
Linear Algebra Massoud Malek

Characteristic Polynomial

♣ Preleminary Results. Let A = (aij) be an n × n matrix. If Au = λu, then λ and u are
called the eigenvalue and eigenvector of A, respectively. The eigenvalues of A are the roots
of the characteristic polynomial

KA(λ) = det (λIn −A) .

The eigenvectors are the solutions to the Homogeneous system

(λIn −A)X = θ.

Note that KA(λ) is a monic polynomial (i.e., the leading coefficient is one).

Cayley-Hamilton Theorem. If KA(λ) = λn + p1λ
n−1 + · · · + pn−1λ + pn is the characteristic

polynomial of the n× n matrix A, then

KA(A) = An + p1A
n−1 + · · ·+ pn−1A+ pnIn = Zn,

where Zn is the n× n zero matrix.

Corollary. Let KA(λ) = λn + p1λ
n−1 + · · ·+ pn−1λ+ pn be the characteristic polynomial of the n× n

invertible matrix A. Then

A−1 =
1

−pn

[
An−1 + p1A

n−2 + · · ·+ pn−2A+ pn−1In
]
.

Proof. According to the Cayley Hamilton’s theorem we have

A
[
An−1 + p1A

n−2 + · · ·+ pn−1In
]

= −pnIn,

Since A is nonsingular, pn = (−1)n det(A) 6= 0; thus the result follows.

Newton’s Identity. Let λ1, λ2, . . . , λn be the roots of the polynomial

P (λ) = λn + c1λ
n−1 + c2λ

n−2 + · · · · · ·+ cn−1λ+ cn.

If sk = λk
1 + λk

2 + · · ·+ λk
n, then

ck = −1
k

(sk + sk−1c1 + sk−2c2 + · · ·+ s2ck−2c1 + s1ck−1) .

Proof. From
P (λ) = (λ− λ1)(λ− λ2) . . . . . . (λ− λn−1)(λ− λn)

and the use of logarithmic differentiation, we obtain

P ′(λ)
P (λ)

=
nλn−1 + (n− 1)c1λn−2 + · · ·+ 2cn−2λ+ cn−1

λn + c1λn−1 + c2λn−2 + · · ·+ cn−1λ+ cn
=

n∑
i=1

1
(λ− λi)

.

By using the geometric series for
1

(λ− λi)
and choosing |λ| > max

1≤i≤n
|λi|, we obtain

n∑
i=1

1
(λ− λi)

=
n

λ
+
s1
λ2

+
s2
λ3

+ · · · · · ·

Hence

nλn−1 + (n− 1)c1λn−2 + · · ·+ cn−1 =
(
λn + c1λ

n−1 + c2λ
n−2 + · · ·+ cn

) (n
λ

+
s1
λ2

+
s2
λ3

+ · · ·
)
.

By equating both sides of the above equality we may obtain the Newton’s identities.
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♣ The Method of Direct Expansion. The characteristic polynomial of an n × n matrix
A = (aij) is defined as:

KA(λ)=det(λIn −A)=

∣∣∣∣∣∣∣∣
λ− a11 −a12 . . . −a1n

−a21 λ− a22 . . . −a2n
...

...
. . .

...
−an1 −an2 . . . λ− ann

∣∣∣∣∣∣∣∣=λ
n−σ1λ

n−1+σ2λ
n−2−· · ·+ (−1)nσn,

where

σ1 =
n∑

i=1

aii = trace(A)

is the sum of all first-order diagonal minors of A,

σ2 =
∑
i<j

∣∣∣∣ aii aij

aji ajj

∣∣∣∣
is the sum of all second-order diagonal minors of A,

σ3 =
∑

i<j<k

∣∣∣∣∣∣
aii aij aik

aji ajj ajk

aki akj akk

∣∣∣∣∣∣
is the sum of all third-order diagonal minors of A, and so forth. Finally,

σn = det(A)

There are
(
n
k

)
diagonal minors of order k in A. From this we find that the direct compu-

tation of the coefficients of the characteristic polynomial of an n× n matrix is equivalent
to computing (

n

1

)
+

(
n

2

)
+ · · ·

(
n

n

)
= 2n − 1

determinants of various orders, which, generally speaking, is a major task. This has given
rise to special methods for expanding characteristic polynomial. We shall explain some
of these methods.

