
Exact Solution of Large-Scale, Asymmetric
Traveling Salesman Problems

G. CARPANETO

Universit2i di Modena

M. DELL’AMICO

Politecnico di Milano

and

P. TOTH

University di Bologna

A lowest-first, branch-and-bound algorithm for the Asymmetric Traveling Salesman Problem is

presented. The method m based on the Ass~gnment Problem relaxation and on a subtour

elLm ma tzon branching scheme. The effectiveness of the algorithm derives from reduction proce-
dures and parametric solution of the relaxed problems associated with the nodes of the branch-

decision tree. Large-size, uniformly, randomly generated instances of complete digraphs with up
to 2000 vertices are solved on a DECstation 5000/240 computer in less than 3 minutes of CPU

time. In addition, we solved on a PC 486/33 no-wazt flow shop problems with up to 1000 jobs in
less than 11 mmutes and real-world stacker crane problems with up to 443 movements in less

than 6 seconds.

Categories and subject Descriptors: G.2, 1 [Discrete Mathematics]: Combinatorics—comb ma-
torial algorithms; G 22 [Discrete Mathematics]: Graph Theory—graph algorithms; path and

cu-cuit problems

General Terms: Algorithms

Additional Key Words and Phrases: Assignment problem, asymmetric traveling salesman prob-

lem, branch and bound, subtour elimination, reduction procedure

1. INTRODUCTION

Consider a complete digraph G = (V, A) with vertex set V = {1, n}, arc

set A={(i, j):i=V, j= V}, andacosta, j, associated with each arc (i, j) E

The work reported in this article was supported by M. U. R.S.T. (Italy) and by the Human Capital

and Mobility Project CHRX-CT93-O087 of the European Community.

Authors’ addresses: G. Carpaneto, Dipartimento dl Economia Politics, University di Modena,

Italy; M. Dell’Amico, Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy;

P. Toth, D. E. I. S., University di Bologna, Italy.

Permission to make digital/hard copy of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or commercial

advantage, the copyright notice, the title of the publication, and its date appear, and notice 1s

given that copying M by permission of ACM, Inc. To copy otherwise, to republish, to post on

servers, or to redistribute to lists, requires prior specific permission and/or a fee,

O 1995 ACM 0098-3500/95/1200-0394 $03,50

ACM TransactIons on Mathematical Software, Vol. 21, No. 4, December 1995, Pages 394-409,

Large-Scale, Asymmetric Traveling Salesman Problems . 395

A (a,,, = cc Vi ● V). We define a new graph G = (V’, A) with vertex set

V’={ul, ..., :P} G V and arc set A’ = {(ul, uz), (uz, u~),(IP.Ul)})} CA as a
tour (or Hamdtonian circuit) if p = n and a subtour if p < n. The cost of a

tour is given by the sum of the costs of its arcs. The Asymmetric Traveling

Salesman Problem (ATSP) is to find a tour with minimum cost Z*. The

problem is known to be NP-hard and has many important applications

(scheduling, distribution, wiring, FMS, . . .).

ATSP can be mathematically formulated as:

nn

(1)

subject to

~ x,,, = 1, j=l,n (2)
~=1

~ x,,, = 1, ~=1 ,....n (3)
j=l

x ,,j f= {0, 1}, i, J”=l,n (5)

where XZ ~ = 1, if arc (i, j) belongs to the optimal tour; x,, ~ = O otherwise.

Without loss of generality, we will assume that costs are nonnegative inte-

gers. Equations (l), (2), (3), and (5) define the well-known Assignment

Problem (Al?). Constraints (4) exclude subtours (loop included).

