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                                            CHAPTER 11 
 

          THE DISTRIBUTION PROBLEM, THE MORE FOR LESS  
 (NOTHING) PARADOX AND ECONOMIES OF SCALE AND SCOPE 

 

1. Introduction 
 
If an optimal solution to the distribution problem 
exhibits the more for less or more for nothing 
paradox, any subsequent solution which fully 
exploits those conditions is necessarily degen-
erate and decomposable. This result, which was 
first conjectured in Ryan 1980 and proved 
formally in Charnes, Duffuaa Ryan 1980, has 
implications both for economies of scale and for 
economies of scope. It is the purpose of this paper 
to show how these two types of interpretations 
might arise and, by using homogeneous product 
and heterogeneous labour market related 
examples, how they might usefully be exploited. 
 
The chapter is organised as follows. The next 
section presents generally applicable more for less 
and more for nothing results before specializing 
them to the distribution problem. Then in Sections 
3 and 4 distribution structures are related to issues 
and interpretations in relation to degeneracy and 
decomposability and in relation to variously 
spatially competitive and non competitive 
markets. In Section 5 I introduce new goal 
programme related definitions of economies of 
scale and scope. Finally in Sections 6 and 7 I turn 
to more specific examples using these definitions, 
the first with reference to a homogeneous 
commodity and interregional exchange and the 
second with reference to redundancy and 
retraining costs and labour markets. 
 
2. Two general more for less (nothing) results 
 
THEOREM 1 
If a feasible solution exists for programme (I) then: 
 
Max Σf(xj) - MΣxj

+ -MΣx j
- =   z≤ z' =  

  st Σaijxj + xj
+ - x j

- = bi                   (I)   
                          xj ,xj

+,xj
- ≥0 

                                ≤  
Max Σf(xj) -Σcj

+xj
+ -Σcj

-x j
-          

                st constraints of (I)                      (Ia) 
 
 
 

 PROOF 
Any feasible solution to (I) is a feasible solution 
to (Ia), but not conversely. Thus any optimal 
solution to (I) is a feasible but not necessarily an 
optimal solution to (Ia). It follows that there may 
exist optimal solutions to (Ia) such that z'>z or 
z'=z with xj

+, x j
- >0 some xj

+, x j
-. 

 
For example it need not always be optimal for a 
preference or profit maximizing farmer to choose 
crop production plans in such a way that they exactly 
exhaust each and all of his/her resources of land, 
machinery and time. (This is consistent with the fact 
that crop production involves seasonally intensive 
activities.) 
 
One class of special cases are those in which both 
f(xj) are linear: 
 
THEOREM 1* 
If a feasible solution exists for programme (I*) then: 
 

   Max Σfjxj - MΣxj
+       

  st Σaijxj + xj
+ = bi                              (I*)  

            xj, xj
+≥0               

               ≤  
    Max Σfjxj 
    st constraints of (I*)                     (Ia*) 

     
Analogous to Theorem 1 are a class of minimization 
cases as follows: 
 
THEOREM 2 
If a feasible solution exists for programme (II) then: 
 

Min Σc(xj) + MΣxj
+ + MΣx j

-  
  st Σaijxj + xj

+ - x j
- = bi                    (II)   

           xj, xj
+,xj

-≥0                 
                      ≥  
Min Σc(xj) +Σcj

+xj
+ +Σcj

-x j
- 

st constraints of (II)                         (IIa) 
                  
PROOF 

Any feasible solution to (II) is a feasible 
solution to (IIa), but not conversely. Thus 
any optimal solution to (II) is a feasible but 
not necessarily an optimal solution to (IIa). 
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It follows that there may exist optimal 
solutions to (IIa) such that z'>z or z'=z with 
xj

+, x j
- >0 some xj

+, x j
-. [Evidently, if c(xj) = 

def -f(xj), then theorems 1 and 2 are 
equivalent.] 

 
Theorem 2 is the main result in Charnes, 
Duffuaa, Ryan 1987 (though the proof here is 
more succinct). With the context of the well 
known diet problem, in which xj  would be foods, 
bi minimum dietary requirements and cj unit 
costs, this theorem states the apparently 
paradoxical fact that in certain circumstances a 
diet exceeding minimum daily requirements of 
nutrients may be cheaper than one exactly 
meeting all of those requirements. (For more on 
this example and results concerning the 
degeneracy of more for less and more for nothing 
cases see Charnes, Duffuaa, Ryan 1987.) 
 
