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                                                 CHAPTER 9 
 
        INTERVENING DUALITY BASED ANALYSES OF NONCONSTANT    
                                             SUM BIMATRIX GAMES 
 
 
1. Introduction 
 
I introduced the intervening duality idea in Ryan 
1995 with a context of two person constant sum 
coin tossing games. After briefly reviewing that 
paper in Section 2, I extend it to the Prisoner’s 
Dilemma and Cournot, Stackelberg and collusion 
classes of non-constant sum duopoly games in 
Sections 3 and 4. Then, in Section 5, I use 
strategic equivalence to extend these respectively 
constant sum and symmetric nonconstant sum 
character-izations and analyses to wider classes of 
duopoly related nonconstant sum bimatrix games. 
 
In every case, and in distinction from more 
standard treatments, such as recent work by 
Cooper et al 1996, Hoekstra 1995 or Daniel 1994 
for the prisoner’s dilemma, the focus on 
intervening duality in this paper provides a means 
of explicitly modelling cooperative or 
noncooperative inter-actions between players. The 
intervening duality idea augments and enriches 
existing results and generates new ones by 
explicitly modelling essentially subjective 
processes of interaction between players and 
games by considering each player as if each 
choosing to make themselves dual to one of the 
duals of an intervening bimatrix game.  
 
While the treatment in this paper concentrates on 
pure strategy cases the way is open for mixed 
strategy extensions in future work. 
 
2. Intervening duality 
 
The two person matching pennies game is well 
known (see Shubik 1982, Wang 1988). But 
nevertheless it has been interpreted in two quite 
distinct ways: as a game against nature and; as a 
game between two distinct and dually 
interrelating persons. In either case, with 
contingent payoffs as in Table 1, and assuming for 
simplicity that maximin/minimax behaviours are 
appropriate, the problems for the two players are 
implicitly assumed to be associated with 

interrelating dual programs as in (I),(I)': 
 
                                    H   T 
                               H   1  -1 
                               T  -1    1 
 
                               Table 1 
 
Max   ρ  - Mp+-Mp-             Min  µ +Mq+ + Mq- 
st     ∑ πjk pj ≥ ρ                         st   ∑πjkqk≤µ     
      jεJ                                            kεK                
        ∑p+p+-p-=1    (I)           ∑q+q+-q- =1     (I)' 
      jεJ                                  kεK  
         -M≤ρ ≤ M                       -M ≤ µ≤M 
          p,p+, p- ≥0                          q,q+, q- ≥0 
 
As in Ryan 1995, (I),(I)' explicitly introduce 
preemptive frames via arbitrarily large weights M 
associated with any deviations p+,p-,q+,q-. In this if 
such solutions are feasible, optima will be 
restricted to subsets jεJ and kεK. (For ease of 
exposition I will assume throughout the next three 
sections that solutions jεJ,kεK within the relevant 
preemptive frames are not only feasible but 
optimal.)  
  
With payoffs as in Table 1, optimal solutions to 
(I),(I)' yield ρ=µ=0 with p1=p2=1/2 and q1=q2=1/2. 
This “fair” equiprobable outcome may seem 
unsurprising. But it arises from the nature of the 
contingent payoffs in Table 1, and not from any 
prior information or beliefs concerning contingent 
probabilities. If indeed Player 1 had such prior 
knowledge or beliefs, (I),(I)' would properly be 
modified to take this into account via a 
constrained game specification such as (II),(II)' 
below which introduces prior probabilities qk* 
and associated dual variables Rk as follows. 
(Constrained games were first introduced by 
Charnes 1953, see also Owen 1982 and Ryan 
1994, where I considered strict and weak 
probability examples too). 
In (II) the quantities Rk may take on a variety of 
interpretations at an optimum, including 
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interpretations as evaluators of prior information 
and/or interpretations in relation to relative bias, 
as well as in relation to prior/posterior 
distinctions. Notice that in each of these 
connections nature is essentially benevolent 
insofar as it potentially rewards prior information 
in this way. (By the principle of optimality (II)', 
being at least as tightly constrained as (I)', yields 
at least as high an overall solution.) 
 
Now reconsider the two different matching 
pennies related interpretations referred to above. 
In the first nature has a distinct problem (problem 
(I)' or (II)'), whereas, if (I),(I)' or (II),(II)' are 

interpreted as a game between two persons, each 
of problem represents a person and there is no 
distinct problem for a player as nature. This 
observation immediately prompts the intervening 
duality idea. According to it the two person 
matching pennies interpretation is specified by 
setting one individual as dual to the coin and the 
other as dual to the dual of the (thereby 
intervening) coin. If, further, each individual 
imputes prior beliefs to such intervening duals via 
additional constraints relating to prior beliefs p’j

* 

and q’k
* respectively, the overall specification 

extends to include (III) and (III)': 

  
 
Max   ρ  +ΣRkq’k

*- Mp+-Mp-                                           Min  µ‘ +Mq+' + Mq-' + M2 Σ( qk
+' + qk

