
Appendix I: Estimates for the Reliability of Measurements 

In any measurement there is always some error or uncertainty in the result. This uncertainty may be large or 
small, sometimes small enough to completely neglect, but it is always there. Uncertainties and errors can come 
from any number of sources such as human errors in reading and recording data, uncertainties of instrument 
resolution, changes in the environment of the experiment, and many others. In any experiment one of the 
main jobs of the experimenter is to determine the size of the uncertainty in the measurement and when 
possible to identify the causes of any possible errors.  

In general when one makes a number of measurements of the same quantity in an experiment, one usually 
obtains different results. What we need then is a method of determining from the different results the best 
value of the measured quantity and with what certainty we are able to call this value the best. These various 
measurements may be the results of completely different experiments or they may be the results of the same 
experiment repeated several times. Differences between the measurements can be due systematic (such as, 
those errors resulting from the method of the measurement) or random (such as, those errors resulting from 
the limited accuracy of the equipment). As an experimenter you try to eliminate the former and minimize the 
latter. 

The discussion that follows presents two methods for estimating errors. The first is used when it is not 
possible to make repeated measurements. In such cases one must resort to making a reasonable estimate of 
the uncertainties. When multiple measurements are possible a well defined mathematical formalism can be 
used to estimate the errors in the measured quantities. This appendix also discusses the presentation of results 
which should be guided by the size of the certainty in the final result. Finally, this appendix presents the 
mathematical formalism needed to estimate how uncertainties in measured quantities effect uncertainties in 
quantities deduced from measurements. This propagation 

of error is necessary whenever measured results must be combined to determine the quantity of interest. 

Estimated Uncertainties or Guesstimated Uncertainties  

It is not always possible to calculate the uncertainty in the result of an experiment using the results of a 
number of separate measurements of the same quantity. One's ability to make multiple measurements is often 
limited by time and money. In such cases an uncertainty can be estimated or guesstimated by observation of how 
close a measurement can be made or by a crude determination from variations in similar measurements. 
Guesstimated uncertainties are usually a good estimate of the random uncertainties, e.g., the standard deviation. 

Whenever possible during this course uncertainties calculated from multiple measurements should be used. 
However, you will find in most cases this will not be possible due to time limitations. In these cases an 
estimated uncertainty should always be made and the basis for this estimate should be stated. 

  

  

  

Calculated Uncertainties  

Assume that you have made n different measurements of a quantity x. Usually the results of these 
measurements will vary; call them x1, x2, ..., xn. We define the mean or average of these measurements as  

. 
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For each measurement you can now calculate the deviation from the average, namely xi - . From the 
definition of the mean it follows that the sum of these deviations must be zero.  

There are several ways of estimating uncertainty. First we will discuss a very simple method, then we will 
present the most commonly used method. This latter method provides the basis for determining uncertainties 
in most of our experiments. More details concerning this method can be found in the section on Elements of 
Statistical Inference. Another common method is to simply guess the error, this also has it place in our laboratory 
and it is important that you learn to estimate the error in a measurement simply by examining how the 
measurement was made.  

1) A simple estimate of the uncertainty of your measurements can be obtained by adding the sum of the 
absolute values of the differences between the individual measurements and the average value of the 
measurements. This sum, divided by the number of measurements is called the average absolute deviation, α .  

 

The parameter α is an approximate measure of the typical deviation of any one of the measurements from the 
average.  

The uncertainty in the average result of a set of n measurements can be estimated by computing the value of α

and dividing it by , where again n is the number of measurements. Thus one can write the result of n 
experimental determinations of x as  

 

2) The most commonly used method of estimating uncertainty, and the method you should use in this course, 
is based on statistical considerations. In this system uncertainty is defined in terms of the root-mean-square or 
standard deviation, σ ,  

 

which is related to the square of the difference of each measured value from the mean. The division by n-1 is 
discussed in the Elements of Statistical Inference section. As stated in that section, the chances are roughly two out 
of three (more exactly, 68.26%) that the mean of a sample of n measurements of a quantity differs by less than 

from the true mean value for that quantity. The quantity  is the standard deviation of the mean. 
Once you have computed the mean and standard deviation of a set of measurements, the results are quoted as 
follows:  

 

Example 

The following example demonstrates how this is done in practice.  
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Assume you have five measurements of distance x. The table below shows how to compute , α , and σ , 
and how to present the final result. 