Another class of special cases of Theorem 2 are 
those which conditionally correspond to the 
distribution problem, viz: 
 
THEOREM 2* 
 
If a feasible solution exists for programme (II)* 
then: 
 
Minimise ΣΣcijxij +ΣMxi

+ +ΣMxi
-+ΣMyj

++ ΣMyj
-   

                           i    j                i                   i                    j                 j  

                                        Σxij + xi
+-xi

- = ai 
 j                                          (II)* 
Σxij + yj

+-yj
- = bj 

i 

Σai=Σb 
 i           j          
xij,xi

+,xi
-
,yj

+,yj
- ≥0 

 
                                  ≥ 
 
Minimise ΣΣcijxij +Σci

+xi
+ +Σci

-xi
-+Σdj

+yj
+ + Σdj

-

yj
-
 

  i     j               i                     i                   j                    j 

 

  st constraints of  (II)* 
 

PROOF  
As for Theorem 2. (To exclude trivial cases 
cij>0 will be assumed.) 

 
 In the original form stated by Charnes and 

Klingman 1971 for more for less cases and by 
Ryan 1986 for more for nothing cases, the more 

for less (nothing) paradox in the distribution 
model was stated as follows. (The notation 
degenerate* recognizes that the requirement 
Σai=Σbj implies that any distribution problem in 
the standard form will be linearly dependent and 
thence degenerate with at most m+n-1 positive 
shipments in an optimal basis.): 

 
Given a non degenerate* optimal solution to the 
distribution problem with m+n-1 positive 
shipments it is possible to ship more total product 
at less (equal) total cost while shipping at least as 
much from each origin and to each destination if 
and only if Ri+Kj<0 (resp Ri+Kj =0)for some non 
basic route ij. 

 
Clearly a feasible solution exists for (II) with 
xi

+,xi
-
,yj

+,yj
- =0 all i,j. Programme (II) is then 

equivalent to the distribution problem in its 
standard form (se Charnes and Cooper 1961, 
Shogan 1986). 
 
Theorem 2A is a generalization of the more for 
less (nothing) paradox in the distribution model 
since it admits more for less and more for nothing 
cases with yj

-,xi
->0 some i,j as two classes of 

special cases. (Other cases would include those 
with yj

+,xi
+ optimally positive some j in (IIa).) 

 
In Ryan 1980, I developed both linear and 
nonlinear applications and examples. I showed 
that if more for less or more for nothing 
conditions in the distribution model are fully 
exploited, a connected set of markets optimally 
decomposes into spatially disjoint sets of 
submarkets.  
 
The general degeneracy-decomposability result 
was later proved formally in Charnes, Duffuaa 
and Ryan 1980. But it can be demonstrated in 
other ways too. Here I consider an approach in 
which the distribution problem is embedded 
within the larger goal programming structure 
implicit in (IIa). (Incidentally, while more work 
on the MFL/MFN paradox has subsequently been 
done by others, including Arshan 1992 and Gupta 
and Puri 1995, it focuses on partial post 
optimality analyses. It provides no market related 
economic interpret-ations. Nor does it use a goal 
programming approach.) 
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3. Duality, degeneracy decomposability and 
MFL/MFN 
 
Associating dual variables Ri and Kj respectively 
with the origin and destination constraints of (IIa) 
its dual is: 
                 Maximize  ΣRiai+ΣKjbj  

                                                        
i               j

 

       Ri+Kj ≤ c ij                          (IIa)*'      

                                       -ci
-≤ Ri  ≤ +ci

+ 

                         -dj
-≤ Kj ≤ +dj

+ 
 
If ci

-,ci
+,di

-,di
+ are sufficiently large and positive, 

optimal solutions to the potentially more for less 
(nothing) formulation (IIa)*' are equivalent to 
optimal solutions to the standard non more for 
less( nothing) formulation of the distribution 
problem. Conversely, if not sufficiently large and 
positive, ci

-,ci
+,di

-,di
+ may be of magnitudes such 

that, while (II)* is a feasible solution to (IIa)*, it 
is not optimal. In particular, if ci

-,di
- are of 

appropriate magnitudes and if xi
-= yj

-= δ>0 for 
some non basic route ij in (IIa)*, an optimising 
MFL/MFN solution may be attained to (IIa)*' 
with Ri=-ci

-, Kj=di
- by complementary slackness. 

