4.3 Boundary Value Problems

Examples:

- Poisson's and Laplace's equations,

$$
\begin{aligned}
d^{2} \phi / d x^{2} & =-\rho(x), \text { or } \\
\frac{d \phi}{d x} & =-e \\
\frac{d e}{d x} & =\rho(x)
\end{aligned}
$$

where $\rho(x)$ is a charge density. (Laplace: $\rho(x)=0$). Another physical problem described by the same equation is the temperature distribution along a thin rod: $d^{2} T / d x^{2}=0$.

- Time independent Schroedinger equation for a particle of mass m in a potential $U(x)$:

$$
\frac{d^{2} \psi}{d x^{2}}=-g(x) \psi, \quad \text { with } g(x)=\frac{2 m}{\hbar^{2}}[E-U(x)]
$$

The preceding physical examples belong to an important subclass of the general boundary value problem, in that they are all of the form $d^{2} y / d x^{2}=-g(x) y+s(x)$. More generally, the 1-dimensional BVP reads

$$
\frac{d y_{i}}{d x}=f_{i}\left(x, y_{1}, \ldots y_{N}\right) ; \quad i=1, \ldots N
$$

with N boundary values required. Typically there are
$n_{1} \quad$ boundary values $a_{j}\left(j=1, \ldots n_{1}\right)$ at $x=x_{1}$, and
$n_{2} \equiv N-n_{1}$ boundary values $b_{k}\left(k=1, \ldots n_{2}\right)$ at $x=x_{2}$.
The quantities y_{i}, a_{j} and b_{k} may simply be higher derivatives of a single solution function $y(x)$. Two methods are available, the Shooting method and the Relaxation technique.

Subsections

- Shooting Method
- Relaxation Method

4.3.1 Shooting Method

- Transform the given boundary value problem into an initial value problem with estimated parameters
- Adjust the parameters iteratively to reproduce the given boundary values

First trial shot:

Augment the n_{1} boundary values given at $x=x_{1}$ by $n_{2} \equiv N-n_{1}$ estimated parameters

$$
a^{(1)} \equiv\left\{a_{k}^{(1)} ; k=1, \ldots n_{2}\right\}^{T}
$$

to obtain an IVP. Integrate numerically up to $x=x_{2}$. (For equations of the type $y^{\prime \prime}=-g(x) y+s(x)$, Numerov's method is best.) The newly calculated values of b_{k} at $x=x_{2}$,

$$
b^{(1)} \equiv\left\{b_{k}^{(1)} ; k=1, \ldots n_{2}\right\}^{T}
$$

will in general deviate from the given boundary values $b \equiv\left\{b_{k} ; \ldots\right\}^{T}$. The difference vector $e^{(1)} \equiv b^{(1)}-b$ is stored for further use.

Second trial shot:

Change the estimated initial values a_{k} by some small amount, $a^{(2)} \equiv a^{(1)}+\delta a$, and once more integrate up to $x=x_{2}$. The values $b_{k}^{(2)}$ thus obtained are again different from the required values $b_{k}: e^{(2)} \equiv b^{(2)}-b$.

Quasi-linearization:

Assuming that the deviations $e^{(1)}$ and $e^{(2)}$ depend linearly on the estimated initial values $a^{(1)}$ and $a^{(2)}$, compute that vector $a^{(3)}$ which would make the deviations disappear:

$$
a^{(3)}=a^{(1)}-A^{-1} \cdot e^{(1)}, \text { with } A_{i j} \equiv \frac{b_{i}^{(2)}-b_{i}^{(1)}}{a_{j}^{(2)}-a_{j}^{(1)}}
$$

Iterate the procedure up to some desired accuracy.

EXAMPLE:

$$
\frac{d^{2} y}{d x^{2}}=-\frac{1}{(1+y)^{2}} \quad \text { with } \quad y(0)=y(1)=0
$$

* First trial shot: Choose $a^{(1)} \equiv y^{\prime}(0)=1.0$. Applying 4th order RK with $\Delta x=0.1$ we find $b^{(1)} \equiv y_{\text {calc }}(1)=0.674$. Thus $e^{(1)} \equiv b^{(1)}-y(1)=0.674$.
* Second trial shot: With $a^{(2)}=1.1$ we find $b^{(2)}=0.787$, i.e. $e^{(2)}=0.787$.
* Quasi-linearization: From

$$
a^{(3)}=a^{(1)}-\frac{a^{(2)}-a^{(1)}}{b^{(2)}-b^{(1)}} e^{(1)}
$$

we find $a^{(3)}=0.405\left(\equiv y^{\prime}(0)\right)$.
Iteration: The next few iterations yield the following values for $a\left(\equiv y^{\prime}(0)\right)$ and $b(\equiv y(1))$:

n	$a^{(n)}$	$b^{(n)}$
3	0.405	-0.041
4	0.440	0.003
5	0.437	0.000

(Here ist the ANALYTICAL SOLUTION .)

