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CASE STUDIES 121
e study 7: eigenvalues

sider vibration of three railway wagons as shown. For a force f, applied to
on n, we have static displacements given by
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Figure. Vibrational system with three degrees of freedom
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w= M/ where M is the “influence matrix” and its elements are “influence
fiicients”.
f no external forces are applied, we have f,=—m,i (where m, =m,m,=2m,
= 3m).
=or a natural vibration,
u, = x, sin(wt + ¢)
ool = — w?x, sin(wt + ¢)

o f = moix, sin(wt + ¢)
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or X = AGX where A = mw?/k and 1/4 is an eigenvalue of G (or A is an eigenvalu
G

We wish to find the lowest natural frequency of the system. In this mode, we ex
wagon 3 to have the greatest displacement. Therefore, let us try

)

If we now compute X* = GX, and scale X* so that its third element is 1, we
€

check whether X* as scaled, is the same as X( or, in practice, sufficiently close).

X is an eigenvector and the scaling factor is the eigenvalue 1/4. Otherwise, w
~ again using X* in place of X. It can be shown that the process converges on

cigenvalue 1/4 of largest absolute value, corresponding to the lowest value of

n railway wagons, given their masses (m,,m,,...,m,), the stiffness of their sp
{(k,,k,....,k,), and aninitial approximation to the eigenvector. Test your pr

required.
Write a program to find the lowest natural frequency = (w/27) of a systej
on the three wagon problem above. ;

i

|
Case study 8: Runge-Kutta !
A popular method for solving systems of (non-linear) ordinary differential equa

is the “Runge-Kutta” method of the fourth order (see for example Griffiths
Smith, 1991, p 226*). In general, such a system will be of the form

dy; ;
-C_l;= i('x!y09y1>"'ayrr—1) [=051=2!---|n

with n initial conditions y;(x,) = A;,i=0,1,2,...,n.
For example the system of two equations:

d
d—i = flx,y2)  Y(xo)=o

dz
e g(x, y,2) 2(x) =z,

- —

may be solved by advancing the solution of y and z to x; = x, + h by the fo

& Wx)=y(xe) + K
z(x,)=z(xo) + L

* Griffiths, D.V. and Smith, .M. Numerical Methods for Engineers, Blackwell, 1991
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|

|

L: K=(Ky+2K,+2K,+K,)/6 and L= (L, + 2L, + 2L, + L,)/6 and
]

Ko =hf(x0, yos o)

Lo = hg(Xq: yos 2o)

Ky =hf{xo+3h yo+3Ke 2o +3Lo)
L, = hg(xy +3h,yo +3Ko, 29 +%L0)
K, =hf(xo +3hyo+3K1. 20 +3L1)
L, = hg(x, +%h, Yo +%K1e Iy +%L1)
Ky=hf(xo+hyo+ K, 2o+ Ly)
Ly=hg(xg+hyo+ Kg,zo+ L,)

a program to solve the pair of equations

% =3xz+4, y0)=4

d
a%:xy——z—e". z(0)=1

Fis method at x = 0.5, using steps of 0.1.

study 9: water levels in a turbine

urge tank” is a device for damping out the effects of suddenly starting or
ing a turbine in the arrangement shown below:

Reservoir

vel

OcCity v Positive ERE

Penstock

Turbine

\

normal flow through the turbine, the level in the surge tank is below the
‘oir level by the amount of friction head loss h in the pipeline, so that initially
k. =4 f Lv?/2gd. If the turbine is suddenly shut down the flow in the penstock is
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stopped and the momentum of the water in the pipeline carries it into the surge taj
causing the water level to rise. A pressure gradient builds up against the pipeline fia
and decelerates it. The motions of the water in the pipeline and the water level in
surge tank are described by the equations:

d
Af:—m+m
Ldv
e

where X, is the rate of flow through the turbine (zero after shut-down). Typically I:l
level in the surge tank will oscillate as shown below:

Reservoir /\ g Time

level \_/ S——

¥ ¥ «—— Initial level in surge tank

Given that the reservoir level remains constant, and that

L=1200m
d=800mm
D=25m
f=0.005

X, (before shut-down)=1m?/sec
use the Runge-Kutta method of case study 8 to calculate what will happen

(a) when the turbine is shut down after steady running
(b) when the turbine is started after long quiescence.