For a solution maximising the potential for 
MFL/MFN, δ will be set at its maximal level 
consistent with maintenance of the initial set of 

basic routes.  
Degeneracy* follows immediately. A basic 
solution to (IIa)* would then have just m+n-2 
positive shipments, there being m+n constraints 
with xi

-=yj
->0. Decomposability of such a solution 

follows from the fact that a basis non degenerate* 
in shipments xij for (IIa)* (minimally) spans that 
system so that, conversely, a degenerate* basis 
does not.  
 
In the degenerate* case it is possible to set two 
distinct values Ri, Kj arbitrarily - e.g. Ri=-ci

-, Kj=di
-

. Nevertheless it is not necessary to set a pair of 
values Ri, Kj equal to relatively external 
magnitudes to obtain a MFL (MFN) result. All 
that is necessary are conditions consistent with 
Ri+Kj≤0 for some non basic route at an optimum. 
Various classes of special cases, including 
spatially competitive cases, will be considered in 
Section 4. First consider a numerical example. 
 
4. A more for less (nothing) example 
 
Consider an example in which supplies at two 
factories, demands at two markets and unit 
shipping costs are as indicated in Tableau 1. 
 

 
                      K1 =4          K2 =10                                                    a1   →    b1      
 4  10   
R1 =0 x11= 10          x12= 10        a1=20 
 6  3   
R2 = -7 x21=   0 x22= 30 a2=30 
                        b1=10         b2= 40                                                      a2   →  b2      

                Tableau 1                                                                Figure 1 

Using the North West Corner Rule the initial basis 
is as in Tableau 1. Due to the degeneracy of (II)* 
at an optimum one dual variable can be selected 
arbitrarily. Setting R1=0 the values of the other 
dual variables follow directly since, by 
complementary slackness, Ri+Kj=cij for all basic 
routes ij.  In this case this initial dual pair of 
solutions is feasible and thence optimal with a 
total shipping cost of  230.  
 
Parenthetically, as I noted in Ryan 1980, for data 
organized routinely from top to bottom (North to 
South) and from left to right (West to East), a 
North West Corner Rule may be more efficient 
than other starting rules since naturally 

corresponding to the adjacencies inherent in a pre-
existing pattern of shipments. (Try it with origins 
and destinations being Seattle and New York. A 
North West Rule starts with a shipment Seattle-
Seattle, whereas a South West Rule would start 
with a cross country shipment New York-Seattle.) 
 
The solution in Tableau 1 being nondegenerate* 
and R2+K1=-3<0 for the nonbasic route {2,1} 
exhibits the preconditions for MFL. (With c22=6 
and thence R2=-4, R2+K1=0, they would be 
preconditions for MFN.) 
 
Figure 1 will help to clarify how and why the 
more for less case arises in Tableau 1 by showing 
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how a nondegenerate* basis with three positive 
shipments requires a “cross country” shipment, in 
this case x12=10. Further, shipment costs in 
Tableau 1 are such that the sum of the unit costs 
of the two “local” shipments x11,x22 are less than 
the unit cost of the cross country shipment x12. 
That is: 
              c11-c12-c22= R2+K1=-3<0                   (3.1) 
 
It follows that: 
                      δ(c11+c22)< δc12                                       (3.2) 
 
That is if supply at origin 1 is increased by δ and 
demand at market 2 is increased by δ overall 
shipping cost can be reduced by correspondingly 
decreasing cross-country shipments by δ. 
Evidently the maximal feasible value of δ 
consistent with nondegeneracy in x12 in this case is 
10-ε12 (with ε12 arbitrarily small) when overall 
transport costs are reduced by 3(10-ε12). If ε12�0 
then cross country shipments are reduced to zero 
and the initially connected pairs of factories and 
markets become disconnected - that is an initially 
connected basis in xij becomes degenerate* and 
decomposable. 
 
