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                                                               CHAPTER 13 
 
                    REGULATORY RISK, REGULATORY UNCERTAINTY AND A  
                                          TEACHING ROLE FOR REGULATORS 

 
1 Introduction 

The key feature of this paper is its focus on the 
potential for a teaching role for a regulator given 
conditions of uncertainty - a role which may in 
practice be welcomed as potentially mutually 
advantageous by the firms subject to that 
regulator's decisions.  
 
In earlier work (Ryan 1999) I considered 
regulatory risk with particular reference to the 
fairness of retrospective windfall profit taxes on 
recently privatized nationalized industries of the 
kinds introduced by the UK government in 1997. 
After providing a very general class of more for 
less results and uncertainty and learning related 
applications of them in Section 2, in Section 3 I 
will review this earlier work on regulatory risk 
and then consider the desirability or otherwise of 
regulation in that wider context. In Section 4 I 
extend results in the earlier sections using a 
regulatory game as an example. The paper 
concludes with a numerical example to illustrate 
key ideas together with more general 
implications for regulatory policy of regulatory 
uncertainty as distinct from regulatory risk. 
 
2 More for less and regulation 

THEOREM 1 

With M arbitrarily large and if a feasible 
solution exists for (I), then: 

Max f(x)  - Ms+- Ms-= z ≤ z' =Max f(x) -h+(s+) - h-

(s-) 
 st  g(x) + s+-s -= b     (I)       st   g(x) + s+-s- =b     
(Ia) 
         x ,s+,s-≥0                              x, s+,s- ≥0
  

PROOF 
Any feasible solution to (I) is a feasible 
solution to (Ia), and conversely. But any 
optimal solution to (I) with all s+, s-=0 is a 
feasible but not necessarily an optimal solution 
to (Ia). It follows that there may exist optimal 
solutions to (Ia) such that z'>z or z'=z with s+>0 
and/or s ->0 some s+,s-. (Notice that if variables 
si

+,si
- appear in every constraint i of (I) then 

there is always a feasible solution to that 
system.) 

 

Although simple, this theorem, which first 
appeared in Ryan 1997, is also very general. In the 
present context of four distinct types of application 
and interpretation of the variable in (I) and (Ib) 
will be especially useful. These are applications to 
framing, to learning and uncertainty, to economies 
of scale and scope and to regulation. These 
applications are considered separately in the next 
four subsections before being considered together 
in the wider context of a regulatory game in 
Section 4. 
 
2.1 A Frame Related Application 

If U(x) represents an individual’s preferences over 
commodities and x* represents that individual's 
initial endowments of those commodities and if, 
by definition, h+(s+)=h+x+ and h-(s-)=h-x-, then (I) 
and (Ia) take the following form:  
 
Max U(x) -Mx+- Mx-= z1   z2 =Max U(x)-h+x+ -h-x-

 
 st   g(x)+x+-x -= x* (II)       st  g(x)+x+-x- =x*  (IIa) 
       x ,x+,x-≥0                                x, x+,x- ≥0  
           
When restricted in this way to a context of 
individual economic decisions Theorem 1 has an 
interpretation in relation to opportunity sets. 
Specifically: a choice over a relatively less 
constrained opportunity set via (IIa) cannot yield 
an optimum lower than that over a relatively more 
constrained opportunity set via (II).  Equivalently 
Theorem 1 is consistent with very general regul-
atory or exchange related interpretations that 
reductions of constraints on opportunity sets may 
lead to strictly preferred choices of consumption 
plans by individuals. 
 
In a consumer context, reductions in hi

+,hi
- from 

preemptively large levels in (II) to 
nonpreemptively large levels in (IIa), leading to 
changes in optimally chosen mixes of consumption 
commodities, might be associated with regulatory 
(tax or subsidy) interpretations as well with 
processes of gift or exchange.  
 
2.2 Uncertainty and Learning Related 
 Applications 

The systems (II),(IIa) can be extended again to 
cases in which an agent gains otherwise 
unobtainable information about a new commodity 
i=0 as follows: 
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     Max U(x,x0)  

 = z1              z2= Max U(x,x0)  
- h'+x+ - h'-x- + h0'- x0

-                     -h+x+ - h-x- - h0
-
 x0

- 
st g(x,x0)+x+-x-=x* (III)   st g(x,x0)+x+-x-=x* (IIIa) 
         x0-x0

- =0                                 x0-x0
- =0 

   x ,x+,x-,x0,x0
-≥0                     x, x+,x-,x0,x0

-≥0 
   
If hi'+≥hi

+ and hi'-≥hi
- all i≠0 and h0'-=h0

-=M 
arbitrarily large then, by a straight-forward variant 
of Theorem 1, an optimal solution to (III) cannot 
be greater than an optimal solution to (IIIa) and 
exchange and regulatorily induced switches of 
chosen commodities i=1,2….I may follow in a 
manner wholly analogous to that considered in 
Section 2.1. But now, in addition to switches 
between existing commodities using existing 
technologies there is also the possibility of a 
solution with x0

- >0 at an optimum in (IIIa). Such a 
solution will in general correspond to a switching 
response, involving a partial or complete switch 
from an optimal “old commodity/old technology” 
solution with x0=0 via (III), to a relatively 
preferred optimal “new commodity/new 
technology” solution with x0>0 via (IIIa).  
 
