
�

from SIAM News, Volume 33, Number 4

By Barry A. Cipra

Algos is the Greek word for pain. Algor is Latin, to be cold. Neither is the root for algorithm, which stems instead from al-
Khwarizmi, the name of the ninth-century Arab scholar whose book al-jabr wa’l muqabalah devolved into today’s high school
algebra textbooks. Al-Khwarizmi stressed the importance of methodical procedures for solving problems. Were he around today,
he’d no doubt be impressed by the advances in his eponymous approach.

Some of the very best algorithms of the computer age are highlighted in the January/February 2000 issue of Computing in Science
& Engineering, a joint publication of the American Institute of Physics and the IEEE Computer Society. Guest editors Jack Don-garra of the
University of Tennessee and Oak Ridge National Laboratory and Fran-cis Sullivan of the Center for Comput-ing Sciences at the Institute for
Defense Analyses put togeth-er a list they call the “Top Ten Algorithms of the Century.”

“We tried to assemble the 10 al-gorithms with the greatest influence on the development and practice of science and engineering
in the 20th century,” Dongarra and Sullivan write. As with any top-10 list, their selections—and non-selections—are bound to be
controversial, they acknowledge. When it comes to picking the algorithmic best, there seems to be no best algorithm.

Without further ado, here’s the CiSE top-10 list, in chronological order. (Dates and names associated with the algorithms should be read
as first-order approximations. Most algorithms take shape over time, with many contributors.)

1946: John von Neumann, Stan Ulam, and Nick Metropolis, all at the Los Alamos Scientific Laboratory, cook up the Metropolis
algorithm, also known as the Monte Carlo method.

The Metropolis algorithm aims to obtain approximate solutions to numerical problems with unmanageably many degrees of freedom
and to combinatorial problems of factorial size, by mimicking a random process. Given the digital computer’s reputation for

deterministic calculation, it’s fitting that one of its earliest applications was the generation of random numbers.

1947: George Dantzig, at the RAND Corporation, creates the simplex method for linear programming.
In terms of widespread application, Dantzig’s algorithm is one of the most successful of all time: Linear

programming dominates the world of industry, where economic survival depends on the ability to optimize
within budgetary and other constraints. (Of course, the “real” problems of industry are often nonlinear; the use
of linear programming is sometimes dictated by the computational budget.) The simplex method is an elegant
way of arriving at optimal answers. Although theoretically susceptible to exponential delays, the algorithm
in practice is highly efficient—which in itself says something interesting about the nature of computation.

1950: Magnus Hestenes, Eduard Stiefel, and Cornelius Lanczos, all from the Institute for Numerical Analysis
at the National Bureau of Standards, initiate the development of Krylov subspace iteration methods.

These algorithms address the seemingly simple task of solving equations of the form Ax = b. The catch,
of course, is that A is a huge n � n matrix, so that the algebraic answer x = b/A is not so easy to compute.
(Indeed, matrix “division” is not a particularly useful concept.) Iterative methods—such as solving equations of

the form Kxi + 1 = Kxi + b – Axi with a simpler matrix K that’s ideally “close” to A—lead to the study of Krylov subspaces. Named
for the Russian mathematician Nikolai Krylov, Krylov subspaces are spanned by powers of a matrix applied to an initial
“remainder” vector r0 = b – Ax0. Lanczos found a nifty way to generate an orthogonal basis for such a subspace when the matrix
is symmetric. Hestenes and Stiefel proposed an even niftier method, known as the conjugate gradient method, for systems that are
both symmetric and positive definite. Over the last 50 years, numerous researchers have improved and extended these algorithms.
The current suite includes techniques for non-symmetric systems, with acronyms like GMRES and Bi-CGSTAB. (GMRES and
Bi-CGSTAB premiered in SIAM Journal on Scientific and Statistical Computing, in 1986 and 1992,
respectively.)

1951: Alston Householder of Oak Ridge National Laboratory formalizes the decompositional approach
to matrix computations.

The ability to factor matrices into triangular, diagonal, orthogonal, and other special forms has turned
out to be extremely useful. The decompositional approach has enabled software developers to produce
flexible and efficient matrix packages. It also facilitates the analysis of rounding errors, one of the big
bugbears of numerical linear algebra. (In 1961, James Wilkinson of the National Physical Laboratory in
London published a seminal paper in the Journal of the ACM, titled “Error Analysis of Direct Methods
of Matrix Inversion,” based on the LU decomposition of a matrix as a product of lower and upper
triangular factors.)

1957: John Backus leads a team at IBM in developing the Fortran optimizing compiler.
The creation of Fortran may rank as the single most important event in the history of computer programming: Finally, scientists

The Best of the 20th Century: Editors Name Top 10 Algorithms

In terms of wide-
spread use, George
Dantzig’s simplex
method is among the
most successful al-
gorithms of all time.

