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                                                       CHAPTER 7 

        INTERVENING DUALITY AND BARGAINING WITH A 
                        FARMER-LANDOWNER EXAMPLE 
 

1. Introduction 
 
In chapter 6 I developed the idea of intervening 
duality with a context of a matching pennies game 
in which the two players were represented as dual 
to the duals of an intervening coin. In this chapter I 
show how intervening duality can be used to model 
and evaluate more general kinds of opportunities 
for mutually advantageous gain from exchange 
under conditions of uncertainty. 
  
The main focus of the chapter is on bargaining to 
determine the magnitudes of contingent rentals and 
payoffs within an intervening duality framework 
for a game between profit oriented landowners and 
land users. For this class of examples as if agreed 
production plans and weather forecasts play an 
intervening role analogous to that of a relatively 
neutral coin in a coin tossing game between two 
persons. (While landowners and land users are 
each separately engaged in weather forecast related 
constrained games against nature, both are also 
engaged in a profit oriented bargaining game 
against each other.) 
 
The main result is the demonstration that inter-
vening duality provides a natural way of modelling 
processes potentially generating mutually 
advantageous exchanges. In this case each of two 
parties may agree respectively on the elements of a 
relatively neutral intervening set of contingent 
production plans and contingent resource 
evaluations and weather forecasts so as to 
potentiate gains not only relative to those plans but 
in that way relative to each other through those 
plans. 
 
The structure of the chapter is as follows: After the 
related concepts of constrained games and 
intervening duality have been introduced in 
Sections 2 and 3, in Sections 4 and 5 I go on to 
develop an intervening duality framework with 
particular reference to weather related risk and 
bargaining concerning the magnitude of 
agricultural rents. In this analysis each player will 
be playing games not just relative to “nature” as 
the determinant of the profitability of a farm, but 

relative to each other. Value will accrue to each of 
the two parties to a farm related production plan, 
among other things through the weather forecasts 
of the farmer and more generally production based 
forecasts by the owner. A constant sum numerical 
example in Section 6 and nonconstant sum 
extensions to more general bimatrix and non-
preemptively framed cases in Sections 7 and 8 will 
help to illustrate these points. 
  
In these ways the emphasis is on individuals’ 
choice of frame for an as if agreed intervening dual 
structure and their potentiation of gains relative to 
elements of it by means of principles and processes 
of contradiction stemming from individual 
differences of preferences and beliefs. In contrast 
to work on cross constrained gaming approaches 
(Charnes et al 1990, 1993), standard common 
knowledge based Bayesian approaches (see 
Aumann 1987), and evolutionary game theoretic 
approaches (e.g. Mailath 1992, Friedman 1996) 
which focus on equilibrium within a given initial 
frame, here initial frames and related intervening 
dual structures are not necessarily accepted or 
believed by the parties concerned. At best they are 
valued only for the opportunities that an as if 
agreed intervening structure can provide for gains 
stemming from individually determined 
differences of preferences and beliefs relative to 
them. I will return to this point in the context of 
choice related variations of frames in farm owner-
farm renter bargaining conditions in Section 7 and 
also in the conclusion. 
 
2. Constrained games 
 
As I also noted in chapter 6 the constrained game 
idea is due to Charnes (Charnes 1953), and has 
been developed and used in various ways, see 
Owen 1982, Banker 1984, but particularly by 
authors in agricultural economics including Hazell 
1970, Kawaguchi and Toyama 1972 and 
McInerney 1976. In all of these papers the focus is 
on variants of probabilistically constrained two 
person games. More recently Charnes et al 1990, 
1993 have used the term “cross constrained game” 
with reference to generalisations of the Nash 
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equilibrium solution for certain classes of n person 
games. Surprisingly none of these authors has used 
constrained games for perhaps the most obvious 
classes of decision theoretic and agricultural 
applications, namely “fair” coin tossing and 
weather forecast related applications. Both of these 
classes can usefully be explored by this approach. 
To see how consider a farm planning model. (Coin 
based applications are considered in the next 
Section):  
 

Assume that a farmer with land L must plan 
crops j for next season. Assume too that the 
area of crop j is xj and unit profitabilities, 
contingent on potentially forthcoming weather 

conditions k, are πjk, and that the farmer makes 
a weather forecast as if preemptively qk=qk*. If 
a maximin profit objective is appropriate and 
with M2 interpreted as arbitrarily large, the 
farmer can be represented as engaged in a 
(weather forecast) constrained game against 
nature to find an optimal solution to the first of 
programmes (I),(I)', with state conditioned 
expected payoffs ρ, µ: 
[Other classes of constrained game 
formulations for this application include those 
imputing a strict or weak probability ranking to 
nature. For more on that kind of example see 
Ryan 1994.] 