In this way, as well as including frame related 
switching interpretations (III) and (IIIa) 
comprehend two distinct types of learning and 
innovation related cases. First are cases in which 
x0 determines x0

-. In that way innovation may be 
initiated  internally via x0 by the individual solving 
(III) and (IIIa) as if in order to be communicated  
externally via x0

-. Secondly, there are cases in 
which x0

- determines x0. In that way innovation 
may be initiated externally and then communicated 
to the individual solving (III) and (IIIa). In either 
case new information x0,x0

- will be conveyed via 
(IIIa) as if in consequence of relative reductions in 
the magnitudes of framing parameters from h0'- to 
h0

-<h0'-. Furthermore, in general that new 
information will lead to a choice of optimal xj via 
(IIIa) different from those chosen via an optimal 
solution to (III). 
 
Here are teaching and learning related 

interpretations of (III) and (IIIa) stemming from 
elements of relatively internal and external 
information x0,x0

-, which may not just be 
previously unknown to, but previously 
unanticipated by, individuals interacting 
respectively internally and externally with 
reference to the quantities h0'-, h0',x0

- framing those 
systems. These are key ideas, which I will link to 
issues of regulatory uncertainty (as distinct from 
regulatory risk) in Section 4.  

 
2.3 An Economies of Scale and Scope Related 
 Application 

Programme (IV) below develops ideas in Section 
2.1 and Section 2.2 by simultaneously 
incorporating opportunities for exchange of 
resources i=1,..I between two individuals (or co-
operating groups of individuals) “r” and “s” via 
xi

rs
,xi

sr and for innovation and learning 
opportunities of types considered in Section 2.2 
via a commodity i=0.  
 
DEFINITION 1 (Economies of scope) 

Economies of scope arise in a multi region 
economy when hitherto unavailable (or untaken) 
shipping opportunities become available via 
reductions in one or more relevant shipping costs.  
 
In (IV) there are two types of potential for 
economies of scope, namely that arising from 
linkages via xi

rs,xi
sr between individuals r and s, 

and that arising from externally induced quantities 
xi0

-. Consider xi
rs,xi

sr first. If hi'rs,hi'sr are sufficiently 
large then, other things equal, the overall optimal 
value U* in (IV) will be such that xi

rs=xi'sr=0 all 
i,r,s. But, if one or more of hi'rs,hi'sr are sufficiently 
reduced, correspondingly optimal values of (IV) 
will be such that U**≥U* by a variant of Theorem 
1, so potentially yielding exchange related 
economies of scope.  
 
 

Max   U=                                                                     
U1(y11,y12,..y10)- hi'12xi

12-hi'21xi
21 + h10'- x10

-         +         U1(y21,y22,..x20)  - hi'21xi
12 -hi'21xi

21+ h20'-x20
-    

              st  y1j≤g1j(x1ij,..x10j)  
                   Σx1ij+ xi 

12
 – xi 

21= x1i*   
                   Σx10j+ x0

12
 – x0

21= x10   
                        x10

 -x10
- =0                                                                                                             (IV) 

                                                                                                                                                               y2j≤g2j(x1ij,.x20j) 
                                                                                                   Σx2ii+ xi

21– xi
12= x2i*   i≠0     

                                                                                                   Σx20j+ x0
21– x0

12=x20 
                                                                                                              x20

 -x20
- =0 

                                                                 All variable nonnegative 
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Next consider xi0
-. With hr0

-,hs0
- sufficiently large 

the overall optimum U* in (IV) will be such that 
xr0

-=0. But, if one or more of hr0
-,hs0

- are 
sufficiently reduced, the optimum U** in (IV) 
may be such that U**≥U*, again by a variant of 
Theorem 1, and so yield innovation related 
economies of scope.  
 
[Notice that the constraints of (IV) are such that 
innovation induced economies of scope will generally 
have production related implications (via the 
quantities xr0 in the relations g2i(x11,x12,..x20)). And/or, 
if potential communication costs hi'12 are sufficiently 
low, relatively externally induced innovations x20 
relative to one individual may be transmitted at an 
optimum to another via relations x0

rs.] 
 
