0 and generate u uniform in [0,1). Compute
P, = (1 —p)" and store Py into B. If u < B accept r, = k and
stop. Otherwise, increment k by one; compute the next Pj as
Py (p/(1—p))-(n—Ek)/(k+1); add this to B. Again if u < B accept
rp = k and stop, otherwise iterate until a value is accepted. If p > 1/2
it will be more efficient to generate r from f(r;n,q), i.e., with p and ¢
interchanged, and then set rp, =n —r.

33.4.8.

Iterate until a successful choice is made: Begin with k£ = 1 and set
A =1 to start. Generate u. Replace A with uA; if now A < exp(—p),
where p is the Poisson parameter, accept ny = £ — 1 and stop.
Otherwise increment k£ by 1, generate a new u and repeat, always
starting with the value of A left from the previous try. For large
(2 10) it may be satisfactory (and much faster) to approximate the
Poisson distribution by a Gaussian distribution (see our Probability
chapter, Sec. 31.4.3). Generate z from a Gaussian with zero mean and
unit standard deviation; then use z = max(0, [t + 2,/ 4 0.5]) where
[ ] signifies the greatest integer < the expression. [12]

Poisson distribution :
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33.4.9. Student’s t distribution :

For n > 0 degrees of freedom (n not necessarily integer), generate
x from a Gaussian with mean 0 and o2 = 1 according to the method
of 33.4.4. Next generate y, an independent gamma random variate,
according to 33.4.6 with A = 1/2 and k = n/2. Then z = 2/(,/y/n) is
distributed as a t with n degrees of freedom.

For the special case n = 1, the Breit-Wigner distribution, generate
up and wuo; set v1 = 2u; — 1 and vy = 2ug — 1. If v% + v% < 1 accept
z = v1 /v as a Breit-Wigner distribution with unit area, center at 0.0,
and FWHM 2.0. Otherwise start over. For center My and FWHM T,
use W = 2T'/2 + M.
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34. MONTE CARLO PARTICLE NUMBERING SCHEME

Revised June 2006 by L. Garren (Fermilab), I.G. Knowles (Edin-
burgh U.), S. Navas (U. Granada), P. Richardson (Durham U.),

Sjostrand (Lund U.), and T. Trippe (LBNL).
The Monte Carlo particle numbering scheme presented here is

intended to facilitate interfacing between event generators, detector
simulators, and analysis packages used in particle physics. The
numbering scheme was introduced in 1988 [1] and a revised
version [2,3] was adopted in 1998 in order to allow systematic inclusion
of quark model states which are as yet undiscovered and hypothetical
particles such as SUSY particles. The numbering scheme is used in
several event generators, e.g. HERWIG and PYTHIA/JETSET, and
in the /HEPEVT/ [4] standard interface.

The general form is a 7 digit number:

Etn nynpng Ngy Ngg N -

This encodes information about the particle’s spin, flavor content, and
internal quantum numbers. The details are as follows:

1.

Particles are given positive numbers, antiparticles negative
numbers. The PDG convention for mesons is used, so that K+
and Bt are particles.

. Quarks and leptons are numbered consecutively starting from 1
and 11 respectively; to do this they are first ordered by family
and within families by weak isospin.

. In composite quark systems (diquarks, mesons, and baryons)
ng,_5 are quark numbers used to specify the quark content, while
the rightmost digit n; = 2J + 1 gives the system’s spin (except
for the Kg and Kg) The scheme does not cover particles of spin
J > 4.

. Diquarks have 4-digit numbers with ng, > ng, and ngy = 0.

. The numbering of mesons is guided by the nonrelativistic (L-S

decoupled) quark model, as listed in Tables 14.2 and 14.3.

a. The numbers specifying the meson’s quark content conform
to the convention ng = 0 and ng, > ng,. The special case
K 2 is the sole exception to this rule.

b. The quark numbers of flavorless, light (u,d,s) mesons are:
11 for the member of the isotriplet (70,9, ...), 22 for the
lighter isosinglet (n,w,...), and 33 for the heavier isosinglet
(', ¢,...). Since isosinglet mesons are often large mixtures
of ui 4+ dd and s5 states, 22 and 33 are assigned by mass and
do not necessarily specify the dominant quark composition.

c. The special numbers 310 and 130 are given to the Kg and
K 2 respectively.

d. The fifth digit ny, is reserved to distinguish mesons of the
same total (J) but different spin (S) and orbital (L) angular
momentum quantum numbers. For J > 0 the numbers are:
(L,S) = (Jf 171) ng =0, (J,O) ng =1, (Jrl) np =2
and (J +1,1) ny, = 3. For the exceptional case J = 0 the
numbers are (0,0) n;, = 0 and (1,1) ny, = 1 (i.e. ny, = L).
See Table 34.1.

Table 34.1: Meson numbering logic. Here gq stands for
nqg qug.
L=J-1,8=1|L=J,8S=0|L=J,S=1|L=J+1,5=1
J|code JPC€ L |code JPC L|code JPC L |code JPC L
0 — — — |00ggl 0= * 0| — — —|l0gql O+ 1
1{00gg3 1= 0 |10¢gg3 17— 1|20gq3 17+ 1 [30¢gq3 17— 2
2100¢gg5 27T 1 |10gg5 271 2(20q¢5 2=~ 2 [30¢¢5 2T+ 3
3100gq7 37— 2 |10gq7 31t~ 3|20qq7 3t 3 |30qq7 37—~ 4
4100gq9 417+ 3 [10qq9 47 4|20¢q9 4=~ 4 |30qq9 417t 5

e. If a set of physical mesons correspond to a (non-negligible)
mixture of basis states, differing in their internal quantum
numbers, then the lightest physical state gets the smallest
basis state number. For example the K (1270) is numbered
10313 (1'P; K;p) and the K;(1400) is numbered 20313
(13P; K1 4).

