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CHAPTER 10 
 

MULTIPLE CRITERIA AND FRAMING OF DECISIONS 
 
1.Introduction 
 
The purpose of this chapter is to show how a multi 
criteria approach to decisionmaking can be used 
as a general means of modelling the process of 
framing decisions. As examples the first part 
focuses on a number of well known classes of 
problems, in which frames have only been 
implicit, to make them explicit by means of 
preemptive goals in a multiobjective goal prog-
ramming framework. These problems include the 
matching pennies game (Shubik 1982, Wang 
1988), the distribution, or transportation, problem 
(Charnes and Cooper 1961, Shogan 1988), as well 
as linear and nonlinear programming form-
ulations of the intertemporal peak load pricing 
problem (Turvey 1969, Littlechild 1970, Ryan 
1992). In the second part of the paper non-
premptive generalizations of the earlier analysis 
are considered and it is shown how the explicit 
introduction of frames can provide a means of 
resolving well known paradoxes. These include 
the more for less paradox in the distribution 
problem (Charnes and Klingman 1971, Szwarc 
1971, Ryan 1980 Charnes, Duffuaa, Ryan 1980, 
Arshan 1992) and Allais’ paradox (Machina 1993) 
with reference to individual decision-making 
under uncertainty. 
 
The organization of the paper is as follows: 
Section 2 introduces the central idea of framing 
via preemptive goals with the context of explicit 
restrictions on the range of distributions and the 
probabilities of outcomes in the constant sum 
matching pennies game. In Section 3 I consider 
framing in the context of restrictions on supplies 
and demands in the distribution (“transport-
ation”) model and, in Section 4, of capacity 
restrictions in multiperiod peak load pricing 
problems. Sections 5, 6 and 7 then provide more 
subtle extensions in which the (choice of) frame is 
endogenized and the respectively game theoretic, 
distribution problem related, and intertemporal 
analyses extended to comprehend mixtures of non 
preemptive and preemptive frame related goals 
and decisions.  
 
In every case the multi criteria decisionmaking 
nature of the problem will be evident for in every 

case the relevant problem may be broken into 
criteria relating to two distinct, yet related, parts 
of an overall problem, namely optimal selection 
of the relevant frame and optimal selection of 
outcomes within that particular frame. 
 
2. Framing and constant sum games 
 
The minimax-maximin specification of a two 
player constant sum matching pennies game with 
strategies j,k, payoffs πkj and payoff probabilities 
pi,qj as a dual pair of linear programmes, as in 
(I),(I)', is well known:  
 
         Max ρ                             Min µ 
  st   Σπkjpj ≥ ρ                 st    Σπkjqk ≤ µ 
       jεJ                                  kεK 
       Σpj=1   (I)                       Σqk  =1     (I)' 
      jεJ                                  kεK 
       pj≥0                                 qk,≥ 0 
 
                          H    T 
                    H    1   -1 
                    T   -1    1 
 
                     TABLE 1 
 
With j=1,2 and k=1,2 and payoffs as in Table 1, 
(I), (I)' give ρ=µ=0 and pj=1/2, qk=1/2. This “fair” 
equiprobable solution might seem unsurprising - 
in the sense of consistency with prior beliefs 
concerning “nature’s” strategy choices - given the 
symmetry of this particular specification. But 
notice, first, that if a player had such prior 
information/or beliefs both concerning the range 
of potential payoffs (in this case heads and tails) 
and concerning the magnitudes of potential 
probabilities, then properly they would be 
incorporated in the initial specification to frame 
the game accordingly. This can be done by 
introducing weights M and a preemptive goal 
programming formulation to generalize (I),(I)' to a 
constrained game formulation (see Charnes 1953, 
Owen 1982, Ryan 1994,1995) which pre-
emptively restricts the range of outcomes to heads 
and tails and the magnitude of “nature’s” 
probabilities, as in (II),(II)': 
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Max ρ  - Mp+  - Mp-  + ΣRkqk*                            Min µ  + Mq+ + Mq- 
    st    Σ πkjpj -Rk ≥ ρ                                             st         Σπkjqk ≤ µ 
         jεJ                                                                          kεK 
          Σpj + p+-p-=p*      (II)                                           Σqk +q+ -q- =q*        (II)' 
        jεJ                                                                         kεK             
                        qk +qk

+ -qk
- =qk*       kεK 

           -M≤ρ≤ M                                                            -M≤ µ≤ M 
   pj,p+,p- ≥0, Rk unrestricted                                         qk,q+,q- qk

+,qk
- ≥ 0 

 
 
