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58 Chapter 2. The Simplex Algorithm

Note that the basic solutions of the second and third tableaus of step (3) are
feasible while the basic solution of the first tableau is not feasible. There is a
good reason for this—only the second and third tableaus of step (3) are
maximum basic feasible tableaus! Recall that, in general, the simplex
algorithm transition between maximum basic feasible tableaus is designed so
that the objective function (—g in this particular case) is not decreased. Hence
each such transition maintains or increases the value of the objective function,
usually until either a maximum value is reached or the algorithm detects
unboundedness. In rare cases, a phenomenon known as cycling occurs; we
discuss this phenomenon now.

§8. Cycling
We begin with an example due to E.M.L. Beale ([B2]).

ExamrLE 18, Consider the linear programming problem

Maximize  fi(x, x5, x5, Xx,) =3/dx; — 20x, + 1/2x; — 6x,
subject to 1/4x; —8x, —x3 +9x, =0

1/2x, — 12x, — 1/2x3 + 3x, 20

x3=1

iKWy i

Six simplex algorithm pivots are performed below. While it is not intended
that you verify these computations, make sure that you see that all pivots have
been made in accordance with the simplex algorithm,

14 -8 -1 9
2 -12 -172 3 0] =-t

o 0 1 0|1|=2t, —

34 =20 172 -6 0| =f

X o5 ox -l
4-32 -4 36| 0|=-x
-2 4 32-15 | 0|=-t
00 1 0] 1

- _t‘ ——lp

-3 4 12-33 | O0|=f

§8. Cycling

39

oL Xy X -1
-12 8 8§ -84 0= -X,
=172 174 3/8 -15/4 =%
0 0 1 0 1= =ty T
-1 -1 2 -18 0|=1
t L, X, X, -1
=372 178 -2172 0] = =xy
1716 -1/8 -3/64 3/16" 0} = =x
32 -1 -1/8 2172 1| = -, T
2 -3 -14 3 0f=f1

2 -6-52 56 | 0| =-x,
173 -2/3 -1/4 16/3 0 = =%,
-2 6 52 -56 Lo ==, — *
1 -1 12 -16 0] =f
X, LooXx X, -1
12 -3 -5/4 28 0| =-t
-1/6 1/73* 1/6 -4 0| = —X,
1 0O 0 0 L=< ==
-172 2 74 -44 | 0| =f
3 % Xox -l
-1 9 1714 -8 0] =-t
=12 3 12 -12 0 ==,
L0 0 0 1|=-,
|
1
172 -6 34 -20 0 = f
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Note that the seventh tableau above is the same as the initial tableau up to a
rearrangement of the first four columns. Hence the seventh tableau is no closer
to an optimal solution than the initial tableau!! (Needless to say, this is quite
frustrating!!) Since transitions between maximum basic feasible tableaus
maintain or increase the value of the objective function, it is not surprising that
the basic solutions of successive tableaus above have not increased the value of
the objective function at all—it remains at 0 in all seven tableaus.

The phenomenon in the example above is known as ¢ycling. Cycling is rare;
in fact, until quite recently, it was thought that cycling never occurred in
practical problems, all of the pertinent examples having been artificially
constructed. Then, in 1977, Kotiah and Steinberg ([K1]) discovered a
nonartificial class of linear programming problems involving queueing theory
which cycled. Hence, in this section, we give rules which prevent cyeling.
Inasmuch as cycling is a rare phenomenon, we make no guarantee of constant
adherence to these rules in this book. While anticycling rules should certainly
be a part of any compuler implementation of the simplex algorithm, we treat
cycling as an unfortunate infrequent occurrence rather than something that
warrants constant special attention,

In each tableau of Example 18, the pivot choice is not uniquely determined
by the simplex algorithm. (For example, 1/2 and 1 are acceptable alternate
pivot entries in the initial tableau, 3/2 is an acceptable alternate pivot entry in
the second tableau, 3/8 is an acceptable alternate pivot entry in the third
tableau, etc.) In a sense, our particular pivot choices contributed to the cycling!
We can remedy the phenomenon of cycling by placing additional require-
ments on the choice of pivot entries in those instances when more than one
entry meets the pivoting requirements of the simplex algorithm. These
pivoting rules are due to R.G. Bland ([B37).

