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                                             CHAPTER 14 
 
     FRAME RELATED RESTRICTIONS, CORES AND 
                                          SHAPLEY VALUES 
 

1. Introduction 
 
Using linear programming methods Charnes and 
Kortanek 1967 followed Scarf 1967 in showing 
that the existence (or not) of a non empty core to a 
characteristic function N person game can be 
characterized as the solution to an appropriately 
specified extremal problem. In the paper just cited 
Charnes and Kortanek also used linear program-
ming methods to characterize the nucleolus. (See 
Schmeidler 1969, Maschler 1992.) All of these 
approaches assume given characteristic functions 
for an N person game, where N is fixed exogen-
ously. 
  
In this chapter I use a framing idea to obtain four 
new and interrelated results. First I develop an 
explicitly frame related linear programming 
charac-terisation of the emptiness or 
nonemptiness of the core to an S person 
characteristic function game, for which S≤N is 
endogenously determined. In that context the 
framing parameters will relate directly to potential 
rewards to relatively external alter-natives and so 
to decisions by marginal players on whether or 
not to start to and/or to continue to play. 
Secondly, I show that the coalition building 
feature, which is implicit in this explicitly frame-
related formulation, can be related directly to the 
equi-probable coalition building interpretation of 
the Shapley value in Shapley 1953. The third class 
of results interrelates Shapley values derived from 
a primal linear programming characterisation and 
Shapley related conditions stemming from its dual 
and shows that the latter are equivalent to those 
derived by Hart and Mas Collel 1989 using their 
idea of potential. Finally I consider conditions 
under which the Shapley value is or is not in the 
core. 
 
The main results here stem from the explicit use 
of an optimizing framework to consider the 
marginal conditions determining decisions by 
N+1st players not to join another N persons in an 
N+1 person game. In that way the emptiness or 
nonemptiness of the core, the N player Shapley 
value and the Hart and Mas Collel potential for 

the resulting N player game will be uniquely 
determined only given critical values for framing  
parameters within an explicitly optimizing 
framework interrelating both for the N players 
actually playing and the N+1st players not playing 
at the margin determined by those parameters. 
From that perspective: i) Shapley’s determination 
of unconditionally unique values for payoffs to 
players and; ii) Hart and Mas Collel’s 
determination of a unique potential and; iii) 
Scarf’s and Charnes’ and Kortanek’s extremal 
characterisation of the emptiness or nonemptiness 
of the core of an N person characteristic function 
game, all become classes of cases implicitly 
assuming correspondingly optimizing values for 
framing parameters. 
 
The structure of the chapter is as follows: In 
Section 2 I introduce the framing idea, first for 
linear programs in general and then for the two 
person constant sum game, to illustrate a 
distinction between preemptively and 
nonpreemtively framed specifications which will 
be useful in the subsequent Sections. In contrast to 
the wider applications in Section 2, those 
subsequent Sections all focus on coalition 
building characterisations of the Shapley value 
and on extremal characterisations of the emptiness 
or nonemptiness of the core. Thus, in Section 3 I 
consider an explicitly frame related 
characterisation of the emptiness or nonemptiness 
of the core and in Sections 4 and 5 I turn to a 
frame contingent coalition building based process 
derivation of the Shapley Value. In Section 6 I 
consider associated frame related starting, 
continuation and stopping criteria for that case. 
Finally in Section 7 I provide conditions under 
which the Shapley Value is (or is not) in the core. 
 
 
 
2. Linear Programming and Framing 
 
The standard linear program and its dual can be 
written as: 
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Max  z =Σcjx j                      Min g =Σµibi 
  j                                                                  i 

  st     Σaijxj ≤ bi     (I)      st      Σµiaij ≥ cj            (I)' 
          j                                      i  

xj≥0                               µi ≥ 0                
 
In this form (I),(I)' may not have feasible 
solutions. And/or optimal solutions to (I),(I)' may 
be unbounded. Accordingly consider extensions 
(II),(II)' of (I),(I)' which always yield feasible 
solutions and are respectively explicitly bounded 
by M+, -M-, where M+, -M- are of orders 
lexicograp-hically greater than all other 
coefficients in the objectives of (II),(II)': 
 
Max z=Σcjxj-Σci

+si 
+- Σci

-si 
- - φM-              

             j             i                 i  

         st     Σaijxj + si 
+ -si 

- = (1-φ)bi     (II)       

         i 
                  Σcjxj-ci

+si
+-ci

-si≤M+   
                   j       

                      -dij
+≤xj≤dj 

-                                                                     
           si

+,si
-≥0 

                        
Minimize  g =Σµibi - di

+ri 
+- dj

-rj 
- +λM+ 

                       i  
     st       Σµiaij + rj 

+ -rj 
-= (1-λ)cj            (II)' 

               j 
             Σµibi - di

+ri 
+- dj

-rj 
-≥-M- 

             j 
                  -ci 

+ ≤ µi ≤ ci 
-                 

                      r+,rj 
-≥0 

 
Clearly (II),(II)' always have feasible solutions 
(e.g. si

+=(1-φ)bi if (1-φ)bi>0, si
+=(1-φ)bi if (1-

φ)bi<0 in (II) and rj 
+=(1- � λ)cj if (1-λ)cj>0, rj

-=(1-
� λ)cj if (1-λ)cj<0, in (II)'. It follows by the 
Extended Dual Theorem (see Charnes and Cooper 
1961) that (II),(II)' always have bounded optimal 
solutions. 
 
DEFINITION 

si
+,si

-,φ and rj
+,rj

-,λ are framing variables and 
ci

+,ci
+,M- and di

+,dj
+,M+ are corresponding 

framing parameters for (II),(II)'). 
 
THEOREM 1  (Framing) 

If a dual pair of linear programs (I),(I)' is to yield 
bounded optimal solutions then these programs are 
necessarily either implicitly framed in a manner 
consistent with program (II) (resp (II)') with φ=0, 
si

+=si 
-=0 all i (resp with λ=0, rj

+=rj 
-=0 all j), or 

explicitly framed in a manner consistent with the 

extension of (I) (resp(I)') to give (II) (resp(II)') with 
φ≠0 and/or si

+≠0,si 
-≠0 some i (resp λ≠0, and/or 

rj
+≠0, rj

-≠0 all j) otherwise. 
 
