
© Copyright 2001 by ILOG 

This document and the software described in this document are the property of ILOG and are protected as ILOG trade secrets. They are furnished under a 
license or non-disclosure agreement, and may be used or copied only within the terms of such license or non-disclosure agreement. 

No part of this work may be reproduced or disseminated in any form or by any means, without the prior written permission of ILOG S.A.

Printed in France

ILOG CPLEX 7.5

User’s Manual

November 2001





C O N T E N T S

I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 5

Table of Contents

List of Figures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

List of Tables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Preface Meet ILOG CPLEX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

What Is ILOG CPLEX? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18

What You Need to Know . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19

In This Manual  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20

Examples On-Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21

Notation in This Manual. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22

Related Documentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23

For More Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24

Technical Support  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24

Web Site. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24

Chapter 1 Using ILOG CPLEX Concert Technology Library  . . . . . . . . . . . . . . . . . . . . . . . .  27

The Design of CPLEX Concert Technology Library  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28

Licenses  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28

Compiling and Linking  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29

Creating an Application with CPLEX Concert Technology Library  . . . . . . . . . . . . . . . . . .29

Modeling an Optimization Problem with Concert Technology  . . . . . . . . . . . . . . . . . . . . . .29

Modeling Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30



T A B L E  O F  C O N T E N T S

6 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

Data Management Classes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32

Solving Concert Technology Models with IloCplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33

Extracting a Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34

Solving a Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35

Choosing an Optimizer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35

Accessing Solution Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37

Querying Solution Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39

Accessing Basis Information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39

Performing Sensitivity Analysis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40

Analyzing Infeasible Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40

Solution Quality  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41

Modifying a Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41

Deleting and Removing Modeling Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42

Changing Variable Type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43

Handling Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43

Example: Dietary Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45

Program Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47

Solving the Model with IloCplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49

Complete Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49

Chapter 2 Using the ILOG CPLEX Callable Library. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  55

Architecture of the CPLEX Callable Library  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55

Licenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57

Compiling and Linking  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57

Using the Callable Library in an Application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57

Initialize the ILOG CPLEX Environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57

Instantiate the Problem Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58

Put Data in the Problem Object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58

Optimize the Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59

Change the Problem Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59

Destroy the Problem Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59

Release the ILOG CPLEX Environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59



T A B L E  O F  C O N T E N T S

I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 7

ILOG CPLEX Programming Practices  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60

Variable Names and Calling Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60

Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61

Ownership of Problem Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61

Copying in MIP and QP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62

Problem Size and Memory Allocation Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62

Status and Return Values  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63

Symbolic Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63

Parameter Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64

Null Arguments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64

Row and Column References  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64

Character Strings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65

Checking Problem Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65

Callbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67

Portability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67

FORTRAN Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68

C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70

Managing Parameters from the Callable Library  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70

Example: Dietary Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72

Program Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73

Complete Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74

Chapter 3 Further Programming Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  85

Tips for Successful Application Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85

Prototype the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85

Identify Routines to Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86

Test Interactively  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86

Assemble Data Efficiently. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86

Test Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87

Choose an Optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87

Program with a View toward Maintenance and Modifications  . . . . . . . . . . . . . . . . . . . . . . .88

Debug Effectively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90



T A B L E  O F  C O N T E N T S

8 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

Test Correctness, Test Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90

Using the Interactive Optimizer for Debugging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90

Eliminating Common Programming Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92

Check Your Include Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92

Clean House and Try Again . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92

Read Your Messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92

Check Return Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92

Beware of Numbering Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93

Make Local Variables Temporarily Global . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93

Solve the Problem You Intended . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93

Special Considerations for Fortran. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93

Tell Us . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93

Chapter 4 Solving Linear Programming Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  95

Choosing an Optimizer for Your LP Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96

Automatic Selection of Best Optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96

Dual Simplex Optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96

Primal Simplex Optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97

Network Optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97

Primal-Dual Barrier Optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97

Tuning LP Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98

Preprocessing: Presolver and Aggregator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98

Preprocessing: Explicitly Solving the Dual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100

Starting from an Advanced Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101

Adjusting Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102

Diagnosing Performance Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107

Lack of Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107

Numerical Difficulties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108

Diagnosing LP Infeasibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112

The Effect of Preprocessing on Feasibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112

Coping with an Ill-Conditioned Problem or Handling Unscaled Infeasibilities  . . . . . . . . . .113

Interpreting Solution Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114



T A B L E  O F  C O N T E N T S

I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 9

Finding a Set of Irreducibly Inconsistent Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116

Example: Using a Starting Basis in an LP Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121

Example ilolpex6.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121

Example lpex6.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123

Solving LP Problems with the Barrier Optimizer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129

Identifying LPs for Barrier Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130

Using the Barrier Optimizer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132

