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                                      CHAPTER 1  

                          MORE FOR LESS AND MORE FOR NOTHING 

1. Introduction 

The More for Less Paradox was first analyzed in 
Charnes and Klingman 1971 and in Swarcz 1971 
with the context of the distribution (or 
transportation) problem of linear programming. 
In Ryan 1980 I extended this analysis to more for 
nothing cases and provided interpretations in 
relation to spatial competition and spatial 
monopoly and in Charnes et al 1987 we extended 
more for less (nothing) and degeneracy-
decomposability results to more general linear 
programming cases. 
  
More recent developments include those by 
Arsham 1992, Gupta and Puri 1995 and others 
who have investigated the more for less paradox 
in the distribution model using various forms of 
post optimality analysis (but without any 
reference to economic interpretations) and Ryan 
1998 with reference to economies of scale and 
scope and to contestability for nonlinear cases. 
 
In this chapter I build on that earlier work to 
obtain still more general more for less and more 
for nothing results and to show how these 
theorems can be applied to wide classes of 
economic problems, including individual and 
collective choice problems and exchange and 
trade related regulatory and bargaining problems. 
 
Among results following directly from these 
theorems are demonstrations of the potential 
Pareto superiority of conditions of exchange over 
conditions wholly or partly prohibiting exchange 
between individuals and the potential Pareto 
superiority of regulated over non regulated 
optima. 
 
2. Three general more for less results 
THEOREM 1 More for Less/Nothing 
     If an optimal solution exists for (I) then: 
        Min f(x)        =   z ≥ z'    =     Min f(x) 

         st  g(x) = b     (I)           st   g(x) - S =b  (Ia) 
                x≥0                                 x,S≥0  
 
 
 

PROOF   
Any optimal solution to (I) is a feasible 
solution for (Ia), but not conversely. Thus any 
optimal solution to (I) is feasible but not 
necessarily optimal for (Ia). So there may exist 
optimal solutions to (Ia) such that z'<z or z'=z 
with Si>0 at least one i. 

 
THEOREM 2 Less for More/Nothing 
      If an optimal solution exists for (II) then: 
           Max f(x)         =     z ≤ z'    =   Max f(x) 

          st  g(x) = b     (II)          st   g(x) + S =b    
(IIa) 
                x≥0                                    x, S≥0   
PROOF   
       Similar to Theorem 1. 
 
THEOREM 3 

With M arbitrarily large and if an optimal 
solution exists for (III) then: 

Max f(x)  -Ms+-Ms -  = z ≤ z' =Max f(x) -h+(s+) -h-

(s-) 
   st  g(x) + s+-s -= b   (III)     st   g(x) + s+-s- =b 
(IIIa) 
 x ,s+,s-≥0                             x, s+,s- ≥0  
PROOF   

An optimal solution to (III) is a feasible 
solution to (IIIa). But any optimal solution to 
(III) with all s+, s-=0 is a feasible but not 
necessarily an optimal solution to (IIIa). It 
follows that there may exist optimal solutions 
to (IIIa) such that z'>z or z'=z with si

+,si
->0 

some si
+,si

-. (Notice that if variables si
+,si

- 

appear in each of the  constraints i=1,2..m of 
(III) then there is always a feasible solution to 
that system.) 

REMARKS 
Theorems 1 and 2 first appeared in Ryan 1997. 
Theorem 3 includes Theorems 1 and 2 as 
special cases. 
 

3. Some special cases of theorems 1 and 2. 
 
3.1 LINEAR PROGRAMMING CASES 
Theorem 1 comprehends more for less (nothing) 
cases in the distribution problem viz: 
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THEOREM 1A More for Less (Nothing) in the 
 Distribution Problem 

If an optimal solution exists for (IV) then: 
 Min Σcijxij         =  z ≥ z'   =   MinΣcjxj 

    st  Σxij = ai    (IV)           st  Σxij -Si= ai      (IVa) 
         Σxij = bj                          Σxij -Sj = bj 
         Σai=Σbj,  

      xij≥0            Σ(ai+Si)=Σ(bj+Sj), xj, Si ,Sj ≥0  
 
PROOF 
        As for Theorem 1. 
 
As another class of special cases Theorems 1 and 
2 comprehend more for less and more for nothing 
cases in linear programming. Specifically, with 
both a linear objective and linear constraints 
Theorem 1 becomes: 
 
THEOREM 1B More for Less/Nothing in 
Linear Programming 

If an optimal solution exists for (V) then: 
    Min Σcjxj =       z ≥ z'     =     MinΣcjx 

   st  Σaijxj = bi  (V)         st  Σaijxj - Si =bi     (Va) 
    xj≥0                                xj, Si≥0  

 
PROOF   
    As for theorem 1.  
  