Alston Householder

user
MONTE CARLO

2007 MC-IST OR {Sim_routine.doc}

SIMULATION routine
(“Monte Carlo Method”)

Simulation of random phenomena, based on (pseudo-)random numbers

1) Define the phenomenon to simulate (random variable, x) and (a) caracterize it
through an adequate probability function or (b) go to 2.

DISCRETE VARIABLE

Let f(x) be the (point)
probability function.

 CONTINUOUS VARIABLE

Let f(x) be the probability
density function.

2) Determine the cumulative (distribution) function.

() ()F x f t
t x

x

=
=
∑

min

 () ()F x f t t

x

x
= ∫ d

min

(xmin is the least value possible for x.)

Whenever the analytical form of F(x) is unknown or difficult to deduce, it
is necessary to tabulate F(x).

3) Adopt uniform random numbers of k digits, with k “compatible” with the values of
F(x) to use (same number of significant digits).

(The value of k depends of the circumstances of the problem.)

4) (Simulation proper) Extract a random number, N, and divide it by 10k, to obtain the
random number u, reduced to the interval [0, 1).

u N
k= 10

5) Solve the equation “ ()F x u= ” for x, i.e.,

() ()F x u F x− ≤ <1

[with ()F xmin − =1 0] whence x
is obtained.

 ()F x u=

If the function F has a known
inverse, ~F ,

()x F u= ~

The value x is a simulated value of the random variable under consideration.

6) Return to the simulation procedure —steps 4 and 5— until a “sufficient” number
of values is calculated; or finish.

 n

()
ab

xfy
−

== 1

() ()

() ()()
ab

abab
ab

ab

x

ab
xx

ab
x

ab

x

xxxfxE

b

a

b

a

b

a

−
−+=−

−
=

=








−
=

−
=

−
=

===

∫∫

∫
+∞

∞−

2

11

2

1

2

1
d

1
d

d

22

2

µ

2

ba +=µ

()[] () ()

∫

∫

−








 +−
=

=−=−=
+∞

∞−

b

a
x

ab

ba
x

xxfxxE

d
2

d

2

222 µµσ

Let
2

ba
xu

+−= .

()

()

()

()

()

()2

3
33

2

2

3
2

2

22

12

1

8

21

3

1

22

1

3

1

3

1
d

1

ab

ab
ab

abab

ab

u

ab
uu

ab

ab

ab

ab

ab

−=

=−
−

=


















 −+






 −
−

=

=








−
=

−
=

−

−−

−

−−∫σ

12

ab −=σ

Physical dimensions match, as expected !

�

 [:14] 1

Prof. Dr. Casquilho is an Assistant Professor in the Department of Chemical Engineering at
Instituto Superior Técnico, Technical University of Lisbon, Portugal. His email address is
mcasquilho@ist.utl.pt.

MC IST File=MathTools.doc

Useful mathematical tools
MIGUEL A. S. CASQUILHO

Technical University of Lisbon, 1049-001 Lisboa, Portugal

Some useful mathematical tools are presented: the Newton-Raphson method; surrogate
Gaussian distributions; and notes on the Monte Carlo (simulation) method.

Key words: Newton-Raphson method, Gaussian distribution, Monte Carlo,
Simulation.

1. Introduction
Useful mathematical tools (some of which you may have forgotten) are

presented: the Newton-Raphson method; surrogate Gaussian distributions; and
some notes on the Monte Carlo simulation method. Pertinent illustrations are
included.

2. The Newton-Raphson method
The Newton-Raphson1 method is a well-known numerical method to find

(approximate) zeros (or “roots”) of a function. It is an iterative algorithm2, which,
when successful, converges (usually) rapidly (quadratically, i.e., doubling the number
of correct figures in each iteration), but may fail as any other root-finding algorithm.

The method tries to solve an equation in the form of Eq. {1}

 () 0=xf {1}

through the iterative procedure of Eq. {2},

()
()xf

xf
xx

′
−=* {2}

from an initial estimate of x, usually called the initial guess. Although the notation x*
is often used to indicate the solution to a problem (Eq. {1}), here it is used to mean
the next, (hopefully) improved value of the variable, which, in the end, will indeed be
the solution.

The bibliographical sources of the method are so numerous that no specific
recommendation is made in this opuscule.

Eq. {2} shows that: if we know the solution, i.e., the x for which it is f(x) = 0,
then, of course, the next x is the same as the current one, so the process is terminated;
and if the derivative is null in the solution, i.e., f’(x) = 0, the method fails (which
happens, namely, for multiple roots). Failure to converge may, of course, happen in

1 Isaac NEWTON (1643–1727), Joseph RAPHSON (~1648–~1715), English mathematicians

([MacTutor, 2010])
2 From Abu Jafar Muhamad Ibn Musa Al-Kwarizmi ([MacTutor, 2010])

2 [:14] MIGUEL CASQUILHO — Quality Control

any iterative numerical method. Anyway, the convergence of the Newton-Raphson
method, when it arises, is typically quite rapid (few iterations).