PROOF 

Any bounded optimal solution to (I) (resp (I)') is 
necessarily bounded feasible and any bounded 
feasible solution to (I) (resp (I)') can be expressed 
as a solution to the correspondingly explicitly 
framed system (II) (resp (II)'). It follows that such a 
solution is necessarily either such that φ=0, si

+=si 
-

=0 all i (resp λ=0, rj
+=rj 

-=0 all j), i.e. is implicitly 
framed, or such that  φ≠0 and/or si

+≠0,si 
-≠0 some i 

(resp λ≠0, and/or rj
+≠0, rj

-≠0 all j) i.e. explicitly 
framed. 

 
COROLLARY 

An implicitly framed linear program in the sense of 
Theorem 1 is equivalent to a preemptively framed 
program in which M-,ci

- (resp M+,di
+) are 

sufficiently large to determine that any optimal 
solution to (II) (resp (II)') will be such that φ=0, si 

-

=0 all i (resp λ=0, rj
+=0 all j). 

 
It follows from this corollary that even a dual pair 
of linear programs of the form of (II),(II)') with 
optimal solutions such φ=0, si

+=si 
-=0 all i (resp 

λ=0, rj
+,rj 

-=0 all j) can be interpreted as implicitly 
framed via a prior process which, among other 
things, determines binding constraints Σaijxj=bi 
(resp Σµiaij=cj) on the ranges of xj,µi. More 
generally, at least some of the parameters 
associated with framing variables may be non-
preemptive and optimal solutions to (II), (II)' will 
be explicitly framed.  
 
One large class of examples here are feasibility 
programs corresponding to the specialization of 
(II),(II)' with φ=0, si 

-=0 all i (resp λ=0, rj
+=0 all j) 

to yield (I),(I)' as if via arbitrarily large framing 
parameters M-,cj

- in (II) and M+,di
+ in (II)'. 

Another corresponds to goal programs (see 
Charnes and Cooper 1961, Shogan 1988) in which 
some or all of ci

+,ci
+ and di

+,dj
+ in (II),(II)' may be 

non preemptive. 
 
AN EXAMPLE 

To illustrate these ideas consider a specialization of 
the explicitly framed systems (II),(II)' which is 
contingently consistent with a maximin-minimax 
formulation of a constrained two person constant 
sum game: 
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Max z=ρq*-Σci
+si 

+-Σci
-si

--c0
+s0

+-c0
-s0 

--φM-  
qj            st     Σπijpj + si 

+ -si 
- = ρ 

µ              Σpj + s0 
+ -s0 

- =p* (1-φ)     (III)      
λ        ρq*-ΣMsi 

+-Σci
-si

--c0
+s0

+-c0
-s0 

-≤M+        
rj

+,rj
-         -(1-φ)dj

+≤ pj ≤ (1-φ)dj
-        

r0
+,r0

-        -(1-φ)d0
- ≤ ρ ≤ (1-φ)d0

+                     
    si 

+,si 
- ≥0                                                             

 
Min g=µp*+Σdj

+rj
++Σdj

-rj
-+d0

+r0
++d0

-r0 
-+λM+ 

pj           st     Σqiπij + rj 
+ -rj 

-=µ 
 ρ               Σqi + r0

+ -r0 
-= q*(1-λ)           (III)' 

 φ     µp*-Σdj
-rj 

- +ΣMrj 
- +d0

+r 0
++d0

-r0 
-≥-M- 

si
+,si

-             -(1-λ)ci
- ≤ qi ≤ (1-λ)ci

+ 
s0

+,si
-            -(1-λ)c0

+≤ µ≤ (1-λ) c0 
- 

                           rj 
+,rj 

-≥0 
 
For comparison the standard representation of a 
two person constant sum game with strategies pj,qi 
and contingent payoffs πij is: 

 
                Max z=ρq* 

                    st     Σπijpj - si 
- = ρ  

                             Σpj =p*            (IV)                                                                                                                                                                 
                 0 ≤ pj ≤ M   
              -M ≤ ρ ≤ M  

        si
+,si 

- ≥0                                                       
               

         Min g=µp* 
st     Σqiπij + rj 

+=µ 
                           Σqi = q*           (IV)' 

            0 ≤ qi ≤ M 
          -M ≤ µ ≤ M 
              rj

+,rj 
-≥0 

 
Clearly (IV) is equivalent to (III) (resp (IV)' is 
equivalent to (III)') iff implicit framing conditions 
obtain such that: i) optimally λ=-φ=0 so that (III) 
(resp (IV)) is bounded; ii) co

+,co
- (resp do

+,do
-) are 

effectively arbitrarily large so that s0
+=s0

-= 0 (resp 
r0

+=r0
-=0) at an optimum and; iii) the magnitudes 

of dj
-,ci

+ and dj
+,ci

- are respectively such that pj,qi
  

are nonnegative and that there are no restrictive 
upper bounds on the probabilities with which 
players may play particular strategies. 
 
SOME ECONOMIC INTERPRETATIONS 
One interpretation of the constant sum game is as 
a farmer’s game against nature where pj are 
proportions of land given over to crops j, qi are 
nature’s weather related strategies and πij are crop 
and weather contingent payoffs. In that case 
framing condition i), that (IV) is bounded, 

amounts to an assumption that the farmer’s net 
expected payoff will be bounded. Framing 
condition ii) asserts that the farmer will confine 
attention only to planting on already available 
land (land will not be left fallow s0

+=0, nor will 
additional land be rented in s0

-=0). Framing 
condition ii) also implies that a minimax 
hypothesis will be adopted by the farmer via 
framing conditions such that optimally si

+ =0 as if 
in response to the ascription to nature of a 
maximin objective via rj

+ =0 all i and a restricted 
range of strategies such that Σqi=q* via conditions 
r0

+=r0 
-=0. Finally, framing condition iii) implies 

that (III), (III) is not a constrained game. That is: 
the magnitudes of ci

+,ci
- (resp di

+,di
-) are such that 

there are effectively no externally imposed lower 
or upper bounds on the proportions of certain 
crops for the farmer or on probabilities of 
particular weather patterns. (Notice that in (III) 
si

+,si
- are marginal evaluations of prior 

information - e.g. of elements of a prior weather 
forecast - for the constrained game case. For more 
on this and on other constrained game 
specifications see Charnes 1951, Charnes et al 
1993, Ryan 1994,1998b,1998c.) 
 
The demonstration that (IV) can yield an 
explicitly framed analogue of an implicitly (i.e. 
exogenously) framed two person constant sum 
game of the standard type clearly has wider 
implications for the two person case. I have 
considered these further in Ryan 1994,1998b and 
1998c. The main purpose of introducing this 
example here is to illustrate the point that in the 
explicitly framed systems (IV),(IV)' there are 
explicit processes both determining and providing 
dual evaluators of elements of relevant boundary 
conditions. In the next and subsequent Sections I 
will consider different game related applications 
of the framing idea which provide extremal 
representations of the emptiness or non-emptiness 
of the core as well as of the Shapley Value for N 
person game characteristic function games. 
 