Here Rk have interpretations as marginal inform-
ational values of prior probabilities - for coins, of 
relative bias. As a more general example of this 
same idea consider an analogous class of cases 
which follows Ryan 1994 and generalizes work 
by McInerney 1967, Hazell1970, Kawaguchi and 
Muruyama 1972 and in which πkj j=1,2, k=1,2 in 
(II),(II)' represent contingent payoffs to a farmer 
engaged in a wet crop/dry crop:rain/no rain game 
against nature. In that case qk represent probab-
ilities with which nature adopts weather patterns k 
so that in (II)' qk*,Rk have interpretations as 
probabilities of elements of a prior weather 
forecast and potential rewards to relatively 
increased probabilities of relatively wet and dry 
weather. 
 
Parenthetically, in this constrained game context 
the maximin-minimax criterion has the very nice 
dominance property that, if the relatively worst set 
of outcomes is improved by improving prior 
information, all outcomes are improved by 
improving that prior information. (For more on 
this see Ryan 1994,1995.) 
 
3.Framing and the distribution model 
 
The distribution problem is to minimize the cost 
of shipping available quantities ai at origins i to 
meet demands bj at deastinations j where Σai=Σbj 
and the unit shipping cost over route ij is cij. This 
problem can be expressed in a standard linear 
programming form as in (III) below. 
 
                   Min Σcijxij 

                                      ij 

                st    Σxij =ai                             (III) 

                        j  

                       Σxij =bj 
                       i  

                  xij ≥0,   Σai =Σbj 
                                                i          j 

But (III) implicitly restricts (i.e. implicitly frames) 
supply and demand to the equality case. Now 

introduce (IV) as an explicitly framed preemptive 
goal programming extension of (III). (For an 
introduction to goal programming see Charnes 
and Cooper 1961 or Shogan  1988.): 
 
Min Σcijxij  -MΣ(xi

+ +xi 
-)-MΣ(xj+ + xj-) 

           ij                     i                                j 

          st    Σxij + xi
+ - xi 

- = ai 

                         j  
                Σxij  + xj+ - xj- = bj      (IV) 
                        i  
              Σ(xi

+ - xi 
-)=Σ(xj+ - xj-) 

                      i                            j 
        xij ,xi

+,xi 
-,xj+,xj-)≥0,  Σai =Σbj, 

                                          i           j  

In (IV) preemptively large weights M explicitly 
prohibit supplies or demands greater or less than 
the prescribed amounts ai,bj. In particular this 
formulation explicitly prohibits exploitation of the 
conditions of the more for less or more for 
nothing paradoxes (see Charnes and Klingman 
1971, Szwarc 1971, Ryan 1980, Charnes, Duffuaa 
and Ryan 1980, 1987).   
 
In words the MFL paradox can be stated as: 

 Given an optimal solution to a distribution 
problem, it is possible in certain instances to ship 
more total goods for less total cost even if we ship 
at least the same amount from each origin and at 
least the same amount to each destination, and all 
shipping costs are nonnegative. Charnes and 
Klingman 1971 p.11. 
 

That is: given an optimal solution to (IV), and 
even if all shipping costs are strictly positive, it 
may be possible to increase at least one ai to ai+δ 
and one bj to bj+δ in such a way that the overall 
shipping cost is reduced. Interpreting ai as dinner 
halls and bj as groups of potential diners, the 
conditions of the more for less paradox appear to 
correspond, not just to the potential existence of a 
free dinner, but to one which one or more 
individuals could profitably be paid to eat!  
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In Section 6 I will show that explicitly framing the 
distribution problem by means of variously 
preemptive or non preemptive goal programming 
specifications can provide a new way of resolving 
this paradox, while at the same time 
comprehending a wide variety of other classes of 
network problems as special cases. 
 
4.Framing and the peak load pricing problem 
 
The peak load pricing problem as expressed by 
Turvey 1969 is to find the cost minimizing way of 
meeting demands xt* t=1,2..T from available 
capacity y, given that ct will be the marginal 
variable cost of supply in period t and the 
marginal acquisition cost of units of capacity in an 
initial period is β. With these assumptions the 
optimal plan can be found as a solution to (V) and 
its dual (V)' below. 
 
Notice first that this specification focuses 
essentially on the supply of output rather than on 
the value stemming from demand for it. Secondly, 

since in an optimal solution to (V), xt=xt*∀t the 
specification (V) implicitly preemptively fixes 
period t demands at xt*, regardless of the 
associated dually optimal tariffs - from (V)’ - 
namely (ϕp=cp+µp , Σµp=β) in peak periods and 
(ϕt=ct ,t≠p) in off peak periods. 
            