 
           Max ρ   + ΣRkqk*                                                             Min µL- M2Σ(qk

++ qk
- ) 

                                                k                                                                                                                                     k  

            st    Σπjkxj -Rk ≥ ρ               (I)                                           st    Σπkjqk≤ µ                  (I)' 
                              j                                                                                                                                k  

                                    qk+qk
+- qk

- =qk 
                     Σxj ≤L                                                                               Σqk≥1 
                      j                                                                                                                                         k  

           xj ≥0,  -M2≤Rk≤ M2                                                                  qk,qk
+,qk

-≥0 
 

Since a feasible solution to (I) always exists 
(consider xj=0 all j), by the dual theorem optimal 
solutions always exist both for (I) and for (I)'. At 
an optimum interpretations of Rk in (I) include 
variously ex ante and ex post interpretations as 
marginal returns to weather forecasting inform-
ation of type k. (Notice that either class of 
interpretations for Rk is consistent with a 
benevolent role for nature. By the principle of 
optimality an optimal solution to (I)' including 
elements of a weather forecast qk=qk* will be at 
least as great as optima not including an explicit 
weather forecast.) 
 
The constrained game idea is a powerful one with 
a wide range of applications, including 
applications to production scheduling (see Ryan 
1994) and to the representation and resolution of 
Allais’ paradoxes (see developments on chapter 
10 below), but here I want to focus on a narrower 
range of agricultural applications and associated 
framing and intervening duality related bargaining 
issues. To do this I first revisit relevant framing 
and intervening duality ideas with the context of 
the matching pennies applications I used in 
chapter 6. 
 

3. Constrained games, framing and intervening 
duality 
 
               PLAYER 1  
                                   Head     Tail 
                      Head       1           -1 
PLAYER 2 
                      Tail         1           -1 
 
                            Table 1 
 
With payoffs as in Table 1 and assuming for 
simplicity that maximin-minimax assumptions are 
appropriate, and with q*,p* representing propor-
tions of time committed to that particular set of 
potential outcomes by the two players, the simple 
matching pennies game can be represented as one 
class of solutions to  (II) and  (II)' below. 
  
With p*=q* the arbitrarily large quantities M, M2 
respectively impute heads and tails probabilities 
e.g. q1*=1/2, q2*=1/2 to the coin, and exclude the 
possibility of any other coin related outcomes pj

+, 

qk
+ or of other non coin related outcomes pj

-,qk
-. In 

these ways these magnitudes explicitly frame the 
game to outcomes j∈J and k∈K (here heads and 
tails) for the two players and particular prior 
probabilities for nature.  
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           Max ρq* +ΣRkqk* - Mp+ -Mp-                                    Min  µp* + Mq+ +Mq- + M2Σ(qk
+ +qk

-) 
                                        k                                                                                                                                                                        k        

           st        Σπjkpj  - Rk≥ ρ            (II)                                               st    Σπkjqk≤ µ                           (II)' 
                                 j                                                                                                                                               k 

                   Σpj + p+  -p-   =p*                                                                   Σqk +q +-q- =q* 
                             jεJ                                                                                                                                         kεK 

                                                                                                                qk+qk
+-qk

-=qk* 
               pj, p+,p-≥0,  -M≤ρ≤M                                                        qk,q+,q- ,qk

+,qk
-≥0,  -M≤µ≤M 

 
 
While this extension of the standard two person 
constant sum formulation may seem appropriate 
for a player with prior knowledge or beliefs qk* 
playing a matching pennies game against nature, 
the literature on coin tossing games (see Shubik 
1982, Wang 1988, Hart 1992) considers another 
type of interpretation as one person playing 
against another. In the first type “nature” is 
associated with a specific programme, but in the 
second it is not. In that sense the latter kind of 
problem is incompletely specified. This 
immediately suggests the intervening duality idea. 
According to it the two persons would be 
represented as playing against each other by 
acting as if dual to the duals of a (thereby 
intervening) coin. With (III),(IIIa)' representing 
the game of the second player against nature, this 

gives a structure with (II),(III) representing the 
players and (IIa)',(IIIa)' the intervening coin. 
 
By construction, if Sj'=0, (IIa)' becomes 
equivalent to (II)' and dual to (II). Similarly, if 
Rk'=0, (IIIa)' becomes equivalent to a system (III)' 
dual to (III). In a matching pennies context this is 
consistent with two players agreeing to a common 
heads-tails related frame with: i) jεJ= {heads, 
tails}, kεK={heads,tails}; ii) common prior 
probabilities pj*=1/2p*, qk*=1/2q* and; iii) as if 
indifference (via Rk'=0,Sj'=0) to coin related 
outcomes relative to the system and yet; iv) via 
outcomes Sj≠0,Rk≠0, not necessarily indifferent to 
outcomes relative to self. 