Simplex Algorithm Anticycling Rules

List all variables, both independent and dependent, appearing in the initial
tableau. (The ordering of the variables in the list is not important as long as the
rules below are implemented in a manner consistent with this list.) Any pivot
entry is determined uniquely by a pivot row and a pivot column. The rules
below determine this row and column,

Rule #1 (Determination of pivot row). Whenever there is more than one
possible choice of pivot row in accordance with the simplex algorithm, choose
the row corresponding to the variable that appears nearest the top (or front) of
the list.

Rule #2 (Determination of pivot column). Whenever there is more than one
possible choice of pivot column in accordance with the simplex algorithm,
choose the column corresponding to the variable thal appenrs nearest the top
(or front) of the list, el

—
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A reminder. Don’t get too engrossed in the application of these rules—
before proceeding with any choice of pivot row or pivot column, examine the
tableau for infeasibility or unboundedness.

We now iltustrate how the anticycling rules eliminate the problem of cycling
in Example 18.

ExampLE 19. Apply the simplex algorithm with anticyeling rules to the initial
maximum tableau of Example 18 below:

X X, X, X -1

4

4 -8 -1 9 =,

12-12-12 3 | 0| ==,

0 0 1 0| 1]|=-
34-20 12 -6 | 0|=f

We choose x,,x,,x3.%,4,;,15,¢; as our list of variables. In the initial
tableau, we have two choices for a pivot column, namely the first column
(corresponding to ¢; = 3/4) and the third column (corresponding to ¢, = 1/2).
Since the first column corresponds to the variable x, and the third column
corresponds to the variable x;, we choose the first column as our pivot column
in accordance with Rule #2 of the anticycling rules. We now have two choices
lor the pivot row, namely the first row (hy/a,, =0/(1/4)=0) and the second
row (hy/a;; = 0/(1/2) = 0). Since the first row corresponds to the variable tq
und the second row corresponds to the variable r,. we choose the first row as
our pivot row in accordance with Rule #1 of the anticycling rules. Hence we
pivot on 1/4 as in Example 18 to obtain the second tableau

tox, x5 ox, -l

4 -32 -4 36 0]=-x
-2 4% 32-15 0=
0 0 1 0 1 | =t

-3 4 7/2-33

this new tableau, we have two choices for a pivot column, namely the second
volumn (corresponding to ¢, =4) and the third column (corresponding to
«7/2). Since the second column corresponds to the variable x, and the third
lumn corresponds to the variable x,, we choose the second column as our
vot column in accordance with Rule #2 of the anticycling rules. The choice
the pivot row is then determined by the simplex algorithm and we pivot on
Jin Example 18 to obtain the third tableau
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oL Xy ox -l
12 8 8 -8 | 0|=-x
-1/2 1/4 3/8 -15/4 0] =-x
0 0 1 0 L] ==ty

-1 -1 2 -18

In this new tableau, the choice for the pivot column is determined by the
simplex algorithm but there are two choices for the pivot row, namely the first
row (b, /a, 5 = 0/8 = 0) and the second row (b, /a3 = 0/(3/8) = 0). Since the first
row corresponds to the variable x, and the second row corresponds to tvhe
variable x,. we choose the first row as our pivot row in accordance with
Rule #1 of the anticycling rules. Hence we pivot on 8 as in Example 18 to
obtain the fourth tableau