6.

10.

11.

f. The sixth digit n, is used to label mesons radially excited
above the ground state.

g. Numbers have been assigned for complete n, = 0 S- and
P-wave multiplets, even where states remain to be identified.

h. In some instances assignments within the ¢g meson model
are only tentative; here best guess assignments are made.

i. Many states appearing in the Meson Listings are not yet
assigned within the q¢ model. Here ng, , and n; are
assigned according to the state’s likely flavors and spin; all
such unassigned light isoscalar states are given the flavor
code 22. Within these groups n; = 0,1,2,... is used to
distinguish states of increasing mass. These states are flagged
using n = 9. It is to be expected that these numbers will
evolve as the nature of the states are elucidated. Codes are
assigned to all mesons which are listed in the one-page table
at the end of the Meson Summary Table as long as they have
a prefered or established spin. Additional heavy meson states
expected from heavy quark spectroscopy are also assigned
codes.

The numbering of baryons is again guided by the nonrelativistic
quark model, see Table 14.6.

a. The numbers specifying a baryon’s quark content are such
that in general ng, > ngy > ngs.

b. Two states exist for J = 1/2 baryons containing 3 different
types of quarks. In the lighter baryon (4, =, (2,...) the light
quarks are in an antisymmetric (J = 0) state while for
the heavier baryon (EO,E’, 2',...) they are in a symmetric
(J = 1) state. In this situation ng, and ng, are reversed for
the lighter state, so that the smaller number corresponds to
the lighter baryon.

c. At present most Monte Carlos do not include excited baryons
and no systematic scheme has been developed to denote
them, though one is foreseen. In the meantime, use of the
PDG 96 [5] numbers for excited baryons is recommended.

d. For pentaquark states n = 9, nynrng ng, gives the four
quark numbers in order ny > ny, > ng; > ng,, ng; gives the
antiquark number, and ny = 2J + 1, with the assumption
that J = 1/2 for the states currently reported.

. The gluon, when considered as a gauge boson, has official number

21. In codes for glueballs, however, 9 is used to allow a notation
in close analogy with that of hadrons.

. The pomeron and odderon trajectories and a generic reggeon

trajectory of states in QCD are assigned codes 990, 9990, and 110
respectively, where the final 0 indicates the indeterminate nature
of the spin, and the other digits reflect the expected “valence”
flavor content. We do not attempt a complete classification of all
reggeon trajectories, since there is currently no need to distinguish
a specific such trajectory from its lowest-lying member.

. Two-digit numbers in the range 21-30 are provided for the

Standard Model gauge bosons and Higgs.

Codes 81 100 are reserved for generator-specific pseudoparticles
and concepts.

The search for physics beyond the Standard Model is an active
area, so these codes are also standardized as far as possible.

a. A standard fourth generation of fermions is included by
analogy with the first three.

b. The graviton and the boson content of a two-Higgs-doublet
scenario and of additional SU(2)xU(1) groups are found in
the range 31-40.

c. “One-of-a-kind” exotic particles are assigned numbers in the
range 41-80.

d. Fundamental supersymmetric particles are identified by
adding a nonzero n to the particle number. The superpartner
of a boson or a left-handed fermion has n = 1 while the
superpartner of a right-handed fermion has n = 2. When
mixing occurs, such as between the winos and charged
Higgsinos to give charginos, or between left and right
sfermions, the lighter physical state is given the smaller basis
state number.

e. Technicolor states have n = 3, with technifermions treated
like ordinary fermions. States which are ordinary color
singlets have n, = 0. Color octets have n, = 1. If a state
has non-trivial quantum numbers under the topcolor groups
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SU(3)1 x SU(3)2, the quantum numbers are specified by QUARKS DIQUARKS
tech,ij, where ¢ and j are 1 or 2. ny, is then 2i + j. The