  Min Σctxt + βy      Max  Σϕtxt* + Σµty 

           t                                               t                      t 

    st    xt ≥ xt*              st   ϕt ≤ ct+µt                                            
           xt ≤ y       (V)         Σµt≤ β       (V)' 
                                                 t               

           xt,y≥0                ϕt, µt ≥0        
  
But in general demand for output in periods t (eg 
electricity at different hours of the day) will not be 
independent of the prices charged for it. This 
point is clearer if demand is explicitly 
distinguished from supply and the preemptive 
framing of problem (V) is made explicit by means 
of the more general preemptive goal programming 
formulation (VI), (VI)':  

 
    MaxΣ(ptzt -Mzt

+-0zt
-)-Σctxt-βy                                  Minimize Σϕtxt* + Σµty 

                                 t                                         t                                                                                               t                     t 

                       st    zt + zt
+ - zt 

-= zt*                                                      st    ϕt + ψt ≥ pt                                 
                       zt ≤ xt            (VI)                                                    ϕt ≤ ct + µt        (VI)'                      
                        xt ≤ y                                                                 Σµt≤ β 
                                                                                                        t  

                   zt,zt
+,zt

-,xt,y≥0                                                   µt,ϕt ≥0,  M ≥ ψt  ≥0  
     
In this extended formulation internal opportunity 
costs ϕt are not just explicitly related to variable 
and capital costs of production, but related, too, to 
target market prices pt. In this way this explicitly 
framed extension opens up new and more direct 
relationships between Turvey’s approach and 
Littlechild’s nonlinear program-ming represent-
ation (Littlechild 1970), in which the choice of 
constraint bounds, and in that sense the choice of 
the frame, is endogenously - as distinct from pre-
emptively - determined. In its simplest form - 
Littlechild also considered multiple capacity and 
uncertainty related extensions. Littlechild’s model 
is: 
 
           Max Σ∫ptdzt 

 - Σctxt - βy                                                  
              zt ≤ xt                         (VII)                                                                                                  
              xt ≤ yt       
             zt,xt,y≥0 

 
The objective of (VII) being concave, the Kuhn 
Tucker optimality conditions are:  

            zt≥0    <=>   ϕt    ≥    pt      
            xt≥0    <=>   ϕt ≤ ct + µt      (VII)' 

y≥0    <=>   Σµt≤ β 
                                   t 
The form of conditions (VII)' is reminiscent of 
(VI)'. Indeed, if xt and pt are respectively equal in 
value in (VI) and (VII), (VI)' and (VII)' become 
equivalent and consistent with overall minim-
ization of the cost of provision of optimal levels 
of output xt*, as in Turvey’s approach. Here this 
result emerges entirely from explicit consider-
ation of the process of framing Turvey’s problem.  
 
Although this preemptively framed class of 
multiperiod cases is of interest in itself, richer 
kinds of correspondences emerge once general 
nonpreemptively frame related cases are 
considered. Three classes of examples of these are 
the subjects of the next three sections 
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5.Nonpreemptive frames and constant sum 
games 
 
Consider a nonpreemptive generalization of the 
constrained game (II),(II)' 
 
Max    ρ  - c+p+  - c-p-  + ΣRkqk*      
            st Σπkjpj-Rk ≥ ρ         jεJ                                                                       
          Σpj + p+-p-=p*                          (VIII)                                  
          jεJ  
             -d-≤ρ≤ d+ ,-M2≤Rk≤M2 
            pj,p+,p- ≥0, Rk unrestricted 

 
Min µp* + d +q+ + d-q- + ΣM2q+ +ΣM2q- 
st         Σπkjqk ≤ µ 
          kεK 
          Σqk +q+ -q- =q*                      (VIII)' 
         kεK 
 qk +qk

+ -qk
- =qk*       kεK 

             -c+≤ µ≤ c-                                                                                                                     
             qk,q+,q- qk

+,qk
- ≥ 0 

            
For c+,c-,d+,d- all positive and sufficiently large, 
(II),(II)' and (VIII), (VIII)' are equivalent. In that 
case, there is always an attainable optimal 
solution to (VIII) with pj

+=0,pj
-=0 and pj>0 some j 

and consistent with conditions as if -M<µ<M in 
(VIII)'. If also Σqk*≤q* in (VIII)’ a dual optimal 
solution, with qk

+=0,qk
-=0, qk>0 some k would 

also be attained. Even if c+ is negative, and as 
long as it is not greater than  Σπkjqk*, in general a 
mixed strategy solution to (VIII)' is optimal. But if 
c- is then sufficiently reduced µ becomes reduced 
(via the final constraints of (VIII)') and thence, via 
the first constraints of (VIII)', qk is reduced until 
ultimately the final constraints in (VIII)' become 
equivalent to -c+=µ=c-. Even if initially pj>0 some 
j is optimal for (VIII)', such a reduction of a 
relatively external magnitude is ultimately 
consistent with an optimal solution to (VIII) with 
pj=0 all j, pj

+>0 and/or pj
->0 on the primal side, 

and to (VIII)' with qk=0, qk
+>0 and/or qk

->0 on the 
dual side.  
 