4 t X X, -1
=37 1 8 =212 0 = w2
| 1716 -1/8 -3/64  3/16 0|=-x,

2 o-1 <18 22 | 1| =

2 -3 -114 30 ]=T

In this new tableau, we have two choices for a pivot column, namely the first
column (corresponding to ¢, = 2) and the fourth column (corresponding to
¢, = 3). Since the first column corresponds to the variable ¢, and the fourth
column corresponds to the variable x,, we choose the fourth column as our
pivot column in accordance with Rule #2 of the anticycling rules. The choice
for the pivot row is then determined by the simplex algorithm and we pivot on
3/16 as in Example 18 to obtain the fifth tableau

| L XK -1

2 -6 -52 56 0| =-x
13 -2/3 -1/4 16/3 0| =-x4
-2 6 52 -56 | 1] =-4

t

| -1 112 -16 | 0| =f

In this new tableau, we have two choices for a pivot column, namely the first
column (corresponding to ¢, = 1) and the third column (corresponding to
¢y = 1/2). Since the first column corresponds to the variable ¢, and the third
column corresponds to the variable x,, we choose the third column as our
pivot column in accordance with Rule #2 of the anticyeling rules. (Note that
the first column was chosen as the pivol column at this paint in Example 18.)
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The choice for the pivot row is then determined by the simplex algorithm and
we pivot on 5/2 (instead of 2 as in Example 18) to obtain the sixth tableau

S el
o 0 1 0] 1]=-x
Y15 -1/15 1/10 -4/15 | /10 | = -x,
-4/5 125 25-112/5 25 | =X,

7S =11/ -1/5 -24/5 | -1/5 | =fo

The pivot in this new tableau is uniquely determined by the simplex algorithm
so that no anticycling rules are necessary. The reader should verify that a pivot
on a,,; = 2/15 results in a tableau whose basic solution is optimal. Hence, the
cycling problem of Example 18 has been remedied.

§9. Concluding Remarks

We have now developed the simplex algorithm with anticycling rules, a
complete procedure for solving canonical maximization and canonical
minimization linear programming problems. Canonical maximization and
canonical minimization linear programming problems fall into four classes:

(i) infeasible lincar programming problems,
(if) unbounded linear programming problems,

(iti) linear programming problems having bounded constraint sets for which
the optimal values of the objective functions are attained at extreme
points, and

(iv) linear programming problems having unbounded constraint sets for
which the optimal values of the objective functions are attained at extreme
points.

The simplex algorithm with anticycling rules effectively handles all four classes
ibove. In classes (i) and (i), the algorithm terminates with a tableau indicating
(he infeasibility or unboundedness; in classes (iii) and (iv), the algorithm
lerminates with a tableau whose basic solution is optimal irrespective of the
boundedness or unboundedness of the constraint set. In addition, the simplex
nlgorithm is much more efficient than the geometric approach of Chapter 1.
lor example, the geometric approach of Chapter | applied to a canonical
linear programming problem with 15 main constraints and 10 variables would
involve finding and testing up to

25
: (I()) = 3200000

ndidates for extreme points, The simplex algorithm, on the other hand,
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3. a. Describe the tableau transitions in Example 5 in terms of the “solving and
replacing every occurrence of” procedure demonstrated in §2.
b. Interpret the condition fp = =0 in the optimal solutions of Example 5.

would only require between about 13 and 50 pivot steps. The simplex
algorithm is also easily implemented on a computer.

4. Solveeach of the linear programming problems in Exercise 3 of Chapter 1 by using
the simplex algorithm. In each problem, illustrate the movement in the constraint
set diagram exhibited by the basic solutions of successive tableaus. [Note: When
illustrating the movement in a minimization problem, ignore the negative

