
Systems of Nonlinear Equations

L. T. Biegler
Chemical Engineering Department

Carnegie Mellon University
Pittsburgh, PA 15213

Biegler@cmu.edu
http://dynopt.cheme.cmu.edu

 Obtaining Derivatives

 Broyden vs. Newton Method

 First Order Methods

 Dominant Eigenvalue

 Wegstein

 Recycle Tearing Algorithms

Obtaining Derivatives

Symbolic Differentiation

Tools like Maple and Mathematica develop symbolic
differentiation methods that give the functional derivatives
in closed form. These can also be ported to FORTRAN or
C calls but tend to be extremely lengthy for complicated
functions and should be avoided for all but the smallest
problems.

Finite Differences

A simple alternative to an exact calculation of the
derivatives is to use a finite difference approximation,
given by:

∂f
∂xj

xk

=
f xk + hej() − f(xk)

h

where ej is given by:

(ej)i =

0 i ≠ j

1 i = j

and h is a scalar normally chosen from 10-6 to 10-3. This
approach requires an additional n function evaluations per
iteration.

Grouping Finite Differences

Consider a tridiagonal system:

x x
x x x

x x x
 x x x

x x x
x x x

x x x
...

We can perturb variables {1, 4, 7, 10,...} simultaneously
as well as variables {2, 5, 8, 11,...} and {3, 6, 9, 12,...}
because they do not interact. As a result, the complete
Jacobian can be obtained with only three perturbations.

Sparse systems in general can be grouped using a 'graph
coloring' algorithm that determines noninteracting
variables. Two algorithms in this class are Coleman-More
and Curtis, Powell, Reid (see Harwell library).

Automatic Differentiation

Consider the problem

f(x, y, z) = (x y sin z +exp(x y))/z

and let's break it down to intermediate values (nodes) and
operations (arcs) as follows:

x

y

z

*

* +

/

exp

sin f

w

v

u

s t

For differentiation, each operation can be replaced by the
corresponding derivative operation, e.g.:

w = x*y ==> ∂w/∂x = y, ∂w/∂y = x
v = sin(z) ==> ∂v/∂z = cos(z), etc.

and the operations can be chain-ruled forward or backward
in order to get ∂f/∂x, ∂f/∂y, ∂f/∂z.

This is done using the numerical values, not the symbolic
values and it can be applied to existing FORTRAN and C
codes.

Available Codes for Automatic
Differentiation

ADIFOR

• translator of FORTRAN code to create 'derivative'
code that is compiled and run along with function
evaluations

• runs in reverse and forward mode
• 'commercial' product, free for research purposes
• maintained at Argonne National Lab.

ADIC

• translator of C code to create 'derivative' code that
is compiled and run along with function evaluations

• runs in reverse and forward mode
• 'commercial' product, free for research purposes
• maintained at Argonne National Lab.

ADOL-C

• C++ code overload function operations for
'derivative' operations that are run simultaneously
with same code

• runs in reverse and forward mode
• freely available
• obtained from Prof. Griewank, Dresden, Germany

JAKE-F

• translator of limiteed FORTRAN code to create
'derivative' code - obsolete.

• runs in reverse mode
• freely available on netlib.org

Broyden's Method

Consider the class of Quasi-Newton methods

• Avoid evaluation and decomposition of Jacobian
• Jacobian is approximated based on differences in x

and f(x),

The basis for this derivation can be seen by considering a
single equation with a single variable:

xc

xaxbxd
x

f(x)

Comparison of Newton and Secant Methods for
Single Equation

Newton's method to the system starting from xa --> xc

 Newton step: xc = xa - f(xa)/f'(xa)

where f'(x) is the slope.

If f'(x) is not readily available, we can approximate this
term by a difference between two points, say xa and xb.
From the thin line the next point is given by xd from a
secant that is drawn between xa and xb.