3. Frame related characterisations of the  
emptiness or nonemptiness of the core 
 
Charnes and Kortanek 1967 followed Scarf 1967 
in showing that, for an N person superadditive 
characteristic function game Γ(N,V) with trans-
ferable utility, emptiness or nonemptiness of the 
core can be characterized respectively by means 
of optimal solutions z*=MinΣxi=VNN  and 
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z*=MinΣxI >VNN to (V), where VrS is the 
contingent payoff to a set rS of cardinality S with 
members r. (Vr1≥0 is assumed throughout): 
  
           Min Σxi 
                              iεN 
 st Σxi ≥VrS  rS⊂NN  (V) 
                          iεrS 
                          Σxi ≥VNN 
   iεN                                              
REMARK    

If the core is nonempty then Σxi=VNN and xi 

constitute imputations of the value of the grand 
coalition NN to its members. 

 
Now consider an extension (VI) of (V) which is 
explicitly framed in a manner analogous to the 
extension of (I) to (II). (Notice that (VI) implicitly 
omits the bounding conditions corresponding to 
the final two constraints in (II). I will return to this 
with the wider context of framing parameters and 
coalition building processes in the next Section.) 
 
Min Σxi + ΣcrS

+xrS
++ΣcrS

-xrS
- + cNN

+xNN
++ cNN

-xNN
- 

        iεN         rS⊂N                   rS⊂N 
st   Σxi + xrS

+- xrS
-=VrS         rS⊂NN    (VI) 

  iεrS 
              Σxi + xNN

+- xNN
-=VNN 

  iεN                                                 
              xrS

+,xrS
-,xNN

+,xNN
-≥0 

 
THEOREM 2 (Framing and contingent 
 equivalence between (V) and  (VI)) 

Any optimal solution to (V) can be represented as a 
frame contingent optimal solution to (VI).  

 
PROOF 

If crS
+=M, cNN

+=M and crS
-=0, cNN

-=0, rS⊆NN then 
for these values of these framing parameters any 
optimal solution to (VI) will be consistent with 
xNN

+=xNN
- =0, xrS

+=0, xrS
-≥0 and thence with 

equivalence between (V) and (VI). 
 

Optimal solutions to (V) correspond to 
imputations xi on a coalition of cardinality N only 
if the core of that game is non empty. Now 
consider a parameterization of (VI) which yields 
an imputation on a coalition hT of cardinality T, 
whether or not the core a coalition is non empty. 
 
DEFINITION 1 (Core of a coalition) 

The core of a coalition hT of cardinality T≤N in an 
N person characteristic function game is non empty 
if there exists an imputation xi, iεhT on that 

coalition such that: 
 Σxi - xrS

-=VrS         rS⊂hT where hT⊆NN 
 iεrS 
             Σxi =VhT               (Va) 
              iεhT 
    xrS

-≥0 
 

THEOREM 3(Imputations, framing and 
emptiness or nonemptiness of the core) 

Any superadditive characteristic function game 
Γ(N,V), N>1: i) has at least one coalition rS with 
S≥2 and a nonempty core and; ii) the imputation 
corresponding to that core can be found as an 
appropriately framed class of optimal solutions to 
(VI). 

 
PROOF  

i) From Definition 1 the core of a coalition hT⊆NN 
in a characteristic function game Γ(N,V) is 
nonempty if there exists a feasible solution to (VI) 
consistent with (Va). 
But, if Γ(N,V) is superadditive, conditions Σxi =Vh2 
with xi-xrS

-=Vr1 xr1
-≥0 iεh2⊆N are consistent with 

frame contingent optimal solutions to (VI) for 
which xh2

+=xhT
+=0 and xr1

-=0, rε1h2, so that, as if 
via preemptively large weights ch2

+=ch2
+=M, 

cr1
+=M, the core of at least one two player coalition 

is nonempty. 
ii)If a nonempty core of a coalition hT, 2<T≤N 
exists it can be found as an optimal solution to (VI) 
with xhT

+=xhT
-=0 as if via preemptively large values 

chT
+,chT

- and xrS
+=0, xsS

-≥0 as if respectively via 
preemptively large weights crT

+,csT
- and sufficiently 

large values crS
+ and sufficiently small values crS

-. 
 
REMARKS 
• If a non empty core exists for hT⊂NN then players 

hT and players N-hT constitute a partition of the set 
of players N. 

• Solutions consistent with the corollary to Theorem 
3 correspond to disjoint core related imputations to 
“playing” players and opportunity cost related 
payments to “nonplaying” players. In that way 
these players constitute a partition of N respectively 
joining and not joining a coalition hT⊆NN with a 
nonempty core. 

 
This second remark in turn suggests that optimal 
solutions to (VI), which may correspond to an 
empty or to a nonempty core for a coalition N, 
may be potentially variously interpreted as:  
 

i) corresponding to nonempty core solutions for r 
players in which the framing parameters are 
consistent with decisions by marginal players N-r, 
N-r≥0 not to join a coalition rS with a nonempty 
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core and/or; 
 
ii) corresponding to empty core solutions for r 
players in which the framing parameters are 
consistent with decisions by a marginal player to 
join a coalition r-1S-1 even though that decision 
would result in an empty core for coalition rS. 

 
4. Duality, partitions and frame related 
coalition building restrictions 
 
Associating dual variables λrS, λNN with the 
constraints of (VI) its dual is: 
  
        Max  λNNVNN + ΣλrSVrS 
                rS⊂ NN                                       (VI)' 
                st   λNN + ΣλrS ≤1 
                    iεrS 
                      -crS

-≤λrS ≤crS
+ 

         -M-≤λNN≤ M+ 

 
If an optimum to (VI) is consistent with the 
emptiness (or nonemptiness) of the core of a 
coalition hT⊆N then the framing parameters of 
(VI) and (VI)' must be consistent with the 
requirements of the proof of Theorem 3, viz: such 
that xhT

+=xhT
-=0 and xrS

-=0, rS⊂hT as if via 
premptively large weights chT

+=chT
-=crS

-=M. If 
these latter conditions obtain and, if the game 
Γ(N,V) is superadditive, then xi>0 at least one i. 
For all such xi>0, by complementary slackness via 
(VI)': 
 
xi>0 =>                 λNN + ΣλrS =1                      (6.1) 
 