EXERCISES

1. Consider the canonical maximum tableau below:

X —l i
Y transposition step to maximum tableau form.]
1 2 3| ==t ; ;
- 1 5. Solve each of the canonical linear programming problems below by using the
4 5 =-1 simplex algorithm.
a. Maximize [f(x,y)=x
T R 9| =f subjectto x+y=1
x—yzl1
a. In the notation of (1) of §1, state the canonical maximization linear program- y—2xz1
ming problem represented by the tableau above. xy=0

b. Explain why the initial tableau for the simplex algorithm solution of the linear
programming problem

b. Minimize g(x,y)=y— 5x
subject to x —y = 1

Maximize f(x.y)=Tx+8y—9 y<8
subjectto x+42y=3 wny=0
s +>53' = c. Minimize g(x,y,z)=—x—y
] M subject to  3x+6y+22<6
is not the tableau above. Lo =
¢. Pivot on 4 in the tableau above. i _z=> B
d. Describe the tableau transition of part ¢ in terms of the “solving and replacing hEs
every oceurrence ol * procedure demonstrated in §2. d x y -l
2. Consider the canonical minimum tableau below: ' i =1 3| =-t,
=2 1| 2=
1 2 3
¥k 5 8 2 -1 o=t
-117 8 2 e.
= B -2 1] -3
1Th TR 1 -2 -2
a. In the notation of (3) of §1, state the canonical minimization linear program-
ming problem represented by the tableau above. ~f| 1 @ 0
b. Explain why the initial tableau for the simplex algorithm solution of the linear T g
programming problem 1 Th T8
Minimize g(x,y)=3x+6y—9 x y -l
subjectto x+4y =7 f. B
2x + 5y <8 =L =1 | =l i =y
xyz0 1 =2 0| =-t

is not the tableau above.
¢. Pivot on 4 in the tableau above,
Describe the tableau transition of part ¢ in terms of the “solving and replacing
every oceurrence of " procedure demonstrated in §a
iy

e —.

(45
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6. a. Solve the canonical linear programming problem below by using the simplex
algorithm with anticycling rules corresponding to the list x, y,1,, 15, 5.

x y -1
3 2 1
-9 -2 |0
3 1

3 2 1

b. Sketch the constraint set corresponding to the problem in part a and illustrate
the movement in the constraint set diagram exhibited by the basic solutions of
the successive tableaus in part a.

7. The canonical programming problem below (due to H.W. Kuhn and given in [B17)
will cycle after six particular simplex algorithm pivots. (The ambitious reader is
invited to find these pivots and confirm this.) Solve the problem by using the
simplex algorithm with anticycling rules.

X, X, X3 Xy -1
-2 -9 1 9 0
/3 1 -1/3 -2 0
2 3 -1-12 2
2 3 -1-12 0

8. Each of the canonical linear programming problems below has infinitely many
optimal solutions. Solve each of the linear programming problems by using the
simplex algorithm and find all optimal solutions. [Note: In the exercises of
Chapter 3 and Chapter 4, an increasing emphasis will be made on finding ail
optimal solutions of linear programming problems having infinitely many optimal
solutions. For this reason, complete discussions of the problems below may be
found in the answers section in the back of this book.]

xy z w -l
a.
0 1 1 -1413
1 1 1 =13
1 2 2 -4]0
B ol =1 [
yi=-1 11]-1
-1 1=2 1 0
-t m(, =g

e e NI T ST S § 6 I S ST
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9. Solve each of the linear programming problems below.

a. A nut company makes three different mixtures of nuts having the following
compoasitions and profits per pound:

Peanuts Cashews Pecans Profit
Mixture 1 100%, 0%, 0%, $2
Mixture 2 809, 15% 5% $1.50
Mixture 3 60°, 30%, 109 $1

The management of the company decides that it wants te produce at least twice
as much of mixture 3 as of mixture 2 and at least twice as much of mixture 2 as of
mixture . The company has 500 pounds of peanuts, 250 pounds of cashews,
and 100 pounds of pecans available. If all production can be sold, how many
pounds of each mixture should be produced so as to maximize profits?

b. A hotel rental service needs to have clean towels for each day of a three-day
period. Some of the clean towels may be purchased new and some may be dirty
towels from previous days that have been washed by a laundry service. The cost
of new towels is $1 per towel, the cost of a fast one-day laundry serice is 40¢ per
towel, and the cost of a slow two-day laundry service is 25¢ per towel. If the
rental service needs 300, 200, and 400 clean towels for each of the next three days
(respectively), how many towels should the rental service buy new and how
many should the rental service have washed by the different laundry services so
as to minimize total costs?

