from S AM News, Volume 33, Number 4

The Bes of the 20th Century: EditorsNameTop 10 Algorithms

By Barry A. Cipra

Algos is the Greek word for pain. Algor is Latin, to be cold. Neither is the root for algorithm, which stems instead from al-
Khwarizmi, the name of the ninth-century Arab scholar whose book al-jabr wa’'| mugabalah devolved into today’ s high school
algebratextbooks. Al-Khwarizmi stressed the importance of methodical proceduresfor solving problems. Were he around today,
he'd no doubt be impressed by the advances in his eponymous approach.

Some of thevery best algorithms of the computer age are highlighted in the January/February 2000 issue of Computing in Science
& Engineering, ajoint publication of the American I ngtitute of Physicsand thel EEE Computer Society. Guest editorsJack Don-garraof the
University of Tennessee and Oak Ridge Nationa Laboratory and Fran-cis Sullivan of the Center for Comput-ing Sciences  the Indtitute for
Defense Analyses put togeth-er alist they cdl the* Top Ten Algorithms of the Century.”

“Wetried to assemble the 10 al-gorithms with the greatest influence on the devel opment and practice of science and engineering
in the 20th century,” Dongarra and Sullivan write. Aswith any top-10 list, their selections—and non-sel ections—are bound to be
controversial, they acknowledge. When it comes to picking the algorithmic best, there seems to be no best algorithm.

Without further ado, here sthe Ci SE top-10list, in chronological order. (Datesand names associated with the al gorithms shoul d beread
as first-order approximations. Most algorithms take shape over time, with many contributors.)

1946: John von Neumann, Stan Ulam, and Nick Metropolis, all at the Los Alamos Scientific Laboratory, cook up the Metropolis
algorithm, also known asthe M onte Carlo method.

TheMetropolisa gorithmamstoobtain approxi mate sol utionsto numerical problemswith unmanageably many degrees of freedom
and to combinatorial problems of factorial size, by mimicking a random process. Given the digital computer’s reputation for
deterministic calculation, it' sfitting that one of its earliest applicationswasthe generation of random numbers.

1947: George Dantzig, at the RAND Corporation, creates the simplex method for linear programming.
In terms of widespread application, Dantzig's algorithm is one of the most successful of all time: Linear
programming dominates the world of industry, where economic survival depends on the ability to optimize
within budgetary and other constraints. (Of course, the“real” problemsof industry are often nonlinear; theuse
of linear programming is sometimesdictated by the computational budget.) The simplex method isan elegant
way of arriving at optimal answers. Although theoretically susceptible to exponential delays, the algorithm
in practiceis highly efficient—which in itself says something interesting about the nature of computation.

In terms of wide-
spread use, George . . . . .
Dantzig’s simplex 1950: MagnusHestenes, Eduard Stiefel, and CorneliusLanczos, all from thenstitutefor Numerical Analysis

methodisamongthe gt the National Bureau of Standards, initiate the development of Krylov subspaceiteration methods.

most successful al-

gorithms of all time. These algorithms address the seemingly simple task of solving equations of the form Ax = b. The catch,

of course, isthat Aisahugen x nmatrix, so that the algebraic answer x = b/A is not so easy to compute.
(Indeed, matrix “division” isnot a particularly useful concept.) Iterative methods—such as solving equations of
theformKx, . ; = Kx + b — Axwithasimpler matrix K that’ sideally “close” to A—Ilead to the study of Krylov subspaces. Named
for the Russian mathematician Nikolai Krylov, Krylov subspaces are spanned by powers of a matrix applied to an initial
“remainder” vectorr, = b — Ax,. Lanczosfound anifty way to generate an orthogonal basisfor such a subspace when the matrix
issymmetric. Hestenes and Stiefel proposed an even niftier method, known as the conjugate gradient method, for systemsthat are
both symmetric and positive definite. Over thelast 50 years, numerous researchers have improved and extended these algorithms.
The current suite includes techniques for non-symmetric systems, with acronyms like GMRES and Bi-CGSTAB. (GMRES and
Bi-CGSTAB premiered in SSAM Journal on Scientific and Satistical Computing, in 1986 and 1992,

respectively.)

1951: Alston Householder of Oak Ridge National L aboratory formalizesthedecompositional appr oach
to matrix computations.

The ability to factor matricesinto triangular, diagonal, orthogonal, and other special forms has turned
out to be extremely useful. The decompositional approach has enabled software devel opers to produce
flexible and efficient matrix packages. It also facilitates the analysis of rounding errors, one of the big
bugbears of numerical linear algebra. (In 1961, James Wilkinson of the National Physical Laboratory in
London published a seminal paper in the Journal of the ACM, titled “Error Analysis of Direct Methods
of Matrix Inversion,” based on the LU decomposition of a matrix as a product of lower and upper
triangular factors.)

