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                                                        CHAPTER 2 
 
                   MORE FOR LESS, OPTIMALITY AND GENERALIZED 
                                       KUHN TUCKER CONDITIONS 
 
 
1. Introduction 
 
Kuhn Tucker conditions (Kuhn and Tucker 
1951) have been developed and used variously as 
consistency checks, as computational aids and as 
sources of optimal decision rules in many 
applications in which the relations concerned are 
continuous and differentiable. (For a wide range 
of applications see Zangwill 1969 or Bazaraa 
1993.) My main purpose in this chapter is to 
develop new results analogous to the Kuhn 
Tucker conditions without assumptions either of 
continuity or of differentiability. A secondary 
purpose is to show how, whether or not the 
relevant conditions are continuous and 
differentiable, if the relevant systems are 
"conservative" in a sense to be defined in Section 
7, then the corresponding Kuhn Tucker-like 
conditons will generally coincide with conditions 
for degeneracy and/or for alternate optima. The 
chapter concludes with economic examples 
which provide practical gift, exchange and 
learning related illustrations and applications of 
these phenomena. 
 
2. Some preliminary results 
 
The following Theorem appears as Theorem 3 in 
Section 2 of Chapter 1: 
 
THEOREM 1 

With M>>h+(s+), M>> h-(s-) and if an optimal 
solution exists for (I), then: 
 

Max f(x)-Ms+- Ms- = z ≤ z' =Max f(x) -h+(s+) -h-(s-) 

st  g(x) + s+-s -=b  (I)     st   g(x) + s+-s- =b             (Ia) 
      x ,s+,s-≥0                                x, s+,s- ≥0  
 
PROOF   

Any optimal solution to (I) with all si
+=0, si0

-

=0 is a feasible but not necessarily an optimal 
solution to (Ia). It follows that there may exist 
optimal solutions to (Ia) such that z'>z or z'=z 
with si

+>0 and/or si
->0 some si

+,si
-. (Notice 

that if variables si
+,si

- appear in each of 

constraints i=1,2..m of (I) then there is always 
a feasible solution to that system.) 

 
COROLLARY Less for More/Nothing 

There may be optimal solutions to (Ia) such 
that si

+>0 some i and si
-=0 all i so that z'>z 

(resp z'=z). [Corresponding More for Less 
results arise via minimization cases for which 
si

->0 some i, si
+=0 all i and (-)z'>(-)z (resp 

z'=z).] 
 
REMARK 

The less for more (nothing) and more for less 
results in this corollary do not require that either 
f(x) or g(x) be continuous or that constraint sets be 
connected. A fortiori, there is no requirement in 
Theorem 1 that f(x) or g(x) be differentiable. 

 
In Chapter 1 I used a specialization of Theorem 1 
and its corollary to extend and generalize results 
by Swarcz 1971 and Charnes and Klingman 
1971 for the cost minimization related 
distribution problem and by Charnes et al 1987 
for linear programming cases more generally. In 
that chapter I also generalized more for less 
results in Ryan 1980, 1998, Charnes et al 1980 to 
include individual and collective choice 
problems as well as gift and exchange related 
regulatory and bargaining problems. As a first 
step toward further generalizations of that 
approach to yield generalizations of the Kuhn 
Tucker conditions, now consider a specialization 
of Theorem 1: 
 
THEOREM 1A 

Assume that in Theorem 1: i) a feasible 
solution to (I) with s+=s-=0 exists and; ii) 
h+(s+)=defh+s+, h-(s-)=defh-s- in (Ia) Then 
Theorem 1 is consistent with: 
Max f(x)     =  z ≤ z'  =  Max f(x) -h+s+ - h-s- 

 st  g(x) = b   (II)     st   g(x) + s+-s- =b            (IIa) 
    x ≥0                                         x, s+,s- ≥0  

 
PROOF 

As for Theorem 1. 
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LEMMA 1 
Let x*,x** be optimal evaluations of x 
respect-ively via (II) and (IIa). It follows that, 
unless these evaluations are identical, then 

xi*≠xi** some i. Equivalently xi**=defxi*+ Δxi 
with Δxi≠0 at least one i. With this notation, at 
an optimum (II) and (IIa) become such that: 

 

 
REMARK 

Clearly (III) and (IIIa) are consistent with special 
cases of (I) and (Ia) of Theorem 1 for which 
optimally s+=s-=0 all i in (III) if h+,h- 
preemptively large. 

 
Optimal solutions to (III) and (IIIa) can yield the 
wide variety of economic interpretations, which 
were derived from Theorem 3 in Chapter 1. 
Rather than focus on such interpretations, here I 
focus more narrowly on ways in which Lemma 1 
can generate general classes of necessary and/or 
sufficient conditions for optimality for elements 
(III),(IIIa) and thence for (II),(IIa). These ideas 
are developed in the next Section. 
 
3. Three classes of optimal solutions to (III), 
(IIIa) 
 
CASE A:  

Optima to (III),(IIIa) become consistent with z=z' 
via: Ai) Δxi=0; Aii) si

+=si
-=0 all i in (IIIa).  

CASE B:  
Optima to (III),(IIIa) become equivalent but not 
consistent with z=z' via: Bi) at least one Δxi≠0 
and/or; Bii) si

+>0 and/or  si
- >0 some i with si

+≠si
-. 

CASE C:  
An optimum to (III) is suboptimal relative to 
(IIIa) with z<z' via: Ci) at least one Δxi ≠0 and/or; 
Cii) si

+>0 and/or si>0 some i, si
+≠si

-. 
 
REMARKS 
• For hi

+,hi
- sufficiently large and if si

+=si
-=0 is 

feasible, any optimal solution to (IIIa) will be 
such that si

+=si
-=0. If also Δxi=0 all i, then Case 

A applies.  
• Case B and Case C are of particular interest here 

because they potentially yield a variety of less for 
more interpretations, as in Theorem 2 below, 
and because refinements of them yield the 
discrete form of generalised Kuhn Tucker 
conditions which is developed in Section 4. 

 
 
 
 
 

THEOREM 2 Less For More and More for 
Less Solutions to (III) and (IIIa) 

If f(x*), f(x*+Δx) are optimal respectively in 
(III) and (IIIa) and such that f(x*+Δx)-
f(x*)>0, then, whereas necessary conditions 
for f(x*+Δx)-f(x*)>0 are f(x*+Δx) 
increasing in Δxi at least one i, sufficient 
conditions are hi

+si
+,hi

-si
-≥0 all i, hi

+si
+,hi

-si
-

>0, si
+≠si

- at least one i with z=z', as in Case 
Bii). 

 
PROOF 

Necessity follows directly since f(x*+Δx)-
f(x*)>0 implies f(x*+Δx) increasing in Δxi at 
least one i. Sufficiency follows, too since, if 
optimally hi

+si
+,hi

-si
-≥0 all i and hi

+si
+,hi

-si
->0, 

si
+≠si

- at least one i (e.g. via hi
+,hi

-<M) and if 
z=z', as in Case Bii), these conditions are 
then sufficient to determine f(x*+Δxi)-
f(x*)>0 some i.  