10. Consider the canonical maximum tableau below:

IR

ay 2, | by | =
ay 4y | b | =
Gy = 6y d| =1

If a;; # 0, prove that pivoting on a;; is equivalent to solving the i equation of the
tableau for the j** variable and replacing every occurrence of this variable in the
other equations of the tableau by the resulting expression.

11, (This problem is an application of the pivot transformation to linear algebra.) Let

A = [a;;]uxa be a square matrix. Form the tableau

1

X Xy . X, -1

app By e gy U] =ty
ayp Ay, a, 01 =ty
anl ﬂnl aun 0 = ‘ln
0 R i 0| =f
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Then it is a fact that it is possible to transform the tableau above into the tableau

t, t, - Y -1
’ ’ =
a;’ apy e By 0 X
’ ’ r = -
ay 8y ... 3y 0 X,
! ’ ’ = -
ay gy, somee 4n 0 Xa
0 0 54 0 0f=f

via a sequence of pivot transformations and possibly a rearrangement of rows
and/or columns if and only if A’ =[a;;],.,=A "' Use this fact to invert the
matrices below if possible. [Note: Do not use the simplex algorithm here to
determine pivot entries; choose pivot entries that will move the x's from north to
east and the t's from east to north. Also, since the last row and the last column of all
tableaus will always be zero, they may be deleted without any harm.]

110
al0 1 1
11 01
1 -1 0
blo 11
1 0 i
[0 1 2 3
1232
“l23 21
L3210

12. a. Find a necessary and sufficient condition for the minimum tableau

1| B By By |
X |82 3 e 8y Gy

x‘n a!n a‘Zn ttr a‘mn cn

-1{ b, b, .. b d

=t =t..=t, =g

to have a feasible basic solution.

b. Does the tableau satisfying the condition in part a but viewed as a maximum
tableau necessarily have a feasible basic solution?

¢. Find a necessary and sufficient condition for the tableau

— .
——
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Yi|an A 3y by | =t

Yo | % % | Bt Th

Y ami a1-r12 t Ymn m m
=1 g © s Gy d|=f
=8 =8§,.. =5 =g

viewed as a maximum tableau to have a feasible basic solution and viewed as a
minimum tableau to have a feasible basic solution.

13. In the simplex algorithm for maximum basic feasible tableaus, the choice of

positive ¢; in step (3) is unrestricted. It is shown in [R2] that restrictions on the
choice of positive ¢ in this step effectively reduce the number of pivoting
operations required in the simplex algorithm, especially for large linear program-
ming problems. Two such restrictions are discussed below.
a. Replace step (3) of the simplex algorithm for maximum basic feasible tableaus
with
(3') Choose the most positive ¢; > 0.

Apply this new simplex algorithm for maximum basic feasible tableaus to the
linear programming problem of Example 11. Illustrate the movement in the
constraint set exhibited by the basic solutions of successive tableaus above and
compare this movement with the movement exhibited in Example 11.
b. Replace step (3) of the simplex algorithm for maximum basic feasible tableaus
with
(3') For each ¢; > 0, compute
p;= min {bja;a;>0}.
1sizm
Choose the ¢; for which yu;c; is most positive.

Apply this new simplex algorithm for maximum basic feasible tableaus to the
canonical linear programming problem below:

x y z -l

2 1| 4=+t
2 1T 3| 58l=




250 Answers to Selected Exercises

. Max /=100 at (x, y,z) = (100, 0,0)

g Ming= —425 at (x,y,z) =(0, 150, 125)

h. Let xand ybe the number of units of the Monitor and the number of units of the
Recorder respectively and let P be the total profits. Then max P = 10000/3 at
(x, ¥)=(20/3, 20/3): since fractional magazines are not realistic, the “rounded-
off” optimal solution is max P = 3333 at (x, y) = (6.66. 6.67).

i. Letxand y bethe number of days for the first operation and the number ofdays
for the second operation respectively and let C be the total costs. Then min
C=4750 at (x, y)=(10,5).