-') 
    st    1p1 -1p2  -  R1 ≥ ρ                                                              st    1q1' -1q2'  ≤µ‘     
         -1p1 +1p2  -  R2 ≥ ρ       (II)                                                      -1q1' +1q2'  ≤µ‘                   (II)' 
            p1 +p2 +p+-p-=1                                                                   q1' +q2' +q'+-q'- =1        
            -M2≤Rk≤ M2                                                                        qk'+qk

+'-qk
-'= qk'*     

             -M≤ρ ≤ M                                                                            -M ≤µ'≤M 
    pj,p+,p- ≥0                                                                          qk',qk

+',qk
-' ≥0 

 
Max  µ  +ΣSjp’j

*- Mq+-Mq-                                            Min ρ' -Mp+' - Mp-'- M2 Σ( pj
+' + pj

-') 
    st    1q1 -1q2  -   S1 ≥ µ                                                              st   1p1' -1p2'  ≤ρ'     
         -1q1 +1q2  -  S2 ≥µ          (III)                                                   -1p1'+1p2'   ≤ρ'                  (III)' 
            q1 +q2 +q+-q-=1                                                                    p1' +p2' +p+'-p-'=1        
              -M2≤Sj≤ M2                                                                        pj' +pj

+'-pj
-' = pk'*     

               -M≤µ≤ M                                                                             -M ≤ρ≤M 
      q,q+,q- ≥0                                                                            pj',pj

+,pj
- ≥0 

 
 
By construction (II),(II)' and (III),(III)' each 
potent-ally constitute an independently dually 
optimal pair of linear programs. But, when viewed 
in the more general intervening duality context, 
the system (II),(II)',(III),(III)' includes other 
possibilities.  
 
First (II)',(III)' are potentially dually optimal to 
each other. Specifically, for the coin tossing case 
with p1=p2=1/2 and q1=q2=1/2, the additional 
constraints in (II)',(III)' are as if redundant and 
these two programmes constitute mutually dual 
solutions. Second, (II),(III) are potentially dual to 
each other. Indeed they are consistent not just 
with optimal solutions p1=p2=1/2, R1=R2=0, 
ρ=0=µ, q1=q2=1/2, S1=S2=0, but with p1=p2=1/2, 
R1=1,R2= -1, ρ=0=µ, q1=q2=1/2, S1= -1,S2=1. 
Together these various potential dualities provide 

the basis for  rationalization of a “fair” coin 
tossing game as follows:  

Two players each independently and freely accept: 
i) an agreed payoff matrix (as in Table 1); ii)an 
agreed frame (via preemptive weights to restrict 
contingent payoffs to sets jεJ, kεK respectively); 
and iii) agreed prior probabilities (agreement that 
the coin in question is unbiased relative to the 
system). From this specification it follows that 
(II)',(III)' are conditionally dual with that condition 
being in effect that, both relative to the system and 
relative to players 1 and 2, R1=R2=S1=S2=0. 
  
Given this specification, via potential dualities of 
(II),(II)' and (III),(III)', either or both of the players 
may act as if potentially to generate contingent 
gains relative to such an ostensibly “fair” prior 
specification. Without loss of generality player 1 
may perceive net advantage in backing  heads, and 
player 2 in backing tails  with relatively private 
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evaluations as if respectively R1=1,R2= -1, S1= -
1,S2=1. 

 
Notice that a sequence of such interrelationships 
and solutions would be consistent with each class 
of interpretations in relation to the variables Rk,Sj 
referred to above. E.g. for player 1 R1=1,R2= -1 
have interpretations both in relation to prior 
information or beliefs qk

* concerning probabilities 
of the two potential outcomes relative to the 
system and concerning relatively prior/posterior 
interpretations. A third class of interpretations in 
relation to relative bias becomes clearer if it is 
noted that, as specified, systems (II)',(III)' are 
degenerate (see Charnes 1951), and that partial 
regularizations to resolve such degeneracies are 
potentially consistent with interpretations in 
relation to relatively favourable or unfavourable 
bias.  
  
For example: the degeneracy of (II)' for values 
q1=1/2,q2=1/2 is removed if these right hand sides 
are perturbed to give q1=1/2+∈,q2=1/2-∈. In that 
case the objective of the relatively dual 
programme (II) potentially yields a relative gain, 
or, equiv-alently, a measure of relative bias of 
(R1-R2)∈ relative to the first player. Similar 
developments and interpretations apply, via S1,S2, 
to (III),(III)' and player 2.   
   
The specification (II),(II)',(III),(III)' also yields 
contingent duality between (II),(III). In context it 
is consistent with a coin tossing story as follows: 
  
Via (II),(III)  and R1=1,R2=-1,S1 = -1,S2=1,  two 
individuals discover that they have opposite prior 
beliefs concerning heads and tails probabilities 
qk

*,pj
*. They perceive that, via corresponding 

quantities Rk,Sj, there is an opportunity for each to 
gain relative to the relatively neutral intervening 
specification (II)',(III)'. 
  