In the context of matching pennies-related 
interpretations this may correspond to the ultimate 
determination of a strict preference for non 
heads/tails outcomes pj

+>0, pj=0 ∀j via a 
sufficient reduction in c - (eg work related 
outcomes with the opportunity cost of leisure cj

+ 
equal to the marginal return to work cj

-) over 
initially selected randomized heads/tails related 
outcomes with pj>0 some j. Or, in the context of 

crop related interpretations of (VIII),(VIII)' this 
might imply the ultimate determination of a 
preference for non crop planting (eg leisure/fallow 
land related) alternatives pj

+>0 over an initial 
choice of a randomized crop planting alternatives 
with pj>0.  
 
Summarizing: variants of (VIII),(VIII)' can 
correspond to a revealed preference for work over 
matching pennies related leisure, or to a revealed 
preferemce for crop related farm work over fallow 
land related activities, in each class of cases in 
response to correspondingly changed opportunity 
costs cj

+,cj
- of alternative types of relatively 

interior or exterior outcomes and/or of relatively 
increased/reduced coin or crop related prior 
probabilities pk

* . 
 
In these two classes of cases the proportion of 
land (resp time) Σqj devoted to crops (resp 
matching pennies) is dependent both on the 
weather forecast (resp prior heads/tails 
probabilities) qk* and on predictions c+,c- for 
renting out or renting in increments of land (resp 
time) p+,p-. In this context changes in forecast 
weather or prior heads/tails probabilities and/or in 
marginal evaluations c+,c- may correspond- ingly 
change the optimal frame of the problem by 
changing the decision on how much land (resp 
time) to use, and not just on how to use it.  
 
Clearly then (VIII),(VIII)' can be seen as one way 
of endogenizing multiple criteria relating not just 
to the the choice of activities given a particular 
frame, but as a way of endogenizing the choice of 
the relevant frame itself, respectively for a farm 
planning model and for a matching pennies game. 
 
More subtly, such frame related implications of a 
change in a relatively exterior marginal eval-
uation c- for switches in individuals’ relatively 
interior choices of mixes of relatively certain and 
uncertain opportunities can offer a class of 
endogenously optimally determined and frame 
related explanations for Allais like-preference 
reversals of kinds noted empirically variously by 
MacCrimmon 1968, MacCrimmon and Larsson 
1979, Kahneman and Tversky 1979, and Chew 
and Waller 1986. To see this consider Machina’s 
definition of Allais’ paradox, (Machina 1993, 
pp23-24): 
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Given alternatives: 
b1:  x+(1-α)P** versus  b2:  P + (1- α)P** 

and 
b3:  x+(1-α )P*  versus  b4:  P + (1- α)P* 

where: 
        x=prospect yielding x with certainty; 

P involves outcomes both greater and less 
than x 
P** stochastically dominates P* 
 

Then Allais' paradox arises if subjects, when 
offered b1 and b2, prefer b1 to b2  (b2 to b1) but,  
when offered a choice between b3 and b4, prefer b4 
to b3 (resp b3 to b4). 
 
In contrast to earlier developments Machina’s 
definition gives no explicit optimization 
framework for the choice of relevant frame 
determining relative interiority of relatively risky 
or riskless alternatives (b1, b2) vis a vis relatively 
exterior alternatives (b3,b4). Nor does that 
definition provide for the endogenous determ-
ination of rewards/opportunity costs x, P, P*, P**, 
associated with these various alternatives. But in 
the context of (VIII),(VIII)', which explicitly and 
simultaneously model choices of frames and of 
frame related payoffs and opportunity costs, 
Machina’s definition itself suggests corres-
ponding classes of Allais related interpretations as 
follows:  

Let p*=defα be the proportion of available 
time/land initially allocated to matching 
pennies/farming and p-=def(1-α) the proportion 
of time/land assoc-iated with relatively 
external activities. Then, given contingent 
payoffs πkj to relatively interior and uncertain 
activities qj, as in (VIII), (VIII)', an initially 
chosen solution to (VIII) might be such that 
Σpj =p*=α some pj>0, p+=0, ρ*=Σπkjpj and p-

