
Tutorial on CPLEX

Linear Programming

Combinatorial Problem Solving (CPS)

Enric Rodŕıguez-Carbonell

April 21, 2015

LP with CPLEX

2 / 31

■ Among other things, CPLEX allows one to deal with:

◆ Real linear progs
(all vars are in R)

min cTx
A1x ≤ b1
A2x = b2
A3x ≥ b3
x ∈ R

n

◆ Mixed integer linear progs
(some vars are in Z)

min cTx
A1x ≤ b1
A2x = b2
A3x ≥ b3
∀i ∈ I : xi ∈ Z

∀i 6∈ I : xi ∈ R

CPLEX Toolkit

3 / 31

■ CPLEX allows one to work in several ways. CPLEX is...

◆ An IDE that uses the OPL modeling language

◆ An interactive optimizer that reads MPS/LP input

◆ A callable library in several languages

■ Java

■ C

■ C++ (Concert Technology)

■ ...

Concert Technology

4 / 31

■ Two kinds of objects:

◆ Modeling objects for defining the optimization problem
(constraints, objective function, etc.)

They are grouped into an IloModel object representing the complete
optimization problem (recall: here, model = problem).

◆ Solving objects for solving problems represented by modeling objects.

An IloCplex object reads a model, extracts its data, solves the
problem and answers queries on solution.

Creating the Environment: IloEnv

5 / 31

■ The class IloEnv constructs a CPLEX environment.

■ The environment is the first object created in an application.

■ To create an environment named env, you do this:

IloEnv env;

■ The environment object needs to be available to the constructor of all
other Concert Technology classes

■ IloEnv is a handle class: variable env is a pointer to an implementation
object, which is created at the same time

■ Before terminating destroy the implementation object with

env.end ();

for just ONE of its IloEnv handles

Creating a Model: IloModel

6 / 31

■ After creating the environment, a Concert application is ready to create
one or more optimization models.

■ Objects of class IloModel define a complete model that can be later
passed to an IloCplex object.

■ To construct a modeling object named model, within an existing
environment named env, call:

IloModel model(env);

■ The environment of a given optimization model can be recovered by
calling:

IloEnv env = model.getEnv ();

Creating a Model: IloModel

7 / 31

■ After an IloModel object has been constructed, it can be populated with
objects of classes:

◆ IloNumVar, representing modeling variables;

◆ IloRange, which define constraints of the form l ≤ E ≤ u,
where E is a linear expression;

◆ IloObjective, representing an objective function.

■ Any object obj can be added to the model by calling:

model.add(obj);

■ No need to explicitly add the variable objects to a model, as they are
implicitly added when they are used in range constraints (instances of
IloRange) or in the objective.

■ At most one objective can be used in a model.

Creating a Model: IloModel

8 / 31

■ Modeling variables are constructed as objects of class IloNumVar, e.g.:

IloNumVar x(env , 0, 40, ILOFLOAT);

This definition creates the modeling variable x with lower bound 0,
upper bound 40 and type ILOFLOAT

■ Variable types:

◆ ILOFLOAT: continuous variable

◆ ILOINT: integer variable

◆ ILOBOOL: Boolean variable

Creating a Model: IloModel

9 / 31

■ After all the modeling variables have been constructed,
they can be used to build expressions,
which are used to define objects of classes IloObjective, IloRange.

■ To create obj of type IloObjective representing an objective function
(and direction of optimization):

IloObjective obj = IloMinimize(env , x+2*y);

■ Creating constraints and adding them to the model:

model.add(-x + 2*y + z <= 20);

-x + 2*y + z <= 20 creates implicitly an object of class IloRange that
is immediately added to the model

■ One may have arrays of these objects: IloNumVarArray, IloRangeArray

Creating a Model: IloModel

10 / 31

■ Actually in

model.add(-x + 2*y + z <= 20);

an object of class IloExpr is also implicitly created.

■ Objects of class IloExpr can be created explicitly too.