For more on coin related intervening duality 
specifications again see Ryan 1995. Here I extend 
the intervening duality idea to non constant sum 
cases, first with symmetric payoffs, as in the 
Prisoners Dilemma, and then by considering more 
general classes of non symmetric nonconstant 
sum cases. 
 
 
 

3. Intervening duality and the prisoners 
 dilemma 
 
The Prisoner’s Dilemma game is well known (see 
Cooper 1996, Daniel and Arce 1994, Hoekstra 
1995, Moyer and McGuigan 1993). It can be 
summarized briefly as: A crime has been 
committed. Two suspects have been apprehended 
and must choose whether or not to confess to it 
with the knowledge that their contingent 
sentences (in years) would be as in Table 2 (taken 
from McGuigan and Moyer p477):                                         
 
                                        SUSPECT 1 
                                   Confess    Dont Confess 
            Confess              6,6              0,15  
SUSPECT 2   
            Dont Confess   15,0               1,1 
                             Table 2 
 
Clearly this game is not constant sum. Clearly, 
too, there are incentives to cooperate. Finally, 
when considered as a non repeated game, the 
prisoner’s dilemma game is naturally analyzed 
solely with reference to pure strategy (either 
confess or dont confess) outcomes and in general 
players’ decisions will depend on how, if at all, 
information is made available to each concerning 
the other’s decision. (I will consider mixed 
strategies in Section 5.) Now distinguish 
interactive from noninteractive and cooperative 
from noncooperative cases and consider links to 
the intervening duality idea in stages as follows:  
 
STAGE 1 As if noncooperative and non-inter-
active cases. Assume that Suspect 1 seeks to 
minimize his/her maximum potential sentence in 
response to the explicit imputation of probabilities 
qk'* to the second suspect’s confess/dont confess 
strategies in (IV), (IV)' below.  If : 

i)q1'=1,q2'=0, µ'=0 in (IV)' this is consistent 
with an optimal solution to (IV) with 
p1=0,p2=1, ρ=0,R1=0,R2=-1; 
ii)q1'=0,q2'=1,µ '=1 in (IV)' this is consistent 
with an optimal solution to (IV) with  
p1=0,p2=1, ρ=1,R1=0,R2=0. 
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Min   ρ  +ΣRjqj'*- Mp+-Mp-                                               Max  µ' -Mq+' - Mq-'- M2 Σ( qj
+' + qj

-') 
    st    6p1 +0p2  -  R1  ≤ ρ                                                            st     6q1' +15q2' ≥µ'     
         15p1 +1p2  - R2  ≤ ρ       (IV)                                                     0q1' + 1q2'   ≥µ'            (IV)' 
           p1 +p2 +p+-p-=1                                                                     q1' +q2' +q+'-q-'=1        
          -M2≤Rk≤ M2                                                                          qk'+qk

+'-qk
-'   =qk'*     

            -M≤ρ ≤ M                                                                              -M ≤ µ'≤M 
 pj,pj

+, pj
- ≥0                                                                       qk', q+',q-',qk

+',qk
-' ≥0 

 

Solutions i,ii) reflect the strategically dominant 
character of dont confess over confess strategies for 
player 1. (In i)R2=-1 is a also a measure of 
contingent value of prior dont confess information 

relative to Player 2.) Analogous specifications 
(V),(V)' for player 2 lead to analogous conclusions 
as follows: 

 
Min   µ  +ΣSjpj'*- Mq+-Mq-                                              Max  ρ' -Mp+' - Mp-'- M2 Σ( pj

+' + pj
-') 

    st    6q1 +0q2  - S1 ≤µ                                                                st   6p1' + 15p2'  ≥ρ'     
          15q1 +1q2  -   S2 ≤ µ       (V)                                                     0p1' + 1p2'  ≥ρ'            (V)' 
           q1 +q2 +q+-q-=1                                                                     p1' +p2' +p+'-p-'=1        
          -M2≤Sj≤ M2                                                                             pj'+pj

+'-pj
-'= pk'*     

          -M ≤µ ≤ M                                                                              -M ≤ ρ'≤M 
           qk,qk

+, qk
- ≥0                                                                      pj', p+', p-' ,pj

+', pj
-' ≥0 

 
 

If: 
i) p1'=1,p2'=0,ρ'=0 in (V) ' this is consistent 
with an optimal solution to (V) with  
q1=1,q2=0, µ=0, S1=0,S2=-1; ii)p1'=0, p2'=1, 
ρ'=1 in (V)' this is consistent with an optimal 
solution to (V) with q1=1,q2=0, µ=1,S1=0, 
S2=0. 

 
Again these solutions reflect the strategically 
dominant character of dont confess over confess 
strategies. 
 
STAGE 2. Interactive cases. In fact (IV),(IV)' and 
(V),(V)' will interact if only because strategic 
decisions by one player will have implications for 
the payoffs of the other. An optimal solution to 
(V)' corresponds both to a prediction on the part 
of player 2 of choices of nature relative to player 
2 and, by complem-entary slackness, of strategies 
and payoffs for player 1. If correct the latter 
prediction would yield conclusions consistent 
with optimal solutions to (IV). Similar 
considerations apply to (IV)' and player 1 vis a vis 
player 2.  

