			To print higher-resolution math symbols, click the			
			Hi-res Fonts for Printing button on the is Math control papel			
INDEX	1 FINITE DIFFERENCES	2 LINEAR	. ALGEBRA 👖 3 STOCHASTICS 🛄 4 ORDINARY DE 📊 5 PARTIAI	L DE 6 SIMULATION	7 QUANTUM M.	8 HYDRODY
			using the Options pane of the jsMath control panel.			

FRANZ J. VESELY > COMPPHYS TUTORIAL > DIFFERENTIAL EQUATIONS

The preceding physical examples belong to an important subclass of the general boundary value problem, in that they are all of the form $d^2y/dx^2 = -g(x)y + s(x)$. More generally, the 1-dimensional BVP reads

$$\frac{dy_i}{dx} = f_i(x, y_1, \dots, y_N); \quad i = 1, \dots N$$

with ${\cal N}$ boundary values required. Typically there are

 n_1 boundary values a_j $(j = 1, ..., n_1)$ at $x = x_1$, and $n_2 \equiv N - n_1$ boundary values b_k $(k = 1, ..., n_2)$ at $x = x_2$.

The quantities y_i , a_j and b_k may simply be higher derivatives of a single solution function y(x). Two methods are available, the *Shooting method* and the *Relaxation technique*.

Subsections

- Shooting Method
- Relaxation Method

4.3.1 Shooting Method

- Transform the given boundary value problem into an initial value problem with estimated parameters

- Adjust the parameters iteratively to reproduce the given boundary values

First trial shot:

Augment the n_1 boundary values given at $x = x_1$ by $n_2 \equiv N - n_1$ estimated parameters

$$a^{(1)} \equiv \{a_k^{(1)}; k = 1, \dots n_2\}^T$$

to obtain an IVP. Integrate numerically up to $x = x_2$. (For equations of the type y'' = -g(x)y + s(x), Numerov's method is best.) The newly calculated values of b_k at $x = x_2$,

$$b^{(1)} \equiv \{b_k^{(1)}; k = 1, \dots, n_2\}^T$$

will in general deviate from the given boundary values $b \equiv \{b_k; \ldots\}^T$. The difference vector $e^{(1)} \equiv b^{(1)} - b$ is stored for further use.

Second trial shot:

Change the estimated initial values a_k by some small amount, $a^{(2)} \equiv a^{(1)} + \delta a$, and once more integrate up to $x = x_2$. The values $b_k^{(2)}$ thus obtained are again different from the required values b_k : $e^{(2)} \equiv b^{(2)} - b$.

Quasi-linearization:

Assuming that the deviations $e^{(1)}$ and $e^{(2)}$ depend *linearly* on the estimated initial values $a^{(1)}$ and $a^{(2)}$, compute that vector $a^{(3)}$ which would make the deviations disappear:

$$a^{(3)} = a^{(1)} - A^{-1} \cdot e^{(1)}$$
, with $A_{ij} \equiv \frac{b_i^{(2)} - b_i^{(1)}}{a_j^{(2)} - a_j^{(1)}}$

Iterate the procedure up to some desired accuracy.

EXAMPLE:

$$\frac{d^2y}{dx^2} = -\frac{1}{(1+y)^2} \quad \text{with} \quad y(0) = y(1) = 0$$

* *First trial shot:* Choose $a^{(1)} \equiv y'(0) = 1.0$. Applying 4th order RK with $\Delta x = 0.1$ we find $b^{(1)} \equiv y_{calc}(1) = 0.674$. Thus $e^{(1)} \equiv b^{(1)} - y(1) = 0.674$.

* Second trial shot: With $a^{(2)} = 1.1$ we find $b^{(2)} = 0.787$, i.e. $e^{(2)} = 0.787$.

* Quasi-linearization: From

$$a^{(3)} = a^{(1)} - \frac{a^{(2)} - a^{(1)}}{b^{(2)} - b^{(1)}}e^{(1)}$$

we find $a^{(3)} = 0.405 (\equiv y'(0)).$

Iteration: The next few iterations yield the following values for $a(\equiv y'(0))$ and $b(\equiv y(1))$:

п	$a^{(n)}$	$b^{(n)}$
3	0.405	- 0.041
4	0.440	0.003
5	0.437	0.000

(Here ist the ANALYTICAL SOLUTION .)