coloron, Vg, is a heavy gluon color octet and thus is 3100021. d 1 (dd): 1103
f. Excited (composite) quarks and leptons are identified by u § (ud)o 2101
setting n = 4. i 1 (ud)q 2103
g. Within several scenarios of new physics, it is possible to b 5 (uu) 2203
have colored particles sufficiently long-lived for color-singlet
hadronic states to form around them. In the context of Z, (; (sd)o 3101
supersymmetric scenarios, these states are called R-hadrons, , (sd)1 3103
since they carry odd R-parity. R-hadron codes, defined here, ¢ 8 (su)o 3201
should be viewed as templates for corresponding codes also LEPTONS (su)1 3903
in other scenarios, for any long-lived particle that is either _
) . e 11 (ss)h 3303
an unflavored color octet or a flavored color triplet. The 12
R-hadron code is obtained by combining the SUSY particle Ve_ (cd)o 4101
code with a code for the light degrees of freedom, with as K 13 (ed)r 4103
many intermediate zeros removed from the former as required M 14 (cu)o 4201
to make place for the latter at the end. (To exemplify, a P 15
sparticle n00000n; combined with quarks ¢; and g2 obtains vy 16 (cu)y 4203
code n00ngng ng,n.) Specifically, the new-particle spin - 17 (es)o 4301
decouples in the limit of large masses, so that the final n v 18 (es)1 4303
digit is defined by.the spin state of th'e vhglvit—quark system (co)1 4403
1zjm}llone. An appropriate number of ng digits is used to deﬁpe EXCITED (bd)o 5101
e ordinary-quark content. As usual, 9 rather than 21 is PARTICLES
used to denote a gluon/gluino in composite states. The sign e 4000001 (bd)1 5103
of the hadron agrees with that of the constituent new particle o 4000002 (bu)g 5201
(a color triplet) where there is a distinct new antiparticle, o 4000011 (bu)1 5203
and else is defined as for normal hadrons. Particle names are o 4000012 b 5301
R with the flavor content as lower index. A non-exhaustive € Ebsio ‘5)303
list of R-hadron codes is given below. $)1
12. Occasionall i i e Bos0 (be)o 5401
. y program authors add their own states. To avoid HIGGS BOSONS
confusion, these should be flagged by setting nn, = 99. g (9) 21 (be)1 5403
13. Concerning the non-99 numbers, it may be noted that only ~ 929 (bb)1 5503
quarks, excited quarks, squarks, and diquarks have ng, = 0; only 20 93
diquarks, baryons (including pentaquarks), and the odderon have W o4 TECHNICOLOR
ng, # 0; and only mesons, the reggeon, and the pomeron have 10/ F0 95 PARTICLES
ng, =0 and ng, # 0. Concerning mesons (not antimesons), if ng, v/ Hy 70 3000111
is odd then it labels a quark and an antiquark if even. z'/23 32 LfCh
14. Nuclear codes are given as 10-digit numbers £10LZZZAAAI. z"73 33 Ttech 3000211
For a (hyper)nucleus consisting of n, protons, n, neutrons and W’/H'/+ 34 oy 3000221
ny A’s, A =np +np +ny gives the total baryon number, Z = n, 2 70 3100221
the total charge and L = n,4 the total number of strange quarks. HO/HS 35 BeCh
I gives the isomer level, with I = 0 corresponding to the ground AO/Hg 36 Ptech 3000113
state and I > 0 to excitations, see [9], where states denoted HY 37 ngch 3000213
m,n,p,q translate to I = 1 — 4. As examples, the deuteron W0 3000223
is 1000010020 and 235U is 1000922350. To avoid ambiguities, tech
nuclear codes should not be applied to a single hadron, like p, n Vs 3100021
or /10, where quark-contents-based codes already exist. ﬂ'tlech,zz 3060111
Tongy 3160111
This text and lists of particle numbers can be found on the Ptech,11 3130113
WWVV- [6]. Tl}e StdHep Montfe Carlo standardization project [7] Prech,12 3140113
maintains the list of PDG particle numbers, as well as numbering
schemes from most event generators and software to convert between Prech,21 3150113
the different schemes. Ptech,22 3160113
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R-HADRONS
0

Ry 1000993
0

R 1009113

RT_ 1009213
gud
0

RS 1009223
0

R e 1009313
+

Ri 1009323
0

R 1009333

RS,y 1091114
0

RS 4q 1092114
+

Riq 1092214
++

REF ., 1092224

Ry 4 1093114
0

R) 4 1093214
+

R, 1093224

R:.., 1093314
gss
0

RY., 1093324

Rg ., 1093334
+

RM 1000612

RY _ 1000622
t1u

RT_ 1000632
t1s

RY 1000642
tic

RT_ 1000652
t1b
0

RY . 1006113
+

Rzlu 0o 1006211

RT 1006213
tiudy

RIT 1006223

0

RY 4 1006311
0

Rzls 0 1006313

RT 1006321
t1suqg

RT 1006323
t1suy

RY 1006333
t1ss1

SUSY

PARTICLES
dy, 1000001
ur, 1000002
S, 1000003
cr, 1000004

b1 1000005
131 1000006

e, 1000011
P 1000012
ip 1000013

7, 1000014
77 1000015%
7, 1000016

dr 2000001
urp 2000002
Srg 2000003
CRr 2000004

bo 2000005
ty 2000006

¢p 2000011
i 2000013
7, 2000015%
7 1000021

XY 1000022°
X3 1000023°
X7 1000024
X3 1000025°
X7 1000035°
X3 1000037

G 1000039
SPECIAL
PARTICLES

G (graviton) 39
RO 41
LQ¢ 42
reggeon 110
pomeron 990
odderon 9990

for MC internal
use 81 100

LIGHT I =1 MESONS
0

m 111
at 211
a(980)° 9000111
an(980)F 9000211
7(1300)° 100111
7(1300)* 100211
ap(1450)° 10111
ap(1450)* 10211
7(1800)° 9010111
7(1800)F 9010211
p(770)0 113
p(770)T 213
b1 (1235)° 10113
b1(1235)* 10213
a1(1260)° 20113
a1(1260)* 20213
71(1400)° 9000113
71(1400)F 9000213
p(1450)0 100113
p(1450)F 100213
71(1600)° 9010113
71(1600)F 9010213
a1(1640)° 9020113*
a1(1640)* 9020213*
p(1700)° 30113
p(1700)* 30213
p(1900)° 9030113*
p(1900) 9030213*
p(2150)0 9040113*
p(2150)F 9040213*
a2(1320)° 115
a(1320)* 215
m2(1670)° 10115
mo(1670) 10215
a2(1700)° 9000115*
az(1700)* 9000215*
72(2100)° 9010115*
m2(2100)F 9010215*
p3(1690)0 117
p3(1690)T 217
03(1990)° 9000117
p3(1990)* 9000217
p3(2250)0 9010117
p3(2250)F 9010217
a4(2040)° 119
a4(2040)* 219