The secant formula to obtain xd is given by:

Secant step: xd = xa - f(xa)
xb − xa

f(xb) − f(xa)

Moreover, we can define a secant relation so that for
some scalar, B, we have:

B (xb - xa) = f(xb) - f(xa) xd = xa -B-1 f(xa)

For the multivariable case, need to consider additional
conditions to obtain a secant step.

Define a B that substitutes for ∇ fT so that

Bk+1 (xk+1 - xk) = f(xk+1) - f(xk)

As in Newton's method, Bk can be substituted to calculate
the change in x:

xk+1 = xk - (Bk)-1 f(xk)

Secant relation is not enough to define B.

• Calculate the least change to Bk+1 from Bk that
satisfies the secant formula.

• Constrained minimization problem written as:

Min Bk+1 − Bk
F

 s.t. Bk+1 s = y

where y = f(xk+1) - f(xk)
s = xk+1 - xk
||B||F = [Σi Σj Bij 2]1/2.

Solution of this convex NLP leads to Broyden's formula:

Bk+1 = Bk + (y - Bk s)sT /sTs

With this relation we can calculate the new search
direction by solving directly:

Bk+1 pk+1 = - f(xk+1)

We can also calculate pk+1 explicitly

Update inverse of Bk+1 through a modification of
Broyden's formula.

Apply the Sherman Morrison Woodbury formula for a
square matrix A with an update using vectors x and v:

(A + xvT)-1 = A-1 -
A−1xvTA−1

1 + vTA−1x
(A + xvT) is a rank one update to A.

Assign:
A => Bk
A + xvT => Bk+1
x => (y - Bks)/sTs
v = s

after simplifying, we have for Hk = (Bk)-1

Hk+1 = Hk +
s − Hky()sTHk

sTHky

The Broyden algorithm can now be stated as follows:

1. Guess x0, B0 (e.g. J0 or I) or calculate H0 (e.g. (J0)-1)
2. If k = 0, go to 3, otherwise calculate f(xk),

y = f(xk) - f(xk-1), s = xk - xk-1 and Hk or Bk from
the Broyden formula

3. Calculate the search direction by pk = - Hk f(xk) or by
solving Bkpk = -f(xk).

4. If ||pk|| ≤ ε1, and ||f(xk)|| ≤ ε2 stop. Else, find the
stepsize α and update the variables: xk+1 = xk + αpk.

5. Set k = k+1, go to 2.

Characteristics of Broyden method:

• widely used in process simulation, when the number of
equations is small (< 100).

• used for inside-out flash calculations and for recycle
convergence in flowsheets.

• rank one update formulas for Broyden's method that
approximate the Jacobian ensure superlinear
convergence defined by:

lim
k→∞

xk+1 − x*

xk − x*
→ 0

Some Drawba cks:

• B and H are dense matrices although Broyden's method
can be applied directly to L U factors

• There is no guarantee of a descent direction for the line
search and this may fail.

Notes:

• B* does not in general converge to J*

• If B0 = J0, elements from linear equations do not change
(linear subsets property) and hence linear equations are
always satisfied.

• Often B0 = I is used for flowsheet convergence and this
behaves less well.

Example

Use Broyden's method with an Armijo line search, solve
the following system of equations and compare to
Newton's method:

f1 = 2x1
2 + x2

2 - 6 = 0
f2 = x1 + 2x2 - 3.5 = 0

The Newton and Broyden iterations are given by:
xk+1 = xk - (Jk)-1 f(xk)
xk+1 = xk - Hk f(xk)

and the Jacobian matrix and its inverse are given as:

Jk =
4x1 2x2

1 2

J-1 = (8x1 - 2x2)-1
2 - 2x2

−1 4x1

Starting from x0 = [2., 1.]T, we obtain the following
values for xk and we see that the constraint violations
quickly reduce with full steps. The problem is essentially
converged after three iterations with a solution of x1

∗ =
1.59586 and x2

∗ = 0.95206. Note that because we start
reasonably close to the solution, αk = 1 for all of the
steps.

