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A problem formulated in [a7] as a model for the optimum location of a facility in the plane intended to serve several
users; for example, a central source of electric power. One is seeking the minimum of a function

fz) = > wiple — ),

where the w; are positive scalars, the I; are given vectors in Rz, Z is in ]fl2 and p(u) is the Euclidean norm of «. The
case when all w; = 1 and n = 3 had been considered by P. Fermat in 1629, by E. Torricelli in 1644 and by J. Steiner
in 1837. (For the early history of the problem, see [a4].)

The function f is convex (cf. Convex function (of a real variable)) and one shows that, with some exceptions, it has a
unique minimizer. These assertions remain valid when p is allowed to be an arbitrary norm and R? is replaced by RY.

For applications, of which there are many (see [al]), one seeks good computational methods for finding a minimizer of
f , either with the Euclidean norm or with other norms. For the Euclidean case, E. Weiszfeld [a8] provided a much used
method; see [a6] for a discussion of this and other cases. If p is the 1; -norm, explicit solution is possible (see [a2], Chap.
4).

Minimizing the function f is a problem in optimization and it is natural to seek a dual problem (cf. Duality in extremal
problems and convex analysis): to maximize a function g such that max g = min f. A dual was found for special
cases by H.W. Kuhn and others [a4]. A major result in this direction was provided by C. Witzgall in [a9], who provided a
dual for a more general minimum problem, in which the function to be minimized has the form

n

F(z) = Z[wm(fv — i) +wip'(z — =),

where p is now allowed to be an asymmetric norm in RY (that is, p(ta}) = tp(m) is required to be valid only for non-
negative t) and p' () = p(—x). Witzgall's result and others are subsumed under a duality theorem of W. Kaplan and
W.H. Yang [a3]. In this theorem, the function f has the form

f(z) =o0(ATz —c) + bz

in R™, where o is a norm, allowed to be asymmetric, in R", A is a constant (7 X m)-matrix, b in R™ and ¢ in R"
are constant vectors. The dual function g is the linear function g(y) = cty in R", subject to the constraints Ay = b
and p’(y) < 1, where p and o are dual norms in R": U(y) = max{:nTy: p(a:) = 1}. It is assumed that the
equation Ay = b has a solution with p’ (y) < 1. 1In [a3] it is shown how, when the norms are differentiable (except at
the origin), a minimizer of f can be obtained from or determines a maximizer of g. It is also shown that the theorem
provides a dual for the multi-facility location problem, for which the function f to be minimized is the sum of the
weighted distances from k new facilities to 72 given facilities as well as the weighted distances between the new
facilities; the function f is a convex function of (.’131 yeeey :I:n), where the 7th new facility is placed at ;.
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The Weber problem has been generalized in many ways to fit the great variety of problems arising in the location of
facilities. See [al] for an overview.
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