 
REMARKS 
• Theorem 2 is potentially consistent with less for 

more (and, via transformations f(x)=def-f(x), more 
for less) optima for (IIIa) relative to (III) since 
these conditions are potentially consistent with 
f(x*+Δx)-f(x*)>0 together with si

+>0 (resp si
->0) 

some i in (IIIa). 
• If hi

+si
+=hi

-si
-=0 all i then Theorem 2 is 

potentially consistent with less for nothing (resp 
more for nothing) optima for (IIIa) relative to 
(III) since it is potentially consistent with 
f(x*+Δx)-f(x*)=0 together with hi

+si
+=0 all i and 

si
+>0 some i (resp hi

-si
-=0 all i, si

->0 some i) in 
(IIIa).  

 
ECONOMIC INTERPRETATIONS 

It has already been noted that f(x*+Δx)-
f(x*)>0 implies f(x*+Δx) increasing in Δxi at 
least one i. Now note that Δxi may be 
negative. In economic terms an individual 
may gain not only by gaining “goods” but by 
losing “bads”. 

 
 

                        Max f(x) =f(x*)   = z ≤ z' = f(x*+Δx)-h+s+-h-s-   = Max f(x+Δx) -h+s+ - h-s-
 

                         st  g(x) = b   (III)                                               st g(x+Δx) + s+-s- =b      (IIIa) 
                                  x≥0                                                                         x, s+,s- ≥0 
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4. Further specializations and discrete Kuhn 
Tucker conditions 
 
4.1 TWO EQUIVALENCES AND TWO 
      SPECIAL CASES 
 

LEMMA 2 
If hi

+=defλi
+, hi

-=defλi
- with λ=def{λi

+,-λi
-}T and 

if nonzero values for si
+,si

-≥0 are mutually 
exclusive so that si

+.si
-=0 then from (IIIa) 

either s+=(b-g(x*+Δx)) or s-=(g(x* +Δx) -b). 
 
TWO EQUIVALENCES 
Ei) Given Lemma 2, in Case B of Section 3 
equality of the objectives of (III),(IIIa) 
becomes equivalent to:  
                       Max f(x) =f(x*)  
                          = z = z' =  
                    f(x*+Δx) - λ+s+-λ-s- 

               = Max f(x+Δx) -λ+s+-λ-s-           (4.1) 
             
So that: 
   f(x*)=z=z'=f(x*+Δx)-λ(b-g(x+Δx))  (4.1a) 
Or: 
  f(x*+Δx)-f(x*)=λ(b-g(x*+Δx))         (4.1b) 
 
Eii) Given Lemma 2, in Case C of Section 3 
inequality of the objectives of (III),(IIIa) 
becomes equivalent to:  
                     Max f(x) =f(x*)  
                         = z < z' =  
                  f(x*+Δx) - λ+s+-λ-s- 
                   = Max f(x+Δx) -λ+s+-λ-s-                    (4.2) 
So that 
   f(x*)=z<z'=f(x*+Δx)-λ(b-g(x+Δx))    
(4.2a) 
Or: 
   f(x*+Δx) -f(x*)>λ(b-g(x*+Δx))         (4.2b) 
  

TWO SPECIAL CASES 
Si) Given Lemma 2, Case B of Section 3 and 
(4.1b) may apply in a disaggregated form 
such that, using Δxi to denote variation only 
of the ith element at an optimum:   
            f(x*+Δxi) -f(x*)= λ(b-g(x*+Δxi))   
                         all relevant i                 (4.1c)   
  
Sii) Similarly, given Lemma 1, Case C of 
Section 3 and (4.2b) may apply in a disagg-
regated form such that, again using Δxi to 
denote variation only of the ith element at 
an optimum:   

              f(x*+Δxi)-f(x*)>λ(b-g(x*+Δxi))   
                            all relevant i              (4.2c)  

Conditions Si) and Sii) together yield a discrete 
form of Kuhn Tucker conditions via Theorem 3: 
 
THEOREM 3 Disaggregated Discrete Kuhn 
Tucker Decision Rules 

Given Lemma 2 sufficient conditions for 
f(x*) in (III) not to be suboptimal relative to 
f(x*+Δx) -h+s+-h-s- in (IIIa) are: 
 
xi >0,Δxi≠0=> f(x*+Δxi) -f(x*) 
                         = λ(b-g(x*+Δx)          (4.1c)* 
          Potentially select xi >0, Δxi≠0  

and; 
 xi >0, Δxi≠0=> f(x*+Δxi) -f(x*) 
                          <λ(b-g(x*+Δxi))        (4.2c)* 
          Do not select  xi >0,Δxi≠0 

 
PROOF 

Given Lemma 1, if xi>0 thenΔxi≠0=> 
f(x*+Δxi) -h+s+-h-s->f(x*) and so f(x*+Δxi)-
h+s+-h-s->f(x*), then f(x*) in (III) is 
suboptimal relative to f(x*+Δx)-h+s+-h-s- in 
(IIIa). It follows that sufficient conditions for 
f(x*) in (III) to be not sub-optimal relative to 
f(x*+Δx) -h+s+-h-s- in (IIIa) are: i) f(x*+Δxi)-
f(x*)=λ(b-g(x*+Δxi) if xi>0 and; ii) if 
f(x*+Δxi)-f(x*)<λ(b-g(x*+Δxi) then xi =0, 
Δxi =0.  

 
REMARK 

Theorem 3 in common with Theorems 1 and 2 
requires no assumption of continuity, and a 
fortiori no assumption of differentiability, for 
f(x). 
 

ECONOMIC APPLICATIONS 
In economic contexts conditions (4.1c)* in 
Theorem 3 may have interpretations as 
optimal economic decision rules according 
to which: i) for Δxi>0 more of an activity i 
may be chosen if the marginal net reward 
f(x*+Δxi)-f(x*) to that activity is sufficient 
to recoup λ(b-g(x*+Δxi), the opportunity 
costs of the resources employed in that 
expansion.  
 
And; ii) for Δxi<0, less of an activity may be 
chosen as long as the marginal compensation 
λ(b-g(x*+Δxi) for reducing that activity is 
sufficient to recoup the marginal net reward 
f(x*+Δxi) -f(x*) foregone in reducing that 
activity. Also, from (4.2c)* in Theorem 3, no 
activity would be chosen for which the 
marginal reward was less than the marginal 
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opportunity cost associated with achieving it. 
[I will return to these interpretations with a 
context of economic applications in Section 
8.] 

 
While sufficient, the conditions of Theorem 3 
are not necessary for potentially mutually 
beneficial exchanges between individuals. 
Indeed mutually beneficial exchanges are 
consistent with circumstances where each 
individual not only prefers more of what they 
are getting (as in the examples just considered) 
but also prefers less of what they are giving up. 
 