k x1
k

 x2
k

 ||f(xk)||2 α k

0 2.00000 1.00000 4.6250 1.0000

1 1.64285 0.92857 3.3853E-021.0000

2 1.59674 0.95162 1.1444E-05 1.0000

3 1.59586 0.95206 1.5194E-121.0000

On the other hand, with Broyden's method starting with
B0= J(x0), we have:

k x1
k

 x2
k

 ||f(xk)||2 α k

0 2.00000 1.00000 4.6250 1.0000

1 1.64285 0.92857 3.3853E-2 1.0000

2 1.60155 0.94922 9.5852E-4 1.0000

3 1.59606 0.95196 1.1934E-6 1.0000

4 1.59586 0.95206 6.2967E-10 1.0000

5 1.59586 0.95206 2.8435E-13 1.0000

While the equations are solved exactly, the Broyden
matrix is actually quite different:

B(x*) = 6.5493 2.2349
1.0 2.0

J(x*) = 6.3834 1.9041
1.0 2.0

First Order Methods

These methods:

• do not evaluate or approximate the Jacobian matrix and
are much simpler in structure.

• convergence is only at a linear rate, and this can be very
slow.

• main application is for flowsheet convergence
(ASPEN/Plus)

Consider fixed point form: x = g(x)

x and g(x) are vectors of n stream variables, e.g., x
represents a guessed tear stream and g(x) is the calculated
value after executing the units around the flowsheet.

Direct Substitution Methods

• simplest fixed point method
• define xk+1 = g(xk) with an initial guess x0.
• convergence properties for the n dimensional case can

be derived from the contraction mapping theorem
(Dennis and Schnabel, 1983; p. 93).

For the fixed point function, consider the Taylor series
expansion:

g(xk) = g(xk-1) + ∂g
∂x

 xk −1

T
 (xk - xk-1) + . . .

and if we assume that ∂g/∂x doesn't vanish, it is the
dominant term near the solution, x*. Then

xk+1 - xk = g(xk) - g(xk-1) = ∂g
∂x

 xk −1

T
 (xk - xk-1)

and for

xk+1 - xk = ∆xk+1 = Γ ∆xk with Γ = ∂g
∂x

T

we can write:
 || ∆xk+1|| ≤ ||Γ || || ∆xk||.

From this expression we can show a linear convergence
rate, but the speed of these iterations is related to ||Γ ||. If
we use the Euclidean norm, then ||Γ|| = |λ|max,

This leads to:

|| ∆xk|| ≤ (|λ|max)k || ∆x0||.

and a necessary and sufficient condition for convergence is
that λ max < 1. This relation is known as a contraction

mapping if λ max
 < 1.

Speed of convergence depends on how close λ max
 is to

zero.

We can estimate the number of iterations (niter) to reach
||∆xn|| ≤ δ (some zero tolerance), from the relation:

niter ≥ ln[δ/|| ∆x0||]/ln λ max

For example, if δ = 10-4 and ∆x0 =1, we have the
following iteration counts, for:

λ max = 0.1, n = 4
λ max = 0.5, n = 14
λ max = 0.99, n = 916

Relaxation (Acceleration) Methods

When λ max is close to one, direct substitution is limited
and converges slowly.

Instead, alter the fixed point function g(x) to reduce λ max .

xk+1 = h(xk) ≡ ω g(xk) + (1 - ω) xk

ω is chosen adaptively depending on the changes in x and
g(x).

Two common fixed point methods for recycle convergence
are:

• dominant eigenvalue method (Orbach & Crowe,
1971)

• Wegstein (1958) iteration method

Dominant eigenvalue method (DEM)

• Obtain an estimate of λ maxby monitoring the ratio:

λ max ≈
∆xk

∆xk−1

after, say, 5 iterations.

• Choose the relaxation factor ω to minimize λ max
 of the

modified fixed point form.

• To choose an optimum value for ω, assume that λmin >
0 and that λmin ≈ λmax ==> ω∗ = 1/(1 − |λ|max)

Notes

• if this assumption is violated and the minimum and
maximum eigenvalues of Φ are far apart, DEM may not
converge.