 
 
                Max ρq*   + ΣRkqk* - Mp+ -Mp-                           Min µp* + ΣSj'pj* +Mq+ +Mq-+M2Σ(qk

+ +qk
-) 
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+ -M2qk
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                                       j                                                                                                                  k                                                                        

                       st    Σπkjqk -Sj ≤ µ           (III)                                         st   Σπjkpj -Rk'≥ ρ          (IIIa)' 
                              k                                                                                                                                   j    

                                                                                                                pj +pj
+-pj

- =pj*   
                            Σqk +q +-q- =q*                                                          Σpj + p+  -p-   =p* 
                                             k                                                                                                                           j 

                  qk, q+,q-≥0, -M≤µ≤M   -M2≤Sj≤M2                                  pj,p+,p-,pj
+,pj

-≥0, -M≤ρ≤M    -M2≤Rk'≤M2 

 

 
As one class of solutions (IIIa)',(IIIa)' are dual to 
each other if qk

*=pj*=1/2 and Rk'=0, Sj'=0. More 
subtly, optimality of (IIIa)' with values ρ=0, 
p1=p2=1/2, Rk'=0 is consistent with optimality of 
the relatively dual programme (III) with values 
µ=0, q1=q2=1/2,Sj=0. Similarly optimality of (IIa)' 

with values µ=0,q1=q2=1/2, Sj'=0 is consistent 
with optimality of the relatively dual system (II) 
with values ρ=0, p1=p2=1/2, Rk=0.  
 
Together these various optima are consistent with 
a coin tossing story according to which two 
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individuals act as if indifferent (via conditions 
Rk'=0,Sj'=0) to the informational value of 
outcomes of a single toss of a fair coin both 
relative to the system and, via conditions as if 
optimally Rk=0 and Sj=0 as if indifferent to those 
outcomes relative to themselves. But, if both 
players were in any case indifferent to the 
informational value of a toss of a coin, why would 
they choose to toss it? 
 
Rather than pursue this question in detail notice 
that alternative optima exist for (II) and (III) with 
Rk≠0,S1≠0. In particular, with µ=0,p1=p2=1/2, 
R1=1,R2=-1 the intervening dual structure 
(II),(IIa)',(III),(IIIa)', is open to interpretation as if 
two individuals with relatively oppositely 
evaluated preferences and/or beliefs concerning 
heads and tails outcomes relative to themselves 
nevertheless agree to frame an as if agreed “fair” 
structure (II)',(III)' for an intervening dual heads-

tails game, but now with the potential, via 
evaluations Rk≠0 and Sj≠0  to generate net gains 
ex post. 
 
Parenthetically, not only do (II)' and (III)' 
potentially yield alternative optima, respectively 
relative to (II) and (III), with Rk'=0, qk=1/2, kεK 
and Sj'=0, pj=1/2, jεJ. But with these values both 
systems are linearly dependent and so degenerate. 
Both conditional degeneracy and alternative 
optima may be removed in such a way as to be 
consistent with individuals’ subjective preference 
for particular outcomes relative to self over 
relatively neutral outcomes relative to a wider 
system by the introduction of appropriately 
weighted  perturbations. (See Charnes 1951.) For 
example, conditions qk*=1/2 in (IVa)* might be 
perturbed to q1*=1/2+ε1,q2*=1/2-ε2, ε1≠ε2 to give: 

 
      Maxρ+R1(1/2+ε1)-R1(1/2+ε1)-Mp+-Mp-                          Minµ + ΣSj'1/2 +Mq++Mq-+M2Σ(qk

+ +qk
-) 

            st        1p1 -1p2  -R1 ≥ ρ                                                          st    1q1 -1q2  -Sj’ ≤ µ            
                     -1p1 +1p2 -R2 ≥ ρ                                                                -1q1 +1q2  -Sj‘ ≤ µ       
          (II)*                              q1 +q1

+-q1
- =1/2+ε1           (IIa)*' 

                                                                                                                q2 +q2
+-q2

- =1/2-ε2 
                   p1 +p2  + p+  -p-   =1                                                               q1 + q2 + q +-q- =1               
           pj,p+,p-≥0, -M≤ρ≤M   - M2≤Rk≤ M2

                                             qk, q+,q-,qk
+,qk

-≥0,  -M≤µ≤M    - M2≤Sj≤M2 

 
 
With p1=1,p2=0,R1=1,R2=-1 this is consistent with 
conditions as if, via the objective of (II)*, one 
potential outcome (e.g. “heads”) will be revealed 
as if strictly preferred to the other (e.g. “tails”) by 
the first individual. Analogous perturbations and 
corresponding conditions q1=1,q2=0,S1=1,S2=-1 
would lead to relatively opposite “heads” and 
“tails” related conclusions with reference to a 
system (III)* and the second individual. In these 
ways such dually related perturbations and 
potentials are consistent with interpretations in 
relation in relation to relative bias of outcomes in 
general, and in relation to bias of coins in 
particular. 
 
Matching pennies applications are of interest in 
themselves, but they have been introduced here 
primarily because the framing and intervening 
duality ideas associated with them generalise to 
production scheduling cases and more particularly 
to crop related weather forecast constrained 
agricultural bargaining applications. 
 
 

4. Farm related interpretations of constrained 
games 
 
Agricultural decisionmakimg applications and 
interpretations of kinds considered in relation to 
(I),(I)' suggests interpretations for (II),(II)' 
according to which pj, pj

+ and pj
- respectively 

represent proportions of available land L given 
over to crops j, land left fallow (or rented out to 
other farmers), and land rented in from other 
farmers, with qk* representing elements of a 
weather forecast. In short (II),(II)' are open to 
interpretations corresponding to a class of weather 
constrained games against nature analogous to an 
individual playing a coin tossing game against 
nature.   
 