Example. Compute the characteristic polynomial of A =

 1 2 3
2 1 −4
1 0 2

.

We have:

σ1 = 1 + 1 + 2 = 4, σ2 =
∣∣∣∣ 1 2
2 1

∣∣∣∣ +
∣∣∣∣ 1 −4
0 2

∣∣∣∣ +
∣∣∣∣ 1 3
1 2

∣∣∣∣ = (−3) + (2) + (−1) = −2,

σ3 =det(A) =

∣∣∣∣∣∣
1 2 3
2 1 −4
1 0 2

∣∣∣∣∣∣ = −17.and

Thus

KA(λ) = det(λI3 −A) = λ3 − σ1λ
2 + σ2λ− σ3 = λ3 − 4λ− 2λ+ 17.
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♣ Leverrier’s Algorithm. This method allows us to find the characteristic polynomial of
any n× n matrix A using the trace of the matrix Ak, where k = 1, 2, · · ·n. Let

σ(A) = {λ1, λ2, · · · , λn}

be the set of all eigenvalues of A which is also called the spectrum of A. Note that

sk = trace(Ak) =
n∑

i=1

λk
i , for all k = 1, 2, · · · , n.

Let
KA(λ) = det(λIn −A) = λn + p1λ

n−1 + · · ·+ pn−1λ+ pn

be the characteristic polynomial of the matrix A, then for k ≤ n, the Newton’s identities hold
true:

pk = −1
k

[sk + p1sk−1 + · · ·+ pk−1s1] (k = 1, 2, · · · , n)

Example. Let A =


1 2 1 −1
1 0 2 1
2 1 −1 3
4 −5 0 4

. Then

A2 =


1 8 4 0
9 −1 −1 9
13 −12 5 8
15 −12 −6 7

 A3 =


17 6 13 19
42 −28 8 23
43 −9 −16 22
19 −11 −3 −17

 A4 =


125 −48 16 104
122 −23 −22 46
90 −40 41 −12
−66 120 0 −107

 .

So s1 = 4 , s2 = 12 , s3 = −44 , and s4 = 36. Hence

p1 = −s1 = −4,

p2 = −1
2
(s2 + p1s1) = −1

2
(12 + (−4)4) = 2,

p3 = −1
3
(s3 + p1s2 + p2s1) = −1

3
(−44 + (−4)12 + 2(4)) = 28,

p4 = −1
4
(s4 + p1s3 + p2s2 + p3s1) = −1

4
(36 + (−4)(−44) + 2(12) + 28(4)) = −87.

Therefore
KA(λ) = λ4 − 4λ3 + 2λ2 + 28λ− 87

and

A−1 =
1
87

[
A3 − 4A2 + 2A+ 28I4

]
=

1
87




17 6 13 19
42 −28 8 23
43 −9 −16 22
19 −11 −3 −17

−4


1 8 4 0
9 −1 −1 9
13 −12 5 8
15 −12 −6 7

+2


1 2 1 −1
1 0 2 1
2 1 −1 3
4 −5 0 4

+28


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




A−1 =
1
87


43 −22 −1 17
8 4 16 −11
−5 41 −10 −4
−33 27 21 −9

 .
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♣ The Method of Souriau (or Fadeev and Frame). This is an elegant modification of the
Leverrier’s method.

Let A be an n× n matrix, then define

A1 = A, q1 = −trace(A1), B1 = A1 + q1In
A2 = AB1, q2 = − 1

2 trace(A2), B2 = A2 + q2In
...

...
...

...
...

...
...

...
...

...
An = ABn−1, qn = − 1

n trace(An), Bn = An + qnIn

Theorem. Bn = Zn, and

KA(λ) = det(λIn −A) = λn + q1λ
n−1 + · · ·+ qn−1λ+ qn .

If A is nonsingular, then

A−1 = − 1
qn
Bn−1 .

Proof. Suppose the characteristic polynomial of A is

KA(λ) = det(λIn −A) = λn + p1λ
n−1 + · · ·+ pn−1λ+ pn ,

where p′ks are defined in the Leverrier’s method.

Clearly p1 = −trace(A) = −trace(A1) = q1, and now suppose that we have proved that

q1 = p1, q2 = p2, . . . , qk−1 = pk−1 .