Special Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133

Controlling Crossover. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134

Interpreting the Barrier Log File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135

Understanding Solution Quality from the Barrier LP Optimizer  . . . . . . . . . . . . . . . . . . . . .138

Tuning Barrier Optimizer Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .140

Overcoming Numerical Difficulties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .144

Diagnosing Barrier Optimizer Infeasibility  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148

Chapter 5 Solving Mixed Integer Programming Problems. . . . . . . . . . . . . . . . . . . . . . . . .  151

Sample: Stating a MIP Problem  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152

Considering Preliminary Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152

Entering MIP Problems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153

Displaying MIP Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154

Determining Problem Type and Variable Type in MIPs . . . . . . . . . . . . . . . . . . . . . . . . . . .155

Using the Mixed Integer Optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156

Branch & Cut  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156

Feasibility and Optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158

Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159

Priority  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162

Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163

Preprocessing: Presolver and Aggregator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163

Starting from a Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165

Termination  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166

Post-Solution Information in a MIP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167

Using Sensitivity Information in a MIP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167



T A B L E  O F  C O N T E N T S

10 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

Using Special Ordered Sets (SOS)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168

Example: SOS Type 1 for Sizing a Warehouse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168

Declaring SOS Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169

Setting Branching Priority for an SOS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169

Assigning SOS Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170

Using Semi-Continuous Variables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170

Progress Reports: Interpreting the Node Log. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170

Troubleshooting MIP Performance Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175

Probing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175

Too Much Time at Node 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .176

Trouble Finding More than One Feasible Solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .176

Large Number of Unhelpful Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177

Lack of Movement in the Best Node  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177

Time Wasted on Overly Tight Optimality Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .178

Running Out of Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181

Difficulty Solving Subproblems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186

Subproblem Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187

Example: Optimizing a Basic MIP Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189

Complete Program: ilomipex1.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189

Complete Program: mipex1.c. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190

Example: Reading a MIP Problem from a File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199

Example: ilomipex2.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199

Example: mipex2.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .201

Example: Using SOS and Priority. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205

Example: ilomipex3.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205

Example: mipex3.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207

Chapter 6 Solving Network-Flow Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  219

Choosing an Optimizer: Network Considerations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219

Formulating a Network Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .220

Example: Network Optimizer in the Interactive Optimizer . . . . . . . . . . . . . . . . . . . . . . . . .221

Understanding the Network Log File  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .222



T A B L E  O F  C O N T E N T S

I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 11

Tuning Performance of the Network Optimizer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223

Example: Using the Network Optimizer with the Callable Library  . . . . . . . . . . . . . . . . . .224

Complete Program: netex1.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .226

Solving Network-Flow Problems as LP Problems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .231

Example: Network to LP Transformation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .233

Complete Program: netex2.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .233

Solving LPs with the Network Optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .237

Network Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .237

Preprocessing and the Network Optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .238

Chapter 7 Solving Quadratic Programming Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . .  239

Identifying Convex Quadratic Programming Problems . . . . . . . . . . . . . . . . . . . . . . . . . . .240

Entering QPs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .241

Saving QP Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .241

Changing Problem Type in QPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .242

Changing Quadratic Terms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .243

Optimizing QPs with the Barrier Optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .244

Understanding QP Solution Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .245

Tuning QP Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .245

Diagnosing QP Infeasibility  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .246

Example: Creating a QP, Optimizing, Finding a Solution . . . . . . . . . . . . . . . . . . . . . . . . .246

Example: iloqpex1.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .246

Example: qpex1.c. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .248

Example: Reading a QP from a File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .257

Complete Program: qpex2.c. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .257

Chapter 8 More About Using ILOG CPLEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  263

Managing Input & Output  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .263

Understanding File Formats  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .264

Managing Log Files: the Log File Parameter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .269

Handling Message Channels: the Output-Channel Parameter  . . . . . . . . . . . . . . . . . . . . .270

Handling Message Channels: Callable Library Routines . . . . . . . . . . . . . . . . . . . . . . . . . .271



T A B L E  O F  C O N T E N T S

12 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

Example: Using the Message Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .272

Using Query Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .281

Using Surplus Arguments for Array Allocations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .281

Example: Using Query Routines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .283

Complete Program: ilolpex7.cpp  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .284

Complete Program: lpex7.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .286

Using Callbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .293

Diagnostic Callbacks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .294

Control Callbacks for IloCplex  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .311

Using Parallel Optimizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .319

Parallel Libraries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .320

Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .320

Nondeterminism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .322

Clock Settings and Time Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .322

Using Parallel Optimizers in the Interactive Optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . .323

Using Parallel Optimizers in the CPLEX Component Libraries  . . . . . . . . . . . . . . . . . . . . .323