Many algorithms have been developed for the exact solution of ATSP. The

most-effective ones are the branch-and-bound methods proposed by Smith

et al. [1977], Carpaneto and Toth [1980], Balas and Christofides [1981], and

Pekny et al. [1991]; a survey of enumerative algorithms for the TSP is given

in Balas and Toth [1985]. A parallel algorithm has recently been proposed by

Miller and Pekny [1989] and Pekny et al. [1991]. As for sequential algorithms

the maximum size of uniformly, randomly generated for which many in-

stances have been solved is 5000, although single random instances with as

many as 500,000 vertices (but small cost ranges) have been solved by Miller

and Pekny [1991]. For the undirected graph case (Symmetric Traveling

Salesman Problem), a Euclidean instance with 2392 vertices has been solved

through a sequential branch-and-cut procedure, using facet-inducing linear

inequalities, in more than 27 hours on a CYBER 205 (see Padberg and

Rinaldi [1991]). A similar approach was recently presented by Applegate

et al. at the SIAM Conference, 1993. They solved instances with 3038 and

4461 vertices.

We present a sequential, lowest-first, branch-and-bound algorithm based

on the AP relaxation and a subtour elimination branching scheme. The

Fortran implementation of the algorithm is given in Carpaneto et al. [1995].

The effectiveness of the algorithm derives from reduction procedures and

ACM Transactions on Mathematical Software, Vol. 21, No. 4, December 1995

396 . G, Carpaneto et al.

parametric solution of the relaxed problems associated with the nodes of the

branch-decision tree. Large-size, uniformly, randomly generated instances of

complete digraphs with up to 2000 vertices are solved on a DECstation

5000/240 computer (with 16MB of main memory) in less than

3 minutes of CPU time. In addition, we solved on a PC 486/33 (with 8MB of

main memory) no-wait fZow shop problems (see Papadimitriou and Kanel-

lakis [1980]) with up to 1000 jobs in less than 11 minutes and real-world

stacker crane problems with up to 443 movements in less than 6 seconds.

According to our experience the DECstation 5000/240 is about two times

faster than the PC 486\33.

Finally, we note that the proposed approach is not useful for instances

where the asymmetric nature of the problem disappears (Symmetric and

Quasi Symmetric TSP). In particular many small (n < 100) instances in

TSPLIB are of this kind, so our code cannot solve them.

A preliminary version of this article has been presented at the 13th

AMASES Congress [Carpaneto et al. 1989].

2. ALGORITHM

The algorithm is derived from the lowest-first branch-and-bound procedure

TSP1 presented in Carpaneto and Toth [1980]. At each node h of the decision

tree TSP1 solves a Modified Assignment Problem (MAP~) defined by Eqs. (l),

(2), (3), (5), and the additional constraints associated with arc subsets E~ and
1~, where:

El, = {(ijj) ●A:x,, j is fixed to O} (excluded arcs);

Ik={(i, j)~A:xZ, j is fixed to 1} (included arcs).

If the optimal solution to MAPfi does not define a Hamiltonian circuit, and its

value LB, (giving the lower bound associated with node h) is less than the

current optimal solution value, say UB, then m descending nodes are gen-

erated from node h according to the following branching scheme (which

is a modification of the subtour elimination rule proposed by Bellmore and

Malone [1971]).

Let GI, G~ be the subtours defined by the optimal solution to MAP~,

where, for q = 1,. ... d, G~ = (V~, A~) with V~ = {r~,l, ..., r~,,(,}, A~ = {(r~,l,

)r~,z), (rq,2, rq,3 ,..., (r q,,,, r,, ,)}, and eq = number of vertices (and arcs) of

the q th subtour.
The subtour, say GP, having the minimum number of not-included arcs,

i.e., the subtour such that

m,. e { -1A, n~hl},~–lAP nlhl=rninq=l. ,d eq

is chosen for branching.

Let ~== {(sl, tl),.. ., (s~, tin)}= AP \ Ik be the subset of not-included arcs

of AP (the order of the arcs in A—is the same as that of the corresponding arcs

in AP). The subset of the excluded and included arcs associated with the jth

ACM TransactIons on Mathematical Software, Vol. 21, No 4, December 1995

Large-Scale, Asymmetric Traveling Salesman Problems . 397

descending node, say g(j), of node h is (j = 1,..., m):

E &’(J) =E~ U {(s~, tj)};

I go) =Ihu{(sL, tL):i=l,...,l} l}.