Alston Householder

1957: John Backus leads ateam at IBM in developing the Fortran optimizing compiler.
The creation of Fortran may rank asthe single most important event in the history of computer programming: Finally, scientists



(and others) could tell the computer what they wanted it to do, without having to descend into the netherworld of machine code.
Although modest by modern compiler standards—Fortran | consisted of amere 23,500 assembly-languageinstructions—theearly
compiler was nonetheless capable of surprisingly sophisticated computations. As Backus himself recalls in a recent history of
Fortran I, 11, and |11, published in 1998 in the IEEE Annals of the History of Computing, the compiler “produced code of such
efficiency that its output would startle the programmers who studied it.”

1959-61: J.G.F. Francisof Ferranti Ltd., London, finds a stable method for computing eigenval ues, known asthe QR algorithm.

Eigenvalues are arguably the most important numbers associated with matrices—and they can be the trickiest to compute. It's
relatively easy to transform a square matrix into amatrix that’s“amost” upper triangular, meaning one with a single extra set of
nonzero entries just below the main diagonal. But chipping away those final nonzeros, without launching an avalanche of error,
isnontrivial. The QR algorithmisjust the ticket. Based on the QR decomposition, which writes A as the product of an orthogonal
matrix Q and anupper triangular matrix R, thisapproachiteratively changesA = QRintoA , ; = RQ,withafew bellsandwhistles
for accel erating convergenceto upper triangul ar form. By the mid-1960s, the QR algorithm had turned once-formidableeigenvalue
problems into routine cal culations.

1962: Tony Hoare of Elliott Brothers, Ltd., London, presents Quicksort.

Putting N thingsin numerical or al phabetical order ismind-numbingly mundane. Theintellectual challengeliesindevising ways
of doing so quickly. Hoare's algorithm uses the age-old recursive strategy of divide and conquer to solve the problem: Pick one
element asa“ pivot,” separate therest into piles of “big” and “small” elements (as compared with the pivot), and then repeat this
procedure on each pile. Although it’ spossibleto get stuck doingdl N(N — 1)/2 comparisons (especialy if you use asyour pivot the first
itemonalist that’ salready sorted!), Quicksort runson averagewith O(Nlog N) efficiency. Itsel egant simplicity hasmade Quicksort
the pos-terchild of computational complexity.

1965: JamesCooley of thel BM T.J. Watson Research Center and John Tukey of Princeton
University and AT& T Bell Laboratories unveil the fast Fourier transform.

Easily themost far-reaching algo-rithmin applied mathematics, the FFT revolutionized
signal processing. Theunderlying ideagoesback to Gauss (who needed to cal cul ate orbits
of asteroids), but it was the Cooley—Tukey paper that made it clear how easily Fourier
transforms can be computed. Like Quicksort, the FFT relies on a divide-and-conquer
ot . strategy to reducean ostensibly O(N?) choretoan O(NlogN) frolic. But unlike Quick- sort,
sk % ."" £. % theimplementationis(at first sight) nonintuitiveandlessthanstraightforward. Thisinitself
gave computer scienceanimpetustoinvestigatetheinherent complexity of computational
problems and algorithms.

o

James Cooley

John Tukey

1977: Helaman Ferguson and Rodney Forcade of Brigham Y oung University advance an integer relation detection algorithm.

The problemisan old one: Given abunchof real numbers, say x;,%,, . . .,X,, arethereintegersa,, a,,. . ., a,(notall 0) for which
ax, tax, +. . . +ax,=0?Forn=2, thevenerable Euclidean algorithm does the job, computing termsin the continued-fraction
expansion of x,/X,. If x,/x, isrational, the expansion terminates and, with proper unraveling, givesthe“smallest” integers a, and a,.
If the Euclidean algorithm doesn’t terminate—or if you simply get tired of computing it—then the unraveling procedure at least
provides lower bounds on the size of the smallest integer relation. Ferguson and Forcade’ s generalization, although much more
difficult to implement (and to understand), is also more powerful. Their detection algorithm, for example, has been used to find
the precise coefficients of the polynomials satisfied by the third and fourth bifurcation points, B, = 3.544090 and B, = 3.564407,
of thelogistic map. (Thelatter polynomial isof degree 120; itslargest coefficient is 257%.) It has also proved useful in simplifying
calculations with Feynman diagrams in quantum field theory.

1987: Leslie Greengard and Vladimir Rokhlin of Yale University invent the fast multipole algorithm.