Then by the hypothesis we have

Ak = ABk−1 = A(Ak−1 + qk−1In) = AAk−1 + qk−1A

= A[A(Ak−2 + qk−2In)] + qk−1A

= A2Ak−1 + qk−2A
2 + qk−1A

= · · · · · · · · · · · · · · · · · · · · ·
= Ak + q1A

k−1 + · · · + qk−1A .

Let si = trace(Ai) (i = 1, 2, . . . , k), then by Newton’s identities

−kqk = trace(Ak) = trace(Ak) + q1 trace(Ak−1) + · · ·+ qk−1 trace(A)
= sk + q1sk−1 + · · ·+ qk−1s1

= sk + p1sk−1 + · · ·+ pk−1s1

= −kpk .

showing that pk = qk. Hence this relation holds for all k.

By the Cayley-Hamilton theorem,

Bn = An + q1A
n−1 + · · ·+ qn−1A+ qnIn = Zn .

and so
Bn = An + qnIn = Zn; An = ABn−1 = −qnIn.

If A is nonsingular, then det(A) = (−1)nKA(0) = (−1)nqn 6= 0, and thus

A−1 = − 1
qn
Bn−1 .

California State University, East Bay



Massoud Malek The Method of Souriau Page 5

Example. Find the characteristic polynomial and if possible the inverse of the matrix

A =


1 2 1 −1
1 0 2 1
2 1 −1 3
4 −5 0 4

 .

For k = 1, 2, 3, 4, compute

Ak = ABk−1 qk =
−1
k
trace(Ak), Bk = Ak + qkI4 .

A1 =


1 2 1 −1
1 0 2 1
2 1 −1 3
4 −5 0 4

 , q1 = −4, B1 =


−3 2 1 −1
1 −4 2 1
2 1 −5 3
4 −5 0 0

 ;

A2 =


−3 0 0 4
5 −1 −9 5
5 −16 9 −4
−1 8 −6 −9

 , q2 = 2, B2 =


−1 0 0 4
5 1 −9 5
5 −16 11 −4
−1 8 −6 −7

 ;

A3 =


15 −22 −1 17
8 −24 16 −11
−5 41 −38 −4
−33 27 21 −37

 , q3 = 28, B3 =


43 −22 −1 17
8 4 16 −11
−5 41 −10 −4
−33 27 21 −9

 ;

A4 =


87 0 0 0
0 87 0 0
0 0 87 0
0 0 0 87

 , q4 = −87, B4 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .

Therefore the characteristic polynomial of A is:

KA(λ) = λ4 − 4λ3 + 2λ2 + 28λ− 87.

Note that A4 is a diagonal matrix, so we only need to multiply the first row of A by the
first column of B3 to obtain 87. Since q4 = −87, the matrix A has an inverse.

A−1 =
−1
q4
B3 =

1
87


43 −22 −1 17
8 4 16 −11
−5 41 −10 −4
−33 27 21 −9

 .

Matlab Program

A = input(′Enter a square matrix : ′)
m = size(A); n = m(1); q = zeros(1, n); B = A; AB = A; In = eye(n);
for k = 1 : n− 1, q(k) = −(1/k) ∗ trace(AB)B = AB + q(k) ∗ In; AB = A ∗B; end
C = B; q(n) = −(1/n) ∗ trace(AB); Q = [1 q];
disp(′The Characteristic polynomial looks like : ′)
disp( ′KA(x) = x ∧ n+ q(1)x ∧ (n− 1) + ...+ q(n− 1)x+ q(n)′ ), disp(′ ′),
disp(′The coefficients list c(k) is : ′), disp(′ ′),
disp(Q), disp(′ ′)
if q(n) == 0, disp(′The matrix is singular ′);
else, disp(′The matrix has an inverse. ′), disp(′ ′)

C = −(1/q(n)) ∗B;
disp(′The inverse of A is : ′), disp(′ ′),
disp(C)

end
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♣ The Method of Undetermined Coefficients. If one has to expand large numbers of char-
acteristic polynomials of the same order, then the method of undetermined coefficients
may be used to produce characteristic polynomials of those matrices.