DEFINITION 2 (Economies of scale) 

Economies of scale are defined as arising in a 
multiregion economy when it is possible to 
increase the total amount produced in at least one 
region and for at least one market so that average 
production costs are reduced, even when 
(increased) economies of scope are not available. 
 
To see how economies of scale may arise, 
consider a development of (IV) with U 
interpreted as profit contributions (revenue net of 
variable production costs) to two spatially 
distinct production plants. Assume that (IV) is 
also augmented by preemptively specified targets 
yri*,xri*, xi

sr*,xi
rs* and parameters associated with 

potential deviations tri
+,tri

- (resp τri
+,τri

-, ci
sr ) from 

them as in (V).   
 
By a variant of Theorem 1, economies of scale 
may arise if, via sufficient reductions in the 
penalties tri

+,τrij
+, demand and supply for 

commodity i optimally  increases other things 
equal (respectively via yri

+>0 and xrij
+>0) in such 

a way as to reduce overall production cost. 
[Sufficient conditions here are for U( ) to be 
interpreted as referring to net revenue 
contributions and for marginal net revenue to be 
constant at the relevant margin.) ] 
 
Max   U=Σ(Ur(yrj,yr0)- hi'rsxi

rs-hi'srxi
sr + hr0'- xr0 

                     - 
 Σ(trj

+yrj
+ + trj

-yrj
- + τrij

+xrij
+  +τrij

+xrij
+ ) 

              - Σ(ci
rs+xi

rs+
 + ci

rs-xi
rs- + ci

sr+xi
sr+

 + ci
sr-xi

sr-) 
            st            yrj≤gri(xri,xr0)  
                         yrj + yrj

+
 – yrj

-= yrj*                     
                       Σxrij+ xi

rs
 – xi

sr= xri* i=1,2…I   (V) 
             Σxr0j+ x0

rs– x0
sr=xr0 

                   xrij + xrij
+

 – xrij
-= xrij* 

          xi
rs + xi 

rs+
 – xi 

rs- = xi
rs*  

             xi
sr + xi 

sr+
 – xi 

sr- = xi
sr*                                               

                   xr0
 –xr0

- =0 
             All variables nonnegative 

2.4 Regulation and Deregulation Related 
 Applications 

The quantities tri
+,tri

-,τrij
+,τrij

+ in (V) have potential 
interpretations as regulatory taxes (for demand 
and/or production beyond target levels) or 
subsidies (for demand and/or production short of 
target levels). With this perspective (V) 
straightforwardly yields regulatory 
interpretations. For example (V) potentially 
yields interpretations according to which, other 
things equal, a reduction in tax or an increase in 
subsidy for a consumption or production related 
commodity will respectively increase 
consumption or production of that commodity. In 
general such direct effects leading to increases in 
demand/and or of supply will also have indirect 
implications for levels of “exports” and 
“imports” via the first constraints of (V).  
 
Alternatively, “exports” and/or “imports” may be 
regulated directly via corresponding changes in 
the magnitude of the “export” and “import” 
related parameters ci

rs+,ci
rs-,ci

sr+,ci
sr-. That is, other 

things equal, “exports” will increase if ci
rs+, are 

increased (or ci
rs- are reduced) and “imports” will 

increase if ci
sr+, are increased (or ci

sr- are 
reduced). That leads in turn to issues concerning 
the regulation of industrial and market monopoly, 
oligopoly or competition in general, and 
concerning the contestability or otherwise of 
spatially separated markets in particular. 
Developments of these kinds are taken up in the 
next Section.  
 
3 Economies of Scale and Scope, 
 Contestability and Regulation 

As I noted in Ryan 1999 the contestability idea 
was first developed in Baumol, Panzer and 
Willig, 1982, where a contestable market is 
defined as having the following properties: 
 
First, the potential entrants can, without 
restriction, serve the same market demands and 
use the same productive techniques as those 
available to the incumbent firms... Second, the 
potential entrants evaluate the profitability of 
entry at the incumbents’ pre-entry prices.             
(Baumol et al (1982) p.5 )  
 