Thisalgorithm overcomes one of the biggest headaches of N-body simulations: thefact that accurate cal cul ations of the motions
of N particlesinteracting viagravitational or electrostaticforces(think starsinagalaxy, or atomsinaprotein) would seemtorequire
O(N? computations—one for each pair of particles. The fast multipole algorithm gets by with O(N) computations. It does so by
using multipole expansions (net charge or mass, dipole moment, quadrupole, and so forth) to approximate the effects of a distant
group of particlesonalocal group. A hierarchical decomposition of spaceisused to defineever-larger groupsasdistancesincrease.
One of thedistinct advantages of the fast multipolealgorithm isthat it comes equi pped with rigorous error estimates, afeature that
many methods lack.

What new insights and algorithms will the 21st century bring? The complete answer obviously won't be known for another
hundred years. One thing seems certain, however. As Sullivan writesin theintroduction to thetop-10list, “ The new century is not
going to be very restful for us, but it is not going to be dull either!”

Barry A. Ciprais a mathematician and writer based in Northfield, Minnesota.



Solving L P problems [Zionts, 1974] [4]1

“ An intuitive algebraic approach for solving
Linear Programming problems’

Source: Zionts[1974] (or many others).

[max]z= 0,56x, +0,42x,

s.to X +2x, £ 240 !
15x + X, £ 180 i
X, £ 110
[max|z= 056x, +0,42x,
+2X +1X = 240
1 Xi 2 { 3} { 2}
15x; + X, +{x4} = 180
X, +{x,} = 110
This has (always) an obvious, sure solution. Let
X, X, =0 {3}
Then
&xu €400
a_ a
™ %0, @
eH €10y
€400
z=[0 0 0]3180;=0 {5}
g10g

Isthisoptimal ? How to improve ?

There does not appear (Dantzig) to be a systematic way of setting all the
nonbasic variables simultaneously to optimal values —hence, an iterative® method.

Choose the variable that increases the objective function most per unit (this
choiceis arbitrary), in the example, x,, because its coefficient (0,56) is the largest.

According to the constraints, x, can be increased till:

X, =240 X, =240
15x, =180 ® x, =120 {6}
x, =110 X, =110

Thethird equation (why ?) in {2} leadsto x, = 110 and x; = 0. The variable x, will be
the entering variable and x; the leaving variable:

L A, B, Cidentify the iteration, as summarized below.
2 |terative: involving repetition; relating to iteration. Iterate (from Latin iterare), to say or do again
(and again). Not to be confused with interactive.

File: {LP_ZiontsB0308.doc}



2[:4] Solving LP problems[Zionts, 1974]

X, =110- X (N
Substituting for x, everywhere (except in its own constraint), we have

[max|z= 056(110- x;) +0,42x,

(110- x;)  +2x, +Xx, = 240 o
15110- x,)  +X, +X, = 180 {8
X, +x, = 110
max |z = 0,42x - 0,56x + 61,6
[max] : !
+2x,  +{x.} - % = 130
X, +{x,} -15x, = 15 {9
X + X = 110
{x} ;

which is of course equivalent to Eq. {2} .
We now have a new (equivalent) LP problem, to be treated as the original
was. The process can continue iteratively.

éxu 10y
é, U_ a
g™ ‘5130@ {10}
ex.0 elsy
From Eq. {2} or Eq. {9}, respectively,
610y
z=[056 0 0]3130;=616 {11}
el5¢
610y
z=[0 0 0J3130;+616=616 {12}
el5¢
Now, X, is the new entering variable. According to the constraints, it can be
increased till:

2x, =130 X, =65
x, =15 ® x, =15 {13}
Ox, =110 X, =¥

X, =15- X, +15X; {14}



Solving L P problems [Zionts, 1974] [4:]3

Substituting for x, everywhere (except its own constraint), we have

[max]z = 0,42(15- x, +15x) - 0,56x, +61,6
+ 2(15- X, +15x5) + X, - X% = 130 15
X, +X, -15% = 15 {15
X, + X = 110
[max|z = - 0,42x, +0,07x, +67,9
{x}) -2x, +2x, = 100
{xz} +X, -15%x, = 15 {16}
{xl} + Xg = 110
éx,u él10u
U_é,cu
eXZ o~ elg {17}
e €00g

Now, x; is the new entering variable. According to the constraints, it can be
increased till:

2x, =100 Xs =50
-15% =15 ® x, =... {18}
Xs =110 X; =110
_ 1
x5—50-§x3+x4 {19}

Substituting for x; everywhere (except its own constraint), we have

[max]z = _042x, +00730- Tx, +x,8  +679
e 2 @
X3 - X, + Xg = 50
X, +X, - LSE%O— %x3 +X4§ = 15 {20}
X, +&0-Lx +x,2 = 110
e 2 2
[max|z = - 0,035x, - 0,35%, +714
X3 - X +{X5} = 50
{x,} +075x 0,5% = 9
{x} -05%x,  +Xx, = 60
&0 &0
u_ u
;xz 0= é%ou {21)
et €0

Now, no variable produces an increase. So, thisis amaximum.