Clearly more general more for less and more for 
nothing examples are available via Theorem 2. 
However, from the perspective of this paper the 
significant point is that in general costs may be 
reduced both by increasing the connectedness of 
markets - i.e. by increasing opportunities to 
generate economies of scope and by increasing 
the scale of operations of particular factories, and 
that, as here, optimizing tradeoffs may be attained 
between these two means of reducing overall 
costs. 
 
The initial connectedness and subsequent discon-
nectedness of the pairs {O1,D1} and {O2, D2} 
respectively via an actual shipment x12>0 and a 
potential shipment ε12>0 immediately suggests 
interpretations in relation to potential  competition 
and monopoly since under these conditions actual 
entry x12>0 into market 2 from factory 1 become 
conditions of potential entry via ε12 >0 and non 
entry with ε12=0. More subtly this example 
suggests interpretations in relation to economies 

of scale and scope, with economies of scope 
stemming from the connection of otherwise 
disconnected markets and economies of scale 
following from the expansion of the level of 
activity of one or more production plants. (In the 
example factory 2.) 
 
5. The MFL(MFN) paradox and spatial  
competition 
 
One condition of spatial competition is that if 
interregional transport costs are cij then for any 
connected pair of markets i,j origin prices pi, and 
destination prices pj are such that: 
 
                   xij>0   =>    pj-p i=cij                                 (3.3) 
 
(Another and stronger condition would be that all 
markets be connected.) 
 
Conditions (3.3) in turn suggest that, rather than 
starting with an arbitrary valuation R1=0, that dual 
variable could be chosen as a base price R1=-c1

-= 
defp1 thence generating prices consistent with 
conditions of spatial competition such that, for all 
basic routes: 
 

xij>0   =>    pj-pi=Ri+ Kj=cij                (3.4) 
 
and for all non basic routes: 

 
xij>0   =>    pj-pi≤Ri+ Kj≤cij                         (3.5) 

  
It follows that competitive price regimes are 
potentially consistent both with conditions 
exhibiting and with conditions exploiting the 
MFL/MFN paradox. But, as I showed by means 
of an example in Ryan 1980, conditions of the 
MFL/MFN paradox are not necessarily consistent 
with conditions of spatial competition. This can 
be demonstrated more formally by considering a 
variant of (IIa)* with explicit incremental supply 
and demand goals as in (III). [Associating dual 
variables Ri, Kj, θi, ϕj with the constraints of (III) 
that system generates a dual as in (III)'.]: 
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 Minimise Σ-pjyj
- +ΣΣcijxij +Σpixi +MΣΣ(xi

++yj
+)+ΣΣci

-+xi
-++ci

--xi
-- +dj

-+yj
-+ + dj

- -
 yj

- -) 

                                  j            i j            i             i j                 i j 
                                 Σxij + xi

+- xi
-= ai 

                                 j                                                                           (III) 
                                Σxij + yj

+- yj
-= bj 

                                i 
                                xi

- + xi
-+-xi

--=xi*  
                                yj

-  + yj
-+-yj

-- =yj* 

                                            
                Σai=Σbj    yj, xi, xij,xi

+,xi
-
,yj

+,yj
-, xi

-+,xi
--,yj

-+,yj
- -≥0 

                 i       j          
 

           MaximiseΣRiai+ΣKjbj+  Σθixi* + Σϕjyj* 

                                                                                     
          i               j                   i                    j  

                                                           Ri+Kj  ≤ cij 

                                     -ci
--≤ θi ≤ +ci

-+                                           (III)' 

                                                             -dj
- -≤ ϕj ≤+dj

-+ 
                                                               -Ri+θi  ≤  pi  
                                                              -Kj+ϕj ≤ -pj 

                      Ri,Kj  ≤ M  

 If in effect Ri= -pi, Kj = pj at an optimum 
(III),(III)' are potentially consistent with spatial 
competition as defined above. But in general they 
are not. Indeed, by considering cases for which 
optimally xi

+,xi
-
,yj

+,yj
->0, so that by complem-

entary slackness θi ≠0 and/or ϕj ≠0 some i,j in 
(III),(III)', those systems yield interpretations of θi 

and/or ϕj in relation to relative taxes and/or 
subsidies since: 
                  xi> 0 =>   -Ri+θi = pI                      (3.6)  
                  yi> 0 =>   -Kj +ϕj = -pj                              (3.7) 
  so xi and  yj >0 =>  Ri+Kj= pj- pi+ϕj+θi              (3.8) 
  
If ϕj=θi=0 the latter conditions are consistent with 
spatial competition. But they are also consistent 
with relative demand and supply taxes if yj (resp 
xi) is above target and relative subsidies if below. 
(These interpretations are particular applications 
of general goal related tax/subsidy interpretations 
in Ryan 1992. Note that a relative tax and a 
relative subsidy may optimally apply to the same 
shipment.) 
 