Let A be an n× n matrix and

KA(λ) = det(λIn −A) = λn + p1λ
n−1 + · · ·+ pn−1λ+ pn

be its characteristic polynomial. In order to find the coefficients p′is of KA(λ) we evaluate

Dj = KA(j) = det(jIn −A) j = 0, 1, 2, . . . , n− 1

and obtain the following system of linear equations:

pn = D0

1n + p1.1n−1 + · · · · · · · · · · · · · · ·+ pn = D1

2n + p1.2n−1 + · · · · · · · · · · · · · · ·+ pn = D2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(n− 1)n + p1.(n− 1)n−1 + · · ·+ pn = Dn−1

Which can be changed into:

Sn−1P =


1n−1 1n−2 . . . 1
2n−1 2n−2 . . . 2

...
...

. . .
...

(n− 1)n−1 (n− 1)n−2 . . . n− 1




p1

p2
...

pn−1

 =


D1 −D0 − 1n

D2 −D0 − 2n

...
...

...
...

Dn−1 −D0 − (n− 1)n

 = D .

The system may be solved as follows:

P = S −1
n D.

Since the (n− 1)× (n− 1) matrix Sn depends only on the order of A, we may store Rn, the
inverse of Sn−1 beforehand and use it to find the coefficients of characteristic polynomial
of various n× n matrices.

Examples. Compute the characteristic polynomials of the 4× 4 matrices

A =


1 3 0 4
2 −3 1 3
1 2 1 2
−1 3 2 1

 and B =


1 2 1 −1
1 0 2 1
2 1 −1 3
4 −5 0 4

 .

First we find

S =

 1 1 1
8 4 2
27 9 3

 and R = S−1 = − 1
12

 −6 6 −2
30 −24 6
−36 18 −4

 .

Then for the matrix A we obtain

D0 = det(−A) = −48, D1 = det(I4 −A) = −72,
D2 = det(2I4 −A) = −128 and D3 = det(3I4 −A) = −180

D =

D1 −D0 − 14

D2 −D0 − 24

D3 −D0 − 34

 =

 −25
−96
−213

 .
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Hence

P =

 p1

p2

p3

 = − 1
12

 −6 6 −2
30 −24 6
−36 18 −4

  −25
−96
−213

 =

 0
−23
−2

 .

Thus
KA(λ) = λ4 − 23λ2 − 2λ− 48

For the matrix B we have

D0 = det(−B) = −87, D1 = det(I4 −B) = −60,
D2 = det(2I4 −B) = −39 and D3 = det(3I4 −B) = −12

D =

D1 −D0 − 14

D2 −D0 − 24

D3 −D0 − 34

 =

 26
32
−6

 .

Hence

P =

 p1

p2

p3

 = − 1
12

 −6 6 −2
30 −24 6
−36 18 −4

  26
32
−6

 =

−4
2
28

 .

Thus
KB(λ) = λ4 − 4λ3 + 2λ2 + 28λ− 87

Matlab Program

N = input(′Enter the size of your square matrix : ′);
n = N − 1; In = eye(N); S = zeros(n); R = zeros(n); D = zeros(1, n);
DSP1 = [′ For any ′, int2str(N),′−square matrix, you need S =′];
DSP2 = [′Do you want to try with another ′, int2str(N),′−square matrix? (Y es = 1/No = 0)′];
%DEFINING S
for i = 1 : n, for j = 1 : n, S(i, j) = i ∧ (N − j); end; end;
disp(′ ′), disp(DSP1), disp(′ ′), disp(S),
R = inv(S);
ok = 1;
while ok == 1;
A = input([′Enteran ′, int2str(N),′ x ′, int2str(N),′ matrix A : ′); disp(′ ′)
D0 = det(A);
for k = 1 : n; D(k) = det(k ∗ In−A); end;
for i = 1 : n; DD(i) = D(i)−D0− i ∧N ; end;
P = R ∗DD′;
disp(′The Characteristic polynomial looks like : ′)
disp( ′KA(x) = x ∧ n+ p(1)x ∧ (n− 1) + ...+ p(n− 1)x+ p(n)′ ), disp(′ ′),
disp(′The coefficients list p(k) is : ′), disp(′ ′),
disp([1 P ′ D0]), disp(′ ′),
disp(DSP2), disp(′ ′),
ok = input(DSP2);

end
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♣ The Method of Danilevsky. Consider an n× n matrix A and let

KA(λ) = det(λIn −A) = λn + p1λ
n−1 + · · ·+ pn−1λ+ pn

be its characteristic polynomial. Then the companion matrix of KA(λ)

F [A] =



−p1 −p2 −p3 . . . −pn−1 −pn

1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
. . . . . .