4:4] Solving L P problems [Zionts, 1974]

In sum:

A Inthe system of equations, find the identity matrix (immediate solution).
B search for an entering variable (or finish)
C consequently, find a leaving variable (if wrongly chosen, negative values will

appear).

Refer ences:

—ZIONTS, Stanley, 1974, “Linear and integer programming”, Prentice-Hall,
Englewood Cliffs, NJ(USA), p 5. (IST Library.) ISBN 0-13-536763-8.

— See others on the course webpage (http: //web.ist.utl.pt/mcasquil ho).

\/
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X

(1)
2
(3
o

Let's solve it manually.

<=
<=
<=

_____

Zionts, "An intuitive algebraic approach for solving LP problems”

Value
240
180

60

Solver model:
ez {72 ] 7
RHS
<= 240 TRUE
<= 180 100
<= 110 100

[max)= 056x, +042x,

s.to X+l
1.5x, +1,

]

<40
<180
<110

______________________

Structural—... Slack—... MAXIMIZE
X3 X4 Xs
0 0 0 Ratio
0.1 0 0 240 240
0.2 1 0 180 120
0.3 - 110  Smallesti Leaves
0.0
Enters 0 616 =nextz
1.1 0 130 b) {0.1} - {1.3} x 1
1.2 s 15 {0 15
13 110 -1 a)Pivot{0.3}/ 1
1.0 Indep. term.. 61,6 d){0.0}-{1.3}x 056
Enters z= 67,9 =nextz
50 b){1.1}-{2.2} x 2
15 -1 a)Pivot{1.2}/ 1
110 110 ©){1.3}-{2.2} 0
Indep. term.. 67,9 d) {1.0} - {1.3} x 0,42
Enters z=| 679 714 =nextz
3.1 Xs 0 0 0,5 -1 1 50 a) Pivot {2.1}/ 2
3.2 X5 0 1 0,75 -0,5 0 90 b) {2.2} - {3.1} x -1,5
3.3 X1 1 0 -0,5 1 0 60 c){2.3}-{3.1} x 1
3.0 Coeffs 0 0 0,035 -0,35 0 End Indep. term.: 71,4 d) {1.0}- {1.3} x 0,07

z= OPTIMUM



Mar-2011 H&L, Wyndor Probl. [max]:= 3x, +5x,
o +21, ;12 Solver model

3x, +2x, <18 [max] 2 36

(Constr..)  x, Xy Value RHS 2

(4] <= 2 <= 4 TRUE

(2) <= 12 <= 12 100

(3) <= 18 <= 18 100
f///{/////l////{///// " O ///////////////{/{{//{{/{{////////////////////////////////////&

et's solve it manually.
Structural—... Slack—... Artificial MAXIMIZE
x03 x04 xOS -12(6)0 -12(7)0 -12?)0 Ratio

0.1 X3
0.2 X4
0.3 X5
0.0 Coeffs

Enters

Smallest: Leaves

30 =nextz

b) {0.1} - {1.2} x 0
6 -1 a)Pivot {02 2
- 2 ¢){0.3}-{1.2} x 2
Indep. term.: 30 d) {0.0} - {1.2} x 5
Enters z=|l 30 36 =nextz
21 X3 0 0 1 0,33333 -0,3333 2 b) {1.1} - {1.3} x 1
22 X, 0 1 0 0,5 0 6 c){1.2}-{1.3} x 0
23 Xq 1 0 0 -0,3333 0,33333 2 a) Pivot {1.3}/ 3
2.0 Coeffs 0 0 0 -15 -1 End Indep. term.: 36 d) {1.0}-{1.3} x 3
z =[36_JoPTIMUM
Now follow a different path !
Structural—... Slack—... MAXIMIZE
X3
Ratio
0.1 4 4  SmallestiLeaves
0.2 12 1
0.3 18 6
0.0
z=[ 0 ]| 12 =nextz
1.1 4 -1 a)Pivot{0.1}/ 1
1.2 12 6 b){0.2}-{1.1}x 0
1.3 6 3 o{03-{11}x 3
1.0 Indep. term.: 12 d) {0.0} - {1.1} x 3
Enters z=[ 12 | 27 =nextz
21 X 0 4 4  b){1.1}-{2.3} x 0
22 X4 6 2 c¢o{1.2}-{2.3} x 2
23 0,5 3 -1 a)Pivot{1.3}/ 2
2.0 0 2,5 Indep. term.. 27 d) {1.0} - {1.3} x 5
Enters z=[ 27 | 3 =nextz
3.1 X 1 0 0 -0,3333 0,33333 b) {2.1} - {3.2} x 1
3.2 X3 0 0 1 0,33333 -0,3333 2 a) Pivot {2.2} / 3
3.3 X3 0 1 0 05 0 6 c){2.3}-{3.2} x -1,5
3.0 Coeffs 0 0 0 -15 -1 End Indep. term.: 36 d) {2.0}- {3.2} x 45