Now consider an interpretation of λrS as 
probabilities of formation of coalitions rS. For 
particular players iεrS⊆NN conditions (6.1) 
appear to be consistent with a probabilistic 
interpretation where, by (6.1), for any player i the 
sum of probabilities λrS iεrS⊆NN of formation of 
subsets of players (including singleton subsets) of 
which that player could be a member is equal to 1. 
Further, by complementary slackness, from (VI):  
 
              λrS>0 =>     Σxi + xrS

+- xrS
-=VrS                (6.2) 

                                  i∈rS  
 
That is: if a coalition rS forms with probability 
λrS>0 then:  
 
• Either (6.2) is conditionally consistent with 

imputations xi to members of rS such that xrS
+=xrS

-

=0 and Σxi=VrS  where, by complementary 
slackness, xrS

+= xrS
-=0 are consistent in turn with 

conditions such that -crS
-<λrS<crS

+  
  
• And/or at least one of xrS

+,xrS
->0 in (6.2) so that 

Σxi≠VrS (as would be so for at least one subcoalition 
in the empty core case). Then, by complementary 
slackness, xrS

+>0 => λrS=crS
+  and if xrS

->0 => -crS
-

=λrS. 
 
THREE EXAMPLES 

1. First consider the nonempty core case for an N 
person game via (VI) and (VI)'. In that case, via ii) 
of Theorem 3, the optimal solution to (VI) is 
consistent with framing conditions as if cNN

+=M, 
cNN

-=M, crS
+≥0 and crS

-=0. These conditions are 
consistent in turn with interpretations: i) that a 
coalition of cardinality N forms with probability 
λNN=1 via xNN

+=xNN
-=0 and complementary 

slackness conditions: -M=def-cNN
-

<λNN=1<cNN
+=defM and/or; ii) that subsets rS form 

with λrS≥0 some rS⊆NN via xNN
+=0, xNN

-=0 and 
complementary slackness conditions such that 
0=crS

-≤λrS<crS
+ all rS⊆NN. 

 
2. Second consider the empty core case for an N 
person game via (VI) and (VI)'. In that case there 
may be an imputation on N via xNN

+=xNN
-=0 so that 

by  complementary slackness: -M=def-cNN
-<λNN< 

cNN
+= defM. But, in the empty core case there must 

also be at least one coalition rS⊂NN for which 
xrS

+>0 so that by complementary slackness λrS=crS
+ 

at least one rS⊂NN in (6.1). 
 
3. Thirdly, again consider the nonempty core case 
for an N person game via (VI) and (VI)' as in 
Example 1, but now with crS

->0 all rS⊂NN. In that 
case, via ii) of Theorem 3, the optimal solution to 
(VI) is consistent with framing conditions as if 
cNN

+=M, cNN
-=M, crS

+=M and crS
->0 all rS⊂NN. 

But, if the core is strictly nonempty (i.e. if crS
->0 at 

least one rS⊂NN), then these conditions are no 
longer consistent with an interpretation that a 
coalition of cardinality N forms with probability 
λNN=1 via xNN

+=xNN
-=0 together with the 

complementary slackness conditions -M=def-cNN
-

<λNN=1<cNN
+=defM. This is because, by complem-

entary slackness, crS
->0 at least one rS⊂NN =>  0>-

crS
-=λrS at least one rS⊆NN. 

 
INTERPRETATIONS 

1. The nonempty core cases in Example 1 can be 
interpreted straightforwardly as implying that, if the 
core is nonempty then either the grand coalition 
NN forms with probability 1 or partitions of it 
yielding imputations equivalent to imputations on 
the grand coalition NN form with finite 
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probabilities. An equivalent interpretation of 
Example 1 is that, in the empty core case, the grand 
coalition NN may optimally form with probability 
λNN=1 and all coalitions constituting subsets of NN 
may form with probability zero via λrS=crS

+=0 all 
rS⊂NN, or vice versa. That is: In Example 1 
conditions crS

+=0 all rS⊂NN are equivalent to 
indifference on the part of players to being paid 
their imputations xi  as if via a grand coalition or as 
if via subcoalitions rS⊂NN together constituting 
partitions of NN. 
 
 2. The empty core case of Example 2 also appears 
straightforward. It has the interpretation that, if the 
core is empty, then x rS

+>0 at least one rS⊂NN, so 
that by complementary slackness λrS >0 at least one 
rS⊂NN. This in turn implies that λNN<1 and the 
grand coalition NN will form with probability less 
than 1. That is: in the empty core case in general 
optimizing imputations to the N players must be 
attained by means other than by the formation of a 
grand coalition NN with probability 1 and so by 
means of the formation of partitions of that grand 
coalition with finite probability. (Notice that, if a 
coalition rS forms with finite probability λrS>0 and 
if there are N players, then complementary 
coalitions together of cardinality N-S must 
correspondingly form with finite probability λrS>0.) 
 
3. By contrast with Example 1 the nonempty core 
cases in Example 3 assume crS

+>0 so that if the core 
is strictly nonempty then xrS

+ >0 at least one 
rS⊂NN and by complementary slackness λrS= -crS

-

<0 at least one rS⊂NN. That is: λrS is then itself 
negative for at least one rS.  

 
If λrS are interpreted as probabilities a negative 
value as in Example 3 appears, at least, 
counterintuitive. However, on closer examination 
this negative value can be seen as an indication 
that in Example 3 the probability distribution is 
properly understood as defined over a larger set of 
players than rS. Consider this in stages: Notice 
first that Example 1 is equivalent to conditions for 
indifference between the formation of NN with 
probability 1 and the formation of a partition of it 
with probability 1. Secondly; Example 2 is 
consistent with a preference on the part of players 
N, in the sense of a higher value for the optimal 
solution to (VI), for an optimum with a positive 
probability λrS>0 for at least one coalition rS 
smaller than NN. (That is: they prefer at least one 
subset rS to NN). Thirdly; Example 3 is consistent 
with a preference on the part of players N, in the 
sense of a higher value for the optimal solution to 
(VI), for a solution with a higher payoff than VrS. 

(Given superadditivity this implies a preference 
for a positive probability of coalitions larger than 
rS, i.e. a preference for any superset containing 
rS).    
 
With the context of interpretations in the 
preceding paragraph, one interpretation of the 
relation λrS= -crS

-<0 in Example 3 is that in which 
λrS<0 is a predictor of a relatively larger range for 
the probability distribution. Specifically: in the 
context of Example 3 and an N player game, 
rather than being normalized over outcomes 
relating only to a coalition rS and subsets 
(subcoalitions) of rS, the relevant probability 
distribution becomes normalized over outcomes 
relating to at least one superset of rS  for rS⊂NN.  
 
