
Behavior Research Methodt & Instrumentation
1977, Vol. 9 (6), 559

FORTRAN subroutines for random
sampling without replacement

Table 2
FORTRAN Subroutine for a Random Selection

of K Objects Out of N (Knuth, 1969)

BERT F. GREEN, JR.
Johns Hopkins University, Baltimore, Maryland 21218

Table 1
FORTRAN Subroutine for a Random Permutation

of K Out of N Objects (Green, 1963)

Robertson (1977) recently reported an algorithm
and BASIC program for selecting K things from N
symbols without replacement. His algorithm was an
improvement on that of Schierer (1976). Actually,
algorithms reported by Green (1963) and Knuth (1969)
are considerably shorter and more efficient than either.
All of these programs except that of Knuth solve
the more general problem of producing a random
permutation of K symbols out of N. The user may
of course ignore the fact that the symbols are randomly
ordered as well as randomly selected, but the random
ordering is a natural by-product of the Green,
Robertson, and Schierer algorithms. Since the symbols
themselves do not enter the computation, they can be
any numerical or other binary codes, such as ASCII
characters (provided that each character is in a separate
word).

A FORTRAN subroutine for Green's (I 963)
algorithm is shown in Table 1. The input is an array, X,
of the N symbols, X(1), X(2), ... , X(N), plus the
two parameters, Nand K. The output is the rearranged
array, X, in which the first K symbols, X(I) ... X(K),
are the required permutation. The process is a loop
that is traversed K times. On the Ith cycle, a symbol
is selected at random from the (N - I + I) symbols
X(I) ... X(N). The selected symbol is exchanged with
X(I). Since the subroutine is so simple, some users
might prefer to use it in-line.

If the original order of symbols in the array is
arbitrary, or if the original order can be recovered when
needed, then the subroutine can be used repeatedly
to generate many permutations, without restoring X.
The output X from one CALL can be the input X on
the next CALL with no loss. All of the symbols are
still in X, though they are partially permuted. That
is not true of the Robertson (1977) and the Schierer
(1976) algorithms. For those, X must be restored
before the process can be repeated.

(Accepted for publication October 3, 1977.)

SUBROUTINE RANSAM (X,A,N,K)
DIMENSION X(N),A(K)
M=O
DO 50 J=I,N
L=INT «FLOAT (N-J+l» *RAN (0»+1
IF (L.GT. (K-M» GO TO 50
M=M+l
A(M) = X(J)
IF (M.GE.K) GO TO 99
CONTINUE
RETURN
END

07500
07600
07700
07g00
07900
08000
08100
08200
08300
08400 50
08500 99
08600

REFERENCES

Note-X it an input vector of values; it it unaltered by the
subroutine. A it an output vector ofselected values.

GREEN, B. F. Digital computers in research. New York:
McGraw-Hili, 1963.

KNUTH, D. The art of computer programming. Vol II.
Seminumerical Algorithms. Reading, Mass: Addison-
Wesley, 1969.

ROBERTSON, S. A. A BASIC program to produce random
samples without replacement. Behavior Research Methods
& Instrumentation, 1977, 9, 363-364.

SCHIERER, C. J. Routine to provide a random order for
counterbalanced variables. Behavior Research Methods &
Instrumentation, 1976, 8, 468.

If the original array cannot be modified, and if only
a random selection of K out of N is needed, without
random permutation, Knuth's (1969) algorithm is
efficient. It uses a single pass through the array, which
is convenient if the array is on tape. In the routine, the
probability of selecting the Ith object in the array is
adjusted depending on how many objects have already
been selected. Knuth gives a carefully detailed analysis of
the algorithm, which establishes the propriety of this
suspicious step. For reference, a FORTRAN subroutine
is shown in Table 2. A handy feature of the Knuth
algorithm is that the output symbols in A are in the
same order as the input items in X.

Each routine was timed on a DEC system-1090
as it generated 1,000 selections of 50 out of 100. The
results were 29.5 sec for Green (1963), 57.8 sec for
Knuth (1969), and 137.2 sec for a FORTRAN
equivalent of Robertson (1977). Of course, if each
selection is to be printed out, or used in some other
slow-moving event, such as a trial in a computer­
controlled psychological experiment, efficiency is of
little importance. However, if the routine is part of
a Monte Carlo study, or a simulation, efficiency is
vital.

SUBROUTINE PERMUT (X,N,K)
DIMENSION X(N)
DO 50 J=I,K
I=INT «FLOAT (N -1+1) *RAN (O»+J
T=X(J)
X(J)=X(I)
X(I)=T
RETURN
END

05000
05100
05200
05300
05400
05500
05600 50
05700
05800

559