Each subset E~Lj), with j > 1, is enlarged by adding arc (t~ _ ~, SI) so as to

avoid subtours corresponding to paths containing included arcs.

The new approach differs from that presented by Carpaneto and Toth

[1980] mainly in the following respects:

(a) application at the root node of the branch-decision tree of a reduction
procedure so as to remove from G the arcs which cannot belong to an

optimal tour. In this way the original digraph G can be transformed into

a sparse one, say G = (V, A-), allowing the use of sparse cost-matrix

procedures for the solution of the MAPs associated with the nodes of the

branch-decision tree;

(b) the utilization of an efficient parametric techniq~e for the solution of the
M&s, allowing each iW4.P~ to be solved in 0(1 Al log n) time;

(c) the introduction of an effective data structure to store the information

associated with the nodes of the decision tree;

(d) the application at each node h of a connecting procedure to decrease the
number of subtours defined by the optimal solution to ikfflh.

2.1 Reduction Procedure

At the root node, say node O, of the branch-decision tree, the AP correspond-

ing to the original complete cost-matrix, (al, ~), is solved through the 0(n3)

primal-dual procedure CT(X$ presented in Carpaneto and Toth [1987]. Let

(u,) and (Uj) be the optimal solution of the dual problem associated with AP,
i.e., the dual variables of AP, and LB. the corresponding solution value. It is

well known that for each arc (i, j) = A the reduced cost fi~ j = ai j – Ui – Vj
z O represents a lower bound on the increase of the optima~ soluti’on value of

AP corresponding to the inclusion of arc (i, j) in the solution of AP, hence in

that of ATSP. If a feasible ATSP solution of value UZ3 is known, then each arc

(i, j) ~ A such that

can be removed from arc set A, since its inclusion in any solution of ATSP

cannot lead to a solution value less than UB. The original complete digraph G

can thus be transformed into the equivalent sparse one, ($ = (V, A-), where

~={(i, j)~A:ti,, J< UB-LBO}.

The feasible solution of value UB can be obtained through any heuristic

procedure for ATSP. In our implementation we used the patching algorithm

proposed by Karp [1979].

ACM Transactions on Mathematical Software, Vol. 21, No. 4, December 1995,

398 . G. Carpaneto et al.

An alternative way to compute UB is to introduce an “artificial” upper

bound [aLBo] (with a > 1) and to set

UB= [aLBOl + 1. (6)

If, at the end of the branch-and-bound algorithm, no feasible solution of value

less than UB is found, this means that [aLBo 1 is not a valid upper bound; so

a must be increased, and a new run, starting with the reduction procedure,

must be performed.

2.2 Parametric Solution of MAPs

Since at each node of the decision tree a MAP is solved, the effectiveness of

the ATSP algorithm depends greatly on the efficiency of the algorithm used

to solve the MAPs, At each node h of the decision tree, instead of solving

MAP~ from scratch, a parametric technique is adopted which finds only one

shortest augmenting path. In fact, to generate a descending node h from its

parent node k, we exclude only one arc, say (s, t),from the solution of MAPk

(with (s, t)= Eh \ Jllk). So, to obtain the optimal solution of MAP~ from that

of MAPk, it is only necessary to satisfy constraint (2) for j = t and constraint

(3) for i = s, i.e., to find a new, shortest augmenting path from vertex s to
vertex t in the bipartite graph corresponding to MAPk by considering the

current reduced cost-matrix (E,, ~). Addition of the new included arcs (con-

tained in subset Ih \ Ik) does not affect the assignment, they being in the

optimal solution of MA.Pk (the details of the technique used to impose the

new constraints (arcs exclusion or inclusion) are discussed in the next subsec-

tion). As graph G is sparse, the shortest augmenting path is found through a

procedure derived from the labeling algorithm proposed by Johnson [1977]

for the computation of shortest paths in sparse graphs, which utilizes a

heap queue. Hence, the resulting time complexity for solving each MAP is

0(1 Al log n).

The computation of the shortest augmenting path at node h is stopped as

soon as its current reduced cost (i.e., the value of the label of the next vertex

to be included in the shortest path) is greater than or equal to the gap

between the value UB of the best solution so far and the value of the MAP

associated with the parent node of h.