More generally, λhT, the probability of an 
imputation on a coalition hT, can always be 
represented as in  (6.3), where λrS

+≥0 represent 
probabilities of outcomes for coalitions of 
cardinality less than hT (where rS⊂hT) and λrS

- 

represent probabilities of outcomes for coalitions 
of cardinality greater than than hT (where T⊂rS), 
viz: 
 
                     λhT + ΣλrS

+=1+ ΣλrS
-                           (6.3) 

 
With i) λrS=defλrS

+ when λrS>0; ii) λrS=defλrS
- when 

λrS<0 and; iii) λrS=defλrS
+=defλrS

- when λrS=0, (6.3) 
becomes potentially simultaneously consistent 
with the constraints of (VI)', with the optimality 
conditions (6.1) and with the conditions and 
interpretations of Examples 1-3.  
 
From another perspective Examples 1-3 can be 
related directly to issues of degeneracy. In 
particular, in Example 1 the wide variety of 
alternate optimal solutions coincide with 
conditions of degeneracy since in that case the 
single condition λNN=1 solves all N equations 
(one for each player in the game Γ(N,V)). More 
generally, if for all rS⊂NN c rS

+=εrS
+ and c rS

-=εrS
+ 

with cNN
+=defM, cNN

-=defM, then xrS
+ >0 => λrS=εrS

+ 

and xrS
->0 => λrS= -εrS

- . 
 
With these values for its parameters (VI) becomes 
equivalent to: 
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Min Σxi + ΣεrS
+xrS

++ΣεrS
-xrS

- + MxNN
++ MxNN

- 
                     iεN         rS⊂N                    rS⊂N 
 
st   Σxi + xrS

+- xrS
-=VrS         rS⊂NN    (VIa) 

                   iεrS 
                       Σxi + xNN

+- xNN
-=VNN 

  iεN                                                 
                       xrS

+,xrS
-,xNN

+,xNN
-≥0 

 
For the nonempty core case (VI) and (VIa) are 
equivalent if εrS

-=0. In that way both (V) and 
(VIa)  can be seen as a special cases  of (VI). 
More particularly, Example 1 above can be seen 
as a limiting case in which εrS

+→0, εrS
-→0 all rS 

rS⊂NN in (VIa) and contrasted both with 
Example 2 interpreted as implying εrS

+ >0 some rS 
in (VIa) and with Example 3 interpreted as 
implying εrS

- >0 some rS in (VIa). In that context 
conditions εrS

+ →0 and εrS
- →0 in (VIa) are 

consistent with the interpretations that in (V),(VI) 
and/or (VIa) probabilities of optimal coalition 
sizes respectively smaller than or larger than N go 
to zero whether or not the resulting imputation is 
in the core. [It also follows that, for εrS

- 

sufficiently large, a nonempty core solution is 
always attainable. This is an idea which can be 
related directly to Kannai’s definition of the 
strong core (Kannai 1992). For more on this, as 
well as on potential relationships between (VI) 
and an extremal characterisation of the nucleolus, 
see Ryan 1998a.] 
  
Even if the core is nonempty there may be more 
than one solution in the core and so it may be 
necessary to use supplementary criteria to select 
between them. In any case, if the core is empty, 
then clearly, unless in effect payoffs can be 
supplemented (as implicitly in the case of the 
strong core) nonemptiness of the core is an 
insufficient criterion to determine a solution to the 
N person characteristic function game. In that 
case, as well as in the nonempty core case, in 
general other solution criteria will be required, 
with associated implications for values of 
parameters in (VI) and/o for variables and 
restrictions in addition to those of (VI), if a unique 
solution is to be attained. One such criterion 
which has particular implications for values of 
parameters and for additional variables and 
constraints in addition to those of (VI),(VI)' is the 
Shapley Value.  
  
Accordingly, in the next Section attention will be 

focused on a coalition building motivation for the 
Shapley value of an N person characteristic 
function game and associated modifications of 
(VI) and (VI)' which, among other things, 
determine the framing conditions under which the 
Shapley Value is (or is not) in the core of that 
game.  
 
With the context of a coalition building interpret-
ation of the Shapley Value it is particularly 
significant that, while in (6.3) λrS

+ explicitly 
suggests probabilities of complementary 
outcomes within N, the notation λrS

- 

correspondingly suggests probabilities of 
complementary outcomes beyond N. The latter 
interpretations in turn suggest explicit 
consideration of processes according to which the 
potential size of coalitions formed by a given 
number of players (and thence the probability of 
formation of relatively larger coalitions for that 
given number of players) is growing. This idea 
motivates the explicitly coalition building 
approach to the determination of the Shapley 
Value in the next Section and a correspondingly 
constructive proof of Shapley’s result. 
 
5. Shapley values and coalition building 
 
In the previous Section I noted that (VI)' 
implicitly omits restrictions corresponding to the 
final constraints of the explicitly framed system 
(III)', which in turn relate to further framing 
conditions on (III). Clearly further framing 
conditions on a core related solution will lead to 
further restrictions on that core related solution 
and thence to special cases in which those further 
conditions may (or may not) be consistent with 
nonemptiness of the core. In this Section I 
develop this idea with specific reference to 
Shapley’s coalition building interpret-ation of the 
Shapley Value.  
 
Shapley 1953 concluded his paper with a section 
showing that the Shapley value emerges from a 
bargaining model as follows (op cit p78):  

 
The players constituting a finite carrier N agree to 
play the game v in a grand coalition formed in the 
following way: 1. Starting with a single member the 
coalition adds one player at a time until everyone 
has been admitted. 2. The order in which the 
players are to join is determined by chance, with all 
arrangements equally probable. 3. Each player on 
his admission, demands and is promised an amount 
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which his adherence contributes to the value of the 
coalition (as determined by the function v). The 
grand coalition then plays the game “efficiently” so 
as to obtain the amount v(N) - exactly enough to 
meet all promises. 

 
In this Section I show how 1, 2 and 3 - and thence 
the Shapley value - follow from particular kinds 
of probabilistic restrictions on a system analogous 
to (II)'. 
 