=(1-α) >0. But, if c+ is itself negative and c- is 
sufficiently reduced then, via (VIII)' and 
complementary slackness, ultimately cond-
itions could obtain such that pj=0 ∀ j and 
p+=p*=α with -c+ =µ=c- and p- =(1-α)>0. 
These circumstances are consistent both with 
Machina’s definition and a frame related 
explanation of the common consequence 
version of Allais’ paradox. In the first case, 
given a relatively external evaluator c-* and 
probability p-=(1- α), a randomized relatively 
interior outcome (b2) is chosen with Σpj=p*=α 
>0, ρ*=Σπkjpj  in preference to a relatively 
nonrandomized interior outcome (b1) with 
p+=α>0. And, if c-* is sufficiently reduced, say 

to c-**, and still with relatively exterior 
probability (1-α), the optimally chosen 
outcome may be such as to reveal a preference 
for a relatively interior nonrandomized out-
come (b3) with p+=α>0 to a relatively interior 
randomized outcome (b4) with Σpj =p*=α >0.             
QED. 

 
For more on constrained game approaches to the 
representation and resolution of Allais paradox in 
the different context of strategiacally equivalent 
transformations see Ryan 1996. (That paper 
includes a treatment of the common ratio version 
as well as the common consequence version 
considered here). 
 
6.Nonpreemptive frames and the mfl/mfn  
paradoxes 
 
The standard distribution model can be written as 
if embedded in a potentially nonpreemptively 
framed form as follows: 
 
MinΣcijxij  +Σ(ci

+xi
+ + ci

-xi 
-)+Σ( cj+xj+ + cj-xj-) 

       ij                    i                                       j 

                 st    Σxij + xi
+ - xi 

- = ai 

                         j  

                       Σxij  + xj+ - xj- = bj           (IX) 
                        i 

                        Σ(xi
+ - xi 

-)=Σ(xj+ - xj-)  
                         i                            j  

              xij ,xi
+,xi 

-,xj+,xj-)≥0,  Σai =Σbj,  
                                                    i            j  
 

For ci
+,ci

-
,cj+,cj- positive and sufficiently large (IX) 

is entirely equivalent to the premptive form (IV), 
which in turn becomes consistent with the as if 
preemptively framed (and standard) formulation 
(III). But, if (IX) is not preemptively framed, non 
zero overshoots xi

-,xj- and undershoots xi
+,xj+, 

respectively of supplies at origins and demands at 
destinations become potentially optimal. In 
particular conditions may obtain as if optimally 
xij=0 and xi

+=ai ,xj+=bj all ij. This suggests 
interpretations of -ci 

-,cj- in relation to potential 
acquisition costs associated with supplies and 
prices associated with demands. These and more 
general cases become evident if (IX) is rewritten 
as an equivalent maximizing problem (X) together 
with its dual as follows: 
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Max-Σ(cj-xi 
j-)- Σcijxij  - Σ(ci

-xi
-) -Σ(cj+xj+)- Σ(ci

+xi
+) 

          j                       ij                   i                   j                       i 

                st    Σxij + xi
+ - xi 

- = ai 

                        j  

                       Σxij  + xj+ - xj- = bj     (X) 
                        i  

                      Σ(xi
+ - xi 

-)=Σ(xj+ - xj-) 
                       i                            j      

                 xij ,xi
+,xi 

-,xj+,xj-)≥0,        Σai =Σbj 
                                                    i            j 

Associating dual variables Ri, Kj with the first two 
constraints of (X) and ϕ with the third, its dual 
becomes: 

      Minimize ΣRiai +ΣKjbj) 
           i           j   

xij
 ≥0       st      Ri + Kj ≥ -cij 

xi
+≥0                Ri + ϕ ≥ - ci 

+ 
xi 

-≥0             - Ri - ϕ ≥  -ci 
-   (= def -pi )  (X)' 

xj+≥0               Kj - ϕ ≥ -cj+    
xj-≥0              -Kj + ϕ ≥ -cj-    (= def  pj

 ) 
 

If ci
+=ci

-=cj+=cj-=M conditions (X)' are consistent 
with optimal solutions for the standard implicitly 
preemptively framed case for which xi

+=xi 
-

=xj+=xj-=0 and xij>0 and Ri+Kj=cij for an 
optimally determined set of routes ij. But these 
conditions are also potentially consistent with 
various classes of explicitly framed and non 
premptively framed  interpretations. 
 