2.3 The Decision Tree

There are two kinds of nodes in the decision tree: active nodes (i.e., nodes not

yet branched) and passive nodes (i.e., nodes branched or fathomed). The
active nodes are ordered according to nondecreasing values of the correspond-

ing lower bounds; in case of a tie the ordering is based on the following rule:

first the node with the maximum number of included arcs and, in case of a

new tie, first the node with the maximum number of excluded arcs. To store

the information associated with the nodes of the decision tree, a vector V and

two matrices MF and MV are used; vector V contains the scalar informa-

ACM TransactIons on Mathematical Software, Vol 21, No. 4, December 1995.

Large-Scale, Asymmetric Traveling Salesman Problems . 399

tion, the matrices the vectorial information. For each node h the following

scalar information is stored:

(a) the pointer to the active node preceding h in the ordered list;

(b) the pointer to the active node following h in the ordered list;

(c) the pointer to the parent node of h;

(d) the lower bound LBh associated with h;

(e) the generation number of h between the nodes descending from the
parent node k;

(0 the number m of not-included arcs of the subtour chosen for branching at
node h;

(g) the pointer to the column of matrices MT’ and MV containing the
vectorial information of node h;

(h) the m not-included arcs of the chosen subtour.

The vectorial information stored for each active node h is the vector(L), with

L = j if row i is assigned to column j, corresponding to the primal solution of
M~h (in matrix MF) and the vector of the dual variables (v~) associated

with MAPh (in matrix MV). The vectorial information of node h is used for

the parametric solution of the MAPs corresponding to the nodes descending

from h. (Note that the dual variables (u,) associated with M/Wk are not

stored, since they can easily be computed through the above information.)

Problem M/Wh corresponding to node h of the decision tree is defined

through subsets Eh and 1~. The constraints associated with Eh and 1~ are

implicitly imposed by updating, with respect to the parent node k, cost-

matrix (ai, j), and dual variables (v~) as follows:

(1) replace a,, j with ai, j + A for each arc (i, J”) ● Eh \ Ek,

(2) replace VI with v~ – A for each vertex j G Vh \ Vh,

where A is a sufficiently large positive value and VP = {j c V : there exists an

arc (i, j) = lP}.

The first updating avoids the choice of any arc (i, j) = Eh in the optimal

solution to M&h. The second updating prevents, in the shortest-

augmenting-path computation performed at node h, the labeling of any

column j associated with a vertex j = T’h; in this way the assignment of

column j in the optimal solution to Mflh is not changed with respect to that

corresponding to node k.

Note that at the end of the computation of the optimal solution to MAP~,

dual variables v~, with j E Vh, are not changed, while the remaining dual

variables are generally updated.

In order to save main memory only one copy of the cost-matrix (that

corresponding to the last node considered) is used, and, for each node h,

subsets Eh and Ih are not explicitly stored. Hence the problem of implicitly

updating the subsets of the excluded and included arcs corresponding to the
nodes arises. Let r be the last node considered and k the next node to be

explored. The current cost-matrix (a,, ~) (corresponding to node r) is given by

ACM Transactions on Mathematical Software, Vol 21, No, 4, December 1995

400 . G. Carpaneto et al

the original elements with a, ~ replaced by a, ~ + A for each arc (i, j) ● E,. In

order to obtain the cost-matrix associated with node k we find the lowest

common ancestor, say q, of nodes r and k; then we remove, level by level, all

constraints corresponding to arcs in E, \ Eq and impose, level by level, all

constraints corresponding to arcs in Ek \ Eq. The current dual variables (u])

associated with node k (which implicitly define the set of included arcs]h)

are directly obtained from the column of matrix MV corresponding to node k.

2.4 Connecting Procedure

Consider a node h of the decision tree for which several optimal solutions to

MAP~ exist. In this case the optimal solution which generally leads to the

smallest number of nodes in the subtree descending from h is that having the

minimum number of subtours. A heuristic procedure which tries to decrease

the number of subtours defined by the current optimal solution to M/Wk is

obtained by iteratively applying the following rule.