 
There are three classes of interactive equilibria 
/disequilibria which correspond to the three 

different kinds of cells (1,1),{(0,15),(15,0)} and 
(6,6) in Table 2 as follows: 
 
2A. Cooperative interactive equilibria. If 
p1'=p1=0,p2'=p2=1 the unique optimum for (V)' 
with ρ'=1 is perfectly predictive of a 
cooperatively interactive optimum with ρ=1, 
R1=0, R2=0 in (IV). This optimum is in turn 
perfectly predictive of an optimum (IV)' its dual, 
for which µ'=1,q1'=0,q2'=1. But, with these values 
and conditions perfectly predict-ively q1'=q1=1 
,q1'=q2=0, the correspond-ingly unique optimum 
to (IV)' with µ'=1 is perfectly predictive of (V) 
with µ=1,S1=0,S2=0 and thence of (V)' its dual. 
That in turn is perfectly predictive of the initial 
optimum to (IV). This sequence is not only 
essentially cooperative in the sense that it 
maximizes contingently individual and thence 
collective rewards, (with R1=0,R2=0,S1=0, S2=0), 
it also yields overall equilibria in the sense that 
each player’s actions and reactions are as if 
perfectly predictive of the other’s. 
 
2B. Type 1 Non cooperative interactive dis-
equilibria. If p1'=p1=1,p2'=p2=0 the unique 
optimum to (V)' with ρ‘=0, is perfectly predict-ive 
of a noncooperatively interactively optimum to 
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(IV) with ρ=0,R1=0,R2=0. This in turn is perfectly 
predictive of an interactive optimum to (IV)’, its 
dual, with µ'=0, q1'=1, q2'=0. But, with these 
values, and conditions q1'=q1=1, q2'=q2=0, this is 
predictive of a noninteractively optimum to (V) 
with µ=0, S1=0,S2= -15 (if q2*=1) and thence of 
(V)' its dual with p1'=0,p2'=1 and ρ'=0. 
But these latter predictions (p1'=0,p2'=1) for player 
2 relative to player 2 are inconsistent with the 
initial predictions (p1'=1,p2'=0) by player 1 
relative to player 2 and, by contrast with 2A and 
Type 1 equilibria, this sequence corresponds to an 

overall diseqilibrium corresponding to cell (0,15) 
in Table 2. [A similar argument starts with 
q1'=q1=1,q2'=q2=0 and an optimum to (IV)' and 
leads to an overall disequil-ibrium corresponding 
to cell (15,0) in Table 2.] 
 
2C Type 2 Noncooperative interactive dis-
equilibria. This is a class of cases for which 
players seek to predict outcomes by reference to 
the other’s contingent payoff matrices, ie to 
predict each others’ decisions as if via an 
intervening duality framework as follows:

 
Min   ρ  +ΣRjqj'*- Mp+-Mp-                                                     Max  µ' -Mq+' - Mq-'- M2 Σ( qj

+' + qj
-') 

    st    6p1 +15p2  -  R1  ≤ ρ                                                                  st   6q1' + 0q2' ≥µ'     
           0p1 + 1p2  - R2  ≤ ρ       (IV)*                                                      15q1' +1q2' ≥µ'            (IV)*' 
           p1 +p2 +p+-p-=1                                                                          q1' +q2' +q+'-q-'=1        
          -M2≤Rk≤ M2                                                                               qk'+qk

+'-qk
-'   =qk

*     
            -M≤ρ ≤ M                                                                                   -M ≤ µ'≤M 
 p,p+, p- ≥0                                                                               qk', q+',q-',qk

+',qk
-' ≥0 

 
Min   µ  +ΣSjpj'*- Mq+-Mq-                                                     Max  ρ' -Mp+' - Mp-'- M2 Σ( pj

+' + pj
-') 

    st    6q1 +15q2  - S1 ≤µ                                                                    st   6p1' +  0p2'  ≥ρ'     
           0q1 +1q2  -   S2 ≤ µ       (V)*                                                       15p1' + 1p2'   ≥ρ'          (V)*' 
           q1 +q2 +q+-q-=1                                                                          p1' +p2' +p+'-p-' =1        
          -M2≤Sj≤ M2                                                                                 pj' +pj

+'-pj
-'= pk'*     

            -M≤µ ≤ M                                                                                   -M ≤ ρ'≤M 
 q,q+, q- ≥0                                                                             pj', p+', p-' ,pj

+', pj
-' ≥0 

 
 
In this case, if p1'=p1=1,p2'=p2=0, an optimum to 
(V)*' with ρ'=6, is perfectly predictive of a non-
cooperatively interactive optimum to (IV)* with 
ρ=6,R1=0,R2=0. This in turn perfectly predictive 
of an optimum to (IV)*', its dual, with µ'=6, 
q1'=1,q2'=0. But, with these values, and conditions 
perfectly predictively q1'=q1=1,q2'= q2=0, this is 
perfectly predictive of (V)* with µ=6,S1=0, S2=0 
and thence of (V)*', its dual, with p1’'=1,p2'=0 and 
ρ'=6. But predictions p1'=1p2'=0 for player 2 
relative to player 2 are consistent with the initial 
predictions (p1=1,p2=0) by player 1 relative to 
player 2. In that sense they correspond to an 
overall equilibrium. (A similar argument would 
start with q1'=q1=1,q2'=q2=0 and an optimal 
solution to (IV)*' and go to the same as if 
perfectly self predictive equilibrium solution 
[Confess,Confess]. 
 