This is a simplified variant of the result in Charnes 
et al 1987. A similar less for more (nothing) result 
follows from a linear specialization of Theorem 2. 
 
3.2 Goal programming cases 

If f(x), g(x) are linear and h+(s+)=defh+s+, h-(s-

)=defh-s- then (III) and (IIIa) respectively take on 
the form of preemptive and nonpreemptive goal 
programming specifications for the linear case. 
(See Charnes and Cooper 1961.) If f(x), g(x) are 
nonlinear and h+(s+), h-(s-) are nonlinear 
(III),(IIIa) take on interpretations as 
correspondingly nonlinear extensions of goal 
programming formulations of that more standard 
linear type. 
 
3.3. Nonlinear programming cases 

With f(x) concave and g(x) convex, h-(s-) 
arbitrarily large and h+(s+)=def0, (IIIa) becomes 
isomorphic with (IIa) and takes the form of a 
concave program of the standard maximization 
type. Similarly, with f(x) concave and g(x) 
convex, h-(s-)=def0, h+(s+) arbitrarily large and 
f(x)=def -f(x), (IIIa) becomes isomorphic with (Ia) 

and takes on the form of a concave program of 
the standard minimization type. So, with these 
interpretations (IIIa) includes both standard 
concave programming maximization and concave 
programming minimization cases as special cases 
of a more general nonlinear goal programming 
formulation. 
 
3.4 Neoclassical constrained maximization cases 

With f(x) concave and g(x) convex, program (I) 
becomes isomorphic with the specifications of 
budget constrained and cost constrained 
optimization models for individuals and firms in 
standard neoclassical microeconomic analyses.  
 
REMARK 

Theorem 1 can be seen as interrelating standard 
neoclassical and standard nonlinear programming 
formulations of minimizing constrained choice 
models, and Theorem 2 as formally interrelating 
standard neoclassical and standard nonlinear 
programming formulations of constrained choice 
maximizing models. With that context Theorem 3 
can be seen as potentially interrelating neoclassical 
cases (via (III)) and nonlinear programming cases 
(via (IIIa)) in general. 

 
3.5 More general cases 

While Theorems 1,2 and 3 comprehend linear 
programming, nonlinear programming and neocl-
assical optimisation cases as three classes of 
special cases, they include other cases too. In 
particular there is no requirement of continuity or 
of differen-tiability for f(x), g(x), h+(s+), h-(s-). 
Nor is there any requirement of connectedness for 
constraint sets (opportunity sets) in programs 
(III),(IIIa). The only prerequisite of these 
theorems is that of feasibility. This requirement is 
very weak: in the context of the modelling of 
economic decisions and associated phenomena it 
might be interpreted loosely as an assumption of 
empirical plausibility. (Such an assumption is 
arguably an essential requirement for any theory 
intended to model and predict empirical 
phenomena. In that sense arguably the 
prerequisite of feasibility in the preceding 
theorems corresponds more to a preemptive 
objective of the formulation of these theorems 
than to a restrictive constraint on their 
applicability.)  
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4. Some economic applications and 
 interpretations of Theorems 1 and 2 
 
4.1 The distribution model 
 
Charnes and Klingman’s verbal statement of their 
more for less theorem, (which is equivalent in its 
effect to Theorem 1A above) indicates one class 
of examples, viz: 

Given a non degenerate optimal solution to (IV) 
it is possible to ship more total product at less 
total cost while shipping at least as much from 
each origin and to each destination if and only if 
Ri+Kj<0 for some non basic route ij.   (Charnes 
and Klingman 1971.)  
 
[Ri,Kj are the dual variables associated with (IV).] 

  
Other instances include labour market related 
examples where supplies ai and demands bj in 
(IV), (IVa) refer to availabilities and requirements 
for various kinds of skilled workers and costs cij 
refer to retraining costs. In that instance the more 
for less paradox takes on the interpretation that in 
certain circumstances more workers may be 
retrained while overall retraining costs are 
reduced (resp unchanged). For more on this type 
of example see Ryan 1997. 
 
4.2 Linear programming cases 

An example here is the well known diet problem. 
With that context (V) takes on the interpretation 
of the minimization of the cost of meeting 
specified minimum dietary requirements bi where 
aij are unit outputs of diet characteristics per unit 
input of food j. The more for less (nothing) 
possibility presented by program (Va) in 
Theorem 1B then states that in certain 
circumstances it may be cheaper (as cheap) to 
provide a diet exceeding minimal daily 
requirements as to provide a diet exactly meeting 
those requirements. (For more on this case see 
Charnes, Duffuaa, Ryan 1987.) 
 