Rule 2.4.1. Given two subtours G. = (V., Aa) and Gb = (Vb, Ah), if there

exists an arc pair (i., ja) G A. and (i~, j~) G Ah such that arcs (ia, j~) and

(i~ ,j.) have zero-reduced costs (i.e., Fi,a,jb = ti,,, ja = O), then an equivalent
optimal solution to MAPh can be obtained by connecting subtours G. and

Gh to form a unique subtour G,l = (V. U V~,A. Uzlh \ ((i~,j~) U (ib, jb)) U

((ia, jb) U (ib, ja))).

If at the end of the connecting procedure a Hamiltonian circuit is found, it

corresponds to the optimal solution to the ATSP associated with node h, and

no descending nodes are generated.

The connecting procedure is always applied at the root node of the decision

tree. For the other nodes it is applied only if the total number of zero-

reduced-cost arcs at the root node is greater than a given threshold ~.

Indeed, the procedure is effective only if the reduced graph contains a

sufficiently large number of zero-cost arcs. Computational experiments have

shown that an adaptive strategy, which counts the number of zero-cost arcs
at each node and then decides on the opportunity to apply the procedure,

gives worse results than the simple threshold method. In the computational

analysis presented in Section 3, we set /3 = 2.5n.

2.5 Comparison with the Algorithms of Miller and Pekny

The most-effective procedures for the solution of the ATSP are those proposed
by Miller and Pekny [Miller and Pekny 1989; 1991; Pekny and Miller 1992;

Pekny et al. 1991], In the same period we independently developed the code

described in this article. All these procedures are based on the general

approach presented in Carpaneto and Toth [1980]. Here we discuss the main

differences and similitudes between these approaches. Miller and Pekny

[1989] presented a preliminary algorithm which is a parallelization of the

approach of Carpaneto and Toth, improved with the application of the

patching heuristic [Karp 1979] at the root node. Randomly generated in-

stances with up to 3000 vertices were solved on a Butterfly Plus computer

ACM TransactIons on Mathematical Software, Vol. 21, No 4, December 1995

Large-Scale, Asymmetric Traveling Salesman Problems . 401

with 14 processors in 1263.9 seconds. The entries of the cost-matrix were

uniformly generated in the range [0, 103]. The algorithm presented by Pekny

and Miller [1992] represents a substantial improvement of the original

parallel procedure. The MAPs at the nodes are solved through an O(nz)

procedure which computes a single augmenting path. This procedure was

implemented using a d-heap. Moreover the patching algorithm was applied

at the root node and to the other nodes “with decreasing frequency as search

progresses.” In addition the branch-and-bound phase was preceded by a

sparsification of the cost-matrix obtained by removing all the entries with

cost greater than a given threshold k A sufficient condition is given to check

if the optimal solution obtained from the sparse matrix is optimal for the

original matrix. Random instances with up to 10,000 vertices and with costs

uniformly, randomly generated in [0, n] were solved on a Butterfly Plus

multiprocessor in less than 1300 seconds (on average). The algorithm pre-

sented by Pekny et al. [1991] is a modification of that presented by Pekny and

Miller [1992], obtained with the application, at each node, of an exact

procedure to find a Hamiltonian circuit on the subgraph defined by the arcs

with zero-reduced cost. Instances with 3000 vertices and costs randomly,

uniformly generated in [0, 103] were solved in 102.38 seconds on a SUN

4/280 while for the instances with costs generated in [0, 104] the average

running time was of 1434.82 seconds. The initial cost-matrix sparsification

was not applied for these computations. The most-sophisticated version of the

Miller and Pekny code appears to be that presented by Miller and Pekny

[1991], which includes all the improvements previously proposed by the

authors. Many instances with 5000 vertices and costs uniformly, randomly

generated in [0, n] were solved on a SUN 4/330 in 38.1 seconds (this time

does not include the construction of the sparse matrix). One instance with

500,000 vertices and costs randomly, uniformly generated in [0, n] was solved

on a CRAY 2 in 12,623 seconds.