Illustration 2-A
Solve

 () 0=+= baxxf {3}

from x = 1.
Resolution Applying the algorithm, it is

 () axf =′ {4}

 a

b

a

b
xx

a

bax
xx −=−−=+−=* {5}

In this case, we did not even have the opportunity to supply the initial guess to get the
(exact) solution.

Illustration 2-B
Solve

 () 062 2 =−= xxxf {6}

from x = ±5.
Resolution Applying the algorithm, with the simple derivative, it is

64

62 2
*

−
−−=

x

xx
xx {7}

Eq. {7} could be simplified to () ()323* −−−= xxxxx —not necessary—,
just to show that 0 and 3 are, of course, the roots of the given equation. The function
is shown in Fig. 1 and the computations in Table 1.

-6

-4

-2

0

2

4

-1 0 1 2 3 4
x

y

Fig. 1

 Useful mathematical tools 3

Table 1
x f(x) f'(x) new x x f(x) f'(x) new x

-5 80 -26 -1,92308 5 20 14 3,571429
-1,92308 18,93491 -13,6923 -0,54019 3,571429 4,081633 8,285714 3,078818
-0,54019 3,824752 -8,16076 -0,07151 3,078818 0,485331 6,315271 3,001967
-0,07151 0,439314 -6,28606 -0,00163 3,001967 0,011812 6,007869 3,000001
-0,00163 0,009768 -6,00651 -8,8E-07 3,000001 7,73E-06 6,000005 3
-8,8E-07 5,29E-06 -6 -2,6E-13 3 3,32E-12 6 3
-2,6E-13 1,55E-12 -6 -2,2E-26 3 0 6 3
-2,2E-26 1,34E-25 -6 0

0 0 -6 0

In this simple case, the two zeros (or “roots”, a more usual term for
polynomials) were obtained from respective “reasonable” initial guesses.

Illustration 2-C
Solve

 21sin =x {8}

from x = 0. (We know that x = arcsin(1/2) = π / 6 = 0.523...3)
Resolution First, drive Eq. {8} to the convenient form (Eq. {2}).

 () () 021sin =−= xxf {9}

Thus,

 () xxf cos=′ {10}

 x

x
xx

cos

21sin~ −−= {11}

The computations are shown in Table 2.

Table 2
x f(x) f'(x) Dx new x

0 -0,5 1 0,5 0,5
0,5 -0,02057 0,877583 0,023444 0,523444

0,523444 -0,00013 0,866103 0,000154 0,523599
0,523599 -6E-09 0,866025 6,87E-09 0,523599
0,523599 0 0,866025 0 0,523599

Illustration 2-D
Solve

 1arctan =+ xx {12}

from x = 0.
Resolution Drive Eq. {12} to the convenient form.

 () 01arctan =−+= xxxf {13}

3 The following reference is highly recommended: TOMPSON, Ambler and Barry N. TAYLOR, 2008,

“Guide for the use of the International System of units (SI)”, (x+78 pp, 2.2 Mb), NIST, Special
Publication 811, US Department of Commerce, Gaithesburg, MD (USA). (Available at
http://web.ist.utl.pt/mcasquilho/acad/errors/)

4 [:14] MIGUEL CASQUILHO — Quality Control

 ()
21

1
1

x
xf

+
+=′

Then,

 ()2111

1arctan~
x

xx
xx

++
−+−= {14}

The function f is shown in Fig. 2 and the computations in Table 3.

Table 3
x f(x) f'(x) ∆x new x

0 -1 2 0,5 0,5
0,5 -0,0363 1,8 0,020196 0,520196

0,520196 -0,00013 1,787027 7,32E-05 0,520269
0,52027 -1,7E-09 1,78698 9,67E-10 0,520269
0,520269 0 1,78698 0 0,520269

-6

-4

-2

0

2

4

-4 -2 0 2 4
x

Fig. 2

Illustration 2-E
Solve

 () 25.0=Φ z {15}

from z = 0. This will be useful in the simulation of a Gaussian variable.
Resolution Remember that Φ is the usual notation for the Gaussian integral,

 () ∫ ∞−







−=Φ
z

xxz d
2

1
exp

2

1 2

π
 {16}

Applying the algorithm, with the right-hand side constant of Eq. {15} denoted by P,
P = 0.25, it is

 () () Pzzf −Φ=

 () () 






−==′ 2

2

1
exp

2

1
zzzf

π
φ

Then,

()

()z

Pz
zz

φ
−Φ−=* {17}

(Blank page)

	Untitled