These definitions, and particularly the free exit 
aspect of them, have always been contentious. An 
especially strong critic is Shepherd (1984, 1995) 
who maintains that Baumol et al’s two properties 
are inconsistent, since, if entry was reversible and 
the entrant could establish themselves with no 
price response, there could be no contest so that 
the second kind of calculation would be 
redundant. Another and more recent critic is 
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Cairns (1996) who maintains that both 
contestability and risk can be modelled 
appropriately but not simultaneously. Briefly, 
Cairns introduces asymmetric information related 
uncertainty such that exit is not “free” since 
potentially entering firms may then realize 
unanticipated losses relative to incumbents.  
It is a remarkable feature of Baumol et al's 
definition of contestability, as well as these 
criticisms of it, that that definition and those 
criticisms make no distinction between 
contestability where an enterprise is producing 
inside a market and contestability where an 
enterprise is simply importing into a market. In 
the first case contest-ability involves installing or 
removing elements of production capacity, 
whereas in the latter it does not. Nor do these 
definitions and developments, e.g. by Cairns, 
acknowledge that, if risks of future states were 
known, then those risks could be anticipated – at 
least in part - in current decisions. Indeed, if 
foresight was perfect and capital markets were 
also perfect, such contingent risks would be fully 
insurable.  
 
These remarks indicate the key ideas which I 
developed in Ryan 1999. In that paper I gave new 
definitions of market contestability, which has 
reference to the regulation of conditions of 
potential entry via imports, as distinct from 
industrial contest-ability, which has reference to 
the regulation of conditions of potential entry via 
additional locally producing capacity. I also 
developed a multi-period goal programming 
formulation of a state preference model. I then 
used that model and these new definitions of 
contestability with a scale and scope related 
variant of Theorem 1 to show how contingent 
profits and losses, which may stem from 
regulation related windfall profit taxes, would in 
effect be fully anticipated and in that sense not 
unfair. For details of these analyses and results 
the reader is referred to Ryan 1999. But the main 
import of that work can be understood using a 
state contingent regulation variant of (V) in 
Section 2 in which there may be k=1,2….K 
distinct types of regulatory regime and in which 
the enterprise is assumed to adopt a maximin 
objective as in (VI). 
 
                               Max ρ   
θk   st Σ(Urk(yrj,yr0)-hik'rsxi

rs-hik'srxi
sr+hr0k'-xr0

- 

            -Σ(trjk
+yrj

++trjk
-yrj

-+τrijk
+xri

+ + τrijk
+xri

+) 
       -Σ(ci

rs+xi
rs+

 + ci
rs-xi

rs- + ci
sr+xi

sr+
 + ci

sr-xi
sr-)≥ρ 

ϕrj                st    yrj≤gri(xrij,xr0)                      (VI) 
ψrj                       yrj + yrj

+
 – yrj

-= yrj*                          
λri                     Σxrij+ xi

rs
 – xi

sr= xri*.. i=1,2…I   
λr0                    Σxr0j+ x0

rs
 – x0

sr= xr0 

ξrij                  xrij + xrij
+

 – xrij
-= xrij** 

ωi
rs                 xi

rs + xi
rs+

 – xi 
rs- = xi

rs*  
ωi

sr                 xi
sr + xi

sr+
 – xi

sr- = xi
sr*  

η                           xr0
 –xr0

- =0 
                  All variables nonnegative 
 
As well as industrial and market contestability 
related interpretations, (VI) now also 
comprehends k=1,2…K distinct sets of 
contingent regulatory conditions. In that 
connection the regulatory tax parameters trjk

+,trjk
-

,τrijk
+,τrijk

+  and “export” and “import” parameters 
ci

rs+,ci
rs-,ci

sr+,ci
sr- take on correspondingly state 

contingent interpretations at an optimum. The 
meaning of these will be clearer with the aid of 
the Kuhn Tucker conditions associated with (VI). 
These are considered together with related 
developments in relation to regulatory risk and 
regulatory uncertainty in the next section. 
 

4. Regulation games 

The risk related analysis in Ryan 1999 with its 
associated distinctions between industrial 
contestability and market contestability arguably 
provides a significant improvement on analyses 
implicitly assuming conditions of certainty as 
well as of complete information. Nevertheless 
that earlier work, by relying on the assumption of 
a state preference framework, implicitly assumed 
that there was no uncertainty and, a fortiori, no 
regulatory uncertainty. In that respect it provided 
an approx-imation, at best, to real world cases, in 
which regulatory uncertainty as well as regul-
atory risk are typically important.  
 