As this latter example implies, the conditions 
given in Theorem 3 may be such that 
simultaneously f(x*+Δxi)-f(x*) < λ(b-
g(x*+Δxi)) some i and f(x*+Δxj)-f(x*) > λ(b-
g(x*+Δxj) some j, yet nevertheless an overall 
relationship may hold such that f(x*+Δx)-
f(x*)=λ(b-g(x*+Δx)), as in (4.1b). Theorem 4 is 
a formalization of this idea: 
 
THEOREM 4 Aggregate Discrete Kuhn 
 Tucker Conditions 

Necessary conditions for f(x*) in (III) not to 
be suboptimal relative to f(x*+Δx)-h+s+-h-s- 

in (IIIa) are: 
           f(x*+Δx)-f(x*)=h+s++h-s-≥0 
            xi ≠0,Δxi≠0 some Δxi          (4.1b)* 

 
PROOF 

If f(x*+Δx)-h+s+-h-s->f(x*) then f(x*) in (III) 
is suboptimal relative to f(x*+Δx) -h+s+-h-s- 

in (IIIa) and Case C of Section 3 applies. It 
follows that sufficient conditions for f(x*) in 
(III) to be not suboptimal relative to 
f(x*+Δx) -h+s+-h-s- are: f(x*+Δx)-
f(x*)=h+s++h-s-≥0 if xi≠0, Δxi≠0 some i. 
 

ECONOMIC INTERPRETATIONS 
• The conditions of Theorem 4 are consistent 

with f(x*+Δxi)>f(x*) some i and thence with 
an economic interpretation according to 
which both parties to an exchange may gain 
according to their preference relations. They 
are also potentially open to an interpretation 
according to which one or more parties lose 
according to their preferences while others 
gain in such a way as to record an overall net 
gain. [In the former case an exchange related 
economic application of Theorem 4 may be 
consistent with a strict Pareto improvement 
according to which two individuals both gain 

in their own estimation from exchange.]  
• Notice that, in distinction from Theorem 3, 

in general the conditions of Theorem 4 apply 
to potential net gains or losses from bundles 
of commodities. 

 
Theorems 1-4 do not require assumptions of 
continuity, connectedness or differentiability. 
Nor do they require any particular structure for 
f(x) (or for g(x)). But clearly stronger results 
may be obtained with more restrictive 
conditions on f(x). Examples of more restrictive 
conditions are concavity and differentiability. 
These restrictions and their implications are the 
subjects of the next two Sections. 
 
5. Concavity and optimality 
 
DEFINITION 1 Concavity vs Strict Concavity 

A relation f(x) is concave if: 
    (1-θ)f(x)+θf(x+Δx)≤f(x+θΔx), 0<θ<1     (5.1) 

Or, equivalently, if: 
     θf(x+Δx)-θf(x)≤f(x+θΔx)-f(x), 0<θ<1   (5.2) 

f(x) is strictly concave if the strict inequality 
holds. 

 
DEFINITION 2 Maximal vs strictly maximal 
    If         f(x+θΔx)- f(x)≥0,        0<θ<1       (5.3) 
   Then f(x+θΔx) is maximal relative to f(x) and; 
    If         f(x+θΔx)- f(x)>0,        0<θ<1       (5.4) 
   Then f(x+θΔx) is strictly maximal relative to   

f(x). 
 
THEOREM 5 Concavity and Relative Maxima 

If f(x) is concave and if x*, x*+Δx are 
optimal solutions to (III) and (IIIa) and if 
Case B holds with h+s++h-s-≥0, then 
f(x*+θΔx)-f(x*)≥0, 0<θ<1 and f(x*+θΔx) is 
maximal relative to f(x*). 

 
PROOF 
           θf(x*+Δx)-θf(x*)≤f(x*+θΔx)-f(x*) 
                        0<θ<1 by concavity             (5.5) 
    Further: 
           Case B and h+s++h-s-≥0 =>   
                     0≤f(x*+Δx)-f(x*)                    (5.6) 
    So;   
                  f(x*)≤f(x*+θΔx)  
                                  0<θ<1                         (5.7) 
    And f(x*+θΔx) is maximal relative to f(x*). 
 
REMARKS 
• If f(x) is strictly concave then f(x*+θΔx)>f(x*) 

so that f(x*+θΔx) is strictly maximal relative to 
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f(x*) 
• If h+s++h-s-=0 in Theorem 5 then the theorem 

holds a fortiori and f(x*+θΔx) is a maximum 
relative both to f(x*) and f(x*+Δx). 

 
Another relative maximality result is: 

THEOREM 6 Concavity and Sufficient 
Conditions for Maxima Relative to (III),(IIIa) 

 If f(x) is concave and if f(x*+θΔx) is to be 
maximum relative to f(x*+Δx),f(x*) in 
(III),(IIIa) then sufficient conditions are 
f(x*+Δx)-f(x*)=0 and z=z' in (III),(IIIa). 

 
PROOF 

θf(x*+Δx)-θf(x*) ≤ f(x*+θΔx)- f(x*), 0<θ<1 
by concavity. If z=z' via (III),(IIIa) then 
f(x*+Δx)-f(x*)= h+s++h-s-. If also f(x*+Δx)-
f(x*)=0 then h+s++h-s-=0 so that, for f(x) 
concave:  

 f(x*)=f(x*+Δx)≤f(x*+θΔx)             (5.8) 
     And f(x*+θΔx) is maximal relative to f(x*), 

f(x*+Δx). 
 
REMARKS 
• If f(x) is strictly concave then f(x*+θΔx)>f(x*) 

and f(x*+θΔx) is strictly maximal relative to 
f(x*) 

• If h+s++h-s-=0 in Theorem 5 then Theorems 5 and 
6 become equivalent. 

• Under the conditions of Theorem 6 (and 
Theorem 5 if h+s++h-s-=0) if f(x) is strictly 
concave then f(x*+θΔx) is maximal relative both 
to f(x*+Δx) and to f(x*), even though 
f(x*+Δx),f(x*) are respect-ively optimal values 
of the maximands of (III) and (IIIa) . 

• Although concavity is sufficient for a maximum 
of f(x) via Theorem 6, it is not necessary for 
optimality of (IIIa) relative to (III).  

• More generally, if Case B applies and f(x*+Δx) 
and f(x*) are such that f(x*+Δx)-f(x*)>0, then 
optimally h+s++h-s->0. The latter conditions are 
inconsistent with the conditions for a relative 
maximum in Theorem 6. 

 
 
6. Concavity and disaggregated Kuhn 
Tucker-like results for discrete cases 
 
Condition h+s++h-s-=0 in Theorem 6 may apply 
in the disaggregated form hi

+si
++hi

-si
-=0. This 

leads in turn to disaggregated Kuhn Tucker-like 
Theorems 5A and 6A analogous to Theorems 5 
and 6 for the discrete and concave case:   
 
 

THEOREM 5A Complementary Slackness, 
Concavity and Sufficient Conditions for 
Relative Maxima 
If f(x) is concave, if x*, x*+Δx are optimal 
solutions to (III) and (IIIa) and if Case B 
holds together with the conditions of Lemma 
2 (i.e. λi

+si
+=0, λi

-si
-=0, si

+.si
-=0 all i, where 

s+=(b-g(x*+Δx)) and s-=(g(x*+Δx)-b), then 
f(x*+ θΔx)-f(x)≥0,0<θ<1, and f(x*+θΔx) is 
maximal relative to f(x*) and f(x*+Δx). 

 
PROOF 

If λi
+si

+=0, λi
-si

-=0, si
+.si

-=0 all i where s+=(b-
g(x*+Δx)) and s-=(g(x* +Δx) -b) then 
h+s++h-s-=0 and the result follows both from 
Theorem 5 and from Theorem 6. [Recall that 
Theorems 5 and 6 are equivalent if h+s++h-s-

=0.]  
 