...
...

0 0 . . . 1 0 0
0 0 0 . . . 1 0


is similar to A and is called the Frobenius form of A.

The method of Danilevsky (1937) applies the Gauss-Jordan method to obtain the
Frobenius form of an n × n matrix. According to this method the transition from the
matrix A to F [A] is done by means of n− 1 similarity transformations which successively
transform the rows of A, beginning with the last, into corresponding rows of F [A].

Let us illustrate the beginning of the process. Our purpose is to carry the nth row of

A =



a11 a12 a13 . . . a1,n−1 a1n

a21 a22 a23 . . . a2,n−1 a2n

a31 a32 a33 . . . a3,n−1 a3n

...
...

...
. . .

...
...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
an1 an2 an3 . . . an,n−1 ann


into the row ( 0 0 . . . 1 0 ). Assuming that an,n−1 6= 0, we replace the (n− 1)th row of
the n× n identity matrix with the nth row of A and obtained the matrix

Un−1 =



1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
. . . . . .

...
...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
an1 an2 an3 . . . an,n−1 ann

0 0 0 . . . 0 1


The inverse of Un−1 is

Vn−1 =



1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
. . . . . .

...
...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
vn−1,1 vn−1,2 vn−1,3 . . . vn−1,n−1 vn−1,n

0 0 0 . . . 0 1


where

vn−1,i = − ani

an,n−1
for i 6= n− 1

vn−1,n−1 = − 1
an,n−1

.and
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Multiplying the right side of A by Vn−1, we obtain

AVn−1 = B =



b11 b12 b13 . . . b1,n−1 b1n

b21 b22 b23 . . . b2,n−1 b2n

...
...

. . . . . .
...

...
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
bn−1,1 bn−1,2 bn−1,3 . . . bn−1,n−1 bn−1,n−1

0 0 0 . . . 1 0



However the matrix B = AMn−1 is not similar to A. To have a similarity transforma-
tion, it is necessary to multiply the left side of B by Un−1 = V −1

n−1. Let C = Un−1AVn−1,
then C is similar to A and is of the form

C =



c11 c12 c13 . . . c1,n−1 c1n

b21 b22 b23 . . . b2,n−1 b2n

...
...

. . . . . .
...

...
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
cn−1,1 cn−1,2 cn−1,3 . . . cn−1,n−1 cn−1,n−1

0 0 0 . . . 1 0



Now, if cn−1,n−1 6= 0, then similar operations are performed on matrix C by taking its
(n− 2)th row as the principal one. We then obtain the matrix

D = Un−2CVn−2 = Un−2Un−1AVn−1Vn−2

with two reduced rows. We continue the same way until we finally obtain the Frobenius
form

F [A] = U1U2 · · ·Un−2Un−1AVn−1Vn−2 · · ·V2V1

if, of course, all the n− 1 intermediate transformations are possible.

Exceptional case in the Danilevsky method. Suppose that in the transformation of the
matrix A into its Frobenius form F [A] we arrived, after a few steps, at a matrix of the
form

R =



r11 r12 . . . r1k . . . r1,n−1 r1n

r21 r22 . . . r2k . . . r2,n−1 r2n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
rk1 rk2 . . . rkk . . . rk,n−1 rkn

0 0 . . . 1 . . . 0 0

0 0 . . . 0
. . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 0 . . . 1 0


and it was found that rk,k−1 = 0 or |rk,k−1| is very small. It is then possible to continue
the transformation by the Danilevsky method.

Two cases are possible here.

Case 1. Suppose for some j = 1, 2, . . . , k − 2, rkj 6= 0. Then by permuting the jth row and
(k − 1)th row and the jth column and (k − 1)th column of R we obtain a matrix R′ = (r′ij)
similar to R with r′k,k−1 6= 0.
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Case 2. Suppose now that rkj = 0 for all j = 1, 2, . . . , k − 2. Then R is in the form

R =
[
R1 R2

0 R3

]
=



r11 r12 . . . r1,k−1 r1,k r1,k+1 . . . r1n

r21 r22 . . . r2,k−1 r2,k r2,k+1 . . . r2n

...
...

