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ABSTRACT

The measurement of a physical quantity can never be made with perfect accuracy,

there will always be some error or uncertainty present. For any measurement there are an

infinite number of factors that can cause a value obtained experimentally to deviate from

the true (theoretical) value. Most of these factors have a negligible effect on the outcome

of an experiment and can usually be ignored. However, some effects can cause a significant

alteration, or error, in the experimental result. If a measurement is to be useful, it is

necessary to have some quantitative idea of the magnitude of the errors. Therefore, when

experimental results are reported, they are accompanied by an estimate of the experimental

error, called the uncertainty. This uncertainty indicates how reliable the experimenter

believes the results to be.

These notes are mainly a review of ”Error Theory” from an old Physics 218 Lab manual in TAMU
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1 Types of Errors

In order to determine the uncertainty for a measurement, the nature of the errors affecting

the experiment must be examined. There are many different types of errors that can occur

in an experiment, but they will generally fall into one of two categories: random errors or

systematic errors.

1.1 Random errors

Random errors usually result from human and from accidental errors. Accidental errors

are brought about by changing experimental conditions that are beyond the control of the

experimenter; examples are vibrations in the equipment, changes in the humidity, fluctu-

ating temperatures, etc. Human errors involve such things as miscalculations in analyzing

data, the incorrect reading of an instrument, or a personal bias in assuming that particular

readings are more reliable than others. By their very nature, random errors cannot be quan-

tified exactly since the magnitude of the random errors and their effect on the experimental

values is different for every repetition of the experiment. So statistical methods are usually

used to obtain an estimate of the random errors in the experiment.

1.2 Systematic errors

A systematic error is an error that will occur consistently in only one direction each time

the experiment is performed, i.e., the value of the measurement will always be greater (or

lesser) than the real value. Systematic errors most commonly arise from defects in the

instrumentation or from using improper measuring techniques. For example, measuring a

distance using the worn end of a meter stick, using an instrument that is not calibrated, or

incorrectly neglecting the effects of viscosity, air resistance and friction, are all factors that

can result in a systematic shift of the experimental outcome. Although the nature and the

magnitude of systematic errors are difficult to predict in practice, some attempt should be

made to quantify their effect whenever possible. In any experiment, care should be taken

to eliminate as many of the systematic and random errors as possible. Proper calibration

and adjustment of the equipment will help reduce the systematic errors leaving only the

accidental and human errors to cause any spread in the data. Although there are statistical

methods that will permit the reduction of random errors, there is little use in reducing the

random errors below the limit of the precision of the measuring instrument.
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2 Statistical Methods

When several independent measurements of a quantity are made, an expected result to

report for that quantity is represented by the average of the measurements. For a set of

experimental data containing N elements, or measurements, given by {S1 , S2 , S3 , . . . , SN},
the average S̄, or expectation value 〈S〉, is calculated using the formula

S̄ ≡ 1
N

N∑
i=1

Si , (2.1)

=
S1 + S2 + S3 + · · · + SN

N
. (2.2)

The reason why it is more appropriately called expectation value lies beneath the fact that

the average represents the closest approximation that is available to the true value of the

quantity being measured. It is sometimes referred to as the best estimate of the true value.

The data {S1 , S2 , S3 , . . . , SN} are dispersed around the mean, or average. A measure

of this dispersion is called the standard deviation and is given by

∆S ≡
√√√√ 1

N − 1

[
N∑

i=1

(S2
i ) − N S̄2

]
, (2.3)

=

√
(S2

1 + S2
2 + S2

3 + · · · + S2
N ) − N S̄2

N − 1
. (2.4)

The smaller the standard deviation is the more closely the data is grouped about the

mean. If there is a large number of normally distributed points (i.e. Gaussian distribution),

statistical analysis shows that about 68.3% of them will fall within the interval between

S − ∆S and S + ∆S.

If the systematic errors have been reduced as far as possible, the random errors will

dominate and hence will limit the accuracy of the final result.

Clearly there are two ways to reduce the effect of random errors and improve the accuracy

of an experimental result, i.e.