J- Letx, y, and z be the number of units of the first formulation, the number of
units of the second formulation, and the number of units of the third
formulation respectively and let R be the total sales revenue. Then max R = 475
at (x,y,z)=(25,0,150) or at (x, y,z)=(0, 50, 125).

. Max f=2at (x,y,2) =(1,0,0)
. 35

b. (0,0.0,1/2), (0,0,1/3,0), (0, 1/4,0,0), (1/5,0,0,0), (0,0,0,0)
¢ Ming= —2at (x,y,z,w) =(0,0,0, 1/2)

¢ (0,0,1,1/2),(0,1,1,0), (3,0,0,1/2), (3, 1,0.0), (0, 0,0, 5/4), (0,0, 5/3,0), (0, 5/2,0,0),
(5,0,0,0). (0,0,0,1/2), (0, 1,0,0), (0,0,0,0)

d. The actual extreme points of part ¢ are (0.0,1,1/2), (0, 1, 1,0), (3,0,0,1,2),
(3,1,0,0),(0,0,5/3,0), and (5,0.0,0); ming = 1 at each of the first four of these
extreme points.

. 4. TRUE

b. FALSE

Chapter 2

f

2

a. Maximize f(x,y)=7x+8y—9
subject to x+2y=3
dx+5y<6
x,y=0

h ¥ =
“l-1a 34| 32 | =y
/4 54 | 32| =-x

-1/4 -3/4 | -3/2 | =1

A Minimize  g(x, y)=3x + 6y — 9
subject to x4y =7
2x+Sy2 8
X,y

Answers to Selected Exercises 251

—opo zp

0. a.

7. x;

x | -1/4 3/4 3/2
174 5/4 32

-1 | -7/4 =3/4 -3/2
2y =t =g

. Infeasible
. Unbounded

x=4/3,y=0,z=1,1r,=0,t, =0, ming= —4/3

. Unbounded
. Infeasible

Unbounded
x=1), pe=l = 1, by =0, d5=0umax fi= 1

=2 %g=0, 305 =2 x5 =0 1| =2, £3=0,t5="0, maxf=2

8. Fordefiniteness of pivots, the anticycling rules were implemented in both problems
below.

a.

b.

The final tableau is
L, x z W -1

1 -1 0 0| 0]=-

2 -1 0 -2|-6]|=f

Now t,, x, and w must be 0 since the coefficients of these variables in the objec-
tive function are negative, i.e., any positive choice for any of these variables
decreases f. Note, however, that the coefficient of z in the objective function is 0
and hence zis not forced to be 0 in order for f to be optimal. To see what possible
values z = 0 can assume, examine the main constraints of the final tableau
(remembering that t, =x=w=0):

0= —1,
z—3=—y
The first constraint gives t; = 0. The second equation gives y=3 — z; since

y=0,wehave3 —z 20,i.e,z = 3. Hence, all optimal solutions for this problem
may be expressed as follows:
t,=x=w=0, t;=0 0=<z£3, y=3-z maxf=6
The final tableau is
y i
172 172
172 -1/2

| 0
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a.

v B

.od.

b.

C.

Answers to Selected Exercises

Now ¢; must be O since the coefficient of ¢, in the objective function is negative,
ie., any positive choice for ¢, decreases —g. Note, however, that the coefficient of
t, in the objective function is 0 and hence t, is not forced to be 0 in order for — g
to be optimal. To see what possible values ¢, = 0 can assume, examine the main
constraints of the final tableau (remembering that ¢, = 0

/2, —1j2= — x
— 12t~ 32= —y.