LIGHT I = 0 MESONS
(uw, dd, and s5 Admixtures)

n 221
1 (958) 331
f0(600) 9000221
£0(980) 9010221
7(1295) 100221
£0(1370) 10221
n(1405) 9020221
n(1475) 100331
£0(1500) 9030221
fo(1710) 10331
n(1760) 9040221*
£0(2020) 9050221*
£0(2100) 9060221*
£0(2200) 9070221*
n(2225) 9080221*
w(782) 223
$(1020) 333
h1(1170) 10223
£1(1285) 20223
h1(1380) 10333
£1(1420) 20333
w(1420) 100223
£1(1510) 9000223
h1(1595) 9010223
w(1650) 30223
$(1680) 100333
F2(1270) 225
f2(1430) 9000225
£5(1525) 335
f2(1565) 9010225
f2(1640) 9020225
n2(1645) 10225
£2(1810) 9030225
n2(1870) 10335
£2(1910) 9040225
£2(1950) 9050225
£2(2010) 9060225
f2(2150) 9070225
£2(2300) 9080225
£2(2340) 9090225
w3 (1670) 227
$3(1850) 337
£4(2050) 229
£7(2220) 9000229

£4(2300) 9010229
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STRANGE CHARMED LIGHT BOTTOM
MESONS MESONS cc MESONS BARYONS BARYONS
K9 130 Dt 411 7¢(1S) 441 P 2212 A9 5122
0
K9 310 D 421 xeo(1P) 10441 n 2112 - 5112
S % + b
Dj(2400 10411 ++
K° 311 2( )0 1¢(25) 100441 §+ 2224 ) 5212
K+ 321 Dj(2400)7 10421 J/(1S) 443 2214 +
(8001 . +(2010)+ v A0 2114 b 5222
K(800) 9000311 D*(2010) 413 he(1P) 10443 A 1114 T 5114
Kj(800)f  9000321*  D*(2007)° 423 (1P) 20443 :
i Xel 37+0 5214
K (1430)0 10311 D, (2420) 10413 »(28 100443 STRANGE b
0 0 ¥(25) BARYONS o 5224
K7 (1430)* 10321 D1(2423) 10423 G(37T70) 30443 A 3192 = aim
K(1460)° 100311 Di(H) . 20413 $(4040) 9000443 st 3222 -
K (1460)* 100321 D1(24301 20423 V(4160) 9010443 0 3912 = 5232
K(1830)°  9010311* D2'(2460)0 415 $(4415) 9020443 g* N g;;id = 5312
x * —
K(1830)T  9010321* D35(2460) 425 Ye2(1P) 445 o0 3y14d E0 5322
Ki(1950)°  9020311* Df 431 xc2(2P)  100445* o= 31144 ZT 5314
K3(1950)t  9020321* D (2317)% 10431 E 3322 =0 534
K*(892)° 313 Dyt 433 bb MESONS =, 81 Q- 5332
=0 33244 b
K (892)F 323 Dy1(2536)F 10433 (1) 551 SN e o 53
K1(1270)° 10313 D,1(2460)" 20433 Xeo(LP) 10551 0~ 3334 =0 5142
C
K (1270) 10323 2(2573)T 435 (25) 100551 ot Eod9
K, (1400)° 20813 x(2P) 110551 CHARMED b
n BOTTOM m(35) 200551 BARYONS =0 5412
K1 (1400) 20323 pps i
: 0 MESONS wo(3P) 210551 A2 4122 b 5422
K*(1410) 100313 Bi 511 7015) 553 Tt 4222 =0 5414
K*(1410)+ 100323 B 521 o+ 4912 be
Ki(1650)° 9000313 B3 10511 hy(1P) 10553 I S 5, 5424
0
K1(1650)T  9000323*  By" 10521 X1 (1P) 20553 st 4994 Qo 5342
K*(1680)° 30313 B0 513 11 (1D) 30553 E; 214 Q0 5432
K*(1680)* " B*t . 523 T(25) 100553 o i 20 5434
K3(1430)0 315 Bi(L) 10513 hy(2P) 110553 _C 1930 o 5442
K*(1430)+ 325 Bl (L)+ 10523 Xbl(zp) 120553 :f) Q*_’; 5444
2 B (H)O 20513 =c 4132 bee
0 1 T1(2D) 130553 — = el
K>(1580) 9000315 Bi(H)* 20523 S 4322 St
N 1 7(39) 200553 =0
K>(1580) 9000325 +0 =10 4312 E 5522
Ko(1770)° 10315 b3 o hw(3P) 210553 =t 4304 = 5514
2 *+ =7 =
Ko(1770)+ 10325 B, o2 X (3P) 220553 =0 =0
2(1770) 5 0 = 4314 z 5524
o 0 B! 531 1(45) 300553 < bb
5(1820) 20315 B0 10531 20 4332 Q- 5532
Ky(1820)* 90395 0 T(10860) 9000553 00 4334 bb
2 : e
g 0 . B0 533 T(11020) 9010553 ‘e y, 5534
K3(1980)° 9010315 B 10533 =% 4412 2 5542
* + % 31( ) sz(lp) 555 —+ bbe
K3(1980)" 9010325 B 20533 =5 4422 00 5544
0 . s1(H) M2(1D) 10555 et bhe
K9(2250) 9020315 " e = 4414 "
° . B2 535 15(1D) 20555 —c Oy, 5554
K + .
2(2250) 9020325 ? =X 4424
K%(1780)° 317 Be o4l Xe2(2P) 100555 Qf 4432
Ki L7801+ o B 10541 np2(2D) 110555 Qii 434
K3 (2 ) )0 L031 Bt 543 1»(2D) 120555 it s
K3E2§28;+ 281822; Be(L)T 10543 (BP) 200555 N
s 0 Bo(H)T 20543 73(1D) 557 PENTAQUARKS
K}(2045) 319 oy 7e(9D
K3 (2045)+ . B 545 3(2D) 100557 o+ 9991132
2500, o 9331122
K4(2500 9000319
K4(2500)* 9000329