. . .
...

...
. . .

...
...

rk−1,1 rk−1,2 . . . rk−1,k−1 rk−1,k rk−1,k+1 . . . rk−1,n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 0 rkk rk,k+1 . . . rkn

0 0 . . . 0 1 . . . 0 0
...

...
. . .

...
...

. . .
...

...
0 0 . . . 0 0 . . . 1 0


.

In this case the characteristic polynomial of R breaks up into two determinants:

det(λIn −R) = det(λIk−1 −R1) det(λIn−k+1 −R3).

Here, the matrix R3 is already reduced to the Frobenius form. It remains to apply the
Danilevsky’s method to the matrix R1.

Note. Since UkAk−1 only changes the kth row of Ak−1, it is more efficient to multiply first Ak−1 by its
(k + 1)th row and then multiply on the right side the resulting matrix by Vk.

The next result shows that once we transform A into its Frobenius form ; we may
obtain the eigenvectors with the help of the matrices V ′

i s.

Theorem. Let A be an n × n matrix and let F [A] be its Frobenius form. If λ is an eigenvalue of A,
then

v =


λn−1

λn−2

...
λ
1

 and w = Vn−1Vn−2 · · ·V2V1v

are the eigenvectors of F [A] and A respectively.

Proof. Since

det(λIn −A) = det(λIn − F [A] ) = λn + p1λ
n−1 + · · ·+ pn−1λ+ pn ,

we have

(λIn − F [A])v =


λ− p1 −p2 −p3 . . . −pn−1 −pn

1 λ 0 . . . 0 0
λ 1 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 λ





λn−1

λn−2

λn−3

...
λ
1

 =



0
0
0
...
0
0

 .

Since F [A] = V −1
1 V −1

2 · · ·V −1
n−2V

−1
n−1AVn−1Vn−2 · · ·V2V1 and F [A]v = λv, we conclude that

λw = Vn−2 · · ·V2V1(λv) = (Vn−2 · · ·V2V1)F [A]v = A (Vn−1Vn−2 · · ·V2V1v) = Aw

Note. For expanding characteristic polynomials of matrices of order higher than fifth, the method of
Danilevsky requires less multiplications and additions than other methods.
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Example. Reduce the matrix

A =


1 1 3 4
2 0 2 1
1 0 1 2
0 0 −1 −1


to its Frobenius form.

The matrix B = A3 = U3AV3 is as follows:

B =


1 0 0 0
0 1 0 0
0 0 −1 −1
0 0 0 1




1 1 3 4
2 0 2 1
1 0 1 2
0 0 −1 −1




1 0 0 0
0 1 0 0
0 0 −1 −1
0 0 0 1

 =


1 1 −3 1
2 0 −2 −1
−1 0 0 −1
0 0 1 0

 .

Since b32 = 0, we need the permutation matrix J =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 ; thus

C = JBJ =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1




1 1 −3 1
2 0 −2 −1
1 0 −1 1
0 0 1 0




0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 =


0 2 −2 −1
1 1 −3 1
0 −1 0 −1
0 0 1 0


Next we obtain the matrix D = A2 = U2CV2

D =


1 0 0 0
0 −1 0 −1
0 0 1 0
0 0 0 1




0 2 −2 −1
1 1 −3 1
0 −1 0 −1
0 0 1 0




1 0 0 0
0 −1 0 −1
0 0 1 0
0 0 0 1

 =


0 −2 −2 −3
−1 1 2 0
0 1 0 0
0 0 1 0

 .

Finally the Frobenius form F [A] = A1 = U1DV1,

F [A] =


−1 1 2 0
0 1 0 0
0 0 1 0
0 0 0 1




0 −2 −2 −3
−1 1 2 0
0 1 0 0
0 0 1 0



−1 1 2 0
0 1 0 0
0 0 1 0
0 0 0 1

 =


1 4 2 3
1 0 0 0
0 1 0 0
0 0 1 0

 .