THEOREM 6A Complementary Slackness, 
Concavity and Disaggregated Sufficient 
Conditions for Maxima Relative to (III),(IIIa) 

If f(x) is concave and if f(x*+θΔx) is to be a 
maximum relative to f(x*+Δx), f(x*) in 
(III),(IIIa) then sufficient conditions are that 
z=z' and that the conditions of Lemma 2 
apply (i.e. λi

+si
+=0, λi

-si
-=0, si

+.si
-=0 all i with 

s+=(b-g(x*+Δx)) and s-=(g(x* +Δx) -b) in 
(III)). 

 
PROOF 

If λi
+si

+=0, λi
-si

-=0, si
+.si

-=0 all i where s+=(b-
g(x*+Δx)) and s-=(g(x* +Δx) -b) in (III), 
then h+s++h-s-=0 in (III) so that f(x*+Δx)-
f(x*)=0 and the result follows from Theorem 
5 and from Theorem 6. [Again recall that 
Theorems 5 and 6 are equivalent if h+s++h-s-

=0.] 
 
 
REMARK 

In Theorems 5A and 6A si
+,si

- are mutually 
exclusive. Notice in this context that, if si

+=si
-=0 

all i and Δxi=0 all i, then Case A, which is 
mutually exclusive with Case B and so 
inconsistent with Theorem 5A, applies. (To be 
consistent with Case B, if si

+=si
-=0 all i then 

Δxi≠0 at least one i.) 
 
DEFINITION 3 Total :Partial Variation 
df(x)= f(x*+Δx)-f(x*) =defΣ[(f(x*+Δxi)-f(x*))Δxi] 
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REMARK 
It follows from Definition 3 that partial 
conditions [(f(x*+Δxi)-f(x*))Δxi]=0 all i are 
sufficient to determine total conditions f(x*+Δx)-
f(x*)=0.  

This Remark leads directly to a disaggregated 
variant of Theorem 6A:  

 
THEOREM 6B Disaggregated Discrete and 
 Concave Kuhn Tucker 

If f(x) is strictly concave and if f(x*+θΔx) is 
to be a maximum relative to f(x*+Δx),f(x*) 
in (III),(IIIa) then sufficient conditions are 
that [(f(x*+Δxi)-f(x*))Δxi-λ(g(x*+Δxi)-
g(x*))Δxi] =0 all i and that the conditions of 
Lemma 2 apply (i.e. λi

+si
+=0, λi

-si
-=0, si

+.si
-

=0 all i with si
+=(bi-gi(x*+Δx)), s-=(gi(x* 

+Δx) -bi) in (III)). 
 
PROOF 

By Definition 3: 
Σ[(f(x*+Δxi)-f(x*))Δxi-λ(g(x*+Δxi)-
g(x*))Δxi]=0 all i  =>   
          (f(x*+Δx)-f(x*))-λ(g(x*+Δxi)-g(x*))=0 

Noting that gi(x*)=bi from (IIIa) it follows 
that z=z'. The result then follows from 
Theorem 6A. 
 

REMARK 
Again in Theorem 6B there are no assumptions 
of continuity or of differentiability for f(x) or for 
g(x). 

 
 DEFINITION 4 Total Derivative 

If f(x) is continuous in the range x, x+Δx 
with Δx≠0 then the total derivative for the 
continuous case is defined via:  

   lim df(x)=lim  f(x+Δx)-f(x)  
   Δx→0           Δx→0      
=def lim Σ[(f(x+Δxi)-f(x)]dxi]           (6.1)  
        Δx

i
→0    i 

REMARK 
Analogously to the discrete case of Definition 3 it 
follows from Definition 4 that partial conditions 
lim[(f(x*+Δxi)-f(x*))dxi]=0 all i are sufficient to 
determine total conditions lim [f(x*+Δx)-
f(x*)]=0.  

  
DEFINITION 5 Partial Derivative 

If f(x) is continuous in the range x, x+Δx 
with Δx≠0 then the partial derivative 
δf(x)/δxi is defined via:   

δf(x) =limf(x+Δxi)-f(x)                   (6.2) 
  δxi      Δx

i
→0 

  It follows from (6.1) and (6.2) that: 
   lim df(x)= lim  Σδf(x) dxi      
     Δx

i
→0        Δx

i
→0   i  δxI                                (6.3) 

                                   
THEOREM 7 Continuous Kuhn Tucker 

If f(x) is continuous and concave and if 
f(x*+θΔx) is to be maximal relative to 
f(x*+Δx),f(x*) in (III),(IIIa) then sufficient 
conditions are: i) lim (f(x+Δxi)-f(x))= lim λ( 
g(x*)-g(x*+Δxi))  all i and; ii) the restriction 
that the conditions of Lemma 2 apply (i.e. 
λi

+si
+=0, λi

-si
-=0, si

+.si
-=0 all i with s+=(b-

g(x*+Δx)), s-=(g(x* +Δx) -b) in (III)): 
 
PROOF 

If lim f(x+Δxi)-f(x)= lim λ( g(x*)-g(x*+Δxi))           
       Δx

i
→0                       Δx

i
→0         all i        (6.4)  

Then from definition 4 and (6.1): 
 
       limΣ(f(x+Δxi)-f(x))dx 
              Δx

i
→0       

               -limλΣ(g(x*)-g(x*+Δxi))dx=0    
                Δx

i
→0                                                                         (6.5) 

This implies z=z' and the result follows from 
Theorem 6A 
[Recall that, via Theorem 6A f(x*+θΔx) is 
maximal relative both to f(x*), f(x*+Δx). This in 
turn implies lim f(x*+θΔx)- f(x*)>0 and lim 
f(x*+θΔx)- f(x*+Δx)>0.] 

 
THEOREM 7A (Continuous Kuhn Tucker  
Decision Rules) 

Sufficient conditions for f(x*) in (III) not to 
be suboptimal relative to f(x*+Δx) -h+s+-h-s- 

in (IIIa) are: 
• If xi>0, limΔxi=0 =>  
                          Δx

i
→0         

        limf(x*+Δxi)-f(x*)=limλ(b-g(x*+Δxi)                 
             Δx

i
→0                                   Δx

i
→0                           (6.6) 

Potentially select xi >0,limΔxi=0. 
• If xi >0, limΔxi=0 => 
                          Δx

i
→0         

       limf(x*+Δxi)-f(x*)>limλ(b-g(x*+Δxi))  
        Δx

i
→0                                Δx

i
→0                (6.7) 

Do not select xi >0, limΔxi=0 (i.e. select xi 

=0, Δxi=def0). 
 