Parallel MIP Optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .324

Parallel Barrier Optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .329

Parallel Simplex Optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .329

Appendix A Interactive Optimizer Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

Managing Parameters in the Interactive Optimizer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .338

Saving a Parameter Specification File  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .339

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341



F I G U R E S

I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 13

List of Figures

Figure 1.1 A View of CPLEX Concert Technology Library  . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 2.1 A view of the ILOG CPLEX world  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Figure 6.1 A Directed Network with Arc-Capacity, Flow-Cost, Sinks, and Sources . . . . . . 222

Figure 7.1 Maximize a Concave Objective Function, Minimize a Convex Objective Function  
240

Figure 8.1 ILOG CPLEX Message Handling Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272



L I S T  O F  F I G U R E S

14 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L



T A B L E S

I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 15

List of Tables

Table 1.1 Concert Technology Modeling Objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Table 1.2 Optimizer Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Table 1.3 Algorithm Status and Information About the Model . . . . . . . . . . . . . . . . . . . . . . . . 38

Table 2.1 Special data types in the ILOG CPLEX Callable Library . . . . . . . . . . . . . . . . . . . . . 61

Table 2.2 Default values of ILOG CPLEX growth parameters  . . . . . . . . . . . . . . . . . . . . . . . . 62

Table 2.3 Callable Library routines for parameters in the ILOG CPLEX environment . . . . . 64

Table 4.1 Optimizers for Linear Programming (LP) Problems . . . . . . . . . . . . . . . . . . . . . . . . 96

Table 4.2 Gradient Parameters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Table 4.3 Primal Simplex Pricing Algorithm Values  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Table 4.4 Dual Simplex Pricing Algorithm Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Table 4.5 Values of the ILOG CPLEX Crash Parameter for the Primal Simplex Optimizer  106

Table 4.6 Values of the ILOG CPLEX Crash Parameter for the Dual Simplex Optimizer . . 106

Table 4.7 Implications of Dual Solutions for Primal Formulations  . . . . . . . . . . . . . . . . . . . 112

Table 4.8 Options to the Barrier Optimizer to Control Crossover  . . . . . . . . . . . . . . . . . . . . 134

Table 4.9 Routines of the Callable Library to Control Crossover  . . . . . . . . . . . . . . . . . . . . 134

Table 4.10 Infeasibilities and Norms in the Log File of a Barrier Optimization  . . . . . . . . . 137

Table 4.11 Barrier Solution Quality Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Table 4.12 Parameter Values for Starting-Point Heuristics  . . . . . . . . . . . . . . . . . . . . . . . . . 143

Table 4.13 Values of the Parameter to Choose the Algorithm in the Barrier Optimizer  . . 145

Table 5.1 Callable Library Routines for Reading Formatted Files into MIP Applications  . 154

Table 5.2 Interactive Optimizer Display Options for MIP Problems . . . . . . . . . . . . . . . . . . . 154

Table 5.3 Parameters for Controlling Branch & Cut Strategy  . . . . . . . . . . . . . . . . . . . . . . . 158



L I S T  O F  T A B L E S

16 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

Table 5.4 Parameters for Controlling Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Table 5.5 Parameters for Controlling MIP Preprocessing  . . . . . . . . . . . . . . . . . . . . . . . . . . 164

Table 5.6 Parameters to limit MIP optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Table 5.7 Parameters for Controlling the ILOG CPLEX Node Log File  . . . . . . . . . . . . . . . . 171

Table 5.8 Values of the MIP Display Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Table 5.9 Parameters for Limiting Strong Branching  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

Table 5.10 Relative, Absolute Gap Parameters (Relative, Absolute Optimality Tolerance) 179

Table 5.11 Relative and Absolute Objective Difference Parameters . . . . . . . . . . . . . . . . . . 180

Table 5.12 Cutoff Parameters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Table 5.13 Node File Control Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Table 5.14 Values for the Node File Storage Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Table 5.15 Parameters for MIP Initial Relaxation and Subproblems  . . . . . . . . . . . . . . . . . . 187

Table 5.16 Values of Start-Algorithm and Sub-Algorithm Parameters  . . . . . . . . . . . . . . . . 188

Table 5.17 Crossover parameter values used for MIP subproblems . . . . . . . . . . . . . . . . . . 188

Table 6.1 Network Tolerance Parameter: Optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

Table 6.2 Network Tolerance Parameter: Feasibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

Table 8.1 Options for the convert Utility and Corresponding File Extensions . . . . . . . . . . 269

Table 8.2 Options for the Output-Channel Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

Table 8.3 Channels Directing Output to Screen or to a File . . . . . . . . . . . . . . . . . . . . . . . . . 270

Table 8.4 Callback Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

Table 8.5 Status of nonzero callbacks for LPs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

Table 8.6 Status of nonzero callbacks for MIPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

Table 8.8 ILOG CPLEX Serial and Parallel Libraries for UNIX Platforms  . . . . . . . . . . . . . . 320

Table 8.9 Thread-Limit Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320



P R E F A C E

I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 17

Meet ILOG CPLEX

ILOG CPLEX offers C and C++ libraries that solve linear programming (LP) problems and 
related problems. Specifically, it solves linearly constrained optimization problems where 
the objective to be optimized can be expressed as a linear function or a convex quadratic 
function. In the linear case, the variables in the model may be declared as continuous or 
further constrained to take only integer values. 