The similarities among our approach and the algorithms of Miller and

Pekny are the following: (a) the branching rule is that proposed in Carpaneto

and Toth [1980], (b) the MAPs at the nodes are solved through an O(n2)
procedure, (c) the patching algorithm is applied at the root node. The two

approaches differ in the following aspects: (a) for the sparsification phase we

propose a criterion based on the comparison between the reduced costs given

by the initial linear assignment procedure and the gap between lower and

upper bound (see Section 2.1). (If a true upper bound is used, we only

eliminate arcs which cannot belong to the optimal solution; therefore a single

run of the algorithm is required. On the contrary, using an artificial upper

bound or the technique described by Miller and Pekny it can be necessary to

run the algorithm more than one time.) (b) we propose an efficient technique

to store and retrieve the subproblems so that the exploration of the branch-

decision-tree is accelerated; (c) we apply a fast heuristic algorithm to find a

Hamiltonian circuit on the subgraph defined by the arcs with zero-reduced
cost.

Comparing the computational results obtained by Miller and Pekny with

those presented in Section 3 of this article it appears that our code is slower

ACM Transactions on Mathematical Software, Vol. 21, No 4, December 1995.

402 . G. Carpaneto et al.

than the algorithm presented by Miller and Pekny [1991], for small cost

ranges (and random instances), but it seems to be faster for large cost ranges.

Using our code, D. S. Johnson solved random instances with 4000 vertices

and costs in [0, 10G], in only 14 minutes on an SGI Challenge (239 subprob-

lems were solved).

3. COMPUTATIONAL RESULTS

The algorithm has been coded as a Fortran subroutine called CDT [Carpaneto

et al. 1995]. Subroutine CDT has been tested on randomly generated test

problems with up to 2000 vertices. We considered both instances with random

costs and instances derived from real-like scheduling problems. In particular,

we solved no-wait flow shop problems which can be stated as follows: n jobs

andaset{l,2, ..., m} of m machines are given. Each job must be scheduled

on machines 1, 2, m in such a way that: (a) no machine processes two jobs

at the same time; (b) the processing of a job on machine j starts exactly when

the processing of the same job on machine j – 1 is completed. Let P,, ~ be the

processing time of job i on machine j: the problem consists in finding a

sequence of the n jobs which minimizes the completion time of the last job

processed on machine m.

Papadimitriou and Kanellakis [1980] have shown that an instance of the

no-wait flow shop problem can be transformed into an equivalent instance of

ATSP with n + 1 vertices.

Eight classes of test problems were considered by generating the coeffi-

cients of the integer cost-matrix (a,, ~) as follows:

(al) a,, j uniformly random in [1, 103];

(a2) a,, ~ uniformly random in [1, 10 i];

(,a3) a,, ~ uniformly random in [1, 10 G];

(tl) a,,] uniformly, randomly generated in [1, 103] and then triangularized;

(t2) al,, uniformly, randomly generated in [1, 10*] and then triangularized;

(t3) a,,, uniformly, randomly generated in [1, 10 G] and then triangularized;

(fl) no-wait flow shop problems with 10 machines and P,, j uniformly ran-
dom in [1, 100];

(f2) no-wait flow shop problems with 20 machines and p,, ~ uniformly ran-

dom in [1, 100].

For each value of n and each class of problems, 50 different instance= have

been solved. Tables I to XI give the following information (the times are

expressed in seconds):

—average, median, and maximum running times for CDT;

—average running time at the root node;

—average number of MAPs completely solved;

—average and (in brackets) maximum number of explored nodes (i.e., nodes

which generated son nodes);

ACM TransactIons on Mathematical Software, Vol. 21, No 4, December 1995

Large-Scale, Asymmetric Travellrng Salesman Problems . 403

—average and (in brackets) maximum level of the decision tree at which the

optimal solution was found;

—average number of son nodes generated by an explored node;

—average density of the sparse cost matrix (i.e., I~1/n2);

—average (AP solution value at the root node)\z * ratio.