Footnotes to the Tables:

*) Numbers or names in bold face are new or have changed since the 2004 Review [8].

a) Particulary in the third generation, the left and right sfermion states may mix, as shown.
The lighter mixed state is given the smaller number.

b) The physical X states are admixtures of the pure 7, ZO, Wﬂ INJO, INIS, and H states.

¢) In this draft we have only provided one generic leptoquark code. More general classifications
according to spin, weak isospin and flavor content would lead to a host of states, that could be
added as the need arises.

d) ¥* and =* are alternate names for ¥'(1385) and =(1530).
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35. CLEBSCH-GORDAN COEFFICIENTS, SPHERICAL HARMONICS,
AND d FUNCTIONS

J J
Note: A square-root sign is to be understood over every coefficient, e.g., for —8/15 read —,/8/15. Notation: M M
m m
1/2x1/2 | [ 0 3 - .
Yy =/ -—cosf 5/2 m; m ;
ltr2+1/2] 1] o o 1 7r 2x1/2 l+sr2] 52 3,2 1 Mz | Coefficients
+1/2 -1/2]1/2 1/2] 1 3 _ 2512 1|3/2+43/2
-1/2 +1/2]1/2-1/2f-1 V] = —/— sinfei +2 —1/2| 1/5 as5] 52 32
|-12-1/2] 1 8 +1 +1/2| 4/5-1/5|+1/2 +1/2
0 5 (3 o 1 +1-1/2| 2/5 3/5| 5/2 3/2
Yy = *(5 cos“ 6 — 5) 0+1/2| 3/5 —2/5|-1/2 —-1/2
1x1/2 |32 4
+3/2] 3/2 172 5 0-1/2| 3/5 2/5| 5/2 3/2
[+1 +1/2] 112 +1/2 o =— 22 4in @ cos § ei® -1+1/2| 2/5-3/5]-3/2 -3/2
87 2 -1-1/2| 4/5 1/5] 5/2
+1-1/2| 173 273 3/2 172 3/2%X1/2
0+1/2| 2/3 -1/3|-1/2-1/2 o1 [15 5 o [Grz 2 +i Jj é SRV R e R 7A) 7
9 . i + o -
0-1/2| 2/3 1/3]| 32| Yo = RV e 212 o
—1+1/2| 1/3-2/3|-3/2 +3/2 -1/2|1/4 374 2 1
ox1[3 +1/2 +1/23/4-1/4] 0 0
X -1-1/2| 1 5/2
sl 3 2 3/2%X1 voal 52 30 +1/2-1/2|1/2 172 2 1
[+2 +1] 1]+2 +2 [ i3z 32 -1/2+1/2|1/2 -1/2) -1 -1
+2 0l1/3 2/3 3 2 1 3372 0| 2/5 351 572 3/2 1/2 -1/2 -1/2|3/4 1/4| 2
+1 +112/3 -1/3] +1 41 +1 +1/2 +1| 3/5 —2/5|+1/2 +1/2 +1/2 —-3/2 +1/2| 1/4-3/4]-2
+2 -1[1/15 1/3 3/5 +3/2-1]|1/10 2/5 1/2 |—3/2—1/2 1
1x1 |2 +1 0|8/15 1/6-3/10| 3 2 1 +1/2 0| 3/5 1/15 -1/3| 5/2  3/2 1/2
+2] 2 1 0+1| 2/5 -1/2 1/10| o 0 0 -1/2+1(3/10 —8/15 1/6|-1/2 -1/2 -1/2
+1 41| 1]+1 +1
[ +1-1(1/5 1/2 3/10 +1/2 -1{3/10 8/15 1/6
+1 of1/2 12 2 1 o 0 0|3/5 0 -2/5 30 2 1 —1/2 0| 3/5 -1/15 -1/3| 5/2 3/2
0+1f1/2-1/2] o o o —1+1|1/5 -1/2 3/10|] -1 -1 -1 -3/2 +1|1/10 -2/5 1/2}-3/2 -3/2
+1-1[1/6 1/2 1/3 0-1 2/5 1/2 1/10 -1/2-1| 3/5 2/5] 5/2
0 of2/3 o-1/3] 2 1 -1 o0|8/15 -1/6-3/10| 3 2 -3/2 0| 2/5 =3/5 }5/2
-1+1|1/6-1/2 1/3|-1 -1] _ —2 +1|1/15 -1/3  3/5| -2 -2 [32-1]
0-1f1/2 1/2| 2 -1-1{2/3 1/3] 3
Y, = (-D)™mY |- ofz-12]-2 2 o0|1/3-2/3]3 (j1i2mima|jijaJ M)
11 1| e _ [ 47 i —2-1] 1 _ Tt —jo i s P
I o=\ g1 Y"e mo | = (=172 (jajimama | ja1 J M)
J _(_1ym—-m' 3] _ g7 3/2%x3/21 3 1/2 [ 1+ cosf
dm’,m_( 1) dm,m’_ —m,—m/ +31 3 2 d(lJO:COSQ dl/21 g =COS5 dh:—
[+3/2 +3/2] 1]+2 +2 ’ /2,1/ 2 , 2