CPLEX comes in three forms to meet a wide range of users’ needs:

◆ The CPLEX Interactive Optimizer is an executable program that can read a problem 
interactively or from files in certain standard formats, solve the problem, and deliver the 
solution interactively or into text files. The program consists of the file cplex.exe on 
Windows platforms or cplex on UNIX platforms.

◆ Concert Technology is a set of libraries that offers an API that includes modeling 
facilities to allow the programmer to embed CPLEX optimizers in a C++ application. 
The library is provided in files ilocplex.lib and concert.lib on Windows 
platforms and in libilocplex.a and libconcert.a on UNIX platforms, and makes 
use of the Callable Library (described next).

◆ The CPLEX Callable Library is a C library that allows the programmer to embed 
CPLEX optimizers in applications written in C, Visual Basic, Java, and Fortran. The 
library is provided in files cplex70.lib and cplex70.dll on Windows platforms and 
in libcplex.a on UNIX platforms.



W H A T  I S  I L O G C P L E X ?

18 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

In this manual, the phrase CPLEX Component Libraries is used when referring equally to 
either of these two libraries. While both libraries are callable, the term CPLEX Callable 
Library as used here refers specifically to the C library.

This preface introduces ILOG CPLEX, version 7.1. It includes the following sections:

◆ What Is ILOG CPLEX?

◆ What You Need to Know

◆ In This Manual

◆ Notation in This Manual

◆ Related Documentation

◆ For More Information

What Is ILOG CPLEX?

ILOG CPLEX is a tool for solving, first of all, linear optimization problems. Such problems 
are conventionally written like this:

where the relation ~ may be greater than or equal to, less than or equal to, or simply equal to, 
and the upper bounds ui and lower bounds li may be positive infinity, negative infinity, or any 
real number.

When a linear optimization problem is stated in that conventional form, we customarily refer 
to its coefficients and values by these terms: 

Minimize (or maximize) c1x1 + c2x2 + . . . + cnxn

subject to a11x1 + a12x2 + . . . + a1nxn ~ b1

a21x1 + a22x2 + . . . + a2nxn ~ b2

. . .

am1x1 + am2x2 + . . . + amnxn ~ bm

with these bounds

objective function coefficients c1, . . . , cn

constraint coefficients a11, . . . , amn

right-hand side b1, . . . , bm

upper bounds u1, . . . , un

lower bounds l1, . . . , ln

variables or unknowns x1, . . . , xn

l1 x1 u1 … ln, , xn un≤ ≤ ≤ ≤



W H A T  Y O U  N E E D  T O  K N O W

I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 19

In the most basic linear optimization problem, the variables of the objective function are 
continuous in the mathematical sense, with no gaps between real values. To solve such linear 
programming problems, ILOG CPLEX implements optimizers based on the simplex 
algorithms (both primal and dual simplex) as well as primal-dual logarithmic barrier 
algorithms. These alternatives are explained more fully in Chapter 4, Solving Linear 
Programming Problems.

ILOG CPLEX is also a tool for solving linear programming problems in which some or all 
of the variables must assume integer values in the solution. Such problems are known as 
mixed integer programs or MIPs because they may combine continuous and discrete (for 
example, integer) variables in the objective function and constraints. Within the category of 
mixed integer programs, we distinguish two kinds of discrete integer variables: if the integer 
values of the discrete variables must be either 0 (zero) or 1 (one), then we refer to them as 
binary; if the integer values are not restricted in that way, we refer to them as general integer 
variables. This manual explains more about the separately licensed ILOG CPLEX Mixed 
Integer Optimizer in Chapter 5, Solving Mixed Integer Programming Problems.

ILOG CPLEX can also handle certain problems in which the objective function is not linear 
but quadratic. (The constraints in such a problem are still linear.) Such problems are known 
as quadratic programs or QPs. Chapter 7, Solving Quadratic Programming Problems covers 
those kinds of problems.