• extended to the Generalized Dominant Eigenvalue
Method (GDEM) (Crowe and Nishio, 1975) where
several eigenvalues are estimated and are used to
determine the next step - overcomes the assumption that
λmin ≈ λmax.

Wegstein method

Obtains relaxation factor ω, by applying a secant method
independently to each component of x. From above we
have for component xi:

xik+1 = xik - fi(xk) [xik - xik-1]/[f i(xk) - fi(xk-1)]

Define
fi(xk) = xik - gi(xk)

si = [gi(xk) - gi(xk-1)]/[x ik - xik-1]

we have:

xik+1 = xik - fi(xk) [xik - xik-1]/[f i(xk) - fi(xk-1)]

= xik - { xi
k - g i (xi

k)} [xi
k - xi

k-1]

[xik - gi(xk) - xik-1 + gi(xk-1)]

= xik - { xi
k - g i (xi

k)} [xi
k - xi

k-1]

[xik - xik-1 + gi(xk-1) - gi(xk)]

= xik - {xik - gi(xk)}/[1 - si]

= ωi g(xk)i + (1 - ωi) xi
k

where ωi = 1/[1 - si].

Approach works well on flowsheets where the components
do not interact strongly (e.g., single recycle without
reactors).

To ensure stable performance:

• Relaxation factors for both DEM and the Wegstein
method are normally bounded

• Algorithm for fixed point methods can be summarized
by:

1) Start with x0 and g(x0)

2) Execute a fixed number of direct substitution
iterations (usually 2 to 5) and check convergence at
each iteration.

3) Dominant Eigenvalue Method: Apply this
acceleration with a bounded value of ω to find the
next point and go to 2.

Wegstein: Apply this acceleration with a
bounded value of ωi to find the next point. Iterate
until convergence.

Example

Solve the fixed point problem given by:

x1 = 1 - 0.5 exp (0.7(1 - x2) - 1)
x2 = 2 - 0.3 exp (0.5(x1 + x2))

using a direct substitution method, starting from x1 = 0.8,
and x2 = 0.8. Estimate the maximum eigenvalue based on
the sequence of iterates.

Using direct substitution, xk+1 = g(xk), we obtain the
following iterates:

k x1
k
 x2

k

0 0.8 0.8

1 0.7884 1.3323

2 0.8542 1.3376

3 0.8325 1.1894

4 0.8389 1.1755

5 0.8373 1.1786

6 0.8376 1.1780

From these iterates, we can estimate the maximum
eigenvalue from:

|λ|max = x5 − x4 / x4 − x3 = 0.226

Recycle Tearing Algorithms

Consider the following flowsheet and recycle system:

K L M

O

S

1 2

3

4
5

6

7
8

• Find a set of tear streams that breaks all recycle loops

• For small problems a good tear set can be seen by
inspection.

• For larger problems a systematic procedure needs to be
applied.

• The choice of tear set greatly affects the performance of
fixed point algorithms.

General tearing approach

• treat tear set selection as an integer program with binary
(0/1) variables (Pho and Lapidus, 1973)

• can weight choice of tear streams

• loop finding constraints leading to a set covering
problem

Loop Finding

Start with any unit in the partition, for example unit K.

K -(1)->L-(2)->M-(3)->L

We note that unit L repeats and the two streams, 2 and 3,
which connect the two appearances of unit L are placed on
a list of loops:

List: {2,3}

We then start with the unit just before the repeated one and
trace any alternate paths from it.

K -(1)->L-(2)->M-(3)->L
 |

 -(7)->S-(8)->K

Now K repeats and we place streams {1,2,7,8} on the list
of loops.

List: {2,3}, {1,2,7,8}

Back up to S and look for an alternate path leaving from it,
we find there is none.

Back up to unit M, we again there is no additional
unexplored paths.

Back up to L we find another path and this is given by:.