4.3 Nonlinear programming cases 
 
Examples here include those in which f(x) 
corresponds to an individual preference relation 
and b to endowments to that individual, or in 
which f(x) corresponds to a measure of corporate 
performance (e.g. profit or sales revenue) and b 
refers to constraints on available inputs. 
In the nonlinear programming case the scarcity 
(or otherwise) of endowments of inputs bi is 

endogenous. In particular there is no implicit 
requirement that all available resources be used in 
every period. For example, due to seasnmlity of 
productivity and/or of demand, a farmer would in 
general not use all his/her time and resources for 
farm related purposes in every period. Or, a firm 
(such as an electricity generator) subject to 
variable demands on its capacity over time, 
would in general not optimally use all of its  
available capacity in every time period. 
 
4.4 Neoclassical economic cases 

Here problems are of the form (see for example 
Samuelson 1948): 
                              Max f(x)                                 
                              st g(x)=b              (VI) 
                                   x≥0 
  
Examples are those in which f(x) represents an 
individual preference relation and g(x)=b an 
individual budget constraint, or in which f(x) 
represents a firm’s production function and 
g(x)=b that firm’s cost equation. In distinction 
from the nonlinear programming formulations in 
subsection 4.3 such formulations implicitly 
assume given scarcity and given and efficient 
production and consumption processes too. That 
is: in (VI) there is neither endogenous choice of 
optimal production opportunity sets by producers, 
nor of consumption opportunity sets by 
consumers.  
 
Neoclassical models of type (VI) implicitly 
assume nonsatiety and optimally determined 
conditions of factor scarcity and associated factor 
opportunity costs. They typically take the form of 
partial equilibrium models with exogenous prices 
together with implicit assumptions of full 
utilization of resources and/or of budget or cost 
constraints. In both production and consumption 
contexts such assumptions are typically 
associated with an assumption that firms and 
individuals will optimally accommodate 
themselves to stationary state conditions in “the 
long run”. This is despite the fact that in reality 
supply and demand for many commodities 
including electricity and gas, for agricultural 
crops and for vacation related services, are 
cyclical so that non full utilization of these and 
other types of production capacity can be optimal 
at certain periods even in the long run. 
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4.5 Ambiguous cases 

A nonlinear extension of the distribution model  
provides an example here. Consider the nonlinear 
distribution model (VII) below:  
             Max z1=f1(x1)+f2(x2) 
             - c11x11- c12x12- c21x21- c22x22- c1Δa1- c2Δa2 
          st             x11 + x21 =x1 
                         x12 + x22 =x2                        (VII)  
                    x11 + x12 =a1+Δa1 
                    x21 + x22 =a2+Δa2 
               Σxj=Σai+Δai, xij≥0xj,xij ≥0    
  
Clearly a feasible solution exists to (VII). 
(Consider x1=x11=a1, x2=x22=a2.) Further, if c1 and 
c2 are arbitrarily large (VII) becomes a special 
case of (III), whereas if c1 and c2 are not 
arbitrarily large, then (VII) becomes a special 
case of (IIIa) and the more for less (nothing) 
Theorem 2 applies. To see this, assume that the 
f(x) in (VII) refer to demand relations at markets 
j, ai+Δai refer to supplies at factories i, cij refer to 
potential unit costs of shipments from factories i 
to markets j and ci refer to incremental costs of 
production at factory i. Assume finally that 
initially ci are arbitrarily large. Then in general 
the optimal shipping pattern will either be to ship 
commodities exclusively to local destinations or 
the optimal path will be associated with a “cross 
country” shipment. 
  
In a two origin, two destination example, unless 
cross-country shipments are prohibitively 
expensive, an optimum will generally correspond 
to a pattern with two locally positive shipments 
and one cross-country shipment. (Exceptionally it 
may be optimal not to ship to a local market, 
and/or not to make any cross-country shipments. 
But in every case, due to the logical requirement 
that shipments be from relatively lower cost to 
relatively higher cost areas an optimum will never 
connect both markets to both factories.) 
 
Now consider a case in which initially arbitrarily 
large costs ci of incremental outputs Δai are red-
uced. If they are reduced sufficiently, more sales 
may be made. That is: more total output may be 
shipped in such a way that marginal returns 
equals or exceeds the marginal shipment costs of 
the additional quantities shipped. As a class of 
special more for less (nothing) cases 
circumstances may be such that additional 
shipments actually reduce total costs by replacing 
cross country shipments with relatively lower 

cost local shipments. (For more on this see Ryan 
1997 on the MFL/MFN paradox in relation to 
economies of scale and scope.) 
 