• eliminate the majority of the random errors inherent in the experiment;

• obtain as many data points as is reasonable, thereby increasing N , and therefore

reducing S̄.
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3 Percent Errors

The standard deviation is a measure of the precision of an experiment: the smaller the

∆S, the greater the precision of the best estimate. One way to report the precision of the

experimental value is through the use of the percent standard deviation given by

∆S% =
∆S

S̄
× 100 % . (3.1)

Unfortunately the average and standard deviation indicate nothing about the accuracy

of the measurement, i.e. how close the experimental or average value is to the true value. In

other words an experiment can yield extremely precise, consistent values without generating

a result that is close to the true value (this type of result often occurs when the equipment

has not been zeroed or calibrated properly and when other systematic errors have not been

properly reduced). In many experiments, it is desirable to indicate the overall accuracy

of the final experimental value by reporting some type of percent error. If the quantity

measured has a standard or true (theoretical) value, then the accuracy of the experimental

value is given by a ratio of the error to the true value:

Error% =
| Experimental Value − Theoretical Value |

Theoretical Value
× 100 % . (3.2)

For many experiments, the true value of the quantity being measured is unknown. In

this situation, it is often useful to compare two results obtained by different methods so

that a percent difference can be obtained. For instance, if the two experimental values are

represented by S1 and S2, then the percent difference is defined by

|S1 − S2|% ≡
∣∣∣∣∣∣
S1 − S2(

S1+S2
2

)
∣∣∣∣∣∣ × 100 % . (3.3)

If an experiment is performed properly, with care taken to reduce the random and

systematic errors as much as possible, then the percent errors will be correspondingly small.

The magnitude of the percent errors will depend heavily on the overall precision of the

measuring instruments. This means that while in some cases an error of 5% or 10% might

be acceptable, in other cases such an error would indicate a very poorly run experiment.

Thus the success of an experiment, in terms of a percent error, can only be judged when

the method and instrumentation of the experiment are taken into consideration.
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4 Propagation of Errors

In many experiments, the quantities measured are not the quantities of final interest. Since

all measurements have uncertainties associated with them, clearly any calculated quantity

will have an uncertainty that is related to the uncertainties of the direct measurements. The

procedure used to estimate the error for the calculated quantities is called the propagation

of errors.

Consider the general case first. Suppose the variables A, B, C, . . . represent independent

measurable quantities that will be used to obtain a value for some calculated quantity

U . Since U is a function of A, B, C, . . . , it can be written as U = f(A, B, C, . . .). The

measurements of the quantities A, B, C, . . . yield estimates of the expectation values written

as Ā, B̄, C̄, . . . and the associated uncertainties ∆A, ∆B,∆C, . . . for each variable. To find

the expectation value, or best estimate, for the quantity U , the expectation value of each

measured variable is substituted into the equation for U :

Ū = f(Ā, B̄, C̄, . . .) . (4.1)

If the errors for A, B, C, . . . are independent, random, and sufficiently small, it can be shown

that the uncertainty for U is given by

∆U =

√(
∂U

∂A

)2

(∆A)2 +
(

∂U

∂B

)2

(∆B)2 +
(

∂U

∂C

)2

(∆C)2 + · · · , (4.2)

where the partial derivatives are evaluated using the expectation values Ā, B̄, C̄, . . . as the

values for the independent variables. The correct notation to express the final estimate for

the calculated quantity U is given by

U = Ū ± ∆U . (4.3)

In the next three sections, §4.1-§4.3, we lighten our notation removing the ”bar” signs and

considering A, B, C, . . . as the expectation values for calculation purposes only. We restore

the original notation in the examples given in §5.

4.1 Addition and Subtraction

Suppose two quantities A and B are added and the uncertainties associated with each

variable are ∆A and ∆B. It follows that

U = A + B −→ ∂U

∂A
= 1 ,

∂U

∂B
= 1 , (4.4)
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where equation (4.2) gives

∆U =
√

(∆A)2 + (∆B)2 . (4.5)

If the two values are subtracted then

U = A − B −→ ∂U

∂A
= 1 ,

∂U

∂B
= −1 , (4.6)

and equation (4.2) gives same result as in the case of addition, i.e.

∆U =
√

(∆A)2 + (∆B)2 . (4.7)

Hence these equations can be generalized for any combination of addition and subtraction

of any number of variables, i.e.

U = ±A ± B ± C ± · · · , (4.8)

∆U =
√

(∆A)2 + (∆B)2 + (∆C)2 + · · · . (4.9)

4.2 Multiplication and Division

Suppose two quantities A and B are multiplied and the uncertainties associated with each

variable are ∆A and ∆B. It follows that

U = A B −→ ∂U

∂A
= B ,

∂U

∂B
= A , (4.10)

where equation (4.2) gives, after some algebraic re-arrangement,

∆U = U

√(
∆A

A

)2

+
(

∆B

B

)2

. (4.11)

Likewise if the two values are divided then

U =
A

B
−→ ∂U

∂A
=

1
B

,
∂U

∂B
= − A

B2
, (4.12)

and equation (4.2), after some algebraic re-arrangement, gives same result as in the case of

multiplication, i.e.