First recall that λrS in (6.1) and (VI)' may be 
interpreted as probabilities of formation of 
coalitions rS. Now, with the perspective of 
Shapley-like coalition building processes, 
consider coalition building sequences with 
members i entering coalitions one at a time. In 
that case, if it forms, a coalition rS may be 
composed by adding a player i to a coalition r-iS-
1 in any of r ways. Thus the probability λrS of 
formation of a coalition rS r-iS-i is such that: 
  
          λrS+λrS

+=Σλr-iS-i               iεr, r≥2           (5.1) 
 
Here λrS

+ is the probability that combination r 
does not form - that is the probability with which 
these particular coalition building sequences stop 
with coalitions (combinations) of cardinality r-1. 
 
Next define: i) λirS as the probability with which 
player i is chosen as the incoming member into a 
combination r and enters; ii) λirS

+ as the 
probability with which player i enters as an 
ongoing member under these conditions. So, if - 
as Shapley assumes - the identity of the incoming 
member i to a coalition of cardinality S is selected 
equiprobably, then: 
 
λirS=1/SλrS      iεrS, S≥1                               (5.2) 
and                 λirS

+=(S-1)/SλrS  iεrS, S≥1    (5.3)  
 
Conditions (5.2), (5.3) are consistent with the fact 
that for singleton “coalitions” S=1, λir1=λr1, 
λir1

+=0 and players are necessarily incoming 
members. Conditions (5.2) and (5.3) are also 
consistent with the fact that, if either potentially 
incoming or potentially ongoing members do not 
choose a coalition r of cardinality S>1, then 
λirS=0, λirS

+=0 and so λrS=0. i.e. the probability of 
formation of that combination r will then also be 
zero. (Alternatively if preemptively λrS

+=Σλr-1S-

1>0 then λrS=0 and by implication λirS=0, λirS
+=0.)  

  

Because players must be either singleton players, 
or incoming or continuing members of coalitions, 
for each player i: 
 
ΣλirS +ΣλirS

+ =1                    iεrS⊆H               (5.4) 
 
Now consider (VII)', which in effect augments 
(VI)' with the four Shapley related constraints 
(5.1).. .(5.4) and correspondingly additional terms 
in the objective: 
                Max  ΣλirSVrS +ΣerS

+λ rS+ 
                        rS⊆H                rS⊆H 

xi      st             λirS +ΣλirS
+ =1               iεrS⊆H 

xirs
+-, xirs

++           -cirS
+-≤λirS

+≤cirS
++ 

xirs
-, xirs

+ -cirS
-≤λirS≤cirS

+                                  (VII)' 
ϕirS                       λirS

    =1/SλrS                   S≥1 
ϕirS

+                                 λirS
+  = (S-1)/SλrS            S≥1 

ψrS                                  λrS +λrS
+ = Σλ 

r-iS-i                        S≥2 
 
Associating the indicated dual variables with the 
constraints of (VII)', for H>N the corresponding 
primal problem becomes an explicitly framed and 
Shapley process related coalition building 
extension of (VI). [If H=N (VII) corresponds to an 
unframed Shapley value related extension of 
(VI)]: 
 
MinΣxi+ΣcirS

+xirS
++ΣcirS

-xirS
-+ΣcirS

++xirS
+++ΣcirS

+-xirS
+- 

           iεH       rS⊆H                rS⊆H             rS⊆H                        rS⊆H 

λirS  st            xi + ϕirS +  xirS
+-xirS

-   ≥VrS S≥1                       
λirS

+  xi + ϕirS
+ +  xirS

++-xirS
+- ≥0 S≥1  

λrS     Σ1/SϕirS  +Σ(S-1)/SϕirS
+

 ≤ψrS -Σψr+1S+1   S≥2           
λr1    Σψr2≤ -ϕir1    (VII)      
                                       iεr2 

λrS
+                           ers

+≤ψrS                        S≥2 
                     xi ,xrS

+,xrS
-, xirS

++, xirS
+- ≥0 

 
A solution consistent with λir1>0 all irl is feasible 
in (VII)'. And, by complementary slackness,  
 
λir1>0=> xi + ϕir1 +  xir1

+-xir1
- =Vr1       S≥1     (5.5) 

 
Also, from (5.2), λir1>0=>λr1 >0 so that, by 
complementary slackness: 
 
                    Σψr2= -ϕir1                      iεr2              (5.6) 
  
Next, if optimally λrS

+=0 rS⊆N=H-1 then λrS>0 
for all permutations rS⊆N=H-1. By 
complementary slackness, sufficient conditions 
for continuation /nondefection of coalition 
members rS are ers

+<ψrS  
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=>λrS

+= 0  =>λrS>0 ⇒ Σ1/SϕirS  +Σ(S-1)/SϕirS
+

  

                                 =ψrS -Σψr+1S+1      S=2,..H -1 
                                                                        (5.7) 
 
Sufficient conditions for noncontinuation/ 
defection of potential coalition members rN+1, 
N≤ H-1 are: 
 
                  λrN+1

+>0 ⇒         erN+1
+=ψrN+1             (5.8) 

 

Now λrS >0 implies λirS >0, λirS
+

 >0 S≥1 from 
(5.2),(5.3) and, by complementary slackness: 
 
 λirS

  >0 ⇒       -ϕirS = xi -VrS + xirS
+ - xirS

-             (5.9) 

 λirS
+

 >0 ⇒   -ϕirS
+= xi -VrS + xirS

++ - xirS
+-          (5.10) 

 
In (5.9) (resp (5.10)) -ϕirS, -ϕirS

+ are opportunity 
costs to players respectively of not entering a 
coalition rS and of not continuing in a coalition r-
iS-i to form a coalition rS. Equivalently, the right 
hand sides of (5.9), (5.10) are contributive gains 
(or losses) attributable to a player i entering (resp 
continuing in) a coalition rS, where such gains or 
losses equate to the difference between the 
immediate payoff VrS to that coalition and the 
present imputation xi to that player, less net 
process contingent redistributions xirS

+ (resp xirS
++) 

to others, and plus net process contingent 
redistributions xirS

+ (resp xirS
+-) from others. 

 
If optimally (IV)' is also such that λi1=1, then, by 
complementary slackness: 
 
λi1>0 =>   -ϕir1= xi - Vr1  + xir1

+-xir1
-     S=1   (5.11) 

 
An interpretation of (5.11) is that -ϕir1 is the 
opportunity cost to player i of not joining a game 
associated with an imputation xi. Equivalently ϕir1 

is the relative gain to player i from entering a 
game leading to an imputation xi. Next: follow 
Shapley in defining the immediate gain to an 
incoming member i to form a coalition rS, S≥2 as: 
        
               ϕirS =defVrS - Vr-iS-i       S≥2              (5.12) 
 
Immediate gains ϕirS=VrS-Vr-iS-i in (5.12) for 
incoming players i imply ϕirS

+=0 for continuing 
players and from  (5.7) ϕirS

+
 =0 implies: 

Σ1/SϕirS  + Σψr+1S+1 =ψrS     S=2,..N-1           (5.13) 
 
In (5.13) ψrS is a measure of anticipated gain to 

the addition of a member to an existing coalitions 
rS to form coalition r+1S+1. This anticipated gain 
is made up of two parts: the expected immediate 
gain Σ1/SϕirS and the future gain Σψr+1S+1 to the 
formation in that way of coalition S.  
 