Although such interpretations may be appropriate 
to a class of owner managed farm applications, in 
the real world large numbers of farmers are 
tenants, not owners, and are simultaneously 
engaged in weather related crop planning games 
against nature and weather related land rent 
determining bargaining with one or more 
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landowners. An intervening duality framework 
analogous to (II),(IIa)', (III),(IIIa)' seems part-
icularly appropriate for analyses of such cases. 
 
5. Intervening duality specifications for farm 
planning 
 
Assume that a farm renter makes production plans 
by forming a weather forecast and then solving a 
problem of the form of (II),(II)' with pj relating to 
the proportion of land devoted to crops jεJ etc, as 
in the preceding section. One outcome of such a 
process would be the imputation of a marginal 

value µ to his/her land contingent on that plan and 
consistent with the minimisation of the marginal 
opportunity cost of its use - i.e. with the efficient 
utilisation of that level of availability of land to 
the renter. 
 
Now consider an intervening duality structure 
with farmer and owner related problems 
(IV),(IVa)' and (V),(Va)' analogous to (II),(IIa)' 
and (III),(IIIa)'. If, other things equal, the farm 
owner’s objective is to maximise rental income, 
this leads to: 

 
 
              Max ρq*   + ΣRkqk* - Mp+ -Mp-                              Min µL + ΣSj'xj* +Mq+ +Mq- +M2Σ(qk

++qk
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                                                                    qk +qk
+-qk

- =qk* 
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++xj
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                                            xj +xj
+-xj

- =xj* 
                      Σqk + q+  -q-   =q*                                                                  Σxj +x +-x- =L 
                       k                                                                                                                                             j 

           qk,q+,q--≥0,  -M≤ρ≤M   -M2≤Sj≤ M2                                xj,x+,x-,xj
+,xj

-≥0,  -M≤µ≤M  -M2≤Rk'≤ M2 

 
 
Assuming that all other input expenses are 
subsumed into πjk via πjk=def(contingent revenue 
jk) - (variable input expense jk), (IV),(1Va)' are 
consistent with a farm renter’s game against 
nature, the value µ then being the maximum rate 
of payment of rent at the margin consistent with 
normal profit for the farm renter. Similarly 
(V),(Va)' are consistent with an owner’s game 
against nature with µ being the maximum rate of 
payment of rent at the margin consistent with the 
association of a prior production plan xj* and 
weather forecast qk with that land by the owner.  
 
Clearly in general solutions to the dual pairs 
(IV),(IVa)' and (V),(Va)' would be inconsistent 
with each other. But there is one exceptional class 
of cases for which qk* is optimal for (IV) and pj* 
is optimal for (V). These conditions in turn 
correspond to elements of a bargaining related 
intervening duality structure as follows: 

Within frames as if preemptively determined via 
arbitrarily large weights M, M2 a prospective 
renter could form a weather forecast and 
determine an optimal production plan via 
(IV),(Va)'  (as above). Then the farm owner, given 
that plan, and as if via (Va)', could agree not just 
to the rentals but to the weather forecasts qk* 
implicit in it via a correspondingly optimal 
solution to (V).  
 
In these ways both parties may act as if to teach 
each other and to learn from each other from 
relatively external conditions and thence to agree 
on weather forecast-ing and planning information 
and on profits and costs. That is: as if all such 
relatively external information becomes common 
information. 
 
Further, if these predictions are correct, prior 
information qk*,xj* becomes as if perfectly 
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predictive of posterior information qk,xj with the 
consequence that optimally R'=0,S'=0. 
Alternatively in these circumstances as if 
posterior information relative to one party 
becomes as if perfectly predictive of prior 
information relative to the other, and conversely 
so that for such cases each party would act as if 
optimally to validate the other’s plans.  
 
But to get such equivalence in general Rk and Sj 
(if nonzero) will be  relatively opposite in sign. 
This in turn is consistent with relatively opposed 

profit motives at the margin between land owner 
and land user -  since at an optimum at the margin 
for one party land is a cost whereas for the other it 
is a reward. 
 
6. A numerical example  
 
Consider a crop 1:crop 2: rain:no rain example 
with L=100 and contingent payoffs and forecast 
probabilities as in Table 2 and (IV)*,(IVa)*', 
(V)*,(Va)*': 

 
                          FORECAST  PROBABILITIES                CONTINGENT PAYOFFS 

         CASE A         CASE B                                CROP 1      CROP 2 
           RAIN         no forecast            0.25                                        50                 30               
           NO RAIN   no forecast           0.75                                        20                 40  

                                           Table 2 
 
                   Max ρq*   + ΣRkqk* - Mp+ -Mp-                        Min µL+ΣSj'xj*+Mq++Mq- + M2Σ(qk