E.g., when expressions cannot be spelled out in source code but have to be
built up dynamically. Operators like += provide an efficient way to do this.

■ IloExpr objects are handles.
So the method end() must be called when the object is no longer needed.

The only exception to this rule are implicit expressions,
where user does not create an IloExpr object explicitly (see the example).

Solving the Model: IloCplex

11 / 31

■ The class IloCplex solves a model.

■ After the optimization problem has been stored in an IloModel object
(say, model), it is time to create an IloCplex object (say, cplex) for
solving the problem:

IloCplex cplex(model);

■ To solve the model, call:

cplex.solve ();

■ This method returns an IloBool value, where:

◆ IloTrue indicates that CPLEX successfully found a feasible (yet not
necessarily optimal) solution

◆ IloFalse indicates that no solution was found

Solving the Model: IloCplex

12 / 31

■ More precise information about the outcome of the last call to the
method solve can be obtained by calling:

cplex.getStatus ();

■ Returned value tells what CPLEX found out: whether

◆ it found the optimal solution or only a feasible one; or

◆ it proved the model to be unbounded or infeasible; or

◆ nothing at all has been proved at this point.

■ More info is available with method getCplexStatus.

Querying Results

13 / 31

■ Query methods access information about the solution.

■ Numbers in solution, etc. are of type IloNum

■ To query the solution value for a variable:

IloNum v = cplex.getValue (x);

■ To query the solution value for an array of variables:

IloNumVarArray x(env);

...

IloNumArray v(env);

cplex.getValues (v, x);

Querying Results

14 / 31

■ To get the values of the slacks of an array of constraints:

IloRangeArray c(env);

...

IloNumArray v(env);

cplex.getSlacks (v, c);

■ To get the values of the duals of an array of constraints:

IloRangeArray c(env);

...

IloNumArray v(env);

cplex.getDuals (v, c);

Querying Results

15 / 31

■ To get values of reduced costs of an array of variables:

IloNumVarArray x(env);

...

IloNumArray v(env);

cplex.getReducedCosts (v, x);

■ To avoid logging messages by CPLEX on screen:

cplex.setOut (env.getNullStream ());

Querying Results

16 / 31

■ Output operator << is defined for type IloAlgorithm::Status returned
by getStatus, as well as for IloNum, IloNumVar, ...

<< is also defined for any array of elements
if the output operator is defined for the elements.

■ Default names are of the form IloNumVar(n)[ℓ..u] for variables, and
similarly for constraints, e.g.,

IloNumVar (1)[0..9] + IloNumVar (3)[0.. inf] <= 20

■ One can set names to variables and constraints:

x.setName ("x");

c.setName ("c");

Writing/Reading Models

17 / 31

■ CPLEX supports reading models from files and
writing models to files in several languages (e.g., LP format, MPS format)

■ To write the model to a file (say, model.lp):

cplex.exportModel ("model.lp");

■ IloCplex decides which file format to write based on the extension of the
file name (e.g., .lp is for LP format)

■ This may be useful, for example, for debugging

Languages for Linear Programs

18 / 31

■ MPS

◆ Very old format (≈ age of punched cards!) by IBM

◆ Has become industry standard over the years

◆ Column-oriented

◆ Not really human-readable nor comfortable for writing

◆ All LP solvers support this language

■ LP

◆ CPLEX specific file format

◆ Row-oriented

◆ Very readable, close to mathematical formulation

◆ Supported by CPLEX, GUROBI, GLPK, LP SOLVE, ..
(which can translate from one format to the other!)