∆U = U

√(
∆A

A

)2

+
(

∆B

B

)2

. (4.13)

Hence these equations can be generalized for any combination of multiplication and division

of any number of variables, i.e.

U =
A B · · ·
X Y · · · , (4.14)

∆U = U

√(
∆A

A

)2

+
(

∆B

B

)2

+ · · · +
(

∆X

X

)2

+
(

∆Y

Y

)2

+ · · · . (4.15)
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4.3 Exponents and Roots

Suppose that a calculation involves the use of exponents or roots of a quantity A whose

uncertainty is ∆A. It follows in the most general case that, ∀α ∈ IR,

U = k Aα , (4.16)

∆U = k α Aα−1 ∆A . (4.17)

5 Examples

5.1 Example: The Estimate of the Table Top Surface Area

The rectangular dimensions A and B of a table top are determined directly by estimating the

left and right reading of each dimension as shown in Fig.1, where the error, or uncertainty,

is given by half of the smallest reading unit on the meter stick. The smallest unit, in this

example, is 1 mm, and therefore the uncertainty in reading is 0.5 mm.

Table Top

Meter StickAL = 2.00 cm AR = 98.12 cm

  M
et

er
 S

tic
k

B
L 

=
 3

0.
00

 c
m

B
R

 =
 5

5.
04

 c
m

Figure 1: The smallest unit on the meter stick is 1mm.

Let left and right readings of A and B be respectively (see Fig.1)

AL = 2.00 ± 0.05 cm , AR = 98.12 ± 0.05 cm , (5.1)

BL = 30.00 ± 0.05 cm , BR = 55.04 ± 0.05 cm . (5.2)
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It is easy to see that the two dimensions A and B, and their uncertainties ∆A and ∆B,

are determined by equations (4.8) and (4.9) applied to the left and right reading values.

Indeed, we have

Ā = 98.12 − 2.00 = 96.12 cm , ∆A =
√

(0.05)2 + (0.05)2 � 0.07 cm , (5.3)

B̄ = 55.04 − 30.00 = 25.04 cm , ∆B =
√

(0.05)2 + (0.05)2 � 0.07 cm , (5.4)

We usually write the above results in a more appropriate form for an estimate as follows

A = 96.12 ± 0.07 cm , B = 25.04 ± 0.07 cm . (5.5)

The next step is to calculate the expectation value for the surface area S = A B and

the associate uncertainty ∆S as provided by equation (4.15), i.e.

S̄ = 96.12 × 25.04 � 2407 cm2 , (5.6)

∆S = 2407

√(
0.07
96.12

)2

+
(

0.07
25.04

)2

� 7 cm2 . (5.7)

And again, this can be written in a more compact form, i.e.

S = 2407 ± 7 cm2 . (5.8)

5.2 Example: The Estimate of the Acceleration due to Gravity

Suppose the acceleration due to gravity can be calculated from experimental data using the

following equation

g =
2 x �

h t2
, (5.9)

where the estimate measurements are given by

x = x̄ ± ∆x = 74.11 ± 0.05 cm ,

� = �̄ ± ∆� = 100.1 ± 0.2 cm ,

h = h̄ ± ∆h = 1.10 ± 0.1 cm , (5.10)

t = t̄ ± ∆t = 3.708 ± 0.003 s .

Hence ḡ � 981 cm s−2. Instead, the uncertainty here is compound and therefore given by

the combination of equation (4.15) and (4.17), i.e.

∆g = ḡ

√(
∆x

x̄

)2

+
(

∆�

�̄

)2

+
(

∆h

h̄

)2

+
(

∆(t2)t=t̄

t̄2

)2

, (5.11)
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= ḡ

√(
∆x

x̄

)2

+
(

∆�

�̄

)2

+
(

∆h

h̄

)2

+
(

2 ∆t

t̄

)2

, (5.12)

= 981

√(
0.05
74.11

)2

+
(

0.2
100.1

)2

+
(

0.1
1.10

)2

+
(

0.006
3.708

)2

, (5.13)

� 9 cm s−2 . (5.14)

This can be written in a more compact form, i.e.

g = 981 ± 9 cm s−2 . (5.15)
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