Minimizes a function via
the Fibonacci method (direct search technique). The Fibonacci numbers
can be computed by: Fn = (pn − mn) ⁄ √5,
with (p, m) = (1 ± √5) ⁄ 2.
The functions are:
- y = (x − 0.5)² + 1
(solution, x = 0.5, y = 1)
- y = x² − sinx
(sol., x = 0.4501, y = -0.2324...)
- y = x² + 2x
(sol., x = -1, y = -1: from (-3, 5),
reduce to 0.2, giving (-0.963636, -0.998678) [Baz. & Sh., 1993])
The graph shows y or the evolution
of the minimization vs. the iteration step. |
• Bazaraa, M. S., C. M. Shetty, 1993,
"Non-linear Programming: theory and algorithms", 2.nd ed., Wiley.
• Weisstein, Eric W.,
"Binet's Fibonacci number formula". From MathWorld—A Wolfram
Web Resource.
• 1622-07-04: Sluze, René François Walter de
(1685-03-19). |