Thus the Characteristic polynomial of A is :

KA(λ) = x4 − x3 − 4x2 − 2x− 3

Matlab Program

A = input(′Enter the square matrix A : ′);
m = size(A); N = m(1); b = [1]; B = zeros(N); i = 1;
while i < N,
J = eye(N);h = A(N − i+ 1, N − i)
while h == 0;
c = A(N − i+ 1, 1 : N − i); z = norm(c, inf);
if z = 0;
k = 1; r = 0;
while r == 0 & k < N − i;

r = r + c(N − i− k); k = k + 1;
J(N − i,N − i) = 0; J(N − i,N − i− k + 1) = 1;
J(N − i− k + 1, N − i− k + 1) = 0; J(N − i− k + 1, N − i) = 1,
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A = J ∗A ∗ J ; k = k + 1;
end

else
b = conv(b, [1−A(N − i+ 1, N − i+ 1 : N)]);
B = A(1 : N − i, 1 : N − i);A = B,N = N − i;

end
h = A(N − i+ 1, N − i);

end
U = eye(N); V = eye(N);
U(N − i, :) = A(N − i+ 1, :);
V (N − i, :) = −A(N − i+ 1, :)/A(N − i+ 1, N − i); V (N − i,N − i) = 1/A(N − i+ 1, N − i);
A = U ∗A ∗ V ;
i = i+ 1;
end;
b = conv(b, [1−A(N − i+ 1, N − i+ 1 : N)]); disp(′ ′),
disp(′The Characteristic polynomial looks like : ′), disp(′ ′),
disp([′KA(x) = x ∧ n+ c(1)x ∧ (n− 1),+...+ c(n− 1)x+ c(n)′]), disp(′ ′),
disp(′The coefficients list c(k) is : ′), disp(′ ′),
disp(b), disp(′ ′)

♣ The Method of Krylov. Let A be an n×n matrix. For any n-dimensional nonzero column
vector v we associate its successive transforms

vk = Akv (k = 0, 1, 2, . . .),

this sequence of vectors is called the Krylov sequence associated to the matrix A and the
vector v.

At most n vectors of the sequence v0, v1, v2, . . . will be linearly independent. Suppose
for some r = r(v) ≤ n, the vectors v0, v1, v2, . . . , vr are linearly independent and the vector
vr+1 is a linear combination of the preceding ones. Hence there exists a monic polynomial

φ(λ) = c0 + c1λ+ c2λ
2 + · · ·+ cr−1λ

r−1 + λr

such that

φ(A)v = (c0In + c1A+ · · ·+ cr−1A
r−1 +Ar)v = c0v0 + c1v1 + · · ·+ cr−1vr + crvr+1 = θ .

The polynomial φ(λ) is said to annihilate v and to be minimal for v. If ω(λ) is another monic
polynomial which annihilates v,

ω(A)v = 0 ,

then φ(λ) divides ω(λ). To show that; suppose

ω(λ) = γ(λ)φ(λ) + ρ(λ),

where ρ(λ) is the remainder after dividing ω by φ, hence of degree strictly less than r, it
follows that

ρ(A)v = 0.

But φ(λ) is minimal for v, hence ρ(λ) = 0.

Now of all vectors v there is at least one vector for which the degree v is maximal,
since for any vector v, r(v) ≤ n. We call such vector a maximal vector.

A monic polynomial µA(λ) is said to be the minimal polynomial for A, if µA(λ) is monic
and of minimum degree satisfying

φ(A) = Zn.

California State University, East Bay



Massoud Malek The Method of Krylov Page 13

Theorem 1. Let A be an n× n matrix and let φ(λ) be a minimal polynomial for a maximal vector v.
Then φ(λ) is the minimal polynomial for A.

Proof. Consider any vector u such that u and v are linearly independent. Let ψ(λ) be its
minimal polynomial. If ω is the lowest common multiple of φ and ψ, then ω annihilates
every vector in the plane of u and v, since

ω(A)(αu+ βv) = αω(A)u+ βω(A)v = θ.

Hence ω contains as a divisor the minimal polynomial of every vector in the plane. But
ω is of degree 2n at most, hence has only finitely many divisors. Since there are infinitely
many pairs of linearly independent vectors in the plane and finitely many divisors of ω,
there is a pair of linearly independent vectors x and y in this plane with the same minimal
polynomial. This polynomial also annihilates v since v is on this plane. Therefore φ is
minimal for every vectors in the plane of u and v, and since u was any vector whatever,
other than v, φ annihilates every n-dimensional vector.