If MFL/MFN conditions are fully exploited, the 
resulting more for less optimum is degenerate* 
and decomposable. It is then consistent with two 
base prices and thence with potential spatial 
competition, if optimally ϕj=θi=0, or with 
tariffs/subsidies (e.g. import tariffs/ subsidies) 
otherwise. Such conditions could be consistent 
with various kinds of explicitly non-competitive 
systems, including second best related regulatory 

systems. Second best interpretations are especially 
germane here since they suggest the potential, 
which is in fact inherent in this approach, for 
interpretations in relation to economies of scale 
and scope. 
 
6. MFL and MFN cases and economies of scale 
and scope 
 
So far the emphasis has been on conditions under 
which it might become optimal to connect 
markets and/or to decompose a set of connected 
markets into sub-markets. Now consider why it 
might be optimal to seek to optimise within a 
multiple market structure in the first place. One 
reason is that there may be opportunities for 
mutually advantageous exchanges. In the spatial 
competition case above such exchanges would be 
of products for money. To the extent that 
opportunities to gain are increased by increases in 
the numbers of potential supplies and demanders 
involved, as well as by increases in the quantities 
of product which might be offered by suppliers, or 
required by demanders, there are opportunities for 
gains due to increases in scope (numbers of 
suppliers and/or demanders) as well as due to 
increases in scale (increases in quantity supplied 
by a given number of potential suppliers/users). 
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THEOREM 3 (ECONOMIES OF SCOPE)  
 
Assume two alternative cost regimes {cij,M} and 
{cij,cij'} for potential shipments between sub-

markets i,jε(I1,J1), i,jε(I2,J2), total availabilities ai 
and requirements bj being the same in each case. 
Then if a feasible solution exists for (IV): 

 
                       Min Σf(yj

-)+ΣΣcijxij+MΣxij+Σpixi+MΣΣ(xi
++yj

+)+ΣΣci
-+xi

-++ci
--xi

--+dj
-+yj

-++dj
--yj

--) 

                                  j          I1J1       I2J2         i            i j                 i j 
 
               subject to the constraints of (III)                             (IV) 

 
                                                    =z ≥z'=  
   
 Min Σf(yj-)+ΣΣcijxij+Σcij'xij+Σpixi+MΣΣ(xi

++yj
+)+ΣΣci

-+xi
-++ci

--xi
--+dj

-+yj
-++dj

--yj
--) 

           j               I1J1         I2J2           i                i j                     i j 
 
               subject to the constraints of (III)                              (IVa)  

 
 
PROOF 

Any feasible solution to (iv) is a feasible 
solution to (iva), but not conversely.thus any 
optimal solution to (iv) is a feasible but not 
necessarily an optimal solution to (iva). it 
follows that there may exist optimal 
solutions to (iva) such that z'<z or z'=z with 
xij>0 some xij some i,jε(i2,j2). 

 
THEOREM 4  (Economies of scale) 
Consider two distinct regulatory regimes, one 
associating prohibitive penalties m and the other 
non prohibitive penalties (pi,pj) with potentially 
marginal increases in sub-market demand and 
supply levels yj

-,xi
- in (iii). then, if a feasible 

solution exists for (v): 

 
                     Min ΣMyj

-+ΣΣcijxij+MΣxij+ΣMxi
-+MΣΣ(xi

++yj
+)+ΣΣci

-+xi
-++ci

--xi
--+dj

-+yj
-++dj

--yj
--) 

                                j                 I1J1                    I2J2      i                     i j                             i j 

 
               subject to the constraints of (III)                             (V) 