In particular, if pi is the marginal cost of acquiring 
an additional unit at origin i and pj is the revenue 
from selling a unit at destination j and if xi>0, 
xj>0 and xij>0 for a particular route ij, the 
conditions of (X)' are consistent with interpret-
ations as follows: 
 

xij>0 =>Ri +Kj = cij          
xi

- > 0 =>  -Ri -ϕ = -ci
-          

xj- >0 => -Kj + ϕ = -cj-  
 
so that, for this class of cases:  
 Ri +Kj = pj - pi = cij  or   pj = pi + cij    
 
This in turn is consistent with spatially 
competitive decision rules according to which, for 
the optimally determined set of routes, destination 
price pj is exactly sufficient to recoup marginal 
acquisition cost pi plus unit transportation costs cij.  
Now consider the conditions of the more for less 
and more for nothing paradoxes in this context. 
First, define a degenerate* optimum to (X) as one 
with less that m+n-1 positive shipments xij. Then 
the MFL(MFN) paradox exists if, given a non 

degenerate* optimal solution to (X) with 
preemptive ci

+=ci
-=cj+=cj-=M , at an optimum Rr 

+Ks<0 (=0) for some non basic route rs. (Charnes 
and Klingman 1971 Theorem 1.1). In those 
circumstances it is possible to increase supplies at 
at least one origin and reduce demand at at least 
one market in such a way as to reduce (leave 
unchanged) the overall shipping cost. 
  
With the context of (X), if this condition of the 
more for less (nothing) paradox is exploited in 
such a way as to leave the optimal basis 
unchanged, for the non basic MFL(MFN) route rs, 
xr >0 and xs>0, so that, from (X)', by complem-
entary slackness ps-pr=Rr+Ks (<0). From this it 
might seem that, via the MFL/MFN cell rs, it 
would be possible to ship more while reducing  
overall cost. While this is true in certain 
circumstances it certainly is not always so. In 
general exploitation of the conditions of the 
paradox inevitably involves acquisitions as well 
as shipments of additional quantities. Thus in 
general additional acquisition as well as additional 
shipment costs will be incurred and it may be that 
additional acquisition costs cancel out - or more 
than cancel out, any incremental shipping cost 
related savings. 
 
In more detail: since by assumption the potentially 
MFL/MFN optimum is non degenerate*, 
Ri+Kj=cij for each of the m+n-1 basic shipment 
cells ij. Noting that there are m+n-1 equations in 
m+n unknowns choose one measure Ri=0. (Notice 
that this is potentially consistent with the idea that 
ϕ corresponds to a base price since with Ri=0 
from (X)' xi

->0 => - ϕ = -c i 
- = def -pi .) With this 

initial value the m+n  equations can be solved in 
such a way that each of the quantities Ri,Kj is 
expressed as a sum of differences of the basis 
related quantities cij. It follows that for any non 
basic cell, and in particular for a MFL (MFN) cell 
rs, Rr +Ks =Σcij

+ -Σcij
- where the quantities cij

+, cij 
- 

correspond to the relevant sum of  differences of 
basis related measures cij for that cell rs. (For 
those familiar with the “stepping stone” solution 
method of Charnes and Cooper 1961 these entries 
correspond to “stones” in the stepping stone path 
associated with cell rs) 
. 
Thus, for any MFL (MFN) cell rs Rr +Ks =Σcij

+ -
Σcij

- <0 (resp=0). If the MFL/MFN opportunity is 
exploited by setting xj-=xi

-=δ>0 and increasing the 
overall quantity shipped by δ ( as can always be 
arranged since a MFL/MFN solution is non 
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degenerate* by definition) then, together the 
above conditions give: 
 
     (Rr +Ks)δ = Σcij

+δ-Σcij
-δ  

                     = (ps -pr)δ<0  (resp=0) 
  so that, optimally: 
                pjδ = piδ   + Σc ij+ δ-Σc ij - δ  
 
It follows that, whether or not they are exploited, 
the conditions of the MFL (MFN) paradox may be 
consistent with conditions of spatial competition 
according to which, for each of the optimal set of 
shipments, marginal selling price is optimally 
equal to acquisition cost plus marginal shipping 
cost. In this case, even if a more for less (nothing) 
condition is exploited, incremental shipping cost 
reductions are exactly offset by a net contribution 
to expenditures on acquisition costs. 
 
More generally, examples exploiting the MFL 
paradox can correspond to circumstances with 
effective subsidies for incremental shipments 
and/or supernormal profits or net losses for 
additional quantities shipped. Consider an 
interpretation in which a shipper determines an 
initially optimal solution for a client that exhibits 
the MFL paradox for a certain non basic route rs.  
 