ILOG CPLEX also offers a Network Optimizer aimed at a special class of linear problem 
with network structures. ILOG CPLEX can optimize such problems as ordinary linear 
programs, but if ILOG CPLEX can extract all or part of the problem as a network, then 
ILOG CPLEX will apply its more efficient Network Optimizer to that part of your problem 
and use the partial solution it finds there to construct an advanced starting point to optimize 
the rest of the problem. Chapter 6, Solving Network-Flow Problems offers more detail about 
how the CPLEX Network Optimizer works.

What You Need to Know

In order to use ILOG CPLEX effectively, you need to be familiar with your operating 
system, whether UNIX or Windows.

In this manual, we assume you are familiar with the concepts of mathematical programming, 
particularly linear programming. In case those concepts are new to you, the bibliography on 
page 25 in this preface indicates references to help you there. 

This manual also assumes you already know how to create and manage files. In addition, if 
you are building an application that uses the Component Libraries, this manual assumes that 
you know how to compile, link, and execute programs written in a high-level language. The 
Callable Library is written in the C programming language, while Concert Technology is 
written in C++. This manual also assumes that you already know how to program in the 



I N  T H I S  M A N U A L

20 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

appropriate language and that you will consult a programming guide when you have 
questions in that area.

In This Manual

Chapter 1, Using ILOG CPLEX Concert Technology Library introduces the Concert 
Technology Library. It provides an overview of the design of the library, explains modeling 
techniques, and offers an example of programming with the Concert Technology Library. It 
also provides information on controlling parameters.

Chapter 2, Using the ILOG CPLEX Callable Library introduces the ILOG CPLEX Callable 
Library. It sketches the architecture of the product, explains the relation between the 
Interactive Optimizer and the Callable Library, and offers an example of programming with 
the Callable Library. It also provides an overview about the parameters you control in 
ILOG CPLEX, outlines the callable routines controlling parameters, and explains the set 
command.

Chapter 3, Further Programming Considerations provides tips on developing applications 
with CPLEX, suggests ways to debug your applications built around CPLEX, and provides a 
checklist to help avoid common programming errors.

Chapter 4, Solving Linear Programming Problems goes deeper into aspects of linear 
programming with ILOG CPLEX. It explains how to tune performance, how to diagnose 
infeasibility in a model, and how to use the primal-dual logarithmic barrier algorithm 
implemented in the ILOG CPLEX Barrier Optimizer on large, sparse linear programming 
problems. It also offers an example showing you how to start optimizing from an advanced 
basis.

Chapter 5, Solving Mixed Integer Programming Problems shows you how to handle MIPs. It 
particularly emphasizes performance tuning and offers a series of examples.

Chapter 6, Solving Network-Flow Problems describes how to use the CPLEX Network 
Optimizer on linear programming problems based on a network model.

Chapter 7, Solving Quadratic Programming Problems takes up programming problems in 
which the objective function may be quadratic. It, too, includes examples.

Chapter 8, More About Using ILOG CPLEX includes several sections on working with 
important aspects of the ILOG Component Libraries. Information is provided on:

◆ Managing Input & Output explains how to enter mathematical programs efficiently and 
how to generate meaningful output from your ILOG CPLEX applications. It also lists the 
available file formats for entering data into ILOG CPLEX and writing bases and 
solutions from ILOG CPLEX.

◆ Using Query Routines tells how to access information about the model you currently 
have in memory through query routines of the Callable Library.



I N  T H I S  M A N U A L

I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 21

◆ Using Callbacks shows how to use callbacks.

◆ Using Parallel Optimizers explains how to exploit parallel optimizers in case your 
hardware supports parallel architecture.

Appendix A, Interactive Optimizer Commands lists the commands available in the 
ILOG CPLEX Interactive Optimizer with cross-references to examples of their use in this 
manual. It also provides an overview about controlling parameters with the Interactive 
Optimizer.

Examples On-Line

For the examples that we explain in the manual, we’ll also show you the complete code for 
the solution, so that you can see exactly how CPLEX fits into your own applications. In case 
you prefer to study code on-line, you’ll also find the complete code for these examples in a 
subdirectory of the standard distribution of CPLEX.

The following table describes all the examples in this manual and indicates where to find 
them, both on-line and in the manual:  