++qk
-) 

                      k                                                                                                        j                                                          k  

                  st       50x1 +30x2 -R1 ≥ ρ             (IV)*                    st        50q1 + 20q2 -S1' ≤ µ        (IVa)*' 
  20x1 +40x2 -R2 ≥ ρ                                                    30q1 + 40q2 -S2 '≤  µ 
                                          qk +qk

+-qk
-=qk* 

    Σxj + x+  -x-   =L                                                           Σqk +q +-q- =q* 
      j                                                                                                                                 k 

                 xj,x+,x-≥0,  -M≤ρ≤M  -M2≤Rk≤ M2                      qk,q+,q-,qk
+,qk

-≥0,  -M≤µ≤M    -M2≤Sj'≤ M2 
 

      Max µL - ΣSjxj* + Mq+ +Mq-                          Min ρq* -ΣRk'qk* + Mx+ +Mx- + M2Σ(xj
++xj

-) 
                  k                                                                                                             k                                                               j                                                                        

                   st       50q1 +20q2  +S1 ≥µ            (V)*                     st      50x1 + 30x2 +R1'≤ ρ           (Va)*' 
                             30q1 +40q2 +S2 ≥µ                                                 20x1 + 40x2 +R2'≤ ρ 

                                       xj +xj
+-xj

- =xj* 
    Σqk + q+  -q-   =q*                                                       Σxj +x +-x- =L 
             k                                                                                                                    j 

                qk,q+,q--≥0,  -M≤µ≤M   -M2≤Sj≤ M2                      xj,x+,x-,xj
+,xj

-≥0,  -M≤ρ≤M  -M2≤Rk'≤ M2 

CASE A (No explicit weather forecast.)  
With data as in Table 2 and Sj'=0, start with the 
farm user versus nature pair (IV)*,(IVa)*' in the 
intervening duality structure (IV)*,(IVa)*',(V)*, 
(Va)*' and Bayes-Laplace-like prior conditions 
qk*=1/2 in (IVa)*'. The optimum for (IVa)*' then 
has q1=q2=1/2, µL=3500, with S1'=S2'=0. The 
corresponding optimum for (IV)* has x1=25, x2=75 
with ρq*=3500 and R1=R2=0.  
 
Next set x1*=25, x2*=75 in (Va)*'. The optimum is 
then x1=25, x2=75 with ρq*=3500 and R1=R2=0 
and the correspondingly dual optimum to (V)* is 
q1=q2=1/2, µL=3500, with S1=S2=0. These values 
in turn are as if perfectly predictive of  qk*=1/2 in 
the initial system (IVa)*'. This is consistent with the 
statement above, viz: 

Further, if these predictions are correct, prior 
information qk*,xj* becomes as if perfectly 
predictive of posterior information qk, xj  with the 
consequence that optimally R'=0,S'=0. 
Alternatively in these circumstances as if posterior 
information relative to one party becomes as if 
perfectly predictive of prior information relative to 
the other, and conversely so that for such cases 
each party would act as if optimally to validate the 
other’s plans.  

 
CASE B (Explicit weather forecast).  

With data as in Table 2 start with the farm user 
versus nature pair (IV)*,(IVa)*' and conditions 
q1*=0.25, q2*=0.75 in (IVa)*'. The optimum for 
(IVa)*' then has q1=0.25, q2=0.75, µL=3750, with 
S1'=S2'=0. The corresponding optimum for (IV)* 
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then has x1=0, x2=100 with ρq*=4000 R1=-1000, 
R2=0.  
 
Next set x1*=100, x2*=0, q1*=0.25 q2*=0.75 in 
(Va)*' The optimum for that system is then x1=100, 
x2=0 with ρq*=4000 and R1'=1000, R2'=0. The 
corresponding optimum to (V)* conditional on the 
farm owner accepting the weather forecast q1=0.25, 
q2=0.75 is then µL=3750, with S1'=0, S2'=0. (If the 
owner does not accept the farm user’s prior weather 
forecast and acts as if ignoring  the term ΣRk'qk*  in 
(Va)* ' the optimal solution to (V)* has µL=4250, 
with q1=0.75, q2=0.25 and S1'=0, S2'=5.)  
 
In this way the prospective farm user with maximin 
anticipated return ρq* =4000 via (IV)* conditional 
on the weather forecast q1*=0.25, q2*=0.75 in 
(IVa)*', is optimistic relative to the return µL=3750 
in (IVa)*' (and optimistic a fortiori relative to the 
weather related probabilities q1*=0.5, q2*=0.5, as in 
Case A.) Put another way, the prospective farm 
user’s optimal plan stemming from the dual 
systems (IVa)*,(IVa)*' is such that the expected 
return ρq* =4000 can be interpreted as made up of 
a potentially guaranteed imputation µL=3750 to a 
land owner plus a weather contingent premium 
ΣRkqk*=250. 
 
 Similarly the owner with a maximin expected 
return relative to self of µL=3750 in (V)* 
contingent on acceptance of the farm user’s weather 
forecast is again apparently optimistic the 3500 
which would be anticipated under Case A. (The 
owner would be acting as if optimistic a fortiori 
relative to the no forecast Case A if they did not 
accept the user’s forecast and offered the alternative 
µL=4250, with q1=0.75, q2=0.25 and S1'=0, S2'=5.)  
 