5.Further economic interpretations  
   of Theorem 3    
 
5.1 An exchange related example 

THEOREM 3A Weak Preference for Gifts or 
 Barter 

If a feasible solution exists to (VIII), then:  
 z1 =  Max  θ1U1(x11, x12 ,x21, x22)+ 
         θ2U2(x21, x22 ,x11, x12)- MΣxj

ri - MΣxj
ir 

             st     xij  + xj
ri- xj

ir = xij*      i≠r    (VIII) 
                   xij,xj

ri,xj
ir ≥0 

                                  ≤     
z1' = Max  θ1U1(x11, x12 ,x21, x22)+ 
          θ2U2(x21, x22 ,x11, x12)- Σcj

rixj
ri-Σcj

irxj
ir 

            st     xij  + xj
ri- xj

ir = xij*       i≠r   (VIIIa) 
                        xij,xj

ri,xj
ir ≥0 

PROOF  
 Analogous to that for Theorem 3. 
  
Now interpret (VIII),(VIIIa) as referring to a two 
individual, two commodity case in which θi are 
system parameters, Ui(xij) represent preferences 
of individuals i=1,2 over their own and the 
other’s endowments of two commodities j=1,2, 
xij* are initial endowments of commodities j to 
individuals i and xj

ri r,i=1,2 are shipments of 
commodities j from individual r to individual i. 
Then (VIII),(VIIIa) determine preference 
maximizing allocations to individuals r,i such that 
gifts and/or exchanges are never preferred (via 
VIII) and potentially preferred (via (VIIIa)) to 
exclusive consumption of their own endowments 
by the individuals concerned. 
 
With these interpretations, if cj

ri,cj
ir are 

preemptively large, (VIII) and (VIIIa) become 
equivalent. Conversely, if some or all cj

ri,cj
ir are 

non preemptive, there is potential for individual 
and/or mutual gains stemming from solutions 
with xj

ri>0,xj
ir>0 at an optimum to (VIIIa) vis a 

vis xj
ri=xj

ir=0 in (VIII). Such less for more 
solutions via (VIIIa) are open to interpretation as 
reflecting altruistic gift related behaviours (in 
which individuals act as if preferring less to self 
in order to potentiate more for another) and, if 
reciprocated, to mutually beneficially oriented 
processes of exchange. This result is very general. 
No assumptions have been made in Theorems 3 
or Theorem 3A concerning continuity or differen-
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tiability for Ui(xij), or connectedness or otherwise 
of the constraint sets. (Indeed disjoint “no gift 
/exchange” objectives and constraints are 
potentially consistent with optimal solutions to 
both problems.)  
 
5.2. Pareto improvements and gains from 
 exchange 
 
Assume that U1*( ),U2*( ) are consistent with 
optimal solutions to (VIII) with xj

rs=0 all r,s. Then 
a refinement of the conditions of Theorem 3A 
applies as follows: 
 
THEOREM 3B Weak Pareto Preference for 
Gifts or Barter 

If an optimal solution exists to (VIII) with U1( 
)= U1*( ), U2( )=U2*( ) then:  
            z1 =  Max  θ1U1(x11, x12 ,x21, x22)+ 
              θ2U2(x21, x22 ,x11, x12)- MΣxj

ri - MΣxj
ir 

          st     xij  + xj
ri- xj

ir = xij*        i≠r   (VIII) 
                      xij,xj

ri,xj
ir ≥0 

                                     ≤ 
      z1' = Max  θ1U1(x11, x12 ,x21, x22)+ 
   θ2U2(x21, x22 ,x11, x12)- Σcj

rixj
ri  - Σcj

irxj
ir 

          st       xij  + xj
ri- xj

ir = xij*     i≠r  (VIIIwp) 
                           xij,xj

ri,xj
ir ≥0 

                 U1( )≥U1*( ), U2( )≥U2*( ) 
 
PROOF   
      Analogous to that for Theorem 3. 
 
COROLLARY 

Since zero gift and zero exchange solutions 
are feasible for (VIII) and (VIIIwp) given the 
(weak) conditions of Theorem 3B, in general 
gifts or exchanges will be (weakly) Pareto 
preferable to no gifts or exchanges. 