4.3.2 Relaxation Method

Discretize x to transform a given DE into a set of algebraic equations. For example, applying DDST to

$$
\frac{d^{2} y}{d x^{2}}=b(x, y)
$$

we find

$$
\frac{d^{2} y}{d x^{2}} \approx \frac{1}{(\Delta x)^{2}}\left[y_{i+1}-2 y_{i}+y_{i-1}\right]
$$

which leads to the set of equations

$$
y_{i+1}-2 y_{i}+y_{i-1}-b_{i}(\Delta x)^{2}=0, \quad i=2, \ldots M-1
$$

Since we have a BVP, y_{1} and y_{M} will be given.

Let $y^{(1)} \equiv\left\{y_{i}\right\}$ be an inaccurate (estimated?) solution. The error components

$$
e_{i}=y_{i+1}-2 y_{i}+y_{i-1}-b_{i}(\Delta x)^{2}, \quad i=2, \ldots M-1
$$

together with $e_{1}=e_{M}=0$ then define an error vector $e^{(1)}$.
How to modify $y^{(1)}$ to make $e^{(1)}$ disappear? $=\Rightarrow$ Expand e_{i} linearly:

$$
\begin{aligned}
e_{i}\left(y_{i-1}+\Delta y_{i-1}, y_{i}+\Delta y_{i}, y_{i+1}+\Delta y_{i+1}\right) & \approx e_{i}+\frac{\partial e_{i}}{\partial y_{i-1}} \Delta y_{i-1}+\frac{\partial e_{i}}{\partial y_{i}} \Delta y_{i}+\frac{\partial e_{i}}{\partial y_{i+1}} \Delta y_{i+1} \\
& \equiv e_{i}+\alpha_{i} \Delta y_{i-1}+\beta_{i} \Delta y_{i}+\gamma_{i} \Delta y_{i+1} \quad(i=1, \ldots M)
\end{aligned}
$$

This modified error vector is called $e^{(2)}$. We want it to vanish, $e^{(2)}=0$:

$$
A \cdot \Delta y=-e^{(1)} \quad \text { with } \quad A=\left(\begin{array}{cccc}
1 & 0 & 0 & \ldots \\
\alpha_{2} & \beta_{2} & \gamma_{2} & 0 \\
& \ddots & \ddots & \ddots \\
& & 0 & 1
\end{array}\right)
$$

Thus our system of equations is tridiagonal: $=\Rightarrow$ Recursion technique!

Example:

$$
\frac{d^{2} y}{d x^{2}}=-\frac{1}{(1+y)^{2}} \quad \text { with } \quad y(0)=y(1)=0
$$

DDST leads to $e_{i}=y_{i+1}-2 y_{i}+y_{i-1}+(\Delta x)^{2} /\left(1+y_{i}\right)^{2}$. Expand:

$$
\alpha_{i} \equiv \frac{\partial e_{i}}{\partial y_{i-1}}=1 ; \quad \gamma_{i} \equiv \frac{\partial e_{i}}{\partial y_{i+1}}=1 ; \quad \beta_{i} \equiv \frac{\partial e_{i}}{\partial y_{i}}=-2\left[1+\frac{(\Delta x)^{2}}{\left(1+y_{i}\right)^{3}}\right] \quad i=2, \ldots M-1
$$

Start the downwards recursion: $g_{M-1}=-\alpha_{M} / \beta_{M}=0$ and $h_{M-1}=-e_{M} / \beta_{M}=0$.

$$
g_{i-1}=\frac{-\alpha_{i}}{\beta_{i}+\gamma_{i} g_{i}}=\frac{-1}{\beta_{i}+g_{i}} ; \quad h_{i-1}=\frac{-e_{i}-h_{i}}{\beta_{i}+g_{i}}
$$

brings us down to g_{1}, h_{1}. Putting

$$
\Delta y_{1}=\frac{-e_{1}-\gamma_{1} h_{1}}{\beta_{1}+\gamma_{1} g_{1}}=e_{1}(=0)
$$

we take the upwards recursion

$$
\Delta y_{i+1}=g_{i} \Delta y_{i}+h_{i} ; \quad i=1, \ldots M-1
$$

Improve $y_{i} \longrightarrow y_{i}+\Delta y_{i}$ and iterate.
vesely 2005-10-10
\square

00488444