Assume that, by chance, the client wants an 
additional quantity δ shipped to destination s and 
will provide the increment to be shipped from 
origin r. Then, even if the shipper charges nothing 
for this additional shipment, if supply and market 
prices are as above, the shipper can make a 
superprofit of (ps-pr)δ and the client will 
effectively subsidize each additional unit supplied 
to s by an amount (ps - pr) and make an overall 
loss of (ps - pr)δ on the revised shipping plan.. 
(For more on the MFL/MFN paradox and its 
relation to issues of degeneracy and 
decomposability, as well as extensions to non-
linear cases see Ryan 1980, as well as our 
subsequent work in Charnes, Duffuaa, Ryan 1980, 

1987.)    
 
Apart from nonpreemptively framed distribution 
models and explicit treatments of MFL/MFN 
phenomena, the goal programming extension of 
the distribution model (X) can comprehend other 
types of network problems too. In distinction from 
others’ work it not only potentially explicitly 
incorporates market related supply and demand 
prices: it also incorporates all forms of inequality 
cases as well as the standard preemptively fixed 
equality form as particular kinds of special cases. 
This in turn points to further frame related issues 
and generalizations pertaining to further 
constraints on xi 

j-, xi
-, xj+, xi

+  in the non 
preemptive case and so points to further 
generalizations to incorporate particular kinds of 
relatively externally price as well as cost 
constrained capacitated network problems. From 
another direction the form of the constraints in 
(X) suggest interpretations of (X) (X)' as local 
linearizations of nonlinear supply and demand 
relations and/or to demand or supply target related 
taxes and subsidies. I consider both of these kinds 
of possibilities and interpretations in the context 
of intertemporal models in the next section. 
 
7. Nonpreemptive frames and intertemporal 
decisions 
 
First consider a nonpremptively framed general-
ization of the systems (VI),(VI)' as in (XI),(XI)'  
 
With ct

+=M, ct
-=0  (VI),(VI)' and (XI),(XI)' are 

equivalent. But the latter systems also include 
more general interpretations according to which ϕt 
are interpreted as optimally determined 
production costs and pt as market prices and ψt 
correspond to relative output taxes and subsidies 
in response, respectively, to over-shoots and 
undershoots relative to externally determined 
levels of output zt*. 

 
 
       MaximizeΣ(ptzt -ct

+zt
+- ct

-zt
-) - Σctxt - βy                                  Minimize Σϕtxt* + Σµty 

                            t                                               t                                                                                                    t                    t 

                       st    zt + zt
+ - zt 

-= zt*                                                      st    ϕt + ψt ≥ pt                     
                                    zt ≤ xt            (XI)                                                    ϕt ≤ ct + µt        (XI)'                                
             xt ≤ y                                                                  Σµt≤ β 
                                                                                                                      t  

                            zt,zt
+,zt

-,xt,y≥0                                                        µt,ϕt ≥0     -ct
-≤ ψt≤ ct

+   
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Alternatively zt

+, zt
- (ct

+,ct
-) may correspond to 

elements of a local  linearization of the demand 
relation and in that way act as if to correspond to a 
linearized form of Littlechild’s model. In either 
case such interpretations suggest further frame 
related constraints corresponding to ranges over 
which associated taxes/subsidies/relative prices 
will be applicable. 
 
Another direction for explicitly frame related 
extensions is one which explicitly incorporates 
price variations for elements of capacity, as well 
as for output: 

   
Max    Σ(ptzt -ct

+zt
+-ct

-zt
-) - Σctxt - βy -β+y+- β-y-

 

              t                                            t                                              

       st            zt + zt
+ - zt 

-= zt*                                                                  
                          zt ≤ xt                       (XII) 
                      xt ≤ y   
                       y+y+-y-=y*                                                                     
                      zt,zt

+,zt
-,xt,y≥0 

 
Each of these kinds of interpretations could be 
extended in turn to include multiperiod and 
uncertainty related cases of kinds considered by 
Littlechild in his original, but only implicitly 
framed, nonlinear programming formulations. 
(For more on these types of possibilities in the 
slightly different context of a collectively spatial 
and intertemporal decision-making framework see 
Ryan 1992.) 
 