2X3/2 |12 — +3/2+1/2| 172 12| 3 2 1 a2 _ Sinﬂ al = sin @
F2+32] 1ls2+s2 tl/2+43/2] 1/2-1/2] +1 41  +1 1/2,-1/2 2 1,0 2
+3/2-1/2 [1/5 1/2 3/10
+2+1/2| 3/7 4/7) 7/2  5/2 3/2 1724172 |35 0 2275 ) T o al = 1—cosf
+1+3/2| 4/7-3/743/2  +3/2 +3/2 —1/2+3/2 |1/5 -1/2 3/10 0 0 0 0 L-17 "o
+2-1/2| 1/7 16/35 2/5 +3/2 —3/2 |1/20 1/4 9/20 1/4
+1+1/2| 4/7 1735 -2/5| 7/2  5/2 3/2  1/2 12 —1/2 |9/20 174 -1/20-1/4
2% 2 i — 0+3/2| 2/7-18/35 1/5] +1/2 +1/2 +1/2 +1/2 105 1175 (920 —1/a-1720 14| 3 2 T
N
ez 13 Ii —ig 121//:::;? gﬁi 2/2 3%(5) —3/2 +3/2 |1/20 —1/4 9/20-1/4] -1 -1 -1
- - +1/2-3/2| 1/5 1/2 3/10
+i +§ 1/2 1@ ;1 ; 2 0+1/2|18/35 -3/35 -1/5 1/5| 7/2 s5/2 372 12| |15 9535 0 —assl 3 o
+1+2|1/2-1/2] + 2+ -1 +3/2| 4/35-27/70 2/5 —1/10 | -1/2 -1/2-1/2 -1/2 324172 | 1/5-1/2 3710 -2 -3
+2 0[3/14 1/2 2/7 +1 —3/2| 4/35 27/70 2/5 1/10 — _
+1 41\ 4/7 0-3/7 4 3 2 1 0 -1/2 18/35 3/35-1/5 —1/5 ég jg 1;;1;2 j
0 +2(3/14-1/2 2/7] +1 +1 +1  +1 -1 +1/2 [12/35 -5/14 0 3/10) 7/2  5/2 3/2
2 —1(1/12 3/10 3/7 1/5 -2 +3/2 | 1/35 -6/35 2/5 —2/5|-3/2 -3/2-3/2 F32-32] 2
+1 0| 3/7 1/5-1/14-3/10 0 —=3/2| 2/7 18/35 1/5
0 +1| 3/7 -1/5-1/14 3/10 4 3 2 10 1 —1/2| 47 ~1/35-2/5] 772 s/2
-1 +2 |1/14-3/10 3/7 -1/5 0 0o o0 0o 0 2 w12 | 1/7-16/35 25| —s/2 —s/2
+2 -2 | 1/70 1/10 2/7 2/5 1/5 —1-3/2| 4/7 3/7) 7/2
+1 -1 | 8/35 2/5 1/14-1/10 -1/5 —2-1/2 3/7 —4/7F7/2
0 0 [18/35 0 -2/7 0 1/5
-1 +1 | 8/35 -2/5 1/14 1/10 -1/5 4 3 2 1 -2-3/2| 1
3/2 1+ cosf [4 -2 +2 | 1/70-1/20 2/7 -2/5 1/5) -1 -1 -1 -1
d,;> ., =———cos=
3/2,3/2 2 2 +1 -2|1/14 3/10 3/7 1/5
1+ cosf\2 0 -1| 3/7 1/5-1/14-3/10
a3 7\/31 +cosf n? d3, = (;) -1 0| 3/7 -1/5-1/14 3/10| 4 3 2
3/2,1/2 2 2 ’ 2 -2 +1|1/14 -3/10 3/7 -1/5| -2 -2 -2
3/2 1—cosf 0 9 l+4cosd 0 -2[3/14 1/2 2/7
a3/ =v3———"cos= d5,=———-—sind -1 -1|4/7 o0-3/7] & 3
3/2,—1/2 2 2 ' 2
-2 0l3/14 -1/2 2/7] -3 -3
: 1—cosf . 0 . 6 . . g _ 1+cosd
a3 =  §in- d§0:£51n29 dl,i—T(Qwﬁg*l) -1 —2(1/2 1/2] 4
3/2,-3/2 2 92 ) 4 -2 -1(1/2-1/2]-4
3/2 3cosf —1 [ 9 1—cosf . q2. = 3 . -2 2] 1
2P Z - 7 = —4/= sinf cosf
dl/2,1/2 ) cos 3 (23277l 3 sin @ 1,0 2
3/2 ~ 3cosf+1 . 0 9 (1 —cosf\2 9 _ 1—cosé 2 (3 9 1
dl/2,—1/2_7# s111§ d2772— —a dl,—l —T(Qcost‘)+l) (1070— icos 075

Figure 35.1: The sign convention is that of Wigner (Group Theory, Academic Press, New York, 1959), also used by Condon and Shortley (The
Theory of Atomic Spectra, Cambridge Univ. Press, New York, 1953), Rose (Elementary Theory of Angular Momentum, Wiley, New York, 1957),
and Cohen (Tables of the Clebsch-Gordan Coefficients, North American Rockwell Science Center, Thousand Oaks, Calif., 1974). The coefficients
here have been calculated using computer programs written independently by Cohen and at LBNL.
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36.SU(3) ISOSCALAR FACTORS AND REPRESENTATION MATRICES

Written by R.L. Kelly (LBNL).