z= OPTIMUM



Path 1
Path 2

Try: 27 or 36
Ax= 05 z=? 36
X Vi _ V2
0 6 9 7.2
0,5 6 8,25 6,9
1 6 75 6,6
1,5 6 6,75 6,3
2 6 6 6
25 6 5,25 57
3 6 45 54
3,5 6 3,75 5,1
4 3 6 3 48
4,5 6 2,25 45
5 6 1,5 4,2
55 6 0,75 3.9
6 6 0 3,6

(0,0,2=0), (0, 6, =30), (2, 6, z=36)

(0,0, z=0), (4,0,2z=12), (4, 3, z=27), (2, 6, z=36)

X2

—
=)

S = N W A U N 9 0 O

Feasible region




Artificial variablesin Linear Programming
Adapted from H&L [2005] and Taha [1992]

Equality constraints[H& L, p 125]
Suppose a modification to the origingndor problem, as follows ({1}).

[max]z: 3X, +5X,

sto X, <4 1
2x, <12 o
3x, +2x, =18
with x = 0. Thus, the third constraint is now an equalitiis can become

(00 z -3x, -5x =0
6 X % =4

_ {2}
(2) 2X, +x, =12
(3) 3% +2%, =18

However, these equatior® not have an obvious initial (basic feasible) solution.

So, theartificial variablc*etechnique is applied. Withv a very high number ¢¢) —
this is theBig M method —, we camaugment the system {2} to obtain

00 z -3x -5x, +MX, =0
(1) X X =4
(2) 2X, +X, =12 3
(3) 3x,  +2x, +%, =18

Converting equation O to proper form

In {3}, the (obvious) initial basic variables axg x, and X; (non-basicg = 0
andx; = 0). However, this system is not yet in propenf for Gaussian elimination
because a basic variabl&} has anon-zero coefficient in Eq. 0. Indeed, all the
basic variables must be (algebraically) eliminates Eq. O before the simplex
method can find the entering basic variable. (Efimination is necessary so that the
negative of the coefficient of each non-basic @eawill give the rate at whiclka
would increase if that non-basic variable weredarizcreased from 0 while adjusting
the values of the basic variables accordingly.)

To eliminate X, from Eq. O, we need to subtract from Eq. O thedpodoM

times Eq. 3:

z —-3% -5X, +M X, =0
-M (3%, +2X, + X =198 {4}
z -(3M +3)x, —(2m +5)x, = -18M

" Another method to solve this matter is the “twagd method”.



In this example, there is only one equation withadificial variable. If there
were several equations with artificial variables, we would have subtract
accordingly.

Application of the simplex method
The new Eq. O givesin terms of just the non-basic variableg &,):

z=-18M +(3M +3)x, +(2M +5)x, {5}

Since the coefficient af, is thebest (greatest), this variable is chosen as the

entering variable.
The leaving variable, as always, will correspondthie smallest “positive”
(non-negative) ratio (from the so-called “minimuatio test”).

Another (moregeneral) example (Taha[1992], p 72)

[min]z= 4%, +X,
s.to 33X +x, =3

6
4x, +3X, =6 {}
X +2x, <4
with x = 0. Theaugmented standard form is
[min]z = 4x, +Xx, +0x; +0x, +Ma, +Ma,
sto 33X X +a, =3 -
a4x, +3X, —X, +a, =6 {n
X, +2X, +X, =4

References

- HILLIER, Frederick S., and Gerald JERERMAN, 2005, “Introduction to Operations
Research”, 8! ed., McGraw-Hill

- TaHA, Hamdy, 1992, “Operations Research: an introdatfi5™ ed., MacMillan
Publishing Company
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Redundant ?