The first equation gives x = 1/2 — 1/2t,;since x = 0, we have 1/2 — 1/2t, > 0.i.e,,
i» = 1. The second equation gives y = 1/2t, + 3/2; since y = 0, we have 1/21,
+3/2z0,ie,1, = — 3 which we already know. Hence, all optimal solutions for
this problem may be expressed as follows:

=0 0=6,Z1, x=1/2—1/2t;, y=1/2t;+3/2, ming= —2.

Let x, y, and z be the number of pounds of the first mixture, the number of
pounds of the second mixture, and the number of pounds of the third mixture
respectively and let P be the total profits. Then max P =900 at (x, ¥V, 2) =
(100, 200, 400).

. Let x, y, z, and w be the number of towels purchased new, the number of towels

washed by the one-day service after the first day, the number of towels washed
by the one-day service after the second day, and the number of towels washed by
the two-day service after the first day respectively and let C be the total costs.
Then min C = 570 at (x, y, z, w) = (400, 100, 200, 200).
/2 —1;2 1,2
1/2 172 —1,2
—1/2 1 172

. The given matrix is noninvertible.

16 0 —12 273
0 ~12 Tt =12
-2 1 —=12 o0
23 —12 0 1/6
b by .. by <0

No
b ,bs,....b,=z0and ¢,,c;5,....¢, 20

Wm =

[3.b. x=0, y=53, z=2/3, 1,=0, t,=0, t,=8/3, max f=16/3

Chapter 3

a.
b.
(o
d.
e
f

g
I,

Lh=13=0,x53,y=2—xz2=8—-2x,1,=3—x, max /=6
Unbounded

x=0y=6,z=4,1,=0,ming = 14

Unbounded

Ly =008xS1/2,y=1=2x,2 =X /2ty = x,max [ = 3/2
XmB pm2 zm(,t, =0 max /=20
By 2 0y e (0w X, ) 0w = 3 2
Infensible

2x, min g i
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a. FALSE
b. FALSE

t,=0,0<x<1/2y=2/3—4/3x,z=1/3x + /3, max f =0

a. The solutions are the same (x =4,y = 2,f, =0,¢, =0, max f = 6).

b. The solutions are not the same. Canonical solution: x=1,p=0,¢, =0,1, =3,
min g = 1. Noncanonical solution: Unbounded. '

¢ The solutions are not the same. Canonical solution: Infeasible. Noncanonical
solution: x= — 3,y=—4,1,=0,1,=0, max f = — 5.

d. The solutions are the same (unbounded).

Chapter 4

L.

a. Minimize g(y,y.)=4y, + 6y,
subject to  y; + 3y, =1
Wy, +y,21
Vi, ¥ 20
c. Maxix; =8/5,x,=6/51,=0,t,=0max f= 14/5
Min: y, =2/5,y, = 1/5,5,=0,5, =0, ming = 14/5
d. Yes
a. Maximize f(x;,x,)=x; +2x,
subject to  x; —x,=0
=% +%, S —1
XXzl

¢. Max: Infeasible
Min: Infeasible

a. Minimize g(vy. )y, ¥3)=Y1—Y2— V3
subject to y,—y,+2y321
yitya—ys20
Y)Yy 20
c. Max: Infeasible
Min: Unbounded

. a. Maxix, =0x,=1,t,=0,1, =0, max f=—2

Min: s, =0,0=s; £ Ly, = 1/2s; + 3/2,y, = 1/2—1/25,, ming = — 2
b. Max: Unbounded
Min: Infeasible
¢. Max: Infeasible
Min: Infeasible
d. Max:x, =0,x,=0,¢, =0,1,=1,t, =0, max f=0 .
Min: y, =0,p, 20,8, 2 0,3 =2y, + 5, + 2,8, = 15y, + 35, + 3, ming =0
. Max: Infeasible
Min: Unbounded
{, Max: Unbounded
Min: Infeasible

(<]