Where (6.6) and (6.7) are subject to the 
restrictions of Lemma 2. That is: such that 
hi

+=defλi
+,hi

-=defλi
- so that λ=def{λi

+,-λi
-}T in 

(IIIa) and si
+,si

-≥0 are mutually exclusive, 
with s+=(b-g(x*+Δx)) or  s-=(g(x* +Δx) -b)). 
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PROOF (Similar to Theorem 3 for the discrete 
case) 

If limf(x+Δxi)-f(x)=limλ(g(x*)-g(x*+ Δxi)) 
all i then lim f(x+Δx)-f(x)=limλ(g(x*) -
g(x*+Δx)) from (6.1), so that z=z' and the 
result follows from Theorem 6A (as in 
Theorem 7). But if f(x+Δxi)-f(x)>λ( g(x*)-
g(x*+Δxi)) some i  then f(x+Δx)-f(x)> λ( 
g(x*)-g(x*+Δx)) and f(x) is suboptimal 
relative to f(x) unless xi =0, Δxi=def0 for such 
cases. 

 
REMARK 

Although sufficient, the conditions of Theorem 
7A are not necessary. Overall conditions yielding 
equal optima for (III) and (IIIa) via f(x*+Δx)-
f(x*)= λ(g(x*)-g(x*+Δx)) are consistent with 

some f(x*+Δxi)-f(x*)>λ(g(x*)-g(x*+Δxi)) and 
some f(x*+Δxi)-f(x*)<λ(g(x*)-g(x*+Δxi))  

  
ECONOMIC APPLICATIONS 

Economic applications here include 
examples analogous to those in relation to 
Theorems 3 and 4 for the discrete case.  

 
7. Conservative systems and Kuhn Tucker 
results 
 
DEFINITION 6 (Conservative system) 

System (IIIa) (reproduced from Section 2 
below) is conservative iff si

+=si
- =0 all i. 

 

 

 
REMARK 

The key idea here is that si
+, si

- can be interpreted 
as (framing) variables relating (III),(IIIa) to a 
wider system. In that context si

+=si
-=0 all i are 

necessary conditions for (III), (IIIa) to be 
conservative in the sense of self-contained. 

 
LEMMA 1A 

It follows from Definition 6 that, if (III) and 
(IIIa) are both conservative, Lemma 1 and 
thence Case A, Case B and Case C in 
Section 3 and all of the results stemming 
from them become restricted to cases for 
which si

+=si
-=0. 

 
Via Lemma 1A Cases A, B and C become: 
 
CASE A*:  

(III),(IIIa) become identical with z=z' via Δxi=0 
all i in (IIIa).  

CASE B*:  
(III),(IIIa) become equivalent but not identical 
with z=z' and Δxi ≠0 at least  one i. 

CASE C*:  
(III) is suboptimal relative to (IIIa) via z<z' and 
at least one Δxi ≠0. 

 
These specializations in turn imply more 
restrictive applicability for Lemma 2: 
 
LEMMA 2A 

If si
+=si

-=0, Lemma 2 becomes degenerate.  
(Lemma 2 requires that either s+=(b-g(x*+ 

Δx)) or s-=(g(x* +Δx)–b. But when si
+=si

-=0 
these two classes of cases inevitably apply 
simultaneously.)   

 
The conservative restriction in Definition 6 also 
implies: 
 
 
 
THEOREM 8 Conservative Conditions, 
Alternative Optima and Opposite Sign 

If Case B* applies then: i) x*,x** are alter-
native optima in (III) and (IIIa) and; ii) from 
Definition 3, unless f(x*+Δxi)-f(x*)=0 (resp 
g(x*+Δxi)-g(x*)=0 all i, there must exist 
(f(x*+Δxi)-f(x*))Δxi, (f(x*+Δxj)-f(x*))Δxj) 
(resp g(x*+Δxi)-g(x*), g(x*+Δxj)-g(x*)) of 
opposite signs.  

 
PROOF 

If Case B* applies then: i) f(x*+Δx)-f(x*)=0 
so that any optimum to x* (III) is an 
alternative optimum to (IIIa) and vice versa; 
ii) from Definition 3: 
    df(x)= f(x*+Δx)-f(x*)  
            =defΣ[(f(x*+Δxi)-f(x*))Δxi  
But f(x*+Δx)-f(x*)=0 in Case B*. Similar 
arguments apply via Definition 3                        
and dg(x)=0 so that the result follows in 
both cases.  

 

           Max f(x) =f(x*)                = z ≤ z' = f(x*+Δx)-h+s+-h-s-        =         Max f(x+Δx) -h+s+ - h-s-
 

            st  g(x*) = b   (III)                                                                     st g(x*+Δx) + s+-s- =b      (IIIa) 
                   x* ≥0                                                                                                x*, s+,s- ≥0 



 14 

If (III) and (IIIa) are conservative in the sense 
of Definition 6, optima to (III) and (IIIa) must 
be consistent with Case B*, Lemmas 1A, 2A 
and Theorem 8. These results in turn restrict the 
applicability of Theorems 2-7 as summarized 
below.   
[In what follows Degeneracy=>degeneracy via 
Lemma 2A;  AA =>alternative optima as in 
Theorem 8 and; NSM =>not strictly maximal.): 

 
• Theorem 2 (More for Less/Less for More). AA, 

i.e. applies only via the more for nothing and 
less for nothing special cases. 

• Theorem 3 (Disaggregated Kuhn Tucker 
Conditions). AA, Degeneracy. 

• Theorem 4 (Aggregate Kuhn Tucker 
Conditions). AA, Degeneracy and NSM. 

• Theorem 5 (Concavity and Relative Maxima). 
AA. 

• Theorem 6 (Concavity and Sufficient 
Conditions For Maxima Relative to (III),(IIIa)). 
AA. (Recall that, if h+s++h-s-=0, Theorems 5 
and 6 become equivalent so that, if (IIIa) is 
conservative, Theorems 5 and 6 become 
equivalent a fortiori.)  

• Theorem 5A (Complementary Slackness, 
Continuity, Concavity and Sufficient Conditions 
for Relative Maxima). AA, Degeneracy.  

• Theorem 6A (Complementary Slackness, 
Concavity and Disaggregated Sufficient 
Conditions for Maxima Relative to (III),(IIIa). 
If (IIIa) Degeneracy, NSM.  

• Theorem 6B (Disaggregated Discrete and 
Concave Kuhn Tucker). AA, Degeneracy.  

• Theorem 7 (Continuous Kuhn Tucker) AA, 
Degeneracy.  

• Theorem 7A (Continuous Kuhn Tucker 
Decision Rules). AA, Degeneracy. 

 
REMARKS 
• Notice that, while the degenerate results in 

Theorems 5A, 6A and 6B follow via Theorem 
5 or Theorem 6, results in Theorems 5 and 6 
are not necessarily degenerate. 

• The degenerate restrictions in Theorems 7 and 
7A are consequences of the derivation of those 
results via Theorem 6A. 

• From Theorem 8 in Case B*, x*, (x+Δx)* are 
alternative optima. Nevertheless, if f(x) are 
strictly concave (as they may be in Theorems 
5-7 above), then there will be values such that 
f(x*+θΔx)>f(x*) and f(x*+θΔx)> f(x+Δx)*  
where Δx ≠0, 0<θ<1. 

 
Summarizing: under the conservative condition 
in Definition 6, Theorems 2-7 all become such 
that one or both of the AA and the degeneracy 

restriction applies. [In all cases the opposite 
sign property in Theorem 8 also applies.] 
  