Example Source File In This Manual

dietary optimization: building a model by 
rows (constraints) or by columns (variables), 
solving with IloCplex

ilodiet.cpp Example: Dietary Optimization on page 45

dietary optimization: building a model by 
rows (constraints) or by columns (variables), 
solving with the Callable Library

diet.c Example: Dietary Optimization on page 72

linear programming: starting from an 
advanced basis

ilolpex6.cpp
lpex6.c

Example ilolpex6.cpp on page 121
Example lpex6.c on page 123

mixed integer programming: optimizing a 
basic MIP

ilomipex1.cpp
mipex1.c

Complete Program: ilomipex1.cpp on page 189
Complete Program: mipex1.c on page 190

mixed integer programming: reading a MIP 
from a formatted file

ilomipex2.cpp
mipex2.c

Example: ilomipex2.cpp on page 199
Example: mipex2.c on page 201

mixed integer programming: using special 
ordered sets (SOS) and priority orders

ilomipex3.cpp
mipex3.c

Example: ilomipex3.cpp on page 205
Example: mipex3.c on page 207

network optimization: using the Callable 
Library

netex1.c Complete Program: netex1.c on page 226

network optimization: relaxing a network 
flow to an LP

netex2.c Complete Program: netex2.c on page 233

quadratic programming: maximizing a QP qpex1.c Complete Program: qpex1.c on page 249



N O T A T I O N  I N  T H I S  M A N U A L

22 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

Notation in This Manual

Like the reference manual, this manual uses the following conventions:

◆ Important ideas are italicized the first time they appear.

◆ The names of C routines and parameters in the ILOG CPLEX Callable Library begin 
with CPX; the names of C++ classes in the CPLEX Concert Technology Library begin 
with Ilo; and both appear in this typeface, for example: CPXcopyobjnames() or 
IloCplex.

◆ Text that is entered at the keyboard or displayed on the screen and commands and their 
options available through the Interactive Optimizer appear in this typeface, for 
example, set preprocessing aggregator n.

◆ Values that you must fill in (for example, the value to set a parameter) also appear in the 
same typeface as the command but slanted to indicate you must supply an appropriate 
value; for example, set simplex refactor i indicates that you must fill in a value 
for i.

◆ Matrices are denoted in two ways: 

● In printed material where superscripts and bold type are available, we denote the 
product of A and its transpose like this: AAT. The superscript T indicates the matrix 
transpose. 

● In computer-generated samples, such as log files, where only ASCII characters are 
available, we denote the product of A and its transpose like this: A*A’. The asterisk 
(*) indicates matrix multiplication, and the prime (’) indicates the matrix transpose.

quadratic programming: reading a QP from 
a formatted file

qpex2.c Complete Program: qpex2.c on page 257

input and output: using the message han-
dler

lpex5.c Complete Program: lpex5.c on page 273

using query routines ilolpex7.cpp
lpex7.c

Complete Program: ilolpex7.cpp on page 284
Complete Program: lpex7.c on page 286

using callbacks ilolpex4.c
lpex4.c

Complete Program: ilolpex4.cpp on page 299
Complete Program: lpex4.c on page 304

Example Source File In This Manual



R E L A T E D  D O C U M E N T A T I O N

I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 23

Related Documentation

In addition to this manual of examples, which is intended to show you how to make 
ILOG CPLEX work for you, the standard distribution of ILOG CPLEX comes with Get 
Started with ILOG CPLEX, the ILOG CPLEX Reference Manual, and the ILOG Concert 
Technology Documentation Kit. All ILOG documentation is available in an on-line version 
in HTML (hypertext mark-up language). It is delivered with the standard distribution of the 
product and accessible through conventional HTML browsers.

We strongly recommend that you begin your acquaintance with ILOG CPLEX through the 
introductory manual, Getting Started with ILOG CPLEX, which includes tutorials for the 
Interactive Optimizer, the Concert Technology Library, and the Callable Library. These 
tutorials provide a stepping-stone toward the examples in this manual.

The ILOG CPLEX Reference Manual documents the Callable Library routines and their 
arguments, the Concert Technology classes, methods, and functions, and the commands and 
options of the Interactive Optimizer. The Reference Manual also contains a table of 
parameters that can be modified by parameter routines, a list of error messages, and details 
about file formats. Consult the Reference Manual, whether printed or on-line, for 
authoritative documentation of the Component Libraries and Interactive Optimizer.

The ILOG Concert Technology Documentation Kit includes the ILOG Concert Technology 
Reference Manual, which documents the classes, methods, and functions of the Concert 
Technology library; the ILOG Concert Technology User’s Manual, which provides examples 
that show how to use Concert Technology to model problems; the ILOG Concert Technology 
Hybrid Optimizers User’s Guide & Reference, which documents the class 
IloLinConstraint and shows how to use ILOG’s main algorithm classes, IloSolver 
and IloCplex in cooperation; and the ILOG Concert Technology Migration Guide, which 
shows how to translate applications created in previous versions of ILOG products to 
Concert Technology.



F O R  M O R E  I N F O R M A T I O N

24 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

For More Information

ILOG offers technical support and comprehensive Web sites for its products.

Technical Support

For technical support of  ILOG CPLEX, you should contact your local distributor, or, if you 
are a direct ILOG customer, contact the nearest regional office:

We encourage you to use e-mail for faster, better service.