 
 
 
5.3 Gains from exchange and regulation 

THEOREM 3C Weakly preferred regulation 
If an optimal solution exists to (IX) with  
U1( )=U1*( ), U2( )=U2*( ), then:  

z1=Max θ1U1(x11,x12,x21,x22)+θ2U2(x21,x22,x11,x12)-  
                    ΣMxij

+-ΣMxij
- -MΣxj

ri- MΣxj
ir 

             st       xij  + xj
ri- xj

ir = xij*              (IX) 
                       xij  + xij

+- xij
- = xij** 

                xij, xj
ri,xj

ir xij
+,xij

- ≥0    i≠r 
                                 ≤    

 

 z1'=Max θ1U1(x11,x12,x21,x22)+θ2U2(x21,x22,x11,x12)- 
                   Σcij

+xij
+-Σcij

-xij
- - Σcj

rixj
ri - Σcj

irxj
ir 

              st       xij  + xj
ri- xj

ir = xij*              (IXa) 
                       xij  + xij

+- xij
- = xij** 

                xij, xj
ri,xj

ir xij
+,xij

- ≥0    i≠r 
                    U1( )≥U1*( ), U2( )≥U2*( ) 

PROOF   
 Analogous to Theorem 3. 
 
REMARK 

(IXa) allows regulation in markets i via goal 
related penalties cij

+,cij
- and/or via potential 

entries xj
ri of commodities from markets r, 

where i≠r. 
 
COROLLARIES 
• With cij

+,cij
- interpreted as goal related 

penalties and xj
ri as potential entries from 

spatially distinct markets r, Theorem 3C 
implies that regulated exchanges between 
individuals will be at least as preferable as 
preemptively prohibited exchanges. 

• Theorem 3C contains Theorem 3B as a class 
of no externality special cases for which 
conditions obtain as if xij

*=xij
** and specific 

distinctions between consumption related 
goals and exchange related goals are 
redundant. Conversely Theorem 3C implies 
that only exceptionally will a socially 
preferred state be such that there will be no 
explicit regulation and no gift, theft or other 
exchange related externalities. 

 
5.4 More general exchange related  examples 

Consider a result which extends Theorem 3C to 
comprehend production by interpreting xij* as 
initial endowments of resources j (e.g. of time 
and of raw materials) to individuals i, which are 
then used to produce quantities yik of outputs k by 
means of production relations gk(xijk): 
 
THEOREM 3D 

If an optimal solution exists to (X) with U1( ) 
=U1*( ), U2( )=U2*( ), then:  
 
 Max  θ1U1(y1k, y2k, x1j ,x2j)+ 
    θ2U2(y1k, y2k, x1j ,x2j)-MΣxj

rs- MΣxj
ir 

    st       Σxijk  + xj
ri- xj

ir = xij*           i≠r 
          y1k + y2k ≤gk(xijk)             (X) 
          yik ,xij,xj

ri,xj
ir ≥0 

                     =z1 ≤ z1'=   
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Max  θ1U1(y1k, y2k, x1j ,x2j)+ 
  θ2U2(y1k, y2k, x1j ,x2j) -Σcj

rixj
ri - Σcj

irxj
ir 

     st        Σxijk + xj
ri- xj

ir = xij*            i≠r 
                 y1k + y2k ≤gk(xijk)              (Xa) 
                 yik ,xij,xj

ri,xj
ir ≥0 

          U1( )≥U1*( ), U2( )≥U2*( ) 
PROOF   
      Analogous to that for Theorem 3. 
 
REMARKS 
• Theorems 3C and 3D can be related variously to 

gifts or exchanges between nations as well as 
between individuals i,r and/or to economies of 
scale and of scope relating to exchanges stemming 
respectively from increased production and from 
previously unattainable connections between 
markets. 

• Neither in Theorem 3C nor in Theorem 3D need 
exchanges be optimally “balanced”. In particular 
optimal solutions may correspond to gifts from i to 
r without reciprocation from r to i. It follows that 
conditions xj

ir>0, i≠r some j may optimally obtain 
simultaneously with xj

ri=0 all j. 
• The exchange related systems (IX),(IXa) and 

(X),(Xa) can be used to model conditions of duress 
(via preemptive magnitudes M in (IX),(X)), as well 
as goal related extensions of (Xa) with potentially 
socially determined penalties or inducements 
(taxes or subsidies) cij

+,cij
-. 

 
6. Conclusion 

In this chapter I have focused on the 
establishment of more for less and more for 
nothing results and exchange related interpret-
ations of them. Subsequent chapters will use 
these and other exchange and regulation related 
results to focus more narrowly on specific types 
of applications. These further applications might 
include applications to trade theory and 
comparative advantage and applications yielding 
new kinds of potentially Pareto improving yet 
regulated processes of exchange between 
individuals. 
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