In this section I consider regulation related 
uncertainty, as distinct from regulation related 
risk within the wider context of regulation related 
games stemming from an interpretation of (VI) 
and the Kuhn Tucker conditions associated with 
it.  
Assuming that U( ) are concave and associating 
the indicated variables with its constraints (VI) 
generates Kuhn Tucker conditions as in (VI)': 
 
ρ≥0                              Σθk≥1                                       
yrj                     ϕrj +ψri ≥ ΣθkUrk'(yrij,yr0)                     
yrj

+ yri
-                   - trik

+≤ψri≤ trik
-                                               

xrij                             λri  +ξri ≥Σϕrigri(xri,xr0)    i=1,2,.I  
xro                    λr0  +ξr0  + η≥Σϕrigri(xrij,xr0)  i=0        
(VI)' 
xri

+ xri
-                             - τrik

+≤ξri≤τrik
-                i=0,1,….I 

xi
rs                                        ψri  - ψsi ≤ωi

rs 

xi
rs+ xi

rs-                          - ci
rs+≤ωi

rs≤ ci
rs+- 

xi
sr                                        ψsi  - ψri ≤ωi

sr 

xi
sr+ xi

sr-                          -ci
sr+≤ωi

sr≤ ci
sr+- 

xr0
-                                              η≤hr0k' 
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In (VI)', as long as ρ>0 at an optimum (i.e. as 
long as the contingent return in (VI) is positive 
for at least one state k), the first condition will 
hold as an equality. This is consistent with 
interpretation of θk as implicitly corresponding to 
regulatory risk related probabilities for an 
optimally determined set of contingent regulatory 
states K1≤K. Notice that the complementary 
collection K-K1 of contingent regulatory 
strategies is thereby implicitly assigned a 
probability of zero at such an optimum. Before 
considering this further with the context of 
regulatory uncertainty and a regulation game, I 
give brief interpretations of the remaining 
constraints of (VI)' as follows:  
 
From the second constraints commodity j will 
optimally be supplied, if at all, then to the point 
where the expected marginal return, e.g. profit 
contribution, equals marginal supply cost ϕrj net 
of a demand based tax or subsidy ψri.  [From the 
third constraints the magnitude latter quantity 
depends depending on whether demand falls 
short of, or exceeds, the demand goal yrj*.] 
 
Similarly, from the fourth through sixth 
constraints, inputs to production will be 
employed at an optimum, if at all, then only to 
the point where the marginal factor cost λri net of 
any relevant factor related tax or subsidy ξri 

equals the marginal revenue product of that 
factor. [The fifth constraint refers, via η,  to a 
factor which would only become known if hr0k' 
are sufficiently large, i.e. if the opportunity cost 
of ignorance is insufficiently large. (From the last 
constraint of (VI)' and complementary slackness, 
if η<hr0k' then xr0

-=xr0=0.)]  
 
The remaining four constraints relate to transfers 
between individuals/regions. They are consistent 
with the optimizing rule: transfer commodities 
between individuals/regions r, s, if at all, then to 
the point where the marginal evaluation at r 
equals the marginal evaluation at s plus the 
potentially regulated marginal transfer cost ωi

rs.    
 
Now reconsider (VI) and (VI)' from the 
perspective of a regulation game. In that context, 
as has already been noted, θk potentially have 
implicit interpretations as regulatory risk related 
probabilities for an optimally determined set of 
contingent regulatory states K1≤K, so that the 
complementary collection of states K1..K are 
implicitly assigned probabilities of zero. In this 
way the decisionmaker implicitly distinguishes 
four distinct types of regulatory contingency: 
 

i. Known regulatory contingencies k, implicitly 
assigned nonzero probabilities of occurrence; 

 
ii. Known regulatory contingencies k, implicitly 

assigned zero probabilities of occurrence. 
 
iii. Unknown regulatory contingencies, implicitly 

assigned nonzero probabilities of occurrence. 
 
iv. Unknown regulatory contingencies, implicitly 

assigned zero probabilities of occurrence. 
 
                           Positive Prob*      Zero Prob 
State Known           i)                              ii)  
State Unknown       iii)                           iv)   
                 TABLE 1 
*NB In every case exact probabilities may be unknown  
 
These four possibilities, which are summarized in 
Table 1, follow directly from the first constraints 
of (VI) and complementary slackness viz: 
 
 θk≥0 Σ(Urk(yrj,yr0)-hik'rsxi

rs-hik'srxi
sr+hr0k'-xr0

-- 
                  Σ(trjk

+yrj
++trjk

-yrj
-+τrijk

+xri
+ + τrijk

+xri
+)≥ρ 

   
By complementary slackness with reference to i) 
and iii): if in the first constraints of (VI)' the kth 
holds as an equality that is consistent with the 
imputation of nonzero probabilities θk>0 
respectively to known and unknown 
contingencies k.  And, with reference to ii) and 
iv) if in the first constraints of (VI)' the kth holds 
as an inequality that is consistent with the 
imputation of zero probabilities θk>0 respectively 
to known and unknown contingencies k.  
 