Web Site

The CPLEX Web site at http://www.ilog.com/products/cplex/ offers product 
descriptions, press releases, and contact information. It lists services, such as training, 
maintenance, technical support, and outlines special programs. In addition, it links you to an 
ftp site where you can pick up examples. 

The technical support pages contain FAQ (Frequently Asked/Answered Questions) and the 
latest patches for some of our products. Changes are posted in the product mailing list. 
Access to these pages is restricted to owners of an ongoing maintenance contract. The 
maintenance contract number and the name of the person this contract is sent to in your 
company will be needed for access, as explained on the login page.

Region E-mail Telephone Fax

France cplex-support@ilog.fr 0 800 09 27 91
(numéro vert)
+33 (0)1 49 08 35 62

+33 (0)1 49 08 35 10

Germany cplex-support@ilog.de +49 6172 40 60 33 +49 6172 40 60 10

Spain cplex-support@ilog.es +34 91 710 2480 +34 91 372 9976

United Kingdom cplex-support@ilog.co.uk +44 (0)1344 661600 +44 (0)1344 661601

Other European 
countries

cplex-support@ilog.fr +33 (0)1 49 08 35 62 +33 (0)1 49 08 35 10

Japan cplex-support@ilog.co.jp +81 3 5211 5770 +81 3 5211 5771

Singapore cplex-support@ilog.com.sg +65 773 06 26 +65 773 04 39

USA cplex-support@ilog.com 1-877-ILOG-TECH
1-877-456-4832
(toll free) or
1-650-567-8080

+1 650 567 8001



F O R  M O R E  I N F O R M A T I O N

I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 25

All three of the following sites contain the same information, but access is localized, so we 
recommend that you connect to the site corresponding to your location and select the 
“support” page from the home page.

◆ The Americas: http://www.ilog.com 

◆ Asia & Pacific nations: http://www.ilog.com.sg 

◆ Europe, Africa, and Middle East: http://www.ilog.fr  

On those Web pages, you will find additional information about ILOG CPLEX in technical 
papers that have also appeared at industrial and academic conferences.

Further Reading 

In case you want to know more about optimization and mathematical or linear programming, 
here is a brief selection of printed resources:

Williams, H. P.  Model Building in Mathematical Programming, 4th ed. New York: John 
Wiley & Sons, 1999. This textbook includes many examples of how to design mathematical 
models, including linear programming formulations. (How you formulate your model is at 
least as important as what ILOG CPLEX does with it.) It also offers a description of the 
branch & bound algorithm. 

Nemhauser, George L. and Laurence A. Wolsey, Integer and Combinatorial Optimization, 
New York: John Wiley & Sons, 1999. A reprint of the 1988 edition. A widely cited reference 
about integer programming, this book explains the branch & bound algorithm in detail.

Gill, Philip E., Walter Murray, and Margaret H. Wright, Practical Optimization. New York: 
Academic Press, 1982 reprint edition. This book covers, among other topics, quadratic 
programming.



F O R  M O R E  I N F O R M A T I O N

26 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L



C H A P T E R

I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 27

U
sin

g
 C

o
n

cert 
Tech

n
o

lo
g

y

1

Using ILOG CPLEX Concert Technology
Library

This chapter describes how to write C++ programs using the ILOG CPLEX Concert 
Technology Library. It includes sections on:

◆ The Design of CPLEX Concert Technology Library, including information on licensing 
and on compiling and linking your programs

◆ Creating an Application with CPLEX Concert Technology Library

◆ Modeling an Optimization Problem with Concert Technology

◆ Solving Concert Technology Models with IloCplex

◆ Accessing Solution Information

◆ Modifying a Model

◆ Handling Errors

◆ Example: Dietary Optimization



T H E  D E S I G N  O F  C P L E X  C O N C E R T  T E C H N O L O G Y  L I B R A R Y

28 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

The Design of CPLEX Concert Technology Library 

Figure 1.1 shows a program using the CPLEX Concert Technology Library to solve 
optimization problems. The optimization part of the user’s application program is captured 
in a set of interacting C++ objects that the application creates and controls. These objects 
can be divided into two categories:

1. Modeling objects are used to define the optimization problem. Generally an application 
creates several modeling objects to specify the optimization problems. Those objects are 
grouped into an IloModel object representing the complete optimization problem.

2. IloCplex objects are used to solve models created with the modeling objects. An 
IloCplex object reads a model and extracts its data to the appropriate representation for 
the CPLEX optimizer. Then the IloCplex object is ready to solve the model it extracted 
and be queried for solution information. 