These various evaluations are relatively optimistic 
and pessimistic via measures S1', S2' and R1, R2 
respectively in a manner analogous to the coin 
tossing case. Also analogously to the coin tossing 
case there is potentially room for a mutually 
advantageous exchange - in this case of land at a 
rental of 3750 in exchange for cash - if the land 
owner accepts the land user’s initial forecast. 
Alternatively of course the process could continue, 
for example by the farm owner responding to the 
(from their viewpoint) relatively pessimistic 
forecast q1=0.25, q2=0.75 and seeking to modify/ 
perturb the prior forecasts in (IVa)*' to accord more 
closely with the relatively unconstrained forecast 
q1=0.75, q2=0.25. (In that case essentially 
subjective information relative to the second party 
becomes as if objective relative to the first, 
potentially to the mutually advantageous bargaining 
advantages of both.) 
 

Summarising: whereas there is a sense in which the 
nil prior information solution is consistent with - 
indeed is as if perfectly predictive of - optimality 
for (IVa)*' and thence for (IV)* nevertheless in the 
earlier sequence, in which both parties acted, via 
Sj'=Sj=0, as if indifferent at the margin to weather 
related information, each one’s planned weather 
forecast and land based rental evaluations is as if 
perfectly predictive of the other’s. In that sense, for 
each of the two players (owner and user) plans and 
weather forecasts are as if unanimously agreed, not 
just relative to the system, but relative to 
themselves. However other optima exist (as in Case 
B) where, via potentials Rk≠0,Sj≠0 and thence 
relatively oppositely oriented measures of non zero 
gains/losses relative to self at the margin, there is 
room for individuals to disagree both relative to 
values R' and S' relative to a wider system and, 
through that system, relative to their relatively 
abstract selves. (Again there is an analogy with coin 
tossing cases. Unless there are potential oppositions 
of marginal evaluations µ, ρ, why seek to gain from 
negotiations to let land? Equivalently, if evaluations 
of the opportunity set open to the land in question 
were known to be identical for both potential lessor 
and for potential lessee, there would be no rational 
purpose in (continuing) a rent related process of 
bargaining between them.) 

 
7. Strategic equivalence and bargaining 
 
Consider transformations πkj

s'=defθ
sπkj+cs, 0<θs, 

cs>0 with s=1,2,3,4 corresponding to (IV),(IVa)', 
(V),(Va)'. If [ρ,xj,Rk], [µ,qk,Sj'] and [µ,qk,Sj], 
[ρ,xj,Rk'] are respectively optimal for those 
systems those solutions remain feasible (but not 
necessarily optimal) with these transformed 
values. If also Rk=defθ

sRk, Sj'=defθ
sSj', Rk'=defθ

sRk', 
Sj=defθ

sSj then, because of the preemptive nature 
of the framing weights M, M2, optimal values 
[ρ,xj,Rk], [µ,qk,Sj'] and [µ,qk,Sj], [ρ,xj,Rk'] remain 
optimal in (IV),(IVa)',(V),(Va)'. Under those 
conditions the valuations πkj and the linear 
transformations πkj

s'=defθ
sπkj+cs of them are strat-

egically equivalent. Four classes of special cases 
are: 
  

First, if θ1=θ2 and c1=c2 and Rk=defθ
sRk ,Sj'=defθ

sSj' 
the dual pair (IV), (IVa)' with πkj

s'=defθ
sπkj

 +cs  is 
strategically equivalent to (IV), (IVa)' with πkj'=πkj 
in a manner which will be familiar in the context of 
the standard two person constant sum game. 
(Though by contrast to the standard constant sum 
case, here there is explicit framing via the explicit 
specification of ranges of outcomes via preemptive 
penalties on x+,x-, q+,q-, and of prior probabilities 
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qk* again via preemptive penalties, in this case on 
magnitudes qk

+,qk
-.). 

Secondly, in a manner analogous to the previous 
case, if θ3=θ4 and c3=c4 and Sj=defθ

sSj, Rk'=defθ
sRk', 

the dual pair (V), (Va)' with πkj
s'= defθ

sπkj
 +cs  is 

strategically equivalent to (V), (Va)' with πkj'= πkj. 
Thirdly, starting with four distinct sets of values 
[θs,cs], each of the two preceding classes of cases 
itself comprehends two distinct classes of subcases 
according to which solutions e.g. with [θ1,c1] 
became strategically equivalent to solutions with 
[θ2,c2] , or conversely. 
Fourthly, the preceding classes of cases together 
illustrate the more general point that conditions of 
strategic equivalence may exist according to which: 
i)for every pair s1,s2, θs1≠θs2, cs1≠cs2 yet ; ii)for 
every such pair problems (IV), (IVa)',(V) and (Va)' 
with payoffs πkj

s1'=defθ
s1πkj+cs1, 0<θs1, cs1>0 are 

strateg-ically equivalent to equivalently framed 
games with payoffs πkj

s2'=defθ
s2πkj

 +cs2, 0<θs2, cs2>0.  
 