Before considering economic applications and 
interpretations of these results in the next 
section notice that Definition 6 might be 
strengthened via Definition 6A below to imply 
a stronger opposite sign property than that in 
Theorem 8. That in turn leads to two paradoxes 
as follows: 
 
DEFINITION 6A Conservative* Systems and 
Opposite Signs 

A system (IIIa) is conservative* iff si
+=si

- =0 
all i and Δxi≠0 any i implies the existence of 
at least one quantity Δxj≠0 such that 
Δxi+ΣΔxj=0. 

 
REMARK 

This definition is not inconsistent with a 
condition Δxi+Δxj=0. That condition in turn is 
consistent with interpretations either as if these 
two quantities Δxi, Δxi are identical (in which 
case Δxi≡0,Δxj≡0), or as if the two quantities 
Δxi,Δxj are equal and opposite in relative sign. 
More generally any conservative* system has an 
opposite sign property such that, if Δxi>0 (resp 
Δxi<0) at least one i, then there must exist at 
least one quantity Δxj<0 (resp Δxj>0) of equal 
and opposite magnitude to it.  

 
THEOREM 9 A Paradox of Conservatism* 

For a case with two variables i=1,2, 
conservative* optima to (IIIa) will be such 
that, unless f(x*+Δxi)-f(x*)=0, i=1,2 (resp 
g(x*+Δxi)-g(x*)=0, i=1,2), then f(x*+Δxi)-
f(x*)≠0 i=1,2 (resp g(x*+Δxi)-g(x*)≠0 
i=1,2) must be equal and of the same sign 
and in that sense not conservative. 

 
PROOF 

A conservative* optimum to (IIIa) is consis-
tent with Case B* and so such that: 

 df(x)=f(x*+Δx)-f(x*)=0=(f(x*+Δx1)-f(x*))Δx1   

                                                              +(f(x*+Δx2)-f(x*))Δx2  
In the two variable case a conservative* 
system is, by Definition 6A, also such that 
Δx1,Δx2 are equal and opposite in relative 
sign. With a similar argument via dg(x)=0 
this gives the required result. 

A similar paradox stems from the more general 
conservative case via Definition 6 as follows: 
 
THEOREM 9A A Paradox of Conservatism 

For a case with two variables i=1,2, cones-



 15 

rvative optima to (IIIa) will be such that, 
unless f(x*+Δxi)-f(x*))Δxi=0 (resp 
(g(x*+Δxi) -g(x*))Δxi)=0 both i, then 
f(x*+Δxi)-f(x*))Δxi≠0 i=1,2 (resp 
g(x*+Δxi)-g(x*)Δxi≠0 i=1,2) must be either: 
i) such that Δx1,Δx2 opposite in relative sign 
and f(x*+Δx1)-f(x*), f(x*+Δx2)-f(x*) of the 
same sign and in that sense not 
conservative, or: ii) such that Δx1,Δx2 the 
same in relative sign with f(x*+Δxi)-
f(x*))Δxi≠0 i=1,2 (resp g(x*+Δxi)-
g(x*)Δxi≠0 i=1,2) opposite in relative sign 
and in that sense not conservative. 

 
PROOF  

The result under i) follows from an 
argument similar to that in Theorem 9. (In 
this context the fact that under 
conservative* conditions Δx1,Δx2 may be of 
unequal magnitude is not significant). The 
result under ii) follows because a 
conservative optimum to (IIIa) will be such 
that f(x*+Δx)-f(x*)=0 and g(x*+Δx)-g(x*) 
= 0. 

 
REMARKS (Conservatism and paradox) 
• One implication of Theorems 9 and 9A is that, 

if there is to be a gain (f(x*+Δxi)-f(x*))Δxi>0 at 
an optimum, there must necessarily be a loss 
via one or both payoffs f(x*+Δxi)-f(x*) or via 
one or both instruments Δxi. 

• Theorems 9 and 9A can be extended straight-
forwardly so that a net gain (f(x*+Δxi)-
f(x*))ΔxI >0 (resp g(x*+Δxi)-g(x*)Δxi>0) 
implies a comple-mentary loss Σ(f(x*+Δxj)-
f(x*))Δxj j≠i. 

• Both Theorems 9 and 9A suggest 
interpretations in relation to processes of 
change to determine optimizing gains and 

losses relative to individuals or groups r and s. 
That in turn suggests economic applications of 
these results and potentially degenerate and 
alternative optimal and para-doxical 
implications. 

 
9. An economic interpretation of 
conservative conditions,degeneracy and 
opposite signs 

 
Consider an application of Theorem 1 
taking the form of (IV),(IVa) below in 
which f(x) corresponds to an individual 
preference relation U(x) defined over 
consumption commodities x of which that 
individual has initial endowments b. With 
si

+,si
- as measures of interaction with a 

wider system, Theorem 1 implies that only 
exceptionally will this individual not prefer 
an optimum with positive interaction with a 
wider system (via si

+>0,si
->0 some i) to no 

interaction with that wider system (via 
si

+=si
-=0 all i). Theorem 1 implies further 

that an individual’s propen-sity to interact 
with a wider system (via optima such that 
si

+>0,si
->0 some i in (IVa)) will increase if 

the effective effort required to do so, as 
measured by one or more of the parameters 
hi

+,hi
-, is sufficiently reduced. In these ways 

such an individual would at least weakly 
prefer nonconservative conditions with 
si

+>0,si
->0 some i in (IVa) to conser-vative 

conditions si
+=si

-=0 all i in (IV) - even if 
that led to unbalanced transfers (e.g. via 
unreciprocated gifts) to or from a relatively 
larger system. 

     
          Max U(x) -Ms+-Ms-  =U(x*)             = z ≤ z' =     U(x*+Δx)-h+s+-h-s-  =Max U(x+Δx) -h+s+ -h-s- 
                  st  g(x) + s+-s- = b                   (IV)                                   st g(x+Δx) + s+-s- =b     (IVa) 
                             x, s+,s- ≥0                                                                            x, s+,s- ≥0 
                          
In these ways variables si

+,si
-
 have potential 

interpretations with reference not just to gains 
from gifts or exchanges of objects, but also to 
learning relative to otherwise potentially 

undiscovered elements of a wider system. 
Explicitly learning related extensions of (IV) 
and (IVa) will clarify this.  
 

            
             Max U(x,x0)  - Msi

+ - Msi- Ms0
--                     = z1   ≤     z2               =Max U(x,x0) -h+si

+-h-si
- - h0

-
 s0

-
 

                      st  g(x,x0) +si
+ -si

-=b             (V)                                 st    g(x,x0) + si
+ - si

-=b            (Va) 
  x0-s0=0                                                                                  x0-s0

- =0 

                   x,x0,s+,s-,s0
-≥0                                                                          x,x0,s+,s-,s0

-≥0   
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With s0
- in (V),(Va) interpreted as referring to 

relatively unknown inputs i=0 Theorem 1 
implies that, other things equal, chosen 
knowledge of inputs i=0 via s0

- >0 will be at 
least weakly preferred to chosen ignorance of 
such inputs. [This is consistent with rational 
learning behaviour according to which 
additional knowledge would not be chosen 
unless it was understood to be preference 
enhancing.] 
 
