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[98]). Instead of trying to survey them, we describe what seem to be the four
types of structure that appear in these applications. Our structure types are not
necessarily unique. They do appear to be collectively exhaustive, because all
problems can be decomposed into structures of the four types. The structure

types may not be mutually exclusive (some parts of a problem may be cate-
gorized as having one or more of them).

The four types of problem structure are as follows:

Resource allocation structure.
. Blending structure.

Cutting stock structure.

. Flow structure.

B o

We shall now consider the four types of structures further by referring to
simple problems containing each type.

Resource Allocation Structure

Resource allocation structure is a structure in which it is desirable to deter-
mine the most profitable way of allocating available resources (e.g., raw mate-
rials and/or processing facilities) to the production of different products. In this
formulation the variables are the products and the constraints limit the resources
available. The products have per unit profits associated with them. The dog food
problem introduced in Chapter 1 is an example of a resource allocation problem.

Most simple production planning problems can be viewed as resource allocation
problems.

Blending Structure

In blending structure it is desired to determine the least cost blend having
certain specified characteristics. Variables are input materials to be used in a
specific product. Constraints specify certain maximum, minimum, or constrained
characteristics of the blend desired. One of the earliest blending applications was
the diet problem in which the lowest cost daily diet was desired, with limitations
on vitamins, calories, protein, carbohydrates, and so on. Other applications
have been to the blending of gasolines, the burdening of blast furnaces in iron
and steel making, and the blending of animal feed-mix, fertilizer, and peanut
butter. An example of a problem with blending structure follows.

ExAMPLE 11.1:
A candy shop has available various quantities of nuts, as follows:

100 pounds of peanuts
30 pounds of cashews
50 pounds of hazelnuts
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Peanuts sell for $.80 a pound. The Bridge Club mix consists of at least 20
per cent cashews and not more than 50 per cent peanuts, and sells for
$1.20 a pound. The Deluxe mix consists of at least 30 per cent cashews
and not more than 30 per cent peanuts, and sells for $1.80a pound. Cashews
are sold for $2.20 a pound. The shop likes to have the blended mixes
available in advance. Assuming they can sell all that is available, given
the nut availability, how should they mix the nuts to maximize sales
receipts?

The variables (measured in pounds) are as follows:

w, peanuts to be sold as peanuts

x, cashews to be sold as cashews

y, peanuts to be mixed as Bridge Club mi'x
v, cashews to be mixed as Bridge Club mix
y, hazelnuts to be mixed as Bridge Club mix
z, peanuts to be mixed as Deluxe mix

z_ cashews to be mixed as Deluxe mix

z, hazelnuts to be mixed as Deluxe mix

The problem is then to

Maximize z = 8w, + 1.2y, + 1.8z, + 2.2x, 4+ 1.2y, + 1.8z,

Ay 19y A0t 82
subject to: Wi DL 2y 100 Peanut availability
x, + y,+ z,=< 30 Cashew availability
¥, + z,< 50 Hazel nut availability
Sy, — S5y, — Sy, < 0 upper limit on peanuts in
Bridge Mix
2y — 8y, 4 2y,< 0 lower limit on cashews in
’ Bridge Mix
gz, — 3z, — 3z, << 0 upper limit on peanuts in
Deluxe Mix
Az, — Tz, + 3z, = 0 lower limit on cashews in
Deluxe Mix

Wﬂ, x,-q y,,, _Vc, .})ha zp’ Zc’ Z.‘: 2 0

To illustrate the development of the limit constraints, consider the lower
limit on cashews in the Bridge Mix, of which cashews must make. up at
least 20 per cent. This yields the following constraint, which is equivalent
to that given above,

p, = 20, o+ Yo+ I
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Strictly speaking, the last four conmstraints are blending structure con-
straints, whereas the first three constraints may be viewed as resource allo-
cation (or, alternatively, flow) constraints.

Cutting Stock Structure

A structure somewhere between resource allocation and blending structure
is the cutting stock structure. A problem that contains the cutting stock struc-
ture is the cutting stock problem, which occurs in various forms in such indus-
tries as paper, glass, steel, and aluminum. The problem has many variations.
One example is the combining of orders for rolls of paper ordered in different
widths. The rolls are to be cut in an optimal manner from the standard widths
available. For this problem the variables are the units of produced widths to be
cut in a particular way (e.g., a 20 foot width cut into two 8 foot widths and
a 3 foot width, with one foot wasted) and constraints that specify the minimum
number of each ordered size which must be produced. Costs include the cost

of the paper and the cost of making the cuts. An example of a cutting stock
problem follows.

ExampLE 11.2:

A lumber yard stocks 2" by 4" beams in 3 lengths: 8 feet, 14 feet, and 16
feet. The beams are sold by the foot and no charge is made for cuts. The
yard has an order for the following lengths:

80 12 foot lengths
60 10 foot lengths
200 8 foot lengths
100 4 foot lengths

The cost of the 2 by 4’s to the lumber yard is $.30 per 8 foot length, $.60
per 14 footlength, and $.70 per 16 foot length. Cutting costs can be assumed
to be zero. Assuming that the lumber yard has enough of each of the three

lengths in stock, what is the minimum cost method of filling the oruer?
Let

x, be the number of 8 foot lengths sold uncut

x, be the number of 8 foot lengths cut into two 4 foot lengths

», be the number of 14 foot lengths cut into 10 foot and 4 foot lengths
¥, be the number of 14 foot lengths cut into 12 foot lengths

¥, be the number of 14 foot lengths cut into 10 foot lengths

w, be the number of 16 foot lengths cut into 12 foot and 4 foot lengths

Other possible cutting combinations, such as cutting a 16 foot length into
two 8 foot lengths, can be shown to be unprofitable, The linear programe-
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ming formulation is then

Minimize z = 30x, + 30x, + 60y, -+ 60y, + 60y, + 70w,

subject to: 2x, + ¥, +  w, > 100 (4 ft.
lengths)

X = 200 (8 ft.
1
lengths)

¥ + = 60 (10 ft.
lengths)

¥, S Wy 2 80 (12 ft.
lengths)

X1y X33 Yis Vs Vs Wy = 0
This problem is, strictly speaking, an integer programn?ing pljoblem be-
cause the values of the variables must be integral. In this partlcul.ar case
the solution to the linear programming problem turns out to be integer,
fortunately.

Flow Structure

Flow structure appears in most problems, and, of course, in network prob-
lems. Flow problems which lead to special methods have been discussed exten-
sively in Chapter 9. These problems generally involve finding the maximal value
of flow through a network. Applications of network flows have been made in
scheduling transportation systems (e.g., airline operations), as well as ﬂ_ows
of goods over time, as in inventory models. Examples of flow structure are given
in Chapter 9.

As mentioned above, many problems require more than one type of struc-
ture. An example is a multiperiod production and inventory problem, in which
each period might consist of a resource allocation or blending problem (poss.ibly
both), and the periods would be linked together by forward flows through time.

11.3 FORMULATING THE PROBLEM

In formulating a problem, it must be remembered that the problem solu-
tion is primary, and the solution technique secondary. Moreover, linear pro-
gramming is not a panacea. It is a mathematical tool which either does or does
not fit or approximate a situation, An example of an ordinary toolis a hammer,
A hammer, a versatile tool, can be used to hammer nails, But it can also be