Hence design a suitable height of surge tank.

Case study 10: date of Easter

Easter Day in any given year is the Sunday following the first Full Moon on or af
March 21st. A Full Moon is deemed to occur 13 days after the preceding New Mot
The date of the last New Moon in January may be calculated from the “Epact™|
the year, and from that the new moons in February, March and April may|
obtained. The exact method is given in the Structure Chart below. All dates are by
as the number of days from the beginning of the year.
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END DO
A(I,J})=A(I,J)—SUM
END DO
END DO
| forward substitution stage
! this depends on the assumption 1(i,i)=1.0
DOI=1;K
X(I)=B(I)
B{(I4+1:N)=B({I+1:N})—A(I+1:N,I)+X{(I)
END DO
| backward substitution stage
DOI=N,1,-1
X({I)=B(I)/A(I,I)
BIN—1:1:—1)=B(N—1:1:—1)—A(N—1:1:—=1,1)«X(I)
END DO
END SUBROUTINE ELIMINATE
END PROGRAM COMPLEX _GAUSSIAN_ELIMINATION

The solution is:

(;3_ S ¢

2> 2
(1.0, 1.0)
= =~

7. PROGRAM EIGENVALUES
| compute natural frequencies by a simple iterative method
IMPLICIT NONE
REAL,ALLOCATABLE : :A(:, ), X0(:),X1(:)
INTEGER:: N, ITERS, ITS; LOGICAL : : CONVERGED
READ: : TOL, BIG
READ« N, TOL,ITS
ALLOCATE (A(N,N) , X0 (N),X1(N))
READ«x , A; READx , X0
ITERS=0
DO
ITERS=ITERS+1
¥1=MATMUL (A, X0)
BIG=MAXVAL (X1l); IF (ABS(MINVAL (X1)) >BIG)BIG=MINVAL (X1l

X1=X1/BIG
CONVERGED = (MAXVAL (ABS (X1 —X0) ) /MAXVAL (ABS (X1) ) <TOL)
X0=X1
IF (CONVERGED.OR.ITERS==1TS5)EXIT

END DO
K1 =X1/SQRT(SUM(X1l+=2))
PRINT#, BIG; PRINT%, X1; PRINT«x, ITERS
END PROGRAM EIGENVALUES

For a “tolerance” TOL of 1078, 1 converges to 6.4673 in § iterations.

&
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PROGRAM RUNGE _KUTTA ¢

! 4th order method for systems of equations

MPLICIT NONE

{EAL, ALLOCATABRLE: :¥(:),Y0(:) ,KO(:),KR1(:),R2(:),K3(:)

INTEGER : : N,8TEPS, 1,d

IEAL: :H, X

EADs ,N, STEPS,H, X

LILIOCATE (Y (N) , Y0 (N} ,KO(N),K1(N),K2(N),K3(M))

iEAD, Y

PRINTx, "*xrkshhsnnhkhkhkrrdkkxSYSTEMS OF EQUATIONSk kck ke kk ke kk kk k k ko ke ok |

FEINT*, "+*x*xxxxxx*+4TH ORDER RUNGE — KUTTA METHOD x % * & k% % %% % * '

PRINT=,’' X ¥(I) ,I=1l,"'.,N

DO J=0,8TEPS
PRINT' (5E13.5) 7, %, (Y(I},I=1,10}
E0=FUNC(X,Y,N);Y0=Y;¥Y=Y0+ .5xHxK0; X=X+ .5+H
K1=FUNC(X,Y,N});¥Y=Y0+4 .5+H«K1
E2=FUNC(X,¥Y,N);Y=Y0+HxK2; X=X+ .5«H
K3=FUNC(X,Y,N);Y=Y0+ (KO+2.+(K1+K2) +K3)/6.+H

END DO

CONTAINS

FUNCTION FUNC (X, Y, N)

! provides the values of f£(x,y (1)) specified by the user

IMPLICIT NONE

INTEGER, INTENT (IN) : : N

REAL : : FUNC (N)

REAL, INTENT (IN) : : X,Y (:)

FUNC(1l)=3.0#X+Y(2)+4.0

FUNC(2) =X+Y (1) —Y(2) —EXP(X)

RETURN

END FUNCTION FUNC

END PROGRAM RUNGE _KUTTA

The results are y(0.5)=6.2494, z(0.5)=0.67386.