While individuals may potentially gain from  
 

gifts, exchanges and/or learning relative to an 
essentially impersonal wider system via 
variables si

+,si
- ,s0

-, they may also give, 
exchange and learn in a more personal way 
from other individuals. To see this consider 
another interpretation of (III),(IIIa) which has 
reference both to potentially Pareto enhancing 
gifts and exchanges between two individuals 
r=1,2 via variables xri

12,xri
21 and with reference 

to potentially Pareto improving interactions 
with a wider environment via framing variables 
srj0 and sr0

- as follows: 

 
Max U1(y11,y1j ,y1n,y10)- Σh1j0s1j0 -h10

-s10
-   - Σh1i

12x1i
12      + U2(y21,y2j ,y2n,y20)-Σh2j0s1j0-h20

-
 s10

-   - Σh2i
21x2i

21
 

                  st  y1j + s1j0 = g1j(x1ij,..x10j)                                                                       
  Σx1ij +x1i

12- x2i
21= x1i* 

  Σx10j +x10
12- x20

21= x10                                                                                                  (VIa) 
                               x10-s10

- =0                                                            
                                                                                  y2j + s2j0 = g2j(x2ij,..x20j)   
                                                                                 Σx2ij +x2i

21- x1i
12= x2i* 

                                                           Σx20j +x20
21- x20

12= x20 
                                                                                                                   x20-s20

- =0 
                            U1(  )≥U1( )*                                                               U2(  )≥U2( )*   
                          All variables nonnegative 
 
 
First consider potentially Pareto improving 
gifts or exchanges between these individuals. If 
U1( )* and U2( )* correspond to optimal 
solutions to  (VIa) in which hrj0,hr0

- are all 
arbitrarily large then a solution to (VIa) in 
which hrj0,hr0

- all arbitrarily large but hri
12,hri

21 

not all arbitrarily large potentially yields Pareto 
improving economies of scope via optimally 
positive values for one or more of the 
associated quantities xri

12,xri
21. In that case, if 

optimally U1(  )>U1( )* and/or U1( )>U1( )*, 
those inequalities will arise as if via chosen gift 
or exchange related connections between 
previously unconnnected units (e.g. individuals, 
regions, markets) r=1,2. [For more on such gift 
and exchange related cases see chapters 11 and 
12 where I also relate systems analogous to 
(VIa) to new distinctions between industrial 
contestability and market contestability and in 
that way reconcile mutually inconsistent 
definitions of contestability in Baumol et al 
1982, Shepherd 1984 and Cairns 1996.] 
 
Next consider the variables srj0. These are 
analogues in (VIa) of framing variables s+ in 
(I),(Ia) through (III),(IIIa),  and 
correspondingly in Theorems 1 through 9. In 

the context of (VIa) srj0 take on interpretations 
as underconsumption of commodities j by 
individuals r. With that interpretation a solution 
with hrjo arbitrarily large would in effect force 
consumption of all that is produced (i.e. in 
effect force srj0 to zero all r,j) as long as that 
outcome was feasible. Conversely, with hrjo not 
arbitrarily large (e.g. zero), oppor-tunities to 
underconsume in this sense (e.g. via free 
disposal of any surplus) would be at least 
weakly Pareto preferred. 
 
Finally consider sr0

-. In the gift and exchange 
related context of (V) these quantities 
potentially yield a rich variety of meanings. 
Here I focus on meanings according to which 
via sr0

->0 hitherto unavailable information 
concerning commodities i is correspondingly 
newly made known to individuals r. In that way 
individuals r=1,2 may learn in potentially 
Pareto improving ways from interactions 
additional to those potentially generating 
communications between those individuals via 
xri

12,xri
21, i≠0.  

 
System (VIa) also captures the fact that 
learning via sr0

- may have implications both for 
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processes of production via xr0j in the 
production relations grj(xrij,..xr0j) and for new 
elements of communication via xr0

12,xr0
21. In 

those ways relatively externally induced 
learning via sr0

- may introduce productivity 
enhancing technological change as well as 
possibilities of producing entirely new kinds of 
commodities yr0. In addition, via sr0

- in (VIa), 
knowledge of new commodities, and so 
implicitly knowledge of the new processes with 
which they may be produced, may be conveyed 
to another individual by means of gifts or 
exchanges xri

12,xri
21 r=1,2. [I emphasize that 

exchanges of knowledge between individuals 
within (VIa) are also potentially Pareto 
enhancing in learning related ways. Indeed 
xri

12,xri
21 in (VIa) can be understood as 

analogues of (parts of) uncertainty and learning 

related variables si
+ and si

-, in (Va).]  
 
So far attention has been concentrated on 
implications of changing magnitudes of the 
framing parameters hri

12,hri
21 (resp hrj0,hr0

-) for 
changes in x1i

12,x2i
21 (resp srj0, sr0

-) and so for 
changes in the magnitudes of other variables in 
(VIa). But such changes have other 
implications. As one way of appreciating these 
consider (VIa) as a special case of Theorem 1A 
in Section 2 as follows: 
 
THEOREM 10 

If in (VII): i) a feasible solution with all srj0 
=0, all sr0

-=0 and all x1i
12=0, all x2i

21=0 and 
Ur(  )≥Ur( )*, r=1,2 exists then: 

 
Max U1(y11,y1j ,y1n,y10)    - ΣMs1j0 - Ms10

-    - ΣMx1i
12-ΣMx1i

21  + U2(y21,y2j ,y2n,y20)  - ΣMs1j0 - Ms10
-    -ΣMx2i

12-ΣMx2i
21  

                                                                    st  constraints of (VIa)                                             (VII)          
                                                                         =  z ≤ z'    =           
Max U1(y11,y1j ,y1n,y10)  - Σh1j0s1j0-h10

-
 s10

- -Σh1i
12x1i

12-Σh1i
21x1i

21 +U2(y21,y2j ,y2n,y20) -Σh2j0s1j0-h20
-
 s20

-  -Σh2i
12x2i

12-
Σh2i

21x2i
21 

 
                                                               st  constraints of (VIa)                                              (VIIa) 
                                                                                                                    
PROOF 

A feasible solution to (VII) exists and is 
feasible but not necessarily an optimal 
solution to (VIIa). for Theorem 1A. 