Tables I to VI give the results obtained on a PC 486/33 for values of n

from 100 to 103 for problems of classes al, a2, and a3 and from 100 to 500

for problems of classes t1,t2, t 3 (larger values of n for problems of classes

t1,t2, and t 3 have not been considered because the excessive computing time

required for the triangularization of the cost-matrices). The value of upper

bound UB has been obtained using the patching algorithm proposed by Karp

[1979].

Tables I–III (uniform problems) show that the ratio between the lower

bound at the root node (LJ30) and the optimal solution value (z*) is always

very close to 1 and increases with the value of n. The performances of the

algorithm do not change very much when the cost ranges increase from

(1, 103) to (1, 106); however, one can observe a tendency to an increment of

the difficulty of the instances with the increment of the cost ranges. This is

mainly due to the larger absolute gap between Z* and LBO, which leads to a

greater number of nodes in the decision tree.

Tables IV–VI (triangular problems) show that the running time required

for solution of the MAPs is much greater than that corresponding to uniform

problems. In fact, procedure CTCS [Carpaneto and Toth 1987], which is used

for the solution of the AP at the root node, performs worse for these

instances, and the computation of the shortest augmenting paths at the
nodes of the decision tree is slower because of the higher density of the sparse

cost-matrix. However, the average running time of CDT is less than that in

Tables I-III because of the much smaller number of nodes generated by the

branch-and-bound algorithm.

To consider large-size problems (n. > 103) we ran subroutine CDT on a

DECstation 5000/240 computer. Tables VII–IX give the results for problems

of classes al, a2, and a3, values of n from 500 to 2000. The algorithm has a

behavior similar to that shown in Tables 1-111.

Tables X and XI give the results for the problems of classes ~1 and f2. The

value of UB used by the reduction procedure was artificially obtained through

(6) with a = 1.005. For only three instances with 20 machines and less than
300 jobs it was necessary to increase the value of a to 1.01.

Finally, we considered some real-world stacker crane problems with up to

443 movements. The stacker crane problem arises in the reorganization of an

inventory system which consists of a series of shelves where products are

positioned and of an automatic crane which moves the products from the

operator position (1/0 area) to the shelves and vice versa. During the night,

the crane reorganizes the system by moving products from a shelf to another.
The shelves are positioned in a vertical rack and are identified by two

coordinates. In order to perform the reorganization of the system, two prob-

lems have to be solved: (a) identify the movements of products from a shelf to

ACM Transactions on Mathematical Software, Vol. 21, No. 4, December 1995

404 . G. Carpaneto et al.

e

tik

Qt-.ooi-ame.+.
Ttr.oocclQmwt.’c
mmoomcommmc
Olchoomolchmmc
OOAAOOO”OOC

‘mv)co-mooFoc
Od-olbcmmlr=bwo
-WOOOMOOO c
Oooooooooc

n----0 0 --s:
mamcaM-+uIch-i.
----w-- ---

ACM Transactionson Mathematical Software, Vol. 21, No 4, December 1995

Large-Scale, Asymmetric Traveling Salesman Problems .

. P
o Ann-----o
~Pwmcoco09ca r..
W.--W- w.-.

ACM Transactions on Mathematical Software, Vol. 21, No 4, December 1995

406 . G. Carpaneto et al,

ACM Transactmns on Mathematical Software, Vol 21, No 4, December 1995

Large-Scale, Asymmetric Traveling Salesman Problems . 407

Cabcowcammwo)w
Wmcncmolmolchacn
mmmmmmolmcncn
mmmmmmmmmm
0000000060”

ACM TransactIons on Mathematical Software, Vol 21, No. 4, December 1995

408 G. Carpaneto et al.

.Om-s-d-mna -e r--
a’wmchcnmcmo)mm
mm’mchmmmchacn
CNmoxmcnchmmchm
000”00000”00

Qr.d-mr-lxfmmmw
‘w-!cn’wmrN.PFol
Qr.w.c.lmYrxtwQ
0006000000

ACM TransactIons on Mathematical Software, Vol 21, No 4, December 1995

Large-Scale, Asymmetric Traveilng Salesman Problems . 409

another and (b) decide the sequence of movements of the crane in order to

minimize the total distance covered by the crane. Problem (b) determines an

asymmetric traveling salesman problem. We solved real-world problems with

up to 443 movements, derived from a Siemens factor in Augsburg. The

corresponding results are given in Table XII. All the problems were easily

solved with a maximum computing time of 5.7 seconds, on a PC 486\33. In

many cases the problem was solved at the root node.