[max]xz-xl
X +X, £10 {1}
X, +X, £20
20
- 7 =10
X L _g
Z7=3:8
=0
z=—4.5
104 -I'
10 20 x
[max] z= - % +X
s.to X +x, £ 10 {2}
X +% £ 20
[max] z= - X +X, +0x; +0x,
s.to X X, +X = 10 {3}
X +X, +x, = 20

Solve;

Go to http://web.ist.utl.pt/~mcasquil ho/compute/or/Fx-lp-revised.php

Supply:

Opt. max
Coefficients -1100
111010
AlB 110120
Artificials 0
Initial basis 34

____________________________________________________

SOLUTION, at Iteration 1

gbjective fonction; 10.b0
Variable value

2 ip.00

4 1p.00

Redundant ? No problem.

/
0’0

2010 — M. Casquilho (IST)
File: {LP_redund.doc}




Impossible ?

[max]xz - X
X +X, £10 {1}
X +X,% 20
20
X
£=35
=10
Z=—4.5
100 ’
10 20 At
[max] z= - X% +X
s.to X +X%X, £ 10 {2}
X +%X, 3 20
M @+¥
[max] z= -X +X +0x;, +0x, - Mx
s.to X X, +X =10 {3}
X X -X, *tX 20
Solve:
Go to http://web.ist.utl.pt/~mcasquil ho/compute/or/Fx-lp-revised.php
Supply:
Opt. max
Coefficients -11000
1110010
AlB 110-1120
Artificials 5
BigM 1+2
Initial basis 35
SOLUTION, st Tteration 1 A
Objective fanction, -5950.0 | MANTMIE
Variable value |
2 1D0.00 |
5 1D.00 |

Impossible ? No problem.

/
0’0

2010 — M. Casquilho (IST)
File: {LP_imposs.doc}



Scientific application (1) of LP [6:11

A “scientific application” (1) of Linear Programming

In Ecker & Kupferschmid [1988], Ch. 2, “LP models and applications’, 2.3, “Some scientific
applications of LP", pp 24-25; example problem from Guttman et al. [1982], Ch. 15, “Regression
analysis’, 15.5, An example, pp 361-365

A study was instituted to determine the percent of waste solids removed in a
filtration system as a function of flow rate, x, of the effluentbeing fed into the system.
It was decided to use flow rate of 2(2) 14 gal/min and to observe y° (“experimental”),
the percent of waste solid removed,when each of these flow rates was used. The
study yielded the data displayed in Table 1.

The mathematical model E(y| x) = ax +b was proposed.
Find the parameters, a and b, of the model [Guttman, et al., 1982, p 361].

Table 1
i X y°
1 2 24,3
2 4 19,7
3 6 17,8
4 8 14,0
5 10 12,3
6 12 7,2
7 14 55

Resolution

a) Classical solution

(Wewill useonly points 1, 4 and 7 of Table 1. With al the points, the source
cited gives y=26,81- 1,55x, “in the sense of |east squares’.)

As is well known, the parameters of the problem are obtained minimizing a
sum of errors (squared, for convenience), of the form

z=a(y,- ) {1}

- Qyo-

1

with

Z—measure (asum) of the n errors. ([Z] =y 2, see below)

n —number of experiments

y, —theoretical (or “calculated”) value, y=ax + b, of the measured
variable, corresponding to x. (i integer, i = 1..n)

a, b — process parameters. (With c andy the dimensions of x and y,
respectively, itis[a] =yctand [b] =y .)
y® —experimental value (a constant, thus) of the measured variable,

corresponding to X

S0, ztisafunction of only a and b, whose minimum is easy to find by differentiation,

1 The use of \/_z as may be concluded, would be more logical, although indifferent from the viewpoint
of optimization.

MC-IST file={EckerK_sciSolved.doc}



2 [:61]

Scientific application (1) of LP

giving for these parameters, asis known,

%ﬂ)) ™ D D> 3\
> >
[en] ey e ey e e
MDMD> D> D> D> D> D> (D~
|
(0]
>
{

Qo Qo
—
X
1
I
N—
N =3 iy

—
P 2
1

X

while the optimum of zis not relevant.

Table?2

)

conoooo oo

e

Yi

X - X

(% - %)y

No o~ WN PR

ERBxos~n| X

24,3
19,7
17,8
14,0
12,3
7,2
5,5

-6

6

-145,8

0,0

33

36,00

0,00

36,00

SUm

24

43,8

()

-112,8

72,00

Average

X

{2}

=8 y=146

From Table 2, for the points selected, it is

a=-1,5(6) (% removed) / (gal/min)
b= 27,1(3) (% removed)
(These values are near the values reported for the 7 points, & = —1,55 and b= 26,81.)
The calculated y's? give: y, =24 (“low”, vs. 24,3), y,=14,6 (“high”, vs.
14,0),y, =52 (“low”, vs. 5,5).

b) Solution by Linear Programming

(We use the same points, 1, 4 e 7, from Table 1.)