W o o

1)

. PROGRAM SURGE _TANK

! oscillations in a tank by a 4th order method for systems of
eguations
IMPLICIT NONE
REAL,ALLOCATABLE::Y¥(:),¥0(:),K0(:),K1{(:),K2(:),K3(:)
INTEGER::N,STEPS,I,J
REAL::H, X
READ=x ,N, STEPS,H, X
ALLOCATE(Y (N),Y0(N),KO(N),K1l(N),K2(N),K3(N))
READ«x, Y
PRINT*, ‘+*kxsxkktxxnhx***SYSTEMS OF EQUATTIONS *x*xx kbt hkkkkxkk* |
PRINT*, ‘#+*x+**%xxxx4TH ORDER RUNGE —KUTTA METHOD* * * x x x x % % % % "
PRINT«x, * b ¥{1)] ,I=1,";N
DO J=0,STEPS
PRINT! (GE13.5) %, 3, (Y1) ,IT=1,N)
KO0=FUNC(X,Y,N);¥0=Y;Y=Y0+ .5xH+K0; X=X+ .5xH
K1=FUNC(X,Y,N);¥v=Y0+4+ .5+H«K1
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K2=FUNC(X,Y,N);Y=Y04+H*K2; X=X+ .5«H

K3=FUNC (X,Y,N);¥Y=Y0+ (K0O+2.+ (K1+K2) +K3)/6.x+H
END DO
CONTAINS
FUNCTION FUNC (X, Y,N)
| provides the values of £(x,y (1)) specified by the user
IMPLICIT NONE
INTEGER, INTENT (IN) : : N
REAL : : FUNC (N)
REAL, INTENT (IN) : : X, Y, (:)
! local variables and constants
REAL, PARAMETER : : G=9.81
REAL: : BIG_D,SMALL_D,F,L,BIG_A,SMALL_A,PI
BIG_D=2.5;8MALL_D=0.8;L=1200.0;F=0.005;P1=4.+ATAN(1.)
BIG_A=PI+BIG_D#%2/4.0;SMALL_A=PIxSMALL_D%x2/4.0

FUNC(1l)=—Y(2)+«SMALL_A/BIG_A
FUNC(2) = (Y (1) —4*FxL*Y(2)%%2/2./SMALL_D)*G/L
RETURN

END FUNCTION FUNC
END PROGRAM SURGE _TANK

The initial conditions for case 1 might be y(0)= 150.0, 1(0) = 10.0. Under these circum-
stances, the water level in the surge tank reaches 7 m above reservoir level in about 3
seconds after turbine shut-down. In the second case the initial conditions are y(0)=0
9(0)=0 and the water level in the tank drops to 70m below reservoir level about 100
seconds after start-up.

The Structure Chart is as given in the text

PROGRAM DATE _OF _EASTER
| aprogram to calculate the date of easter
INTEGER: : NUMBER _OF _YEARS, YEAR _WANTED, DAY
CHARACTER: : *8 MONTH, DESIGNATION
READx , NUMBER _OF _YEARS
DO I=1,NUMBER_OF_YEARS
READ« , YEAR_WANTED
CALL EASTER (YEAR_WANTED, MONTH, DAY )
SELECT CASE (DAY)
CASE (1,21,31)
DESIGNATION='ST"’
CASE(2,22)
DESIGNATION= 'ND’
CASE(3,23)
DESIGNATION='RD’
CASE DEFAULT
DESIGNATION="'TH’
END SELECT
PRINT’ (A,I5,A,I3,A,A)", 'EASTER DAY IN THE YEAR' , YEAR_WANTED&
, ' FALLS ON',DAY,DESIGNATION, MONTH
END DO
CONTAINS