Summarizing: With these intervening duality 
contexts in each of cases 2A and 2C, the 
associated processes are as if perfectly consistent 
with as if perfectly self predictive cycles, while 
for 2B, the associated processes are consistent 
with as if non self predictive cycles.  
 
The cooperative solution 2A corresponds to as if 
mutually altruistic prediction. collective action. 
Case 2B is associated with as if independently/ 
noncooperatively selfish prediction and action. 
Case 2C is consistent with interactively non-
cooperative/ selfish prediction and action.  
 
4. Cournot/Stackelberg/collusion cases 
 
In the previous section I focussed on the 
Prisoner’s Dilemma. I now consider more general 
specifications before focussing on intervening 
duality processes and interpretations for 
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symmetric Cournot/Stackelberg related cases. For 
concreteness, and without loss of generality, 
consider a game with payoffs as in Table 3: 
 
                                     PLAYER 1  
                                P1                      P2 
                   Q1     π111,π211             π112,π221                              
PLAYER 2  
                   Q2     π121,π212             π122,π222  
                                    Table 3 
  
Table 3 comprehends constant sum and 
symmetric nonconstant sum cases, including the 
coin tossing case of Section 2 and the Prisoner’s 
Dilemma cases of section 3, as types of special 
cases for which, respectively: i) πajk 

+πbjk=constant; ii)πajk =πbjk, j=k, πajk=πbkj , j≠k. 
 
Another class of symmetric cases correspond to 
Cournot/Stackelberg cases for which the strategies 
would be variously Stackelberg Leader and 
Stackelberg (Cournot) Follower for each of the 
two players. With corresponding notation Table 3 
takes the form shown in Table 4 with 
π111=π121>π112,π122 and π211=π221>π212,π222.  
 

Now consider a two stage approach to processes 
of solution for this class of games: 
  
                                       PLAYER 1  
                                 Leader             Follower 
              Leader       π1LL,π2LL             π1FL,π2FL  
PLAYER 2  
             Follower     π1LF,π2LF             π1FF,π2FF       
                                  Table 4 
 
STAGE 1. As if noncooperative and non-
interactive cases. In the PD case individuals were 
assumed to pursue minimax strategies, in this 
class of cases, with reference to the expected 
duration of their sentences. In profit oriented 
settings independently maximin strategies seem 
appropriate. Accord-ingly consider a 
representation with a leader seeking to maximize 
his/her minimum potential profit via (VI) or (VII) 
in response to the imputation of probabilities qk'* 
(resp pj'*) to the other player’s (follower’s) 
follow/dont follow strategies in (VI)',(VII)'. In 
that way an intervening dual specification is 
generated as follows (compare 
(IV),(IV)',(V),(V)'): 

 
Max   ρ  +ΣRjqj'*- Mp+-Mp-                                             Min  µ' -Mq'+ - Mq-'- M2 Σ( qj

+' + qj
-') 

    st   π111p1 +π112p2  - R1 ≥ρ                                                         st  π111q1' +π121q2 '≤µ'    
         π121p1 +π122p2  - R2 ≥ρ       (VI)                                                π112q1' +π122q2' ≤µ'          (VI)' 
           p1 +p2 +p+-p-=1                                                                        q1 '+q2' +q+'-q-'=1        
          -M2≤Rk≤ M2                                                                              qk'+qk

+'-qk
-'  =qk'*     

            -M≤ρ ≤ M                                                                                 -M ≤ µ'≤M 
               pj,p+,p- ≥0                                                                       qk', q+',q-',qk

+',qk
-' ≥0 

                                                                       
Max  µ  +ΣSjpj'*- Mq+-Mq-                                             Min  ρ' -Mp'+ - Mp-'- M2 Σ( pj

+' + pj
-') 

    st   π211q1 +π212q2  - S1 ≥µ                                                          st   π211p1' + π221p2'  ≤ρ'     
         π221q1 +π222q2  -  S2 ≥ µ       (VII)                                               π212p1' + π222p2'  ≤ρ'      (VII)' 
           q1 +q2 +q+-q-=1                                                                         p1' +p2' +p+'-p-' =1        
          -M2≤Rj≤ M2                                                                                pj'+pj

+'-pj
-' = pk'*     

           -M≤ µ ≤ M                                                                                 -M ≤ ρ'≤M 
 qk,qk

+,qk
- ≥0                                                                        pj',p+', p-',pj',pj

+', pj
-'≥0 

 
 
With reference to (VI),(VI)' and Cournot 
/Stackelberg interpretations for elements of  
payoffs in Tables 3 and 4: 

i) q1'=1,q2'=0,µ'=π111 in (VI)', which is consis-
tent with an optimum to (VI) with  p1=1, 
p2=0,ρ= π111, R1=(π121-π111),R2=0;. 
ii)q1'=0,q2'=1,µ'=π121 in (VI)' and this is 

consistent with an optimum to (VI) with  p1=1, 
p2=0,ρ= π121,R1=0,R2=0. 