Now, if the boundary conditions are such that all 
coalitions S⊆N form, then λrs>0 all rS⊆N so (5.7) 
holds for all ψrS in every coalition sequence and 
the summation in the left hand term in (5.13) is 
over the number of ways of choosing a coalition 
of cardinality S from N players so that (5.7) and 
thence (5.13) gives: 
 
    (S-1)!(N-S)!(VrS-Vr-iS-i) + Σψr+1S+1 =ψrS                
                      N! 
                                            S=2,..N-1          (5.14) 
                              
Recalling that at an optimum xi+ϕir1+ xir1

+-xir1
- 

=Vr1 for S≥1, from (5.5), and Σψr2= -ϕir1,  iεr2, 
from (5.6), and assuming that xir1

+=xir1
-=0 and 

using (5.14) recursively gives: 
 
Σ(S-1)!(N-S)!(VrS-Vr-iS-i)+ΣψN+1N+1= Σψr2 = xi -Vi1         
                   N!                          
                                                  S=2,..N-1   (5.15) 
 
If ψN+1N+1=Vi1=0 then (5.15) yields the standard 
form of the Shapley Value. 
 
Together the preceding developments establish 
the following result:  
 
THEOREM 4 

The following conditions are sufficient to generate 
the N player Shapley value from the dual pair of 
linear programs (VII), (VII)': 
i) all players iεN enter the game, so that λir1>0 all 
iεNN; 
ii) at an optimum a grand coalition of cardinality N 
forms so that λNN=1; 
iii) coalitions rS⊆NN form and non defection 
conditions obtain such that λrS>0, λrS

+=0 all 
rS⊆NN; 
iv) positive contingent probabilities of entering and 
continuing in coalitions so that λirS>0, λirS

+>0 all 
iεrS⊂NN; 
v) for each player i the opportunity cost of entering 
and net transfers xir1

+ and xir1
- are also zero so that 

xir1
+=xir1

-=Vi1=0, ;  
vi)for each potential coalition of cardinality N+1 
pot-entially inclusive of the grand coalition N, 
ψN+1N+1 =0. 
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PROOF 
Conditions i)-iv) are necessary and sufficient for 
condition (5.14) to follow from (VII) by 
complementary slackness, and conditions v) and vi) 
are sufficient for (5.14) to yield (5.15) and the 
standard Shapley value result. 

 
COROLLARY 

If any of conditions i)-vi) of Theorem 4 does not 
hold then optimal solutions to (VII), (VII)' will not 
yield the standard Shapley values.  

 
THREE REMARKS 
• Through terms ψN+1N+1 there is a role in in (5.15) 

for (N+1)st players. With the assumption that 
ψN+1N+1=0, which reduces (5.15) to the standard 
Shapley values, this role might be interpreted as 
that of a “dummy player”. Notice here that the 
specialization of (5.15) to Shapley values also 
requires Vi1=0. In that way the role of the “dummy 
player” becomes isomorphic with that of those 
determining the reservation payoffs - opportunity 
costs of playing the game - for players i. (This idea 
can be developed in relation to repeated games with 
the condition for stopping one game being 
preconditions for starting another. For more on this, 
as well as on associated interpretations of λirS

+,λirS
- 

as probabilities of leadership and followership,see 
Ryan 1998a.) 

 
• Secondly: If optimally λrS

+>0 for one or more 
coalitions rS⊆N, λrS

+>0 then, by complementary 
slackness, ψrS=ers

+ and the analogue of (5.15) will 
take on an interpretation as a class of modified 
Shapley values incorporating the fact that one or 
more coalition sequences will then optimally 
terminate prior to formation of a relatively grand 
coalition NN. 

 
• The context of (VII),(VII)' and Theorem 4 

emphasizes that the quantities ψrS, and through 
them, Shapley values, are explicitly frame 
dependent. In particular Shapley values are 
contingent on the values of parameters in 
(VII),(VII)' being those appropriate for optimal 
starting, stopping and continuation criteria for 
Shapley-like coalition building behaviours. For 
those values optimal solutions to (VII),(VII)' 
determined the properties of marginal contributions 
and Shapley efficient imputations simultaneously 
with appropriate probabilities of formation of 
Shapley-like coalition building sequences. By 
contrast Shapley’s own work omits any 
consideration of framing, as does the alternative 
approach by means of “potentials”, which here 
correspond to the quantities ψrS in (VII)', by Hart 
and Mas Collel 1988. A fortiori neither of those 
approaches considers the appropriateness, or not, of 

restrictions on frame related transition probabilities 
and/or of non zero magnitudes for frame related 
opportunity costs. 

 
6. Framing, the Shapley value and optimal  
starting, continuation and stopping criteria 
 
In Section 5 via (5.15) Shapley values have been 
derived with explicit reference to a more inclusive 
frame. It has already been noted that, if 
ψN+1N+1=Vi1=0 all iεNN, these values in (5.15) 
correspond to the standard form of the Shapley 
Value. But the explicit framing conditions 
associated with the derivation of (5.15) relate 
more generally to coalition building process and 
associated starting, continuation and stopping 
criteria. Specifically: implications of (VII),(VII)' 
are that: i) possibly under duress (via cirS

+, cirS
-) a 

player will not start a coalition building sequence 
if the net opportunity cost -ϕir1 of doing so is less 
than the contributive gain from doing so. And; ii) 
the opportunity cost of starting a coalition 
building sequence is at least equal to that if that 
player remained a singleton. These interpretations 
follow from a rearrangement of the first and 
fourth constraints of (VI), viz: 
 
λir1≥0 -              ϕir1 ≤ xi -Vr1+ xir1

+-xir1
-                  (6.1) 

λr2≥0                -ϕir1 ≥Σψr2                                                  (6.2) 
λi2

+≥0                  ei2
+ ≤ψi2                                                  (6.3) 

  
Next; iii) continue only as long as optimally 
λrS

+=0 S≥2 and; iv) a coalition building sequence 
will stop with a relatively grand coalition NN 
when optimally erN+1

+=ψrN+1 so that λrN+1
+>0 and 

λirN+1=0. That is: as soon as the predicted gain by 
augmenting a coalition rN is less than the 
alternative of not augmenting it. [Note that that 
predicted gain ψrN+1 here refers to a potential 
beyond the immediate frame.] 
  