4.3.2 Relaxation Method

Discretize x to transform a given DE into a set of algebraic equations. For example, applying DDST to

$$\frac{d^2y}{dx^2} = b(x, y)$$

we find

$$\frac{d^2 y}{dx^2} \approx \frac{1}{(\Delta x)^2} [y_{i+1} - 2y_i + y_{i-1}]$$

which leads to the set of equations

$$y_{i+1} - 2y_i + y_{i-1} - b_i(\Delta x)^2 = 0, \quad i = 2, \dots M - 1$$

Since we have a BVP, y_1 and y_M will be given.

Let $y^{(1)} \equiv \{y_i\}$ be an inaccurate (estimated?) solution. The error components

$$e_i = y_{i+1} - 2y_i + y_{i-1} - b_i (\Delta x)^2, \quad i = 2, \dots, M - 1$$

together with $e_1 = e_M = 0$ then define an error vector $e^{(1)}$.

How to modify $y^{(1)}$ to make $e^{(1)}$ disappear? \Longrightarrow Expand e_i linearly:

$$e_i(y_{i-1} + \Delta y_{i-1}, y_i + \Delta y_i, y_{i+1} + \Delta y_{i+1}) \approx e_i + \frac{\partial e_i}{\partial y_{i-1}} \Delta y_{i-1} + \frac{\partial e_i}{\partial y_i} \Delta y_i + \frac{\partial e_i}{\partial y_{i+1}} \Delta y_{i+1}$$

$$\equiv e_i + \alpha_i \Delta y_{i-1} + \beta_i \Delta y_i + \gamma_i \Delta y_{i+1} \quad (i = 1, \dots, M)$$

This modified error vector is called $e^{(2)}$. We want it to vanish, $e^{(2)} = 0$:

$$A \cdot \Delta y = -e^{(1)} \quad \text{with} \quad A = \begin{pmatrix} 1 & 0 & 0 & \dots \\ \alpha_2 & \beta_2 & \gamma_2 & 0 \\ & \ddots & \ddots & \ddots \\ & & 0 & 1 \end{pmatrix}$$

Thus our system of equations is *tridiagonal*: => *Recursion technique*!

EXAMPLE:

$$\frac{d^2y}{dx^2} = -\frac{1}{(1+y)^2} \quad \text{with} \quad y(0) = y(1) = 0$$

DDST leads to $e_i = y_{i+1} - 2y_i + y_{i-1} + (\Delta x)^2 / (1 + y_i)^2$. Expand:

$$\begin{aligned} \alpha_i &\equiv \frac{\partial e_i}{\partial y_{i-1}} = 1; \ \gamma_i \equiv \frac{\partial e_i}{\partial y_{i+1}} = 1; \ \beta_i \equiv \frac{\partial e_i}{\partial y_i} = -2 \left[1 + \frac{(\Delta x)^2}{(1+y_i)^3} \right] \quad i = 2, \dots M - 1 \end{aligned}$$
Start the downwards recursion: $g_{M-1} = -\alpha_M / \beta_M = 0$ and $h_{M-1} = -e_M / \beta_M = 0$.
 $g_{i-1} = \frac{-\alpha_i}{\beta_i + \gamma_i g_i} = \frac{-1}{\beta_i + g_i}; \ h_{i-1} = \frac{-e_i - h_i}{\beta_i + g_i} \end{aligned}$
brings us down to g_1, h_1 . Putting
 $\Delta y_1 = \frac{-e_1 - \gamma_1 h_1}{\beta_1 + \gamma_1 g_1} = e_1(=0)$
we take the upwards recursion
 $\Delta y_{i+1} = g_i \Delta y_i + h_i; \ i = 1, \dots M - 1$
Improve $y_i \longrightarrow y_i + \Delta y_i$ and iterate.
vesely 2005-10-10
 $\boxed{<}$

00488444