Here “equivalently framed” is understood to 
imply not only that preemptive framing weights 
M, M2 apply, but that values [Rk=defθ

s1Rk, 
Sj'=defθ

s1Sj', Rk'=defθ
s1Rk', Sj=defθ

s1Sj] and [Rk= 
defθ

s2Rk, Sj'=defθ
s2Sj', Rk'=defθ

s2, Sj=defθ
s2Sj] are 

respectively optimal in (IV), (IVa)', (V) and (Va)'. 
 
This variety of strategically equivalent cases is 
consistent with the fact that in practice each set of 
payoffs may be determined differently according 
to the players and according to the system in a 
correspondingly wide variety of different ways. 
For instance πkj in Table 2 may correspond to 
contingent profit contributions and µ to an 
imputed rental via (IVa)' for a farm user relative 
to a farm owner. But the farm owner may attract a 
lump sum payment based on ownership of land L 
and a tax on rental income such that a 
transformation πkj

s3'=defθ
s3πkj+cs3 with 0<θs3<1, 

cs3>0 becomes the appropriate measure of relative 
gain/loss for the owner in (V). Then, even 
disregard-ing the quantities Rk, Sj', Rk', Sj, which 
in any case have nonconstant sum related 
implications, the intervening duality system 
corresponds to a particular kind of nonconstant 
sum bimatrix game related structure. 
 
Thus, given an invariant frame via appropriately 
preemptive weights M,M2, it is possible to 
determine a wide variety of (possibly 
interrelating) strategically equivalent specific-
ations. But in practice it may be inappropriate to 
treat the frame as if preemptively specified. In the 
next Section I consider more general cases, first in 
which conditions relating to relatively interior 

probabilities are non preemptive and secondly 
cases in which conditions on relatively exterior 
probabilities are non preemptive. In short in the 
real world frames are mutable. In coin tossing 
cases individuals could choose to modify frames 
by choosing to devote more or less time (e.g. no 
time) to coin toss related activities, whereas a 
farm owner and/or a farm user could change a 
land related frame by renting out or renting in 
land. 
 
8. Frame related variations in bargaining 
outcomes 
 
So far I have considered preemptive frame related 
specifications and outcomes. Now consider 
potentially non preemptive generalisations of 
(IV), (IVa)', (V), (Va)' as in (VI),(VI)',(VII),(VII)' 
below. 
 
Clearly if penalties c+,c-, d+,d-, ek

+,ek
-, cj

+
,cj

- are 
arbitrarily large this intervening duality 
specification is equivalent to (IV), (IVa)', (V), 
(Va)'. But it also comprehends nonpreemptive 
alternatives. Consider a land related example. 
 
With reference to land, if c+ in (VI),(VI)' were 
sufficiently reduced (became sufficiently 
negative) the farm user might optimally respond 
by selecting x+>0 in (VI) and planting relatively 
less land to crops. In turn this would correspond 
to a planned variation xj

+>0 some j in (VII)'. 
Assuming that c+ and crop specific magnitudes cj

+ 

were sufficiently small, this would vary the 
optimal solutions via ρ= -c+ in (VII)' and Sj=-cj

+ in 
(VII) and may generate variations relative to the 
initial forecast qk* in (VI)'.  
 
A numerical illustration with reference to data in 
Table 2 will help here. Recall that the optimal 
solution to the preemptive specification  (IVa)*' 
had µL=3750. But with c+=-40<c- (i.e. non-
preemptive) and the other parameters as in 
(IV)*,(IVa)*', (V)*,(Va)*' the optimal solution to 
(VI)' becomes µL=4000 with S1'=S2'=0. This is 
consistent in turn with a risk (and user related 
profit) free optimal solution to (VI) with -
c+x+=4000 and xj=0, Rk=40, x+=100. In this case 
the opportunity cost of any kind of weather is 40 
i.e. with reference to this particular plan, the farm 
user would be indifferent with respect to changes 
in forecasts for particular weather types. (This is 
unsurprising since in this case the optimal plan 
involves no output of crops.) 
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                 Max ρq*   + ΣRkqk*-c+x+-c-x-                                Min µL + ΣSj'xj* +d+q+ +d-q-+Σ(ek

+qk
++ek

-qk
-) 

                                       k                                                                                                                 j                                                k    

                    st        Σπjkxj -Rk ≥ ρ               (VI)                                  st    Σπkjqk-  Sj'  ≤ µ           (VI)' 
                                                 j                                                                                                                               k  

                                     qk +qk
+-qk

- =qk* 
                            Σxj + x+  -x-   =L                                                             Σqk +q +-q- =q* 
                            j                                                                                                                                      k 

              xj,x+,x-≥0,  -d-≤ρ≤d+  -ek
-≤Rk≤ek

+                            qk,q+,q 
-,qk

+,qk
-≥0,  -c+≤µ≤c-    -cj

+≤Sj'≤ cj
- 

 
     Max µL - ΣSjxj* + d+q+ +d-q-                            Min ρq* -ΣRk'qk* + c+x++c-x- + Σ(cj