It is particularly significant here that, since a 
measure of risk θk is at best implicit - i.e. not 
explicitly specified, even as a prior, either by the 
decisionmaker in (VI) or by a regulator through 
(VI)' - all of these four classes of contingently 
optimal states are arguably uncertain. In more 
detail: 
 

ia): states under i) are uncertain in the sense 
that, even though the nature of the future 
contingent outcomes may be completely 
known, (and in that sense certainly known), 
and even though such states are assigned a 
positive probability of occurrence, the 
magnitude of that probability is unknown. [In 
general not only may the magnitude of the 
relevant probability within a given range of 
relatively risky alternatives be unknown but, 
given the possibility that cases of types i) and 
iv) may coexist, in general the overall range 
of the relevant probability distribution will 
also be unknown.] 
 



   141 

iia): states under ii) are uncertain in the sense 
that, even though the nature of the future 
contingent outcomes may be completely 
known (and in that sense certainly known), 
such states are nevertheless assigned a 
probability of occurrence of zero.  
 
iiia): states under iii) although arguably less 
uncertain than states in iv) are nevertheless 
uncertain with reference to the definition of 
the contingent outcomes.  
 
iva): states under iv) appear uncertain a 
fortiori because such states are unspecified 
both with reference to the definition of the 
contingent outcomes and with reference to the 
contingent probabilities. 

 
In this way an optimal solution to (VI) implicitly 
imputes four different kinds of probabilities θk to 
potentially forthcoming regulatory states. 
Importantly a regulator might take a variety of 
correspondingly distinct kinds of regulatory 
actions, not only to make previously unknown 
contingencies known, but to make already known 
contingencies better known. One summary form 
in which such action may be taken is by 
providing more - or different - information 
concerning contingent penalties or rewards, so 
modifying some or all of the contestability 
related production or exchange related 
parameters of the first constraints in (VI). In that 
way a regulator may induce changes in decisions 
by regulated individuals or industries in a manner 
analogous to the result in Theorem 1. 
 
Another way in which a regulator may seek 
actively to influence a decisionmaker's choice of 
output(s) is by explicitly assigning positive 
probabilities to some or all potentially 
forthcoming contingencies k=1,2….K. In that 
way additional information θk=θk*>0 in (VI)' 
may in effect force the corresponding inequalities 
in (VI) to become equalities. To clarify the 
regulatory role which might be played by such 
additional information I consider some special 
cases in the next section. 
 
5 Regulatory uncertainty and learning: related 
examples 
 
Consider a class of special cases for which (VI) is 
interpreted as a firm vs regulator game in which 
U( ) equate to profit contributions Σπrjkyrjk+ 
Σπr0kyr0 contingent on outcomes k. In that case 
(VI) takes the form shown in (VII): 
 
 

                                 Max   ρ       
θ k     st Σπrjkyrjk+Σπr0kyr0-hik'rsxi

rs-hik'srxi
sr+hr0k'-xr0

- 
           -Σ(trjk

+yrj
++trjk

-yrj
-+τrijk

+xri
++ τrijk

+xri
+)  

          - Σ(ci
rs+xi

rs+
 + ci

rs-xi
rs- + ci

sr+xi
sr+

 + ci
sr-xi

sr-)  
≥ρ 
ϕrj                   st    yrj≤gri(xrij,xr0) 
ψrj                      yrj + yrj

+
 – yrj

-= yrj*                          
λri                    Σxrij+ xi

rs
 – xi

sr= xri*           
                                                      i=1,2…I   (VII) 
λr0                   Σxr0j+ x0

rs
 – x0

sr= xr0 
ξrij                   xrij + xrij

+
 – xrij

-= xrij** 
ωi

rs                  xi
rs + xi

rs+
 – xi 

rs- = xi
rs*  

ωi
sr                  xi

sr + xi
sr+

 – xi
sr- = xi

sr*  
η                             xr0

 –xr0
- =0 

                    All variables nonnegative 
 
For example, in (VII) πrjk may be weather and 
regulation contingent payoffs to a firm's products 
j, where xri* are the inputs of type i available in 
region r and xrij**, yrj* are relevant input 
technology and output production targets. In that 
context xi

rs* xi
rs* become relevant import and 

export targets such that deviations from targets 
may be varied to correspond to industrial and/or 
to market contestability mechanisms. Depending 
on the forthcomiing contingency, different types 
of production technique may be favoured or 
disfavoured via changes in local inputs to 
production xrij or outputs yrj (so changing 
industrial contestability conditions), and/or by 
changing import or export taxes or subsidies (so 
modifying market contestability conditions). 
 