 
The relation of Lemma 1B to Theorem 10 is 
analogous to the relation of Lemma 1 to 
Theorem 1A in Section 2: 
 
 
 
LEMMA 1B 

Let {y*,x*},{y**,x**} be optimal 
evaluations of y via (VII) and (VIIa). It 
follows that, unless these evaluations are 
identical then yj*≠yj** and/or xi*≠xi** some 
i. Equivalently yi**=defyi*+ Δyi, xi**=defxi*+ 
Δxi. With this notation, at an optimum (VII) 
and (VIIa) become analogous to (III),(IIIa) 
and such that: 
 
 

 

 
Given the representation of (VII) and (VIIa) as 
in (VIII),(VIIIa) and the analogy between the 
latter systems and (III),(IIIa), all of the results 
in Sections 2 through 8 can be applied to  
(VIII),(VIIIa). In that way a corresponding 
variety of Kuhn Tucker conditions are 
generated for various forms of the relations f( ) 
and g( ) in those systems. Rather than develop 
all of these results with reference to the two 
person exchange related example in 
(VII),(VIIa), I note just four implications of 
those systems in that application: 

• Conservatism From Theorem 6B and 
Definition 6 (for the discrete and concave case) 
and from Theorem 7 and definition 6A (for the 
continuous and concave case), if (VIIa) is 
conservative or conservative* in the following 
sense then an optimal solution is degenerate and 
so decomposable. Assume that in (VIIa): i) srj0 
has the interpretation of under-consumption of 
commodity j by individual r,; ii) sr0

- has the 
interpretation of relatively external information 
concerning technology available to individual r 
and; iii) xri

12,xri
21 have interpretations as 

quantities of commodities i transferred 
(donated, bartered or traded) from individual  1 

                    Max f(y) =f(y*)      = z ≤ z' = Max f(y*+Δy)- Σh1i
12x1i

12-Σh1i
21x1i

21 - Σhrj0srj0 – Σhr0
-
 sr0

-     

          st constraints of (VII)              (VIII)                                st constraints of (VII)                   (VIIIa) 
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to individual 2 (resp 2 to 1). With those 
interpretations a conservative solution in the 
sense of Definition 6 implies that all of srj0 and 
of sr0

- would be zero. That is: no free disposal 
relative to a wider system and no technological 
information from a relatively external system. If 
also xri

12 and xri
12 were interpreted as 

corresponding to variables analogous to si
+,si

- in 
Theorems 6B and 7 so that all xri

12=0 and all 
xri

21=0 in (VIIa) under the conservative 
conditions of Definition 6, then there would be 
no positive exchanges between individuals 1 
and 2. Under those conditions any conservative 
solution to (VIIa) would necessarily be not only 
decomposable with the two individuals 
consuming only their own endow-ments, but 
also degenerate because then all of the gift, 
exchange exchange or trade related variables 
xri

12,xri
21  would become redundant.  

 
• Conservatism* Now consider a more narrowly 

conservative system in which the definition of a 
conservative system (Defin-ition 6 above) is 
applied to (VIIa) only through variables srj0,sr0

- 
i.e. for  which only srj0,sr0

- are considered as 
relatively  exterior to the system under 
consideration. Then solutions to (VIIa) 
consistent with Theorem 7 may be 
conservative* in the sense of Definition 6A, 
namely such that x1i

12-x2i
12=0 and x1i

21-x2i
21=0 

for at least one xri
12>0 or xri

21>0. In context 
such a system corresponds to one in which one 
or more individuals may secure a Pareto 
improving gain by gift, barter or trade relative 
to the states associated with their initial 
preference evaluations U2( )*,U2( )*. [Such a 
solution can also illustrate how a conservative 
paradox consistent with the conditions of 
Theorem 9 or Theorem 9A may apply. 
Consider a single gift x1i

12 >0 from individual 1 
to individual 2 so that x1i

12=x2i
12 >0. Arguably 

the system as a whole is conservative in the 
sense that this gift is simply a transfer between 
two individuals within it. But, unless both 
individuals are indifferent to such a transfer, 
then Ur(  )>Ur( )* for at least one individual r, 
with the consequence that the system described 
by (VIIa) will not in that sense be conservative.  
 

• Self contradiction Any individual choosing to 
undertake a process leading to gifts, bartetr or 
trade with reference to their initial endowment 
of commodities must act as if purposively to 
have less if they want to guarantee more for 
another and, conversely, an individual must act 
as if to ensure that another has less if they want 
to guarantee more for self. [For more on this 
see Ryan 1992.] This in turn leads directly to a 
fourth implication;  

 

• Uncertainty Even within a conservative system 
each of two individuals may prefer gifts or 
exchanges relative to each other and thus 
choose to subject themselves to conditions of 
less in order to get more in a manner consistent 
with conservative paradoxes and processes of 
purposive contradiction of kinds just 
considered. In general however such behaviours 
will not fully exploit the opportunities 
presented by the conditional nature of the 
conservatism of any system and the consequent 
uncertainty of the boundary of such a  system. 
Specifically: both may prefer a relatively 
unknown alternative outside the system. As 
examples: one individual may prefer to give 
otherwise unobtainable commodities to another 
in contradiction of the conservation of their 
initial endowments as if wholly and only 
relative to themselves, or; two individuals may 
choose to prefer opportunities beyond their own 
collectively given initial boundaries. A key 
point here is that in order to define any system 
as a system individuals must be able to define it 
as not greater than that system. But a necessity 
for a constraint to preclude the possibility of 
“greater” outcomes beyond the boundaries of 
that consequently explicitly constrained system 
itself explicitly implies that such a “greater” 
system is possible. Further if both individuals 
potentially prefer such a “greater” outcome then 
both have a collective interest in generating the 
possibility of actualizing such an outcome. In 
such circumstances both individuals have an 
incentive to cooperate as if thereby collectively 
to grow the system which they have acted as if 
unanimously to constrain. With an economic 
context one way of doing this is by both acting 
as if to have financially less relative to 
themselves as if thereby unanimously to 
potentiate physic-ally more relative to 
themselves e.g. by savings and/or by reductions 
in taxes. Another way is to commit resources to 
exploring beyond the current boundaries of 
their system.  

 
 
10. CONCLUSION 
 
In this chapter I have focused on Kuhn Tucker 
conditions and generalizations of them with 
applications to more for less and more for 
nothing results, as the developments in Chapter 
I have already demonstrated. Kuhn Tucker 
conditions and associated generalizations 
stemming from (VIIa) as from other models in 
this paper potentially yield interpretations both 
with reference to prices and with reference to 
taxes/subsidies and with reference to learning. 
These ideas are all developed in subsequent 
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chapters within specifically economic contexts 
of inherently self contradictory and 
incompletely informed processes of giving, 
bartering and trading trading. 
 
In the latter part of the chapter I have focused 
on learning related applications in contexts of 
conservative restrictions to obtain degeneracy 
and alternate optima conditions as consequences 
of such classes of more for less or more for 
nothing solutions. In concluding the paper I 
emphasize two learning related ideas. First: if a 
system is not conservative in the sense used in 
this chapter, then there is room for innovation 
from sources relatively exterior to that 
nonconservative system. Secondly: even if a 
system is conservative overall there can 
nevertheless be scope for processes of learning 
and innovation from sources relatively interior 
to that conservative system.  
 
It follows that, especially if preferences are 
defined with reference to processes of exchange 
of commodities, then individuals can potentially 
learn/innovate relative to each other. In 
particular a quantity relatively inside one part of 
a system may transmit itself/be transmitted to 
become that quantity relatively outside another 
part of that system, leading to interpretations 
with reference to teaching and to learning and 
associated interpretations corresponding to 
relative ignorance and uncertainty. 

 
Finally, the focus in this chapter on Kuhn 
Tucker conditions in turn focuses on 
interpretations of multipliers λ as potentials. 
While these are not essential for the description 
and analysis of gift and/or exchange related 
cases these, too, are information bearing. In that 
connection the opposite sign results of the 
concluding part of Section 8 are particularly 
suggestive since opposite signs potentially 
relate directly to processes of purposive 
contradiction, in turn corresponding to 
signalling and dually related processes of 
interaction between individuals. These will be 
key ideas in subsequent chapters. 
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