 
Similarly, with reference to (VII),(VII)' 

i) p1'=1,p2'=0,ρ'=π211 in (VII)' which is 
consistent with an optimum to (VII) with  
q1=1,q2=0,µ= π211, S1= (π221-π211),S2=0; 
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ii) p1'=0,p2'=1,ρ'=π221 1 in (VII)' which is 
consistent with an optimum to (VII) with  
q1=1, q2=0,µ= π221,S1=0, S2=0.. 

 
Notice that: a) these solutions stem essentially 
from dominance considerations; b) with π121=π111 
and π221=π211, solutions i) and ii) in each case 
constitute alternative optima and; c) with these 
values these solutions for the two players are 
collectively infeasible.  
 
STAGE 2.Interactive cases As for the Prisoner’s 
Dilemma, in fact (VI),(VI)' and (VII),(VII)' will 
interact, at least implicitly. There are three classes 
of interactive equilibria disequilibria 
corresponding to the three different kinds of cells 
LL,LF (or FL) and FF. Now consider these using 
terminology analogous to those for PD cases: 
2A. Type 1 Noncooperative interactive dis-
equilibria LL. If p1'=p1=1,p2'=p2=0 the optimal 
solution to (VII)' with ρ‘=π211 is as if perfectly 
predictive of a non-cooperatively interactive 
optimum with ρ=π111,R1=(π211-π111), R2=(π211-
π121), (if q1'*=1,q2'*=0) in (VI). In turn this is 

perfectly predictive of an optimum to (VI)' its 
dual, for which µ'=π111, q1'=1,q2'=0. Moreover, 
with these values and conditions as if 
q1=q1'=1,q2=q2'=0, the corresponding optimum to 
(VI)' with µ'=π111 is as if predictive of (VII) with 
µ=π211,S1=(π111-π211), S2=(π111-π221), (if p1'*=1, 
p2'*=0), and thence, if p1'=p1=1,p2'=p2=0 to an 
optimum for (VII)', with ρ'= π211. 
  
This class of cases is not only essentially 
noncooperative in the sense that each individual 
acts as if to maximize rewards relative to self  but 
is inherently collectively infeasible and unstable. 
Here the LL solution sequence corresponds to 
cyclic switches between the two Stackelberg LF 
and FL cases. 
 
2B. Type 2 Noncooperative interactive equil-
ibria LF,FL. Here each player seeks to predict 
outcomes for him/herself by reference to the other 
player’s contingent payoff matrices, i.e. to predict 
each others’ decisions as if via an intervening 
maximin/minimax duality framework as follows: 

 
 
Max   ρ  +ΣRjqj'*- Mp+-Mp-                                                Min  µ' -Mq+' - Mq-'- M2 Σ( qj

+' + qj
-') 

    st   π211p1 +π221p2  - R1 ≥ρ                                                        st   π211q1' +π212q2' ≤µ'    
         π212p1 +π222p2  - R2 ≥ρ       (VI)*                                              π221q1' + π222q2' ≤µ'        (VI)*' 
           p1 +p2 +p+-p-=1                                                                       q1' +q2' +q+'-q-'=1        
          -M2≤Rk≤ M2                                                                            qk'+qk

+'-qk
-'   =qk'*     

            -M≤ρ ≤ M                                                                                 -M ≤ µ'≤M 
 pj,p+, p- ≥0                                                                            qk', q+',q-',qk

+',qk
-' ≥0 

 
Max  µ  +ΣSjpj'*- Mq+-Mq-                                               Min  ρ'  -Mp+'- Mp-' - M2 Σ( pj

+' + pj
-') 

    st   π111q1 +π121q2  - S1 ≥µ                                                        st   π111p1' + π112p2'  ≤ρ'    
         π112q1 +π122q2  - S2 ≥ µ       (VII)*                                           π121p1' + π122p2'  ≤ρ'     (VII)*' 
           q1 +q2 +q+-q-=1                                                                        p1'+p2' +p+'-p-'=1        
          -M2≤Rj≤ M2                                                                               pj'+pj

+'-pj
-'= pk'*     

            -M≤µ ≤ M                                                                                -M ≤ ρ'≤M 
 q,q+, q- ≥0                                                                             pj, p+', p-',pj

+', pj
-' ≥0 

 
 