The kinds of cases modelled by (VII) were 
considered in a state contingent framework in 
Ryan 1999 with reference to work on 
contestability by Baumol et al 1982, 1986, 
Shepherd 1984, 1995 and Cairns 1996, as well as 
by Eaton and Wooders 1985, Dafermos and 
Nagurney 1987 and Norman and Thisse 1997. By 
contrast with the focus on relations between a 
regulator and a regulated industry under 
conditions of risk in that earlier paper, here 
attention is focused primarily on the relation 
between an industry and its regulator under 
conditions of regulatory uncertainty. Such 
conditions, although in general coexisting with 
conditions of regulatory risk, are distinct from 
them in two related ways both of which have 
been emphasized in the previous sections. First is 
the subjective nature of probabilities which a 
regulated firm may associate with regulatory 
contingencies, even when those contingent states 
themselves are known. Secondly, in general there 
will be uncertainty as to the nature of potentially 
forthcoming states per se - i.e. uncertainty as to 
the range of the relevant sample space. 
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In the latter context a direct way in which a 
regulator may change the range of potential 
outcomes is by changing market contestability 
conditions (e.g. by lowering taxes on potential 
imports from other regions). A more subtle way 
in which a regulator may change the range of 
potential outcomes, and thence influence the 
decisions of regulated firms, is by lowering the 
cost of innovation hr0k'- in (VII). [Other things 
equal, a sufficient reduction in the marginal cost 
of introducing innovation, hr0k'-, will increase the 
level of innovation xr0

- and thence the value of xr0
  

in (VII).] 
 
To illustrate these possibilities consider a simple 
two product two state numerical example in 
which a firm in region r has xir*=100 units of a 
single type of capacity i, which may be used to 
produce two distinct types of output j=0,1 - the 
second according to a known process and the first 
by using an innovatory process. Assume that 

there are two potentially forthcoming states k=1,2 
and that the contingent payoffs are as in Table 2.  
Assume that the target level of output 1 is 50, that 
penalties associated with any deviation from this 
target will be 25 per unit if state 1 occurs and 10 
per unit if state 2 occurs and, for simplicity, that 
there are no output targets for output yr1. Assume 
finally that the production relations for products 
yro and yr1 are as indicated in (VIIa)* and that the 
objective of the firm is to maximize the minimum 
expected return to its capacity. 
 
                       Output 1    Innovatory Output  
State 1                  5                       4                   
State 2                  3                       6                   
               TABLE 2 
 
With data as in Table 2 the optimal plan for the 
firm could be found as an optimal solution to a 
specialization of  (VII) via (VIIa)*: 

 
                                                                            Max   ρ   
θ1                             st      5yr1  +   4yr0 -  Σ(hi1

srx1
sr +  hi1

rsx1
rs) -hr0'xr0' - 25(xr11

+-xr11
-)≥ ρ 

θ2                                      3yr1  +  2yr0-  Σ(hi2
rsxi

1s +  hri2
rsx1

rs) -hr0'xr0' - 10(xr12
+-xr12

-
 )≥ρ 

ϕr1                                                                      yr1 ≤ 5xr11 + 1.5xr0 

ϕr2                                                                      yr0 ≤ 2.5xr0                           
λr1                                                                  xr11  +  x1

sr - x1
rs =50                                (VIIa)* 

ξ                                                                    xr11   +    xr11
+-xr11

-=100 

η                                                                          xr0 =xr0' 
δ                                                                      xr0'≤xr0'*=80 
                                                                    All variables nonnegative 
 
First consider solutions and policy alternatives in 
which by assumption both interregional shipment 
costs hik

sr,hik
rs and innovation costs hr0' are 

initially prohibitively high. Under these 
conditions the optimal solution to (VIIa)* is such 
that xr11=50, xr11

+=50, yr1 =250, ρ=min[0,250]=0. 
This outcome implies an industrial monopoly for 
this firm since entry from outside region r is in 
effect blockaded by prohibitively high entry 
costs/tariffs hi1

sr. Clearly one policy alternative 
would be to introduce market contestability by 
reducing hik

sr accordingly. For example, with h11
sr 

=10, h12
sr=5 and the other data remaining 

unchanged, the optimal solution to (VIIa)* 
becomes xr11=100, x1

sr=50, xr11
+=0, yr1 =500, 

ρ=min[2000,1250] =1250. 
 
With reference to Table 1 the first of these 
optima is consistent with the selection of 
outcomes i) and ii) via the imputation of a prior 
probabilities {θ1=1 θ2=0} to states k=1,2. Again 
with reference to Table 1 the second of these 
optima is consistent with the selection of 
outcomes i) and ii), but in this case via the 
imputation of prior probabilities {θ1=0, θ2=1} to 

states k=2. That is: a change in one of the 
parameters hi1

sr,hi1
rs, which in turn determine 

market contestability conditions, has caused a 
switch in predicted outcomes and, with it, a 
switch in subjective probabilities implicitly 
imputed to forthcoming regulatory states from 
{θ1=1, θ2=0} to {θ1=0, θ2=1}. 
 