Example: Product Mix Problem

19 / 31

■ A company can produce 6 different products P1, . . . , P6

■ Production requires labour, energy and machines, which are all limited

■ The company wants to maximize revenue

■ The next table describes the requirements of producing one unit of each
product, the corresponding revenue and the availability of resources:

P1 P2 P3 P4 P5 P6 Limit

Revenue 5 6 7 5 6 7

Machine 2 3 2 1 1 3 1050
Labour 2 1 3 1 3 2 1050
Energy 1 2 1 4 1 2 1080

Example: Product Mix Problem

20 / 31

MODEL:

xi = quantity of product Pi to be produced.

max Revenue : 5x1 +6x2 +7x3 +5x4 +6x5 +7x6
Machine : 2x1 +3x2 +2x3 +x4 +x5 +3x6 ≤ 1050
Labour : 2x1 +x2 +3x3 +x4 +3x5 +2x6 ≤ 1050
Energy : 1x1 +2x2 +x3 +4x4 +x5 +2x6 ≤ 1080

x1, x2, x3, x4, x5, x6 ≥ 0

LP Format

21 / 31

\ Product-mix problem (LP format)

max

revenue: 5 x_1 + 6 x_2 + 7 x_3 + 5 x_4 + 6 x_5 + 7 x_6

subject to

machine: 2 x_1 + 3 x_2 + 2 x_3 + x_4 + x_5 + 3 x_6 <= 1050

labour: 2 x_1 + x_2 + 3 x_3 + x_4 + 3 x_5 + 2 x_6 <= 1050

energy: 1 x_1 + 2 x_2 + x_3 + 4 x_4 + x_5 + 2 x_6 <= 1080

end

MPS Format

22 / 31

* Product-mix problem (Fixed MPS format)

*

* Column indices

*00000000111111111122222222223333333333444444444455555555556666666666

*23456789012345678901234567890123456789012345678901234567890123456789

*

* mrevenue stands for -revenue

*

NAME PRODMIX

ROWS

N mrevenue

L machine

L labour

L energy

COLUMNS

x_1 mrevenue -5 machine 2

x_1 labour 2 energy 1

x_2 mrevenue -6 machine 3

x_2 labour 1 energy 2

x_3 mrevenue -7 machine 2

x_3 labour 3 energy 1

x_4 mrevenue -5 machine 1

x_4 labour 1 energy 4

x_5 mrevenue -6 machine 1

x_5 labour 3 energy 1

x_6 mrevenue -7 machine 3

x_6 labour 2 energy 2

RHS

RHS1 machine 1050 labour 1050

RHS1 energy 1080

ENDATA

LP Format

23 / 31

■ Intended for representing LP’s of the form

min /max cTx
aT
i
x ⊲⊳i bi (1 ≤ i ≤ m, ⊲⊳i∈ {≤,=,≥})

ℓ ≤ x ≤ u (−∞ ≤ ℓk, uk ≤ +∞)

■ Comments: anything from a backslash \ to end of line

■ In general blank spaces are ignored
(except for separating keywords)

■ Names are sequences of alphanumeric chars and symbols (,) _ etc.
Careful with e, E: troubles with exponential notation!

LP Format

24 / 31

1. Objective function section

(a) One of the keywords: min, max

(b) Label with semi-colon: e.g. cost: (optional)

(c) Expression: e.g. -2 x1 + 2 x2

2. Constraints section

(a) Keyword subject to (or equivalently: s.t., st, such that)

(b) List of constraints, each in a different line

i. Label with semi-colon: e.g. limit: (optional)

ii. Expression: e.g. 3 x1 + 2 x2 <= 4

Senses: <=, =< for ≤; >=, => for ≥; = for =

LP Format

25 / 31

3. Bounds section (optional)

(a) Keyword Bounds

(b) List of bounds, each in a different line

l <= x <= u: sets lower and upper bounds
l <= x : sets lower bound
x >= l : sets lower bound
x <= u : sets upper bound
x = f : sets a fixed value
x free : specifies a free variable

(c) Infinite bounds −∞, +∞ are represented -inf, +inf

(d) Default bounds: lower bound 0, upper bound +∞

4. End section: File should end with keyword end

Writing/Reading Models

26 / 31

■ IloCplex supports reading files with importModel

A call to importModel causes CPLEX to read a problem from a file and
add all data in it as new objects.

void IloCplex :: importModel (

IloModel & m,

const char* filename ,

IloObjective& obj ,

IloNumVarArray vars ,

IloRangeArray rngs) const;