The most commonly used SU(3) isoscalar factors, corresponding
to the singlet, octet, and decuplet content of 8 ® 8 and 10 ® 8, are
shown at the right. The notation uses particle names to identify the
coefficients, so that the pattern of relative couplings may be seen
at a glance. We illustrate the use of the coefficients below. See J.J
de Swart, Rev. Mod. Phys. 35, 916 (1963) for detailed explanations
and phase conventions.

AV is to be understood over every integer in the matrices; the
exponent 1/2 on each matrix is a reminder of this. For example, the
Z — 0K element of the 10 — 10 ® 8 matrix is —v/6/v/24 = —1/2.

Intramultiplet relative decay strengths may be read directly from
the matrices. For example, in decuplet — octet + octet decays, the
ratio of 2* — ZK and A — N partial widths is, from the 10 — 8 x 8
matrix,

(2 —2K) 12

TGS N =3 % (phase space factors) . (36.1)
Including isospin Clebsch-Gordan coefficients, we obtain, e.g.,
D~ - 2% ~)  1/2 12 3
e - 57K 172 X p.s.f.= - X p.s.f. (36.2)

T(A+ = prd)  2/3 <6 P57

Partial widths for 8 -+ 8 ® 8 involve a linear superposition of 8;
(symmetric) and 89 (antisymmetric) couplings. For example,

2
ox = /9 /3
(=" - &En) ~ <— 20 9 + 2 gz> .

The relations between g1 and gz (with de Swart’s normalization)
and the standard D and F couplings that appear in the interaction
Lagrangian,

(36.3)

% =—V2DTr({B,BYM)+2F Tr([B,B|M) , (36.4)
where [B, B] = BB — BB and {B, B} = BB + BB, are
V30 V6
D—ﬁgly F—ﬁ£72~ (36.5)
Thus, for example,
[(5* = 5n) ~ (F = D)? ~ (1 —20a)2 , (36.6)

where a = F/(D + F). (This definition of « is de Swart’s. The
alternative D/(D + F), due to Gell-Mann, is also used.)

The generators of SU(3) transformations, A, (a = 1, 8), are 3 x 3
matrices that obey the following commutation and anticommutation
relationships:

[/\a, )‘b] = /\a/\b - /\b)‘a = 2ifabc/\c (36.7)

4
{Aas A} = Ak + Mpda = g0ap] + 2dgpAc (36.8)

where I is the 3 x 3 identity matrix, and d,; is the Kronecker delta
symbol. The fgp. are odd under the permutation of any pair of
indices, while the d,;. are even. The nonzero values are

1+8®8
(A) = (NK »r An EK) L (2 3 -1 —2)'/?
V8
8 »8®8
N Nr Np YK AK 9 -1 -9 —1y\ /2
z NK S Ax Sy EK | 1 [ -6 0 4 4 —6
A NK Sz Ay 5K |~ 20| 2 -12 -4 -2
) YK AR 5z =y 9 -1 -9 -1
8 >8®8
N Nr Ny IK AK 333 —3\/?
z NK S Ax Ep EK | 1 [2 8 0 0 -2
A NK ¢ Ay EK | 12| 6 0 0 6
) YK AK Er Zn 3 33 -3
1058%8
A N SK 6 6 1/2
x NK ;g Ax Sy 2K | 1 [ -2 2 -3 3 2
) YK AK = =y “yizl 3 -3 33
[0} ZK 12
85108
N Ar K -12 3 1/2
DN N AK Xr Xnp EK _ 118 -2 -3 2
A Tr 5K V15 -9 6
) YK Ex 5n QK 3 -3 -3 6
1051028
A Ar Ap K 15 3 —6 1/2
|, | AK =x n 2K 1 (8 8 0 -8
=z YK Ex 5n QK T 24l 3 -3 -6
0] EK 12 —12
|
abe Fabe abc dape abc  dype
123 1 118 1/V/3 | 355  1/2
147 1/2 146  1/2 366 —1/2
156 —1/2 157 1/2 317 —1/2
246 1/2 228 1/V/3 | 448 —1/(2V3)
257 1/2 247 —1/2 558  —1/(2V/3)
345 1/2 256 1/2 668 —1/(2v/3)
367 —1/2 338 1/V3 | T8 -1/(2V3)
458  /3/2 344 1/2 888 —1/3
678  V/3/2
The A\,’s are
0 1 0 0 —i 0 1 0 0
M=[1 0 0) =i 0 0)x=[0-1 0
0 0 0 0 0 0 0 0 0
0 0 1 0 0 —i 0 0 0
M={0 0 0] X={0 0 0]x=(0 0 1
1 0 0 i 0 0 0 1 0
(0 0 0) 1 <1 0 0)
M= 0 0 —i =—7|0 1 0
0 i V3\o 0 -2

Equation (36.7) defines the Lie algebra of SU(3). A general d-
dimensional representation is given by a set of d x d matrices satisfying
Eq. (36.7) with the f,;. given above. Equation (36.8) is specific to the
defining 3-dimensional representation.
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37.SU(n) MULTIPLETS AND YOUNG DIAGRAMS

Written by C.G. Wohl (LBNL).