+xj
++cj

-xj
-) 

                                    k                                                                                                               k                                                    j                                       

                    st      Σπjkqk+ Sj ≥ µ              (VII)                                   st    Σπkjxj  + Rk' ≤ ρ         (VII)' 
                                             k                                                                                                                                   j  

                xj +xj
+-xj

- =xj* 
                          Σqk + q+  -q-   =q*                                                            Σxj +x +-x- =L 
                           k                                                                                                                                    j 

                qk,q+,q 
-
 ≥0,  -c-≤µ≤c+

  -cj
-≤Sj≤cj

+                              xj,x+,x-,xj
+,xj

-≥0,  -d-≤ρ≤d+  -ek
-≤Rk'≤ek

+ 

 

Given the zero production plan with xj*=0 via 
(VII)' and if the owner accepts the weather 
forecast qk* the correspondingly optimal solutions 
to (VII),(VII)' give µL=4000 with q1=0.25, 
q2=0.75, S1=7.5, S2=2.5 and c+x+=4000 with xj=0, 
x+=100, Rk=0. (The context underlines the 
interpretation of the quantities Sj as marginal 
evaluators of opportunity costs, in this case of not 
producing particular crops j.) 
 
In this way an intervening duality system provides 
a means of modelling the workings of a setaside 
scheme inducing a farm owner and user to agree 
to the setting aside of land on the grounds that the 
associated risk free payments to the owner would 
exceed respectively minimax and maximin oppor-
tunity cost related - rewards to alternative uses of 
the land.  
 
Still in the farming context, if c- in (VI), (VII)' 
was sufficiently reduced, the unit cost of 
additional supplies of land from a relatively 
external rental market would become equal to the 
farm user’s own risk related assessment µ of the 
internal opportunity cost of land. In that case the 
user - or in the setaside case, the owner - might 
optimally plan to rent not just all of this particular 
owner’s land but more at that rate from that 
relatively outside source. (Technically in that case 
(VI) and (VII)' would become unbounded but that 
could easily be remedied by appending an 
appropriate upper bound on the quantities x- to 
each of those systems.) 
With reference to a weather forecast related 
interpretation of (VII)' it has already been seen 

how, via a sequence of changes relative to 
programmes (VI)', (VI), (VII)', (VII), (VI)'.., 
changes in returns to alternative uses of land c+, c- 
might prompt changes relative to weather 
forecasts qk*. As an extension evidently such a 
sequence might start with a changed weather 
forecast in (VI)' - however induced - leading e.g. 
via qk

+>0 and, by complementary slackness 
Rk=ek

+ in (VI), to a change in predicted maximin 
weather related returns ρq* and thence to a 
change relative to the initially predicted crop 
planting plan in (VII)' and minimax payoff µ in 
(VII).  
 
In general, considering c+ and c- parametrically, 
these quantities may be used to potentiate 
switches from a relatively interior choice between 
relatively uncertain (crop related) alternative  and 
a relatively certain (fallow) related alternative and 
a relatively exterior alternative of renting out all 
of the available land. (For cases in which the 
relatively interior and uncertain alternative was a 
coin toss, analogous extensions might relate to 
rewards to a riskless alternative use of leisure time 
and to marginal rewards to work time 
respectively.) 
 
9. Conclusion and extensions 
 
In this chapter I have considered in detail just one 
class of land and weather constrained owner-user 
related bargaining applications of the intervening 
duality idea. Also, analyses and developments 
here have focussed on known production 
processes and associated costs and contingent 



 78   

revenues. One direction for extensions would be 
to draw on work in Ryan 1994 and include 
multiply resource constrained production 
decisionmaking problems. Another would be 
toward more explicitly intertemporal 
specifications and criteria. 
  
I close by emphasising the potential in the 
intervening duality systems which have been 
developed here for modelling teaching and 
learning. The opportunity for developments and 
interpretations of that kind is clear once it is 
recognised that the intervening duality approach 
comprehends the potential for one individual to 
convey new information to another about the very 
existence, as well as magnitudes and contingent 
payoffs for particular outcomes (e.g. a particular 
crop). It does this in ways in which individuals 
may interact with the explicit intention of gaining 
from others by expanding their opportunity sets. 
This feature alone makes this approach fundam-
entally different from others, including the cross 
constrained (see Charnes et al 1990,1993, Li 
1996). evolutionary (see Mailath 1992, Friedman 
1996), or Bayesian game theoretic approaches 
(see Aumann 1987), or of the method of 
production decisionmaking with recourse of 
(White 1992). Those approaches respectively 
emphasise strategic dominance, long run 
equilibrium, experiment based validation 
/learning, all together with the desirability of 
securing (optimal) long run decisionmaking 
processes within an initially given frame/set of 
potential outcomes. By contrast one of the novel 
and powerful features of the intervening duality 
approach is that it incorporates opportunities for 
individuals to gain by learning from each other 
and/or by reframing programmes making up an 
intervening structure, as well as potentially 
gaining by exploiting opportunities for mutually 
advantageous exchanges within such frames.    
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