We propose, now, to obtain the parameters a and b, of the same model, by
another criterion: make the “errors’ or deviations be small individualy (not as a
sum). To thisend, we will try to minimize the “worst” (largest) deviation, i.e.,

[min] 2= max(d) (3
with

d;=y,

or, since(inthiscase) itis y=ax+b,

- Y {4}

2 The plural inthe form “x’'s’ seems appropriate (better than “xx”).



Scientific application (1) of LP

d =y -ax-b {5}

Remember that any value of z depends only of a and b, as al other values are
constants (experimental values). (This time, the physical dimensions of z are, of
course, the same as those of the measured variable, y.)

As z must be the maximum deviation, it has, equivaently, to satisfy each of
the following inequalities

Z3

yF - ax - b i=1.n {6}

with n the number of points.
The problem becomes, thus, to find a, b and z such that all the inequalities
should be satisfied and z be as small as possible. So, we need to find

[min] z {7}
subject to

ZS

y; - ax - b i=1.n {8}

Now, this problem has the disadvantage of not being a linear programming, in this
form, because, of course, the ‘absolute value' 3 of a linear function is not a linear
function [Ecker et al., 1988]. We can, however, convert it into a linear program
through the following elementary fact:

For any zand w,
z3 |wliff z3 wand z3 —w.

So, let us replace each (non-linear) inequality by two linear inequalities, to get alinear
program:

[min] z {9}

subject to
z3 +(y°- ax - b) i=1.n {108}
23 - (ye- ax - b) i=1.n {10b}

z3 0; a, b: of freesign

As is known, a and b can be replaced by differences of non-negative variables, say,
at- a« e bc- b«. Incidentaly, as we have (possibly good) approximations of the
optimum values of a and b, from the previous section, we can ssimply just replace a by
—a’ (a’ non-negative) —an artifice that must be verified in the end (and which would
be under suspicion in case we obtained the boundary valuea” = 0).

The problem then becomes:

[min] z {11}

subject to

3 0Or “modulus’.

[6:13
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xat b+z3 - y° i=1.n {12a}

- xabtb+2z3 y° i=1.n {12b}
or, finaly, introducing the numerical values,
[min] z {13}
subject to
2a- b+z3 -24.3
8at- b+2z3-140
l4at- b+z3 -55
- 2al+b+z3 243
- 8al+b+2z3140
- l4at+b+2z3 55

{14}

In matrix form, itis

[min]  w = c'x

subject to: Ax 3D {15}
x 30
with
x=[at b 2
c"=[0 0 1
-1 1o & 2430
a e 0
1Ly g 140 {16}
-1 10 é-550
p=é a
1 1, &243y
1 10 éuodl

u e u
14 1 1§ &55 0

1
N

D> D> D> (D> D> (D> D
[N
SN

@D (
N

i) Direct resolution

The problem, as just formulated, has 3 structural variables and 6 constraints.
Its manua resolution, thus, faces the practically unfeasible handling of square
matrices of order 6, among others. The computer resolution took 5 iterations and
gave (as structural variables and objective function):
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éak é1,566670
é.u_é a _
€b 1= £26,9833; (z2=0,45) {17}
gzg & 045 §
So, we have a=-a =-1,56667 and b=26,9833. Notice that it isa * 0 (and,
inevitably, a” > 0), as expected, which validates the hypothesis made to ease the
calculations, so thisresult is not “ suspect”.
It is not evident whether this set (a, b) is better or worse than the former

(otherwise, it happens that one of the values coincides), a fact that depends on the
finalities.

i) Resolution by the dual (brief note)

The LP problems can be grouped in pairs, where one of the problems is the
primal and the other the dual —an assignment that is arbitrary, athough usually the
primal corresponds to the original problem. Duality —present in various areas of
Mathematics— is important both theoretically and practically in LP, as both problems
yield an identical optimum (if it exists) for the objective function. Moreover:
indeed, in the complete solution of one of the problems, the complete solution of the
other can be read, with the advantage that, frequently, one of them is
computationally (much) less difficult.

The relationship between primal and dual, explored in the LP literature, may
be shortly presented as follows, conveniently for theory and application:

Primal Dual
[min]  z = ¢x [max] z = by
subject to: AX 3b subject to: ATy £c
x 30 y 30

The case under study corresponds to the classification above; in other cases, the
descriptions under the titles primal and dual would be exchanged.
Among other properties, it can be proved that:

— If one of the problems has an optimum vector (solution), then the other also has
one, and the optimum objective function isidentical.