Example 1

27 / 31

■ Let us see a program for solving:

max x0 + 2x1 + 3x2
−x0 + x1 + x2 ≤ 20
x0 − 3x1 + x2 ≤ 30

0 ≤ x0 ≤ 40
0 ≤ x1 ≤ ∞
0 ≤ x2 ≤ ∞

xi ∈ R

Example 1

28 / 31

#include <ilcplex/ilocplex .h>

ILOSTLBEGIN

int main () {

IloEnv env;

IloModel model(env);

IloNumVarArray x(env);

IloRangeArray c(env);

x.add(IloNumVar (env , 0, 40));

x.add(IloNumVar (env));// default: between 0 and +∞
x.add(IloNumVar (env));

c.add(- x[0] + x[1] + x[2] <= 20);

c.add(x[0] - 3 * x[1] + x[2] <= 30);

model.add(c);

model.add(IloMaximize(env , x[0]+2* x[1]+3* x[2]));

IloCplex cplex(model);

cplex.solve ();

cout << "Max=" << cplex.getObjValue () << endl;

env.end ();

}

Example 2

29 / 31

■ Let us see a program for solving:

max x0 + 2x1 + 3x2 + x3
−x0 + x1 + x2 + 10x3 ≤ 20

x0 − 3x1 + x2 ≤ 30
x1 − 3.5x3 = 0

0 ≤ x0 ≤ 40
0 ≤ x1 ≤ ∞
0 ≤ x2 ≤ ∞
2 ≤ x3 ≤ 3

x0, x1, x2 ∈ R

x3 ∈ Z

Example 2

30 / 31

#include <ilcplex/ilocplex .h>

ILOSTLBEGIN

int main () {

IloEnv env;

IloModel model(env);

IloNumVarArray x(env);

IloRangeArray c(env);

x.add(IloNumVar (env , 0, 40));

x.add(IloNumVar (env));

x.add(IloNumVar (env));

x.add(IloNumVar (env , 2, 3, ILOINT));

c.add(- x[0] + x[1] + x[2] + 10 * x[3] <= 20);

c.add(x[0] - 3 * x[1] + x[2] <= 30);

c.add(x[1] - 3.5* x[3] == 0);

model.add(c);

model.add(IloMaximize(env , x[0]+2* x[1]+3* x[2]+x[3]));

IloCplex cplex(model); cplex.solve ();

cout << "Max=" << cplex.getObjValue () << endl;

env.end ();

}

More information

31 / 31

■ You can find complete documentation in the WWW at:

http://www-01.ibm.com/support/knowledgecenter/SS9UKU

■ You can find collection of examples in lab’s machines at:

/opt/ibm/ILOG/CPLEX_Studio124/cplex/examples/src/cpp

/opt/ibm/ILOG/CPLEX_Studio124/cplex/examples/data

■ You can find a template for Makefile and the examples shown here at:
www.lsi.upc.edu/~erodri/webpage/cps/lab/lp/tutorial-cplex-code/tutorial-cplex-code.tgz

http://www-01.ibm.com/support/knowledgecenter/SS9UKU
www.lsi.upc.edu/~erodri/webpage/cps/lab/lp/tutorial-cplex-code/tutorial-cplex-code.tgz

	LP with CPLEX
	CPLEX Toolkit
	Concert Technology
	Creating the Environment: blackIloEnv
	Creating a Model: blackIloModel
	Creating a Model: blackIloModel
	Creating a Model: blackIloModel
	Creating a Model: blackIloModel
	Creating a Model: blackIloModel
	Solving the Model: blackIloCplex
	Solving the Model: blackIloCplex
	Querying Results
	Querying Results
	Querying Results
	Querying Results
	Writing/Reading Models
	Languages for Linear Programs
	Example: Product Mix Problem
	Example: Product Mix Problem
	LP Format
	MPS Format
	LP Format
	LP Format
	LP Format
	Writing/Reading Models
	Example 1
	Example 1
	Example 2
	Example 2
	More information