A second class of special cases is one in which 
hr0' is reduced from the preemptively high level 
considered in the previous case to hr0'=5. With 
interregional shipment costs hik

sr,hik
rs 

preemptively high and hr0'=5 and the remaining 
data as before, the optimum to (VIIa)* is now 
such that xr0=xr0'=80, xr11=50, xr11

+=50, yr0=200, 
yr1=250, ρ=min[400,250] =250. This is consistent 
with {θ1=0, θ2=1} and contrasts with the 
preemptive shipment case in the absence of 
innovations considered above and conditions as if 
{θ1=1, θ2=0}. [Notice that this switch is entirely 
due to the reduction in the unit cost of 
innovation.] 
 
Finally consider cases in which there may both 
be innovation, via hr0'=5, and improved 
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contestability via nonpreemptive magnitudes for 
h11

sr=10, h12
rs=5. With the remaining data as 

before, the optimum to (VIIa)* is now such that 
xr0 =xr0'=80, xr11=100, xr11

+=0, yr0=200, yr1=250, 
ρ=min[1550,900]=900. This is again consistent 
with {θ1=0, θ2=1}  
In each of these cases there is uncertainty as to 
the range of potentially forthcoming states (i.e. as 
to the probability with which innovation may or 
may not occur). Even in the absence of 
innovation there is also at best only implicit and 
subjective certainty as to the probabilities with 
which states k=1,2 may be forthcoming. To see 
this more clearly and in order to examine ways in 
which such uncertainty might be systematically 
reduced by a regulator, now associate the 
indicated dual variables with the constraints of 
(VII) to derive Kuhn Tucker conditions (VIIa)'* 
which are analogous to (VI)': 
 
Min        50λr1i+100ξ r11 + ηij xr0' + 80δ  

yr1     st          5θ1 +  3θ1≤ϕr1 
yr1                  4θ1 +  2θ1≤ϕr2 

ρ≥0                           Σθk≥1                                       
xr11                              λr1 - 5ϕr1≥0 
xro                   ξr11 -1.5ϕr1 -2.5ϕr0 λr0  +η ≥0   (VIIa)'* 
xr0'                 θ1hr0'   +θ2hr0'- η≤δ  
x1

rs,xi
sr-   -θ1h11

rs' -θ2h12
rs'≤λr1 ≤θ1h11

sr' +θ2h12
sr' 

 
[The form of the first three constraints in (VIIa)'* 
is isomorphic with those of a minimax game 
formulation of the standard type. In that context 
the additional regulatory constraints in (VII)*' 
can be related in turn to the structure of a 
constrained game. For relationships between 
(VII) and (VII)' and these specializations via 
(VIIa)* and (VIIa)'* to constant sum games and 
constrained games see Charnes 1953, Charnes 
and Cooper 1961, Hazell 1970, Owen 1982, 
Ryan1995. In particular the explicitly framed and 
resource constrained cases in (VIIa)* can be seen 
as explicitly uncertainty related extensions of 
work in Ryan 1998 on framing and in Ryan 1994 
on production scheduling under uncertainty.] 
With reference to (VII), changes in regulatory 
regimes for firms deciding via (VII) may be 
introduced by regulators via dually related Kuhn-
Tucker conditions (VII)' (which generalize 
conditions (VIIa)'*). In effect a regulator may 
change regulatory parameters in (VII)' as if 
purposively to tighten or loosen those constraints 
as if thereby to induce regulated firms using the 
dually related systems (VII) to change their 
production and distribution decisions in 
directions desired by the regulator. More directly, 
a regulator may reduce regulatory uncertainty, 
and at the same time may potentially gain closer 
co-ordination with the decisions of the regulated 

industry, by explicitly specifying two kinds of 
probabilities. First: a regulator may specify 
values for the probabilities θk associated with 
fully specified potentially forthcoming states 
k=1,2…K1. Secondly; a regulator may implicitly 
specify values for conditional probabilities θk

+,θk
- 

of further not fully specified states K1…K via an 
explicitly framed extension of (VII)'. These kinds 
of extensions are considered in more detail in 
Ryan 2000. 
 
7 Conclusion 

In this paper I have introduced new results and 
associated examples with emphasis on the role of 
regulatory uncertainty as distinct from regulatory 
risk in conditioning the behaviour of regulated 
enterprises. In that context new ways of 
modelling innovation and learning have been 
examined and systematic links between processes 
of innovation and learning and duality properties 
of associated optimization problems have been 
explored. While I have illustrated these ideas 
using linear examples I close by emphasizing that 
the systems (VII) and (VII)' and applications of 
them comprehend nonlinear cases.  
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