Length Measurements 

  

First calculate the average of the measurements, : 

 

 

Next calculate the average deviation, α :  

 

 

Then calculate the standard deviation, σ : 

 

 

 

n 
    × 10-4

 

1 

2 

3 

4 

5 

45.12 

45.09 

45.14 

45.16 

45.10 

-0.002 

-0.032 

+0.018 

+0.038 

-0.022 

0.002 

0.032 

0.018 

0.038 

0.022 

0.04 

10.23 

3.24 

14.42 

4.48 

sum 225.61 0.00 0.112 32.77 
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From these values we can state the result of the measurement in one of two ways: 

Using the average absolute deviation: 

cm 

and using the standard deviation: 

cm 

Methods of Stating Error  

In giving the result of an experiment, it is clearly meaningless to state the result to much greater precision than 
is indicated by your estimate of its error. Thus, it is nonsensical to give a result like the following:  

cm (!) 

The meaningful result would be stated:  

cm 

or perhaps  

cm 

The digits 132 are said to be significant because they lie within the range of reliability as measured by the 
stated error.  

A rule of thumb regarding the carrying of significant figures though a series of arithmetic operations is that 
you should carry one more than the minimum number of significant digits in any of the contributing factors.  

It should be noted that zeroes give rise to some ambiguity here since they are used to indicate the position of 
the decimal point and may not be significant digits at all. Therefore you should learn to state results in terms 
of number between one and ten, times an appropriate power of ten. Thus:  

 

not  

 

One final word of caution: In taking and recording individual measurements do not round off the numbers 
according to your estimate or guess as to the reliability of each measurement. If you do, you will force σ to be 
larger than you estimate (i.e., carry at least one more figure than you think significant.) Only round off the 
final results in your reports.  

Propagation of Uncertainty  

We will first describe a simple method of calculating the uncertainty in the final result of an experiment which 
involves several measurements from the uncertainties in the measurements of the contributions. To take a 
very simple example, suppose we have measured two lengths, and that the final result of our experiment is to 
be the sum or difference of these two lengths. Let the measured lengths and their respective actual 
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uncertainties be A ± ∆ A and B ± ∆ B. Then the final result will have an uncertainty which may lie anywhere 
between (∆ A + ∆ B). Thus the sum is written as  

S = (A + B) ± (∆ A + ∆ B) 

while the difference is written as  

D = (A - B) ± (∆ A + ∆ B). 

Notice the fractional uncertainty in the difference D is much greater than that in either A or B alone if A and 
B are nearly equal.  

If we want to find the uncertainty in the product of A and B we proceed as follows:  

P = (A ± ∆ A)⋅ (B ± ∆ B) 

that is 

P = A⋅ B ± (A⋅ ∆ B + B⋅ ∆ A ± ∆ A⋅ ∆ B)  

Since ∆ A and ∆ B are usually small compared with A and B, we can neglect the product ∆ A⋅ ∆ B. By 
neglecting this term we find  

P ≈ A⋅ B ± (A⋅ ∆ B + B⋅ ∆ A). 

Instead of giving the absolute uncertainty as written above, one usually gives the fractional uncertainty by 
dividing the uncertainty terms by A⋅ B. We thus define the fractional uncertainty  

 

and write the product as  

P = A⋅ B ± ∆ P. 

It can be shown that the same relationship will hold for the quotient Q = A/B, so that one can write  

. 

These formulas overestimate the uncertainty somewhat, since the probability that, in a given experiment, the 
uncertainty in A and B would each have the same sign is only 50%. A better estimate (and the one which you 
should use in this course) can be obtained by using the differentiating procedure outlined below. A detailed 
derivation of these formulae is presented at the end of the section for those who are familiar with 
multivariable calculus. In any event you should use the formulas given at the end of this write-up whenever 
possible.  