8. Concluding remarks 
 
This paper has shown how, by making choices of 
frames explicit by means of appropriate pre-
emptive goal programming models the way can be 
opened directly and immediately to the 
formulation and analysis of more general 
nonpreemptively framed classes of multicriteria 
decisions. In particular using this approach the 
choice of frame and the marginal evaluation of 
frame related phenomena are endogenized and the  
 
way is opened directly to new means of modelling 
and analysing various kinds of frame related 
phenomena, including Allais’ paradox, the more 
for less paradox and production capacity 
determined peak load prices.   
 
 
 
 

References 
 
Allais M and O.Hagen, 1979, Eds, Expected Utility 
Hypotheses and the Allais Paradox, Dordrecht. 
Arsham H, 1992, “Postoptimality Analyses of the 
Transportation Problem. Journal of the Operational 
Research Society, 43: 121-139.   
Aumann R.J and Hart S, 1992, Handbook of Game 
Theory 
Charnes A., 1953, “Constrained Games and Linear 
Programming.” Proceedings of the National Academy 
of Sciences, July, 294-320. 
Charnes A and Cooper WW, 1961, Management 
Models and Industrial Applications of Linear 
Programming, Wiley. 
Charnes A, S.Duffuaa and M.Ryan, 1980, “Degeneracy 
and the More for Less Paradox” ,Journal of 
Information and Optimization Sciences, 1, 52-56. 
Charnes A, S.Duffuaa and M.Ryan, 1987, “The More 
for Less Paradox in Linear Programming.” European 
Journal of Operational Research, 34, 194-197. 
Charnes A and D.Klingman, 1971, “The “More for 
Less” Paradox in the Distribution Model”, Cahiers du 
Centre d’Etudes de recherche Operationelle, 13, 11-22 
Chew, S.H and W.Waller, 1986, “Empirical Tests of 
Weighted Utility Theory.” Journal of Mathematical 
Psychology, 30, 55-72. 
Hart S, 1992, “Games in Extensive and Strategic 
Forms.” In Aumann and Hart, 19-40.  
Hazell B.R.,1970 "Game Theory-An Extension of its 
Application to Farm Planning Under Uncertainty." 
Journal of Agricultural Economics, 21 239-252. 
Hey, J.D., 1993, Current Issues in Microeconomics, 
Macmillan. 
Kahnemann D. and A. Tversky, 1979, “Prospect 
Theory: An Analysis of Decision Under Risk.” 
Econometrica, 47, 263-291.  
Kawaguchi T. and Y.Muruyama, 1972, "General-ized 
Constrained Games in Farm Planning." American 
Journal of Agricultural Economics, 54, 591 602. 
MacCrimmon, K.R., 1968, “Descriptive and Normative 
Implications of the Decision Theory Postulates.” In 
C.H. Borch and J.Mossin eds Risk and Uncertainty, 
Macmillan.  
MacCrimmon, K.R. and S.Larsson, 1979, “Utility 
Theory: Axioms versus Paradoxes.” in Allais and 
Hagen 1979. 
McInerney, J.P., 1967, “Maximin Programming: An 
Approach to Farm Planning Under Uncertainty”, 
Journal of Agricultural Economics, 18, 279-289. 
Machina, M.J.., 1993,  “Choice Under Uncertainty: 
Problems Solved and Unsolved.” In Hey, 1993 
Owen, G., 1982, Game Theory, Academic Press. 
Ryan, M.J., 1980, “More on the More for Less Paradox 
in the Distribution Model” in A.V.Fiacco and 
K.Kortanek, eds, Extremal Methods and Systems 
Analysis, 275-303, Springer Verlag. 
Ryan M.J 1992, Contradiction Self Contradiction and 
Collective Choice, Avebury. 



 111 

Ryan M.J 1994, “Constrained Gaming Approaches to 
Production Decisionmaking Under Uncertainty.” 
European Journal of Operational Research, 77, 70-81. 
Ryan M.J 1995, “Purposive Contradiction, Intervening 
Duality and the Nature of Probability.” European 
Journal of Operational Research,  86, 366-373.  
Ryan M.J 1996, “Constrained Gaming Approaches to 
Representations and Resolut-ions of Allais’ 
Paradoxes.” Paper presented at the Xth Italian 
Congress on Game Theory, Bergamo, March. 
Shogan A.W 1988, Management Science, Prentice 
Hall. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Shubik M, 1982, Game Theory in the Social Sciences, 
MIT Press. 
Starmer C and R.Sugden, 1993, “Testing for 
Juxtaposition and Event-Splitting Effects.” Journal of 
Risk and Uncertainty, 6, 234-254. 
Turvey R 1969 Marginal Cost, Economic Journal, 79, 
no 314. 
Wang, J., 1988, The Theory of Games, Oxford 
Scientific Publications, OUP 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