 
                                                                             ≥ 
   
                  Min Σ-pjyj

-)+ΣΣcijxij+MΣxij +Σpixi
-+MΣΣ(xi

++yj
+)+ΣΣci

-+xi
-++ci

--xi
--+dj

-+yj
-++dj

--yj
--) 

                                        j                   I1J1                 I2J2           i                     i j                             i j 

 
               subject to the constraints of (III)                              (Va)  

 
 
PROOF 

Any feasible solution to (V) is a feasible 
solution to (Va), but not conversely.Thus any 
optimal solution to (V) is a feasible but not 
necessarily an optimal solution to (Va). It 
follows that there may exist optimal solutions 
to (Va) such that z'<z or z'=z with xij>0 some 
xij some i,jε(I2,J2). 
 

Clearly in general a potentially connected set of 
markets may exhibit economies of scale and then 
of scope or, conversely, of scope and then of 
scale. In each case the resulting configuration will 

conform to an optimal solution to an overall 
model of the form of (III) with the appropriate 
parameters. That is, with the appropriate 
parameters, (III) includes all of (IV),(IVa),(V) and 
(Va) as special cases. 
 
7. A homogeneous product example 
 
Consider an initial allocation as in Tableau 7.1: 
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   K1=9               K2=6               K3=3               K4=5 
 M  6  3  5   
R1 =0    13  3  4 20 
 M  4  1  6   
R2= -2    A                                                    14   14 
 9  M  M  M   
R3=0  11       11  
               
      11     13    17        4 45 
                
 Tableau 7.1 

Since the solution in Tableau 7.1 is both primal 
and dual feasible this market structure is 
consistent with optimal solutions to two disjoint 
distribution models of the standard type - and 
thence with optimal solutions to (IV) with 
preemptive weights M associated with shipments 
between factories 1 and 2 and market 1 and 
between factory 3 and markets 2,3,4. The overall 
shipping cost associated with this specific-ation is 
99+121=220 units. 

If the preemptive weights in Tableau 7.1 now 
become nonpreemptive the solution in that 
Tableau is no longer optimal. There are 
opportunities for economies of scope. (As in the 
movement from conditions of programme (IV) 
and to those of (IVa) in Theorem 3.) An optimal 
solution to the revised problem, with revised 
inter-market shipping costs indicated in bold is 
shown in Tableau 7.2:  

 
                      K1=1               K2=6               K3=3               K4=2 
 1  6  3  5   
R1=0  11  9     20 
 7  4  1  6   
R2= -2    4                                                    10   14 
 9  4  5  4   
R3=2       7  4 11  
               
      11     13    17        4 45 
 
            Tableau 7.2 
 

For this example the shipping cost reduction due 
to economies of scope gained by linking the sub-
markets (O3,D1) and (O1,O2,D2,D3,D4) is 78 units. 
(From 220 units to 142 units.) One interpretation 
of this would be, inter alia, that, while initially 
market 1 is supplied from factory 3, given the 
relatively freer opportunities for exchange in 
Tableau 2 that market becomes wholly supplied 
from factory 1. 
 
Now notice that cell {2,1} is a more for less cell 
with R2 + K1=-1<0 and consider the same 
numerical example with reference to oppor-
tunities for gains to economies of scale. If the 
conditions of programme (V) in Theorem 4 
correspond to an optimal solution to (III), (as in 
Tableau 7.2 above), and if supplies at O2 are 
increased and demands at D1 are also increased by 
a positive amount δ≤9 in such a way that the 

initial basis remains unchanged, then shipment 
costs are actually reduced. If this more for less 
opportunity is fully exploited then δ=9 and the set 
of markets decomposes into disjoint sub-markets 
as in Tableau 7.3 below. 
 
The reader can verify that the solution in Tableau 
7.3 is optimal and that in this case the resulting 
overall economies stemming from the increased 
scale of operation of factory 2 amount to -9 units. 
 