Since φ annihilates every vector, it annihilates in particular every vector ei, hence

φ(A)I = φ(A) = Zn.

Thus φ(λ) = µA(λ) is the minimal polynomial for A.

If the minimal polynomial and the characteristic polynomial of a matrix are equal,
then they may be found by the use of Krylov’s sequence. To produce the characteris-
tic polynomial of A by Krylov method, first choose an arbitrary n-dimensional nonzero
column vector v such as e1, then use the Krylov sequence to define the matrix

V = [v,Av,A2v, . . . , An− 2v,An−1v] = [v0, v1, v − 2, . . . vn−2, vn−1].

If the matrix V has rank n, then the system V c = −vn has a unique solution

ct = (c0, c1, c2, · · · , cn−1).

The monic polynomial

φ(λ) = c0 + c1λ+ c2λ
2 + · · ·+ cn−1λ

n−1 + λn

which annihilates v is the characteristic polynomial of A. If the system V c = −vn does not
have a unique solution, then change the initial vector and try for example with e2.

Examples. Compute the characteristic polynomials of the following matrices:

A =


1 2 1 −1
1 0 2 1
2 1 −1 3
4 −5 0 4

 and B =


1 2 −3 1
1 0 −2 1
1 −3 −1 3
1 0 1 −2

 .

Choosing the initial vector v =


1
0
0
0

 for both matrices, we obtain

VA = [v,Av,A2v,A3v] =


1 1 1 17
0 1 9 42
0 2 13 43
0 4 15 19

 and VB = [v,Bv,B2v,B3v] =


1 1 1 1
0 1 0 1
0 1 0 1
0 1 0 1

 .
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The matrix VA is nonsingular, hence cA = −V −1
A A4v =


−87
28
2
−4

. From cA we obtain the

characteristic polynomial of A which is

KA(λ) = −87 + 28λ+ 2λ2 − 4λ3 + λ4.

The matrix VB is singular, so we need another initial vector such as v =


0
1
0
0

. The new

matrix VB =


0 2 11 11
1 0 8 0
0 −3 5 −21
0 0 −1 18

 is invertible, so cB = −V −1
B A4v =


9
−2
−10
2

. From the

solution cB we obtain the characteristic polynomial of B which is

KB(λ) = 9− 2λ− 10λ2 + 2λ3 + λ4.

Remark. The minimal polynomial and the characteristic polynomial of the matrix

A =


1 2 3 4
1 2 3 4
1 0 0 0
1 0 0 0


are

mA(λ) = λ3 − 3λ2 − 7λ and KA(λ) = λ4 − 3λ3 − 7λ2,

respectively. Therefore by choosing any initial vector v, the matrix VA = [v,Av,A2v,A3v] will always be
singular. This means that the Krylov sequence will never produce the characteristic polynomial KA(λ).

Matlab Program

A = input(′Enter a square matrix A : ′);
m = size(A); n = m(1); V = zeros(n, n);
DL1 = [′Enter an initial ′, int2str(n) , ′ − dimensional row vector v0 = ′];
v0 = input(DL1);
z = 0; k = 1;
while z == 0 & k < 5

w = v0; V (:, 1) = w;
for i = 2 : n, w = A ∗ w; V (:, i) = w; end,
if det(V ) ∼= 0; k = 8; c = −inv(V ) ∗A ∗ w;
else
while k < 5
v0 = input(′The matrix V is singular, please enter another initial row vector v0 : ′);
k = k + 1;

end;
end;
z = det(V );

end;
if k == 5;
disp(′Sorry, the Krylov method is not suited for this matrix. ′), disp(′ ′),

else;
disp(′The Characteristic polynomial looks like : ′), disp(′ ′),
disp([′KA(x) = c(0) + C(1)x+ c(2)x ∧ 2 + · · ·+ c(n− 1)x ∧ (n− 1) + x ∧ n′]), disp(′ ′),
disp(′The coefficients list c(k) is : ′), disp(′ ′),
disp([c′, 1])

end;
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