This note tells (1) how SU(n) particle multiplets are identified or
labeled, (2) how to find the number of particles in a multiplet from its
label, (3) how to draw the Young diagram for a multiplet, and (4) how
to use Young diagrams to determine the overall multiplet structure of
a composite system, such as a 3-quark or a meson-baryon system.

In much of the literature, the word “representation” is used where
we use “multiplet,” and “tableau” is used where we use “diagram.”

37.1. Multiplet labels

An SU(n) multiplet is uniquely identified by a string of (n—1)
nonnegative integers: (a, 3,7,...). Any such set of integers specifies
a multiplet. For an SU(2) multiplet such as an isospin multiplet, the
single integer « is the number of steps from one end of the multiplet
to the other (i.e., it is one fewer than the number of particles in the
multiplet). In SU(3), the two integers a and 3 are the numbers of
steps across the top and bottom levels of the multiplet diagram. Thus
the labels for the SU(3) octet and decuplet

-1 [e——— 33—
- 1- ; ;

=0

are (1,1) and (3,0). For larger n, the interpretation of the integers
in terms of the geometry of the multiplets, which exist in an
(n—1)-dimensional space, is not so readily apparent.

The label for the SU(n) singlet is (0,0,...,0). In a flavor SU(n),
the n quarks together form a (1,0,...,0) multiplet, and the n
antiquarks belong to a (0,...,0,1) multiplet. These two multiplets
are conjugate to one another, which means their labels are related by

(@,Bye) & (s Bra).

37.2. Number of particles

The number of particles in a multiplet, N = N(a,f3,...), is given
as follows (note the pattern of the equations).
In SU(2), N = N(a) is
Nl ;r ) (37.1)
In SU(3), N = N(a,f) is
o@D (D) (@a+pr) )
1 1 2
In SU(4), N = N(a,3,7) is
N = (a+l) (B+1) (v+1) (a+B+2) (B+7+2) (a+B+7+3)
Tl 1 1 2 2 '
(37.3)

Note that in Eq. (37.3) there is no factor with (o + v + 2): only a
consecutive sequence of the label integers appears in any factor. One

more example should make the pattern clear for any SU(n). In SU(5),
N = N(a, 3,7,0) is

o (et (B+1) (y+1) (6+1) (a4f+2) (B++2)
1 1 1 1 2 2
y (A/+z25+2) ) (a+ﬂ;—’7+3) . (ﬂ+7;—5+3) ) (a+,3+;/+6+4) (37.4)

From the symmetry of these equations, it is clear that multiplets that
are conjugate to one another have the same number of particles, but
so can other multiplets. For example, the SU(4) multiplets (3,0,0) and
(1,1,0) each have 20 particles. Try the equations and see.

37.3. Young diagrams

A Young diagram consists of an array of boxes (or some other
symbol) arranged in one or more left-justified rows, with each row
being at least as long as the row beneath. The correspondence between
a diagram and a multiplet label is: The top row juts out a boxes to
the right past the end of the second row, the second row juts out 3
boxes to the right past the end of the third row, etc. A diagram in
SU(n) has at most n rows. There can be any number of “completed”
columns of n boxes buttressing the left of a diagram; these don’t affect
the label. Thus in SU(3) the diagrams

represent the multiplets (1,0), (0,1), (0,0), (1,1), and (3,0). In any
SU(n), the quark multiplet is represented by a single box, the
antiquark multiplet by a column of (n—1) boxes, and a singlet by a
completed column of n boxes.

37.4. Coupling multiplets together

The following recipe tells how to find the multiplets that occur
in coupling two multiplets together. To couple together more than
two multiplets, first couple two, then couple a third with each of the
multiplets obtained from the first two, etc.

First a definition: A sequence of the letters a,b,c, ... is admissible
if at any point in the sequence at least as many a’s have occurred as
b’s, at least as many b’s have occurred as ¢’s, etc. Thus abed and aabch
are admissible sequences and abb and acbh are not. Now the recipe:

(a) Draw the Young diagrams for the two multiplets, but in one of
the diagrams replace the boxes in the first row with a’s, the boxes in
the second row with b’s, etc. Thus, to couple two SU(3) octets (such
as the m-meson octet and the baryon octet), we start with B:‘ and

Q@ The unlettered diagram forms the upper left-hand corner of all

the enlarged diagrams constructed below.

(b) Add the a’s from the lettered diagram to the right-hand ends
of the rows of the unlettered diagram to form all possible legitimate
Young diagrams that have no more than one a per column. In general,
there will be several distinct diagrams, and all the a’s appear in each
diagram. At this stage, for the coupling of the two SU(3) octets, we
have:

P PR

(c¢) Use the b’s to further enlarge the diagrams already obtained,
subject to the same rules. Then throw away any diagram in which the
full sequence of letters formed by reading right to left in the first row,
then the second row, etc., is not admissible.

(d) Proceed as in (¢) with the ¢’s (if any), etc.
The final result of the coupling of the two SU(3) octets is:

aa —
4 ® 5
H e e e e e
b ab a b a
b b a ab
Here only the diagrams with admissible sequences of a’s and b’s and
with fewer than four rows (since n = 3) have been kept. In terms of
multiplet labels, the above may be written
(LD ®(L1) = (2.2)@ (3,0 (0,3) o (L,1) e (1,1) @ (0,0) .
In terms of numbers of particles, it may be written
8x8=27T010010®8®8® 1.

The product of the numbers on the left here is equal to the sum on
the right, a useful check. (See also Sec. 14 on the Quark Model.)