Now reconsider the various stages in this example 
in more detail with reference to conditions of 
spatial monopoly and spatial competition. In the 
initial Tableau 7.1 market 1 is wholly supplied by 
plant 3 and prohibitively large weights M attach 
to potential entry from plants 1 and 2. That is, 
there is initially spatial monopoly in market 3 in 
the senses both of a sole provider and of no 
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potential entry. By contrast the allocation in 
Tableau 7.2 is potentially consistent with spatial 
competition in both senses. There is more than 
one provider in market 3 and, with conditions pj-
pi=cij for all basic routes ij, the allocation in 
Tableau 7.2 is potentially consistent with the easy 
entry condition of spatial competition. (See also 

developments in Section 7.) With reference to the 
scale related more for less solution in Tableau 7.3, 
there is spatial competition at best only in the 
sense of easy entry into the relatively isolated pair 
(O1,D1) via the shipment ε12 on route {1,2}.  

 
 
                        K1=1               K2=6               K3=3               K4=2 
 1  6  3  5   
R1=0  20  ε     20 
 7  4  1  6   
R2=-2    13                                                    10   23 
 9  4  5  4   
R3=2       7  4 11  
               
      20     13    17        4 54 
                
             Tableau 7.3 

More exactly in Tableau 7.2 there are conditions 
of spatial oligopoly since the number of suppliers 
in each region is small and varying in a 
perceptibly interdependent fashion with the 
market conditions. 
 
In any case in the example of Tableaux 7.1-7.3 
transport costs have been reduced twice - first due 
to market connection related economies of scope 
and then to more for less related economies of 
scale associated with simultaneous increases of 9 
units in the supply at origin 2 and demand at 
destination 1. 
 
8. A heterogeneous product example 
 
An alternative interpretation of the example in 
Tableaux 7.1-7.3 might refer to labour markets 
and types of workers and initially two 
unconnected labour markets. For example they 
may be separated by prohibitive transportation 
costs and/or by initially prohibitive professional 
barriers to entry and/or retraining costs.  
 
Now assume that opportunities for economies of 
scope are increased by reducing interregional 
transportation and/or professional access/retrain-
ing costs. One consequence is that a different 
pattern of optimally spatially and/or profession-
ally differentiated employment may emerge, as in 
Tableau 7.2. 
 
To develop ideas interpret Tableau 7.1 with 

reference to a proposed bank reorganization. Prior 
to merger there are 20 managers, 14 clerks 11 
tellers. After the merger there will be 11 
telebusiness workers, 13 managers, 17 clerical 
workers and 4 tellers. Costs in Tableau 7.1 then 
refer to potential retraining/relocation costs, where 
initially prohibitively large weights M might 
relate inter alia to union agreements prohibiting 
new computer related work practices for managers 
and clerical workers and requiring retraining of 
tellers as telebusiness workers. 
 
If initially prohibitive transition costs are now 
reduced, for example. by renegotiating union 
agreements and/or conditions of service, 
economies of scope - and an overall cost reduction 
of 78 - stemming from the transition from the 
optimum in Tableau 7.1 to that in Tableau 7.2 - 
become attainable. 
 
Next, having already attained these economies of 
scope, the parties to the reorganization may decide 
to expand the proposed scale of telebusiness 
related activities further. The transition from 
Tableau 7.2 to Tableau 7.3 indicates that, even 
though at present all of the proposed telebusiness 
related staff would be retrained tellers (i.e. not 
clerical staff) nevertheless, the cheapest way of 
getting up to an additional 9 telebusiness related 
workers would be to hire an additional 9 clerical 
staff and reorganise the retraining plan, as in 
Tableau 7.3. The advantage of this would be to 
allow an additional 9 clerical workers to be 
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retrained for new kinds of managerial jobs rather 
than being retained as clerks as in Tableau 7.2.  
  
Parenthetically, even though the numbers in this 
example are hypothetical it does have realistic 
features including the fact that, with increasingly 
sophisticated databases and communication 
software, hitherto exclusively old style managerial 
/white collar occupations may be (or become) 
some of the most easily replaced. Also, even if 
minimization of net retraining cost is the 
objective, it will not always be optimal to 
minimise the number of individuals being 
retrained. (In Tableaux 7.1, 7.2 and 7.3 
respectively 18 of 45, 22 of 45 and 40 of 54 
workers are retrained.) 
  