ACKNOWLEDGMENTS

We are grateful to Martin Grotschel and Norbert Ascheur (ZIB, Berlin) for

the data of the stacker crane problem instances tested in Section 3, We are

indebted to two anonymous referees and mainly to D. S. Johnson for several

suggestions which have considerably improved the article.

REFERENCES

BALAS, E. AND CHRISTOFIDES, N. 1981. A restricted Lagrangean approach to the traveling

salesman problem. Math. Program. 21, 19–46.

BALAS, E. AND TOTH, P. 1985. Branch and bound methods for the traveling salesman problem.

In The Traveling Salesman Problem, G, Lawler, J. K. Lenstra, A. Rinnooy Kan, and D,

Shmoys, Eds. John Wiley, New York, 361-401.

BELLMORE, M. AND MALONE, J. C. 1971. Pathology of traveling salesman subtour elimination

algorithms. Oper. Res. 19, 278–307,

CARPANETO, G. AND TOTH, P. 1980. Some new branching and bounding criteria for the asymmet-

ric traveling salesman problem. Manage. Sci. 26, 736--743.

CARPANETO) G. AND TOTH P. 1987. Primal-dual algorithms for the assignment problem. Dzscr.

Appl, Math. 18, 137-153.

CARPANETO, G,, DELL’AMICO, M., AND TOTH, P. 1989, Ricerca di percorsl Hamiltoniani in grafi

orientati di grandi dimension. In the 13th AMASES Conference (Verona, Italy),

CARPANETO, G., DELL’AMICO, M., AND TOTH, P. 1995. Algorithm 750: CDT: A subroutine for the

exact solution of large-scale, asymmetric traveling salesman problems. ACM Trans. Math.

Softw. 21, 4 (Dec.). This issue,

JOHNSON, D. B. 1977. Eflicient algorithms for shortest paths in sparse networks. J. ACM 24,

1-13.
KARF’, R. M. 1979. A patching algorithm for the nonsymmetric traveling salesman problem

SIAM J. Comput. 8, 561-573.

MILLER, D. L. AND PEKNY, J. F. 1989. Results from a parallel branch and bound algorithm for

the asymmetric traveling salesman problem. Oper. Res Lett. 8, 129-135.

MILLER, D. L. AND PEKNY, J. F. 1991. Exact solution of large asymmetric traveling salesman

problems, Science 251, 754-761.

PADBERG, M. AND RINALDI, G. 1991. A branch-and-cut algorithm for the resolution of large scale
symmetric traveling salesman problems. SIAM Reu, 33, 60– 100.

PAPADIMITRIOU, C. J. AND KANELLAKIS, P. C. 1980. Flows hop scheduling with limited temporary

storage. J. ACM 27, 533–549.

PEKNY, J. F., MILLER, D. L., AND STODOLSKY, D. 1991. A note on exploiting the Hamiltonian cycle

problem substructure of the asymmetric traveling salesman problem. Oper. Res. Lett. 10,

173-176.
PEKNY, J. F. AND MILLER, D. L. 1992. A parallel branch and bound algorithm for solving large

asymmetric traveling salesman problems. Math. Program. 55, 17–33.

SMITH, T. H. C., SRINWASAN, V., AND THOMPSON, G. L. 1977. Computational performance of three

subtour elimination algorithms for solving asymmetric traveling salesman problems. Ann.

Dmcr. Math. 1, 495-506.

Received January 1990; revised May 1993; accepted December 1994

ACM TransactIons on Mathematical Software, Vol 21. No. 4, December 1995