Parenthetically, with this context of optimal 
starting, continuation and stopping criteria the 
quantities ψrS are consistent with Shapley’s 
interpretation of Shapley values as promises in the 
quote at the beginning of Section 5 viz: “..the 
amount V(N) - exactly enough to meet all 
promises” as well as with interpretations as 
measures of prospective gain. [Throughout these 
Shapley related developments ϕirS has been 
independent of the identity of the incoming 
player. In this way the derivation of (5.15) also 
subsumes Shapley’s assumption that the game in 
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question is abstract: it is assumed that payoffs to 
coalitions depend on their final composition rather 
than on their mode of composition.] 
 
7. Framing , the Shapley value and emptiness 
or nonemptiness of the core 
 
Clearly the Shapley value is not always in the core 
since a Shapley Value exists for any characteristic 
function game and not all characteristic function 
games have non empty cores. Nevertheless there 
are cases in which Shapley values generated as 
optimal solutions to (VII), (VII)' will be 
simultaneously consistent with nonemptiness of 
the core to the corresponding game.  
 
Consider a coalition rS. For the entering player 
λirs>0 and for the other players λirs

+>0, so that, by 
complementary slackness, conditions (5.9) and 
(5.10) apply. But with ϕirS=def(VrS- Vr-iS-i), 

ϕirS
+=def0 those conditions give: 

 
Σxi = VrS+ϕirS -xirS

+ + xirS
- + ΣxirS

++ - ΣxirS
-+         

                                                       iεrS           (7.1) 
 
A necessary condition for nonemptiness of the 
core to that game is then that: 
 
 ϕirS -xirS

+ + xirS
- + ΣxirS

++ - ΣxirS
-+≥0         iεrS  

                                                                         (7.2) 
Or: 
-ϕirS ≤ (-xirS

+ + xirS
- + ΣxirS

++ - ΣxirS
-+)      iεrS           

                                                                         (7.3) 
 
Condition (7.3) is a core related entry condition: 
A player i will optimally enter a game if the 
opportunity cost -ϕirS of doing so is less than or 
equal to the net sum of redistributions consequent 
on doing so.  
 
Clearly, given superadditivity and contingent 
rules that any ex ante gain to an entering member 
of a coalition would be redistributed equally 
among any coalition thus formed, Shapley 
imputations are consistent with (7.3) and so 
consistent with nonemptiness of the core. 
Conversely, in the absence of such contingent 
redistribution criteria, the Shapley value may be 
consistent with emptiness of the core. 
 
More generally, since the Shapley solution can be 
determined via (VII), and (VII) is not necessarily 
inconsistent with emptiness of the core of the 

associated game, the Shapley solution is not 
necessarily inconsistent with emptiness of the 
core of that game. But (VII) was specified as a 
relatively more tightly (Shapley) constrained 
specialization of the more generally core related 
specification (III). And, by a general principle of 
optimality  a relatively more constrained 
maximization problem will lead to an equal or a 
relatively reduced optimum: 
 
THEOREM 5 (Shapley values and the core) 

Assuming that a feasible solution exists to(VII)' and 
that erS

+≥0 then: 
 
 
 

Max  ΣλirSVrS +ΣerS
+λ rS+             ≥       Max  ΣλrSVrS 

         rS⊆H                rS⊆H                                                   rS⊆H 

 st  ΣλirS +ΣλirS
+ =1   iεrS⊆H        st   ΣλrS ≤1     rS⊆H 

       -cirS
+-≤λirS

+≤cirS
++  

        -cirS
-≤λirS≤cirS

+         (VII)'       -ΣcirS
-≤λrS≤ΣcirS

+     

(VIa)' 
        λirS

    =1/SλrS         S≥1            iεrS                     iεrS 
        λirS

+  = (S-1)/SλrS  S≥1 
        λrS +λrS

+ = Σλ 
r-iS-i   S≥2 

 
That is: Shapley Value related restrictions as in 
(VII)' cannot increase, and may reduce, the 
possibility that the Shapley Value is in the core of 
an N person characteristic function game.  

 
PROOF 

Any feasible solution to (VII)' is a feasible solution 
to (VIa)', but not conversely. So any optimal 
solution to (VII)' is a feasible but not necessarily an 
optimal solution to (VIa)'. In particular, with H=N 
and ΣcirN

-=M-, ΣcirN
+=M+,λNN=1,λrS=0 all rS⊂N, an 

optimal solution to (Va) is potentially equivalent to 
an optimal solution to (II)' and so consistent with 
non emptiness of the core of an N person game. It 
follows that an optimal solution consistent with 
nonemptiness of the core of an N person 
characteristic function game via (VIa)' may be 
inconsistent with nonemptiness of the core via the 
Shapley value constrained extension (VII)'. 

 
It follows from Theorem 3 that the specialized 
constraints on (VIa)' to determine Shapley 
solutions as if via (VII)' will, if anything, reduce 
the possibility that the associated game has a non 
empty core. 
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8. Conclusion 
 
In this chapter I first focused on interrelations 
between framing and emptiness or nonemptines of 
the core. I then turned to frame related restrictions 
and the elicitation of Shapley values and 
associated conditions according to which the 
Shapley is, or is not, in the core using an 
explicitly framed optimization approach. 
 
Clearly the results in this chapter could be 
extended to other classes of solution by 
considering more specific orderings on the 
parameters of (VI), (VI)', as I have shown in Ryan 
1998a for the case of the nucleolus. They could be 
extended, too, by considering other types of 
probabilistic restrictions on (VI),(VI)' instead of 
and/or in addition to the Shapley Value related 
constraints which here have specialized (VI), (VI)' 
to the Shapley value related systems (VII),(VII)'. 
Another direction for extensions, which I have 
already explored in a preliminary way in Ryan 
1998a, is a more detailed consideration of the 
extensive form of the N person game which is 
implicit in the optimal starting, stopping and 
continuation rules associated with the coalition 
building motivation for the Shapley Value which 
has been reported here. In particular, a point 
which has not been emphasised but which has 
been implicit throughout the chapter, is that an 
explicitly framed approach makes it possible to 
investigate interrelationships between a solution 
criterion (e.g. core and/or Shapley Value), the 
number of players electing to play a game given 
that solution criterion, and a particular 
parameterization of relevant boundary conditions.  
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