More technically, economists commonly attribute 
the term economies of scale either to 
homogeneous production cases or to hetero-
geneous product cases with a fixed product mix 
and in those contexts restrict the term to cases for 
which, when all inputs are increased by a factor λ 
total costs increase by a factor less than λ. In more 
for less and more for nothing cases of types which 
have been considered in this paper total costs may 
actually decrease in absolute value, even when 
quantities of inputs and outputs of just one type of 
product are increased by a factor λ. If part (or all) 
of this overall cost reduction is attributable to the 
product bringing it about, the two types of 
definition can be reconciled. In that case in 
heterogeneous product cases, such as the spatially 
or professionally differentiated labour market 
cases which have just been considered, under the 
conditions of the more for less paradox an 
increase δ in inputs and outputs of at least one 
type of product will not simply lead to a 
proportionately lower increase in cost attributable 
to that product. That is, it will actually lead to a 
reduction in the absolute cost attributable to the 
increased output of that product.  
  
In this context dual variables in Tableaux 7.1-7.3 
are consistent with interpret-ations in relation to a 
differentiated labour market according to which, 
for example, all wages are related to a manager 
related base wage R1=defw1, all other wages being 
set via differentials Ri+Kj=Δwij for xij>0 at an 
optimum. It follows that these examples are 
potentially consistent with wholly private market 
and commuting/retraining cost related wage 
differentials.  
  

But, just as in the earlier analyses, variants of 
model (IV)' were open to interpretations as 
relative taxes and subsidies, so might variants of 
the solutions in Tableaux 7.1-7.3 yield variants of 
(IV)' and interpretations with reference to 
elements of payroll taxes and initial hiring related 
subsidies. These might, at least in part, reflect 
scope and scale related labour market advantages 
of including an increased variety of potential 
transitions between types of workers and/or 
increased numbers of a particular type of worker 
respectively.  
  
Corresponding interpretations in relation to 
regionally monopolistic or oligopolistic labour 
markets then follow in a manner analogous to the 
single commodity case considered in Section 6. 
 
9. Conclusion  
 
In this chapter I have introduced a new goal 
programming approach to the representation and 
resolution of the MFL and MFN paradoxes in the 
distribution model and to definitions of economies 
of scale and economies of scope in that context. 
 
I close with two remarks. First: here, for 
simplicity the definitions of economies of scale 
and scope in Section 6 are  given as if these 
concepts would apply on an all or nothing basis. 
But clearly they could apply on a partial basis. If 
any one (or more) of the quantities M in (IV) were 
reduced to a non pre-emptive magnitude cij' in 
(IVa) and/or if any one (or more) of the quantities 
M in (V) were reduced to a non pre-emptive 
magnitudes pj, pi in (Va) then relatively enhanced 
economies respectively of scope and of scale may 
become attainable. 
  
Secondly: apart from potentially yielding 
interpretations in relation to economies of scale 
and scope, distribution problems exhibiting the 
MFL and/or MFN paradox also have other 
properties, some of which are yet to be fully 
explored. Among these is the fact that there may 
be a variety of potential MFL and MFN solutions 
each with distinct potentials for economies of 
scope and scale and consequently distinct 
decomposition patterns. To illustrate this 
reconsider Tableau 7.1. The potential for MFL 
evident in that Tableau, when fully exploited, 
generated Tableau 7.3. But Tableau 7.3 itself 
exhibits an as yet unexploited potential (via cell 
{4,2}) for attaining a MFN solution. If that 
potential is fully exploited an additional 7 units 
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could be shipped from origin 2 to destination 4 at 
no additional overall cost. In that case, among 
other things, 11 units would be shipped wholly 
from origin 3 to market 4 and that origin-
destination pair would become optimally isolated, 
giving a three way partition of origins and 
destinations and a correspondingly still more 
concentrated spatial market arrangement. (This 
example illustrates the more general point that, 
while nondegeneracy* of a distribution problem 
together with Ri+Kj≤0 for some nonbasic cell at 
an optimum may be a sufficient condition for 
MFL/MFN, as in the Charnes-Klingman theorem 
cited in Section 2, it is not always necessary.) 
 
Finally a different more for less solution and 
subsequent more for nothing solution with 
different associated patterns of decompostion into 
disjoint subsets of origins and destinations would 
follow if the economies of scale and scope related 
applications in Sections 7 and 8 had started with 
the alternative optimum signalled by the “A” in 
cell {2,2} of tableau 7.1. 
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