Consider the Stackelberg leadership case FL: If 
p1'=0,p2'=1, a solution to (VII)*' with ρ'=π112 
(=π122) is as if interactively dually predictive of a 
solution to (VI)* with p1=0,p2=1 and 
ρ=π112.,R1=(π221-π112), R2=0 with conditions as if 
q1'*=1, q2'*=0. That in turn is consistent with 
leadership for player 2 relative to player 1 via the 

individually dual solution µ'=π221 for (VI)*' with 
q1'*=1, q2'*=0. But, with conditions as if 
interactively perfectly predictively q1=q1'=1, 
q2=q2‘=0, the optimum to (VII)* then becomes as 
if µ=π221 with S1=0, S2=(π112-π221) and conditions 
as if p1'*=0, p2'*=1 and so as if cyclically 
predictive of an optimum to (VII)* '.  
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Similar considerations and processes will generate 
the other Stackelberg leadership case LF.  In both 
cases solutions will constitute equilibria in the 
sense that the corresponding sequences of actions 
and responses correspond to elements of as if 
perfectly self predictive cycles. But both cases are 
also arguably inherently unstable. They imply 
positive regret for the following player (R1=(π221-
π112) in the FL case). 

 
2C. Type 2 Noncooperative interactive 
equilibria FF. Still considering cases in which 
each player seeks to predict outcomes by 
reference to the other player’s contingent payoff 
matrices as in (VI)*,(VI)*',(VII)*,(VII)*', now 
consider Cournot-like follower-follower predict-
ions. 
 
Starting with player 2, if p1'=p1=0,p2'=p2=1 the 
optimum to (VII)*' with ρ'=π112 (=π122), is 
perfectly predictive of a noncooperatively 
interactive solution to (VI)* with ρ=π112, R1=0, 
R2=(π222 -π112) with q2'*=1. This in turn is 
perfectly predictive of an optimum to (VI)*', its 
dual, with µ'=π222, q1'=0, q2'=1. But, with these 
values, and conditions as if predictively 
q1'=q1=0,q2'=q2=1, this is interactively predictive 
of (VII)* with µ=π122, S1=0,S2=(π222-π122) with 
p2'*=1, and thence individually predictive of 
(VII)*' its dual with p1'=0,p2'=1 and ρ'=π112. But 
these latter predictions (p1'=0,p2'=1) for player 2 
relative to player 2 are consistent with the initial 
predictions (p1=0,p2=1) by player 1 relative to 
player 2 and in that sense correspond to an overall 
equilibrium solution. (A similar argument would 
start with q1'=q1=0,q2'=q2=1 and an optimal 
solution to (VI)*' and go to the same as if 
perfectly self predictive equilibrium solution FF.) 
 
Summarizing: In a manner similar to that for 
prisoners dilemma cases, with these intervening 
duality contexts for cases 2B and 2C associated 
processes are consistent with perfectly self 
predictive and feasible cycles while, for cases 2A, 
the Stackelberg disequilibrium case, the 
associated processes are consistent with as if 
perfectly self predictive switches between leaders.  
 
Also in a manner similar to that of PD cases, case 
2B is associated with as if independently/ non-
cooperatively selfish prediction and action, and 
case 2C is consistent with interactively 

noncooperative/selfish prediction and action. 
 
2D Cooperative interactive equilibria CC. 
Notice finally that a class of potentially collusive 
cases emerges, analogous to PD cases 2A, if the 
Stackelberg leadership payoffs are considered as 
corresponding to two distinct and respectively 
collusion and non collusion oriented types via 
perturbations ∈1,∈2 >0 to break ties as follows: 
π111=π121+∈1, π211=π221+∈2. Clearly, with ∈1,∈1 

>0, the corresponding dominance of  such 
collusion over Stackelberg payoffs will invalidate 
the predictions of Stackelberg sequences 2B by 
perturbing both of them to the collusive case. 
 
5.Strategic equivalence and mixed strategy 
extensions 
 
Evidently the preceding results both with 
reference to the Prisoner’s Dilemma 
Cournot/Stackelberg/ Collusive behaviours hinge 
on dominance considerations and thence on pure 
strategies. But a species of strategic equivalence is 
nevertheless inherent in the intervening duality 
idea in the sense that the measures Rk,Sj potentiate 
strategic equivalence of contingent payoffs 
relative to others.   
More general classes of strategic equivalence are 
implicit in intervening duality systems obtained 
by using parameters θ1,θ2,θ3,θ4 to modify 
(VI),(VI)', (VII),(VII)' to give the more generally 
defined nonconstant sum and asymmetric cases 
shown as (VI)s,(VI)s',(VII)s',(VII)s' below. 
 
Some special cases. If θ1=θ2=θ3=θ4=1, 
(VI)s,(VI)s', (VII)s,(VII)s' become equivalent to 
(VI),(VI)', (VII),(VII)'. Another class of special 
cases with π1jk+π2jk11=const, θ1=θ2=1 in 
(VI)s,(VI)s', θ3,θ4≠1 in (VII)s,(VII)s' and  S1=R1+ 
Δ, S2=R2 +Δ, corresponds to strategic equivalence 
of the kind familiar in standard two person 
constant sum games. A third class of special cases 
is suggested by the matching pennies examples of 
Section 2. If π1jk+π2jk=0, θ2=θ3=1 in (VI)s',(VII)s' 
and, relative to those systems, feasible solutions 
exist to (VI)s,(VII)s with S1=R1=0, S2=R2=0, in 
those senses individuals may act as if to agree 
relative to the system. But conditions with 
S1,R1,S2,R2≠0 are also feasible and by that means 
individuals may see opportunities for gain in 
disagreeing relative to the system and/or relative 
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to themselves.  
 