—If one of the problems is possible but has no finite optimum, then the other is
impossible.

— Both problems can be impossible.

—The optimum vector for the maximization has its elements equal to the
coefficients of the slack variables of the optimum basis of the minimization,
and reciprocaly.

Therefore, starting from the original problem under study, which has 3 structura
variables and 6 constraints (two per each experimental point), its dual can be
constructed, having 6 structural variables and only 3 constraints. So, in this case, the
dua (a) evolves by much easier iterations (matrices of order 3, not 6), and (b) will

[6:15
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be, expectedly, less cumbersome, as it will yield about half the iterations (about
proportional to 3, not 6). Using the dual would still alow to easily consider all the
experimental points, even if more numerous, as the number of iterations till the
optimum depends essentially on the number of constraints.

The dual would be:

[max] (w=)24,3s, +14,0s, +55s, - 24,3s, - 14,0, - 55s, {18}
subject to
és, U
e U
62 8 14 -2 -8 14ueué323 é0u
é C
£1-1-1 1 1 1u§ugo {19}
g1 1 1 1 1 1 gig 1Y
é-u
650
Theresult, in 4 iterations (instead of 5), is (of course)
z=0,45 {20}

and contains —in its so-called dual variables— the values
D=[-1567 -2698 -0,49]' {21}

Consequently, this vector (always negative —i.e., non-positive— in the optimum of a
maximization, of course) has as elements the symmetrical of the results (&', b, 2) of
the primal, already known.
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Chapter 4

Linear Programming: Duality and Sensitivity Analysis

Every linear program in the variables x,, x,, ..., x, has associated with it another linear program
in the variables wy, wy, ..., w, (where m is the number of constraints in the original program), known
as its dual. The original program, called the primal, completely determines the form of its dual.

SYMMETRIC DUALS
The dual of a (primal) linear program in the (nonstandard) matrix form
minimize: z = C'X
subject to: AX > B (4.1)
with: X =0

is the linear program
maximize: z=BTW
subject to: ATW < C (4.2)
with: Wz=0

Conversely, the dual of program (4.2) is program (4.7). (See Problems 4.1 and 4.2,)

Programs (4.]) and (4.2) are symmetrical in that both involve nonnegative variables and inequality
constraints; they are known as the symmetric duals of each other. The dual variables w,, w,, ..., w, are
sometimes called shadow costs.

DUAL SOLUTIONS

Theorem 4.1 (Duality Theorem): If an optimal solution exists to either the primal or symmetric dual
program, then the other program also has an optimal solution and the two objective

functions have the same optimal value.

In such situations, the optimal solution to the primal (dual) is found in the last row of the final simplex
tableau for the dual (primal), in those columns associated with the slack or surplus variables (see Problem
4.3). Since the solutions to both programs are obtained by solving either one, it may be computationally
advantageous to solve a program’s dual rather than the program itsell. (See Problem 4.4.)

Theorem 4.2 (Complementary Slackness Principle): Given that the pair of symmetric duals have optimal
solutions, then if the kth constraint of one system holds as an inequality-—i.e., the associated
slack or surplus variable is positive—the kth component of the optimal solution of its
symmetric dual is zero.

(See Problems 4.11 and 4.12))
56
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UNSYMMETRIC DUALS

For primal programs in standard matrix form, duals may be defined as follows:

Primal Dual
minimize; :=C™X maximize: z=B'W (4.4)
subject to: AX =B (4.3) subject to: A'W < C
with: X=10
maximize: z=CTX minimize: z=B'W (4.6)
subject to: AX =B 4.5 subject to: ATW = C
with: X=0

(See Problems 4.5 and 4.6.) Conversely, the duals of programs (4.4) and (4.6) are defined as programs
(4.3) and (4.5), respectively. Since the dual of a program in standard form is not itself in standard form,
these duals are unsymmetric. Their forms are consistent with and a direct consequence of the definition
of symmetric duals (see Problem 4.8).

Theorem 4.1 is valid for unsymmetric duals too. However, the solution to an unsymmetric dual is
not, in general, immediately apparent from the solution to the primal; the relationships are

W*T = CJA;! or W= (A2)"'C, (4.7)

X*T = BlAD! or X*=A;'B, (4.8)

In (4.7), C; and A, are made up of those clements of C and A, in either program (4.3) or (4.5), that

correspond to the basic variables in X*; in (4.8), B, and A, are made up of those elements of B and A,
in either program (4.4) or (4.6), that correspond to the basic variables in W*, (See Problem 4.7.)
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