  

Mathematical Derivation of Error Propagation Formulae 

Small uncertainties in a function of one variable:  
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Suppose we have a function F, which depends on only one variable, x, i.e. F = F(x). Now when the 
uncertainty in x (which we call ∆ x) is small, we can use differentials to estimate the relationship between the 
uncertainty in x and the uncertainty in F (designated as ∆ F). From the definition of a differential  

 [1] 

where is the first derivative of F with respect to x evaluated at x. By definition dx is infinitely small, as is 
dF. However, if ∆ x is small compared to x, then, to a good approximation, we can replace dx and dF in the 

expression above by ∆ x and ∆ F, which are finite in size. In addition, we can assume that does not vary 
over the interval ∆ x, even though x and F may vary.  

For example, suppose F = ax2 where a is a constant. Then 
 

dF = 2ax dx [2] 

Converting this to finite changes gives ∆ F = 2a x ∆ x. In terms of uncertainty this says: If the quantity x has 
an uncertainty ∆ x, then the uncertainty in F (where F = ax2) will be 2ax ∆ x.  

Quite often it is desirable to talk about fractional uncertainty, ∆ F. For the example above  

. [3] 

This equations states the fractional uncertainty in F is twice the fractional uncertainty in x.  

Small uncertainties in functions of several variables.  

Suppose F is a function of several variables, i.e., F = F(x,y,z) and each of these variables has its own 
uncertainty (∆ x, ∆ y, and ∆ z). The problem can be analyzed using the same procedure as described above, 
except that we must take the differential of F with respect to several variables. In analogy to the procedure for 
one variable one gets  

 [4] 

where , , and  are partial derivatives. A partial derivative means that the derivative is taken with respect 
to one variable, while all the other variables are considered constant.  

For example, take F = ax2y3/z where a is a constant. 
 

 

Using these partial derivatives in Equation. 4, one obtains 
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 [5] 

or expressed in terms of fractional uncertainties: 

. [6] 

Propagation of the Mean Square Uncertainty 

The method described in Equations. 1 through 6 gives us a way of estimating the uncertainty in a function of 
several variables each with its own uncertainty. However, as we argued when discussing the statistical 
treatment of data, it is the mean-square uncertainty which in general gives the best estimate. In order to 
calculate this using the present method, we first square Equation 4.  

 [7] 

Now let ∆ x, ∆ y, and ∆ z take on all possible values within their allowed ranges of variation. The derivatives 

, , and  are essentially constants if ∆ x, ∆ y, and ∆ z are small.  

If we further assume that no change in one variable will affect the change in any other variable, then the 
crossterms will be zero. This can be seen by noting that the uncertainty, when not squared, has a sign 
associated with it. For each +∆ x there is a - ∆ x value, and for each +∆ y, a -∆ y. Averaging over these four 
possibilities to find the average ∆ x∆ y crossterm gives  

∆ x∆ y + ∆ x(-∆ y) + (-∆ x)(-∆ y) + (-∆ x)∆ y = ∆ x∆ y(1-1+1-1) = 0. 

A similar argument can be made for the other crossterms. Then the general form for the mean square 
uncertainty (and the one used in propagating uncertainties) is  

 [8] 

Examples:  

Suppose F = x - y. Then differentiating we get ∆ F = ∆ x - ∆ y. From above we see that the uncertainty in F is 
given by  

 

or 
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As a second example suppose F = xy, then 

 

and 

 

The uncertainty in F becomes  

. 

Another way of solving this same problem is to first take the natural log of each side  

ln F = ln x + ln y 

then differentiate  

 

next square each side, dropping the crossterms 

 

and finally obtaining 

 

As a final example, suppose F = x/y, then taking natural log of both sides.  

ln F = ln x - ln y 

Differentiating:  
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Squaring and summing: 

 

then 

 

This result is the same as the result for F = xy. 

Formulae for Standard Cases 

Following is a list of some formulae for propagating uncertainties.  

1. F = x -y 

  

2. F = Cxnymzk in which C, n, m, and k are constants. 
 

 

3. F = Cxy in which C is a constant. 
 

 

4. F = Cx log10y in which C is a constant. 
 

  

5. F = Cx sin y in which C is a constant. 
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6. F = Cx cos y sin z in which C is a constant.  
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