Quadratic and cubic regression in Excel

I have the following information:

Height	Weight
170	65
167	55
189	85
175	70
166	55
174	55
169	69
170	58
184	84
161	56
170	75
182	68
167	51
187	85
178	62
173	60
172	68
178	55
175	65
176	70

I want to construct quadratic and cubic regression analysis in Excel. I know how to do it by linear regression in Excel, but what about quadratic and cubic? I have searched a lot of resources, but could not find anything helpful.

```
excel regression
```

2 my 1st google result for "excel polynomial regression" is people.stfx.ca/bliengme/ExcelTips/Polynomial.htm what's wrong with that?!? - Aprillion Jun 1 '12 at 22:28
@deathApril I suggest you add this as the answer - brettdj Jun 2 '12 at 10:42
@deathApril i've been googling for a how to perform polynomial regressions in Excel. i already found the link you mention; but i don't think it includes anything to do with quadratic or 4th order regressions. i could be wrong: it's horribly written. - Ian Boyd Sep 2 '12 at 20:19

3 Answers

You need to use an undocumented trick with Excel's LINEST function:

```
=LINEST(known_y's, [known_x's], [const], [stats])
```


Background

A regular linear regression is calculated (with your data) as:
which returns a single value, the linear slope (m) according to the formula:

$y=m \times x+b$

which for your data:

is:

$$
y=0.619033398038923 \times x+b
$$

Undocumented trick Number 1

You can also use Excel to calculate a regression with a formula that uses an exponent for x different from 1 , e.g. $x^{1.2}$:

$$
y=m \times x^{1.2}+b
$$

using the formula:

$$
=\operatorname{LINEST}(\mathrm{B} 2: \mathrm{B} 21, \mathrm{~A} 2: \mathrm{A} 21 \wedge 1.2)
$$

which for you data:

is:
$y=0.315374680721405 \times x^{1.2}+b$

You're not limited to one exponent

Excel's LINEST function can also calculate multiple regressions, with different exponents on x at the same time, e.g.:

```
=LINEST(B2:B21,A2:A21^{1, 2})
```

Note: if locale is set to European (decimal symbol ","), then comma should be replaced by semicolon and backslash, i.e. $=\operatorname{LINEST}(\mathrm{B} 2: \mathrm{B} 21 ; \mathrm{A} 2: \mathrm{A} 21 \wedge\{1 \backslash 2\})$

Now Excel will calculate regressions using both x^{1} and x^{2} at the same time:
$y=m_{1} x^{1}+m_{2} x^{2}+b$

How to actually do it

The impossibly tricky part there's no obvious way to see the other regression values. In order to do that you need to:

- select the cell that contains your formula:

=LINEST(B2:B21,A2:A21^\{1,2\})

- extend the selection the left 2 spaces (you need the select to be at least 3 cells wide):
\square
- press F2
- press Crrl + Shift + Enter

You will now see your 3 regression constants:

```
y=-0.01777539x^2 + 6.864151123x + -591.3531443
```


Bonus Chatter