K -(1)->L-(2)->M-(3)->L
 | |
 | -(7)->S-(8)->K
 |
 -(4)->O-(5)->K

K repeats and we place {1,4,5} on the list of loops.
List : {2,3}, {1,2,7,8}, {1,4,5}

Back up to unit O on the last branch we can identify
alternate paths which include:

K -(1)->L-(2)->M-(3)->L
 | |
 | -(7)->S-(8)->K
 |
 -(4)->O-(5)->K

 |
 -(6)->S-(8)->K

Again K repeats and we place {1,4,6,8} on the final list of
loops.

List : {2,3}, {1,2,7,8}, {1,4,5}, {1,4,6,8}

There appear to be no additional loops.

 Loop incidence array for partition

Strm

Loop

1 2 3 4 5 6 7 8

1 x x
2 x x x x
3 x x x
4 x x x x

Initialize a loop matrix, A, with elements:

aij = 1 if stream j is in loop i
0 otherwise

The structure of this matrix is identical to the loop
incidence array. We define the selection of tear streams
through an integer variable, yj, for each stream j: optimal
values of these variables determine:

yj = 1 if stream j is a tear stream
0 otherwise

To ensure that each recycle loop is broken 'optimally' at
least once by the tear streams, we write the set covering
problem is given by:

Min
y j

 wjy j
j=1

n
∑

s.t. aijy j
j=1

n
∑ ≥ 1 i = 1, L

yj = {0, 1}

The weight wj to the cost of tearing stream j.

Popular choices for weights are:

• Choose wj = 1, Barkeley and Motard (1972).
• Choose wj = nj where nj is the number of variables

in the jth tear stream, Christensen and Rudd
(1969).

• Choose wj = Σi aij - number of loops that are
broken by the tear stream j. Breaking a loop more
than once causes a 'delay' in the tear variable
iteration for the fixed point algorithms and much
poorer performance, Upadhye and Grens (1975)
and Westerberg and Motard (1981).

Solution to this integer problem is combinatorial (NP
Hard) and an upper bound on the number of alternatives is
2n cases.

Simple reduction rules can make this problem and the
resulting solution effort much smaller.

To facilitate the solution, the most common approach is a
branch and bound search.

For solution procedure, see Chapter 8, Biegler et al.
(1997)

1

KLM O S

2

3 4
5

6

7

8

Solution where all weights are equal

KL

M

O

S

1

2

3

4 5

6

7

8

tear

tear
Minimize the number of times the loops are torn

These solutions are also nonunique and similarly
converging tear sets can be derived.

Effect of Tearing Strategies on Newton-type Methods

What if a Newton or quasi-Newton algorithm is applied to
converge a modular flowsheet (e.g., SQP, Broyden, etc.,
in Aspen/Plus)?

Rewrite these equations as:

x = g(x) or f(x) = x - g(x) = 0

x are tear streams and g(x) refers to the calculated value.

Solve using Newton-Raphson or Broyden iterations
applied to f(x) = 0.

Solving the recycle equations by tearing all of the streams
in the recycle loops. This leads to:

I

I

I

I

I

I

I

I

S1

S2

S3

S4

S5

S6

S7

S8

=

F1

F2

F3

F4

F5

F6

F7

F8

-

Linearized equations for flowsheet

Instead, permute the remaining stream variables and
equations to block lower triangular form.

Choose S1 and S3 as tear streams, and hold these fixed, it
is easy to see that the diagonal streams can be calculated
directly from streams that are determined from S1 and S3.

I

I

I

I

I

I

I

S1

S2

S3

S4

S5

S6

S7

S8

=

F1

F3

0

0

0

0

0

0

-

I

Linearized equations with S1 and S3 as tear streams

Therefore, we see that for Newton or Broyden methods, it
is desirable to choose the minimum number of stream
variables that breaks all recycle loops (fewer equations)

As long as all of the recycle loops are torn, the choice of
tear streams has little effect on the convergence rate of
either the Broyden or Newton methods.

If all equations are linear, any tear set selection requires
only one iteration with Newton (or appropriate Broyden)
method.