In each of these three classes of cases associated 
intervening duality arguments are not restricted to 
pure strategies: they can work, too, for mixed 
strategies, as would these related strategic 
equivalence extensions. Further, conditions for 
mixed strategies as well as for strategic 

equivalence are not just related to the quantities 
Rk,Sj, but interrelated through these quantities 
interpreted as “slack”, via the associated 
principles and processes of complementary 
slackness which have been used throughout the 
preceding duality and intervening duality 
arguments. 

 
 
   Max   ρ  +ΣRjqj'*- Mp+-Mp-                                                      Min  µ'  -Mq+'  - Mq-' - M2 Σ( qj

+'  + qj
-') 

    st    θ1(π111p1 +π112p2)  - R1 ≥ρ                                                        st θ2 (π111q1' + π121q2') ≤µ'     
          θ1(π121p1 +π122p2 ) - R2 ≥ρ    (VI)s                                                θ2 (π112q1' + π122q2') ≤µ'      (VI)s' 
                p1 +p2 +p+-p-=1                                                                          q1'  +q2'  +q+' -q-' =1        
               -M2≤Rk≤ M2                                                                                qk' +qk

+' -qk
-'  =qk'*     

               -M≤ρ ≤ M                                                                                      -M ≤ µ‘≤M 
     pj,p+,p- ≥0                                                                                   qk', q+',q-',qk

+',qk
-' ≥0 

 
Max  µ  +ΣSjpj'*- Mq+-Mq-                                                          Min  ρ'  -Mp+'  - Mp-' - M2 Σ( pj

+'  + pj
-') 

    st   θ3(π211q1 +π212q2 ) - S1 ≥µ                                                           st  θ4 (π211p1'  + π221p2') ≤ρ'      
         θ3(π221q1 +π222q2 ) - S2 ≥ µ    (VII)s                                                  θ4(π212p1'  + π222p2'  ) ≤ρ'       (VII)s’ 
           q1 +q2 +q+-q-=1                                                                                p1'  +p2'  +p+' -p-'  =1        
          -M2≤Rj≤ M2                                                                                        pj+pj

+' -pj
-' -= pk

*     
          -M≤µ ≤ M                                                                                             -M ≤ ρ' ≤M 
 qk,q,q+, q- ≥0                                                                                        p’,p’+, p’- ≥0 
 
 
Apart from extensions stemming from strategic 
equivalence and mixed strategies a more subtle 
way of extending and generalizing earlier 
arguments is by focussing on potential degeneracy 
and consequent issues and processes pertaining to 
regularization. An example of degeneracy and 
partial regularization was considered briefly in 
Section 2 with a context of prior probabilities for 
coin tossing cases. But degeneracy and partial or 
complete regularization can be illuminating in 
other cases too. As an example reconsider the 
Type 2 Noncooperative Interactive Equilibrium 
case (the Cournot case) which referred to the 
intervening duality system (VI)*,(VI)*', 
(VII)*,(VII)*' and concluded Section 4. That 
argument began with an assumption that in 
(VII)*’ conditions obtained as if both p2'=1 and 
Σpk'=1. That clearly implies degeneracy at that 
constrained optimum. Now consider a partially 
regularized system (VII)*' with p2'=1-ε. The 
optimal solution to (VII)*' then becomes 
predictive of a uniquely “ε mixed” strategy 
ρ'=π212ε + π222(1-ε). This has a “trembling hand” 
character in the sense that this ε noncooperatively 

interactive solution to (VII)*' not only implies 
conditions as if such a solution has non zero 
probability p1>0 relative to (VI)*’ and individual 
1, but as if, by complementary slackness, q1=1. In 
that sense a collusive solution could become 
certain relative to (VII)*' and individual 2. 
 
6. Conclusion 
 
I have focussed on representations and processes 
of solution for various classes of constant and 
non-constant sum bimatrix games, including PD 
and Cournot/Stackelberg/Collusion conjecture 
related duopoly games, using a constrained game 
approach in conjunction with intervening duality 
principles and processes. 
 
In all cases I have implicitly assumed conditions 
of complete information concerning contingent 
payoffs. The possibility of extensions to 
incomplete information specifications and 
associated learning related developments is 
obvious. Another direction for extensions is via 
nonpreemptively frame related specifications and 
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associated developments and interpretations such 
as I have pursued elsewhere with reference to 
Allais-like switching behaviours stemming from 
changes in the magnitudes of relatively exterior 
frame determining penalties and rewards. (See 
Ryan 1996.)  
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