Figure 1.1

Figure 1.1  A View of CPLEX Concert Technology Library 

Licenses 

CPLEX runs under the control of the ILOG License Manager (ILM). Before you can run any 
application program that calls CPLEX, you must have established a valid license that it can 
read. Licensing instructions are provided to you separately when you buy or upgrade 
CPLEX. Contact your local ILOG support department if this information has not been 
communicated to you or if you find that you need help in establishing your CPLEX 7.0 
license.

User-Written Application

Concert
Technology
modeling
objects

IloCplex
object(s)

(CPLEX Core)



<functionhead>

I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 29

U
sin

g
 C

o
n

cert 
Tech

n
o

lo
g

y

Compiling and Linking

Compilation and linking instructions are provided with the files that come in the standard 
distribution of CPLEX for your computer platform. Check the readme file for details.

Creating an Application with CPLEX Concert Technology Library 

The remainder of this chapter is organized by the steps most applications are likely to follow.

◆ First the model to be solved must be created. With Concert Technology this is done 
independently of CPLEX. A short introduction to model creation is provided in 
Modeling an Optimization Problem with Concert Technology on page 29. A more 
comprehensive discussion can be found in the ILOG Concert Technology User’s Manual. 

◆ When the model is ready to be solved, it is handed over to CPLEX for solving. The 
process for doing this is shown in Solving Concert Technology Models with IloCplex on 
page 33, which includes a survey of the IloCplex interface for controlling the 
optimization. Individual controls are discussed in the chapters explaining the individual 
optimizers. 

◆ Accessing Solution Information on page 37, shows you how to access and interpret 
results from the optimization after solving the model. 

◆ After analyzing the results, you may make changes to the model and study their effect. 
The way to perform such changes and how CPLEX deals with them is explained in 
Modifying a Model on page 41. 

◆ Handling Errors on page 43, discusses the error handling and debugging support 
provided by Concert Technology and CPLEX. 

◆ In Example: Dietary Optimization on page 45, an example program is presented. 

Not covered in this chapter are advanced functions, such as the use of callbacks for querying 
data about an ongoing optimization and for controlling the optimization itself. Callbacks and 
advanced functions are discussed in Chapter 8, More About Using ILOG CPLEX.

Modeling an Optimization Problem with Concert Technology

In this section we will only give a brief introduction to using Concert Technology for 
modeling optimization problems to be solved by IloCplex. For a more complete overview, 
see the ILOG Concert Technology User’s Manual. 



M O D E L I N G  A N  O P T I M I Z A T I O N  P R O B L E M  W I T H  C O N C E R T  T E C H N O L O G Y

30 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

Modeling Classes

A Concert Technology model consists of a set of C++ objects. Each variable, each 
constraint, each SOS set, and the objective function in a model are represented by an object 
of the appropriate Concert Technology class. We refer to these objects as modeling objects. 

Creating the Environment—The IloEnv Object

Before creating modeling objects, an object of class IloEnv must be constructed. We refer 
to this object as the environment object. It is constructed with the statement:

IloEnv env; 

which is usually the first Concert Technology statement in an application. At the end, the 
environment must be closed by calling: 

env.end();

This is usually the last Concert Technology statement in an application. The end() method 
must be called because, like most Concert Technology classes, theIloEnv class is a handle 
class. This means that IloEnv objects are really only pointers to implementation objects. 
Implementation objects are destroyed by calling the end() method. Failing to call the 
end() method can result in memory leaks. Please see the ILOG Concert Technology User’s 
Manual and the ILOG Concert Technology Reference Manual for more details about handle 
classes in Concert Technology. 

Users familiar with the callable C library are cautioned not to confuse the Concert 
Technology environment object with the CPLEX environment object of type CPXENVptr, 
used for setting CPLEX parameters. Such an object is not needed with Concert Technology, 
as parameters are handled directly by each instance of the IloCplex class. Thus, when 
talking about the environment in Concert Technology, we always refer to the object of class 
IloEnv required for all other Concert Technology objects.

Defining Variables and Expressions—The IloNumVar Object

Probably the first modeling class you will need is IloNumVar. Objects of this class 
represent modeling variables. They are described by the lower and upper bound for the 
variable, and a type which can be one of ILOFLOAT, ILOINT, or ILOBOOL for continuous, 
integer, or boolean variables, respectively. The following constructor creates an integer 
variable with bounds -1 and 10: 

IloNumVar myIntVar(env, -1, 10, ILOINT);

The IloNumVar class provides methods that allow querying of the data needed to specify a 
variable. However, only bounds can be modified. Concert Technology provides a modeling 
object class IloConversion to change the type of a variable. This allows you to use the 
same variable with different types in different models. 



<functionhead>

I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 31

U
sin

g
 C

o
n

cert 
Tech

n
o

lo
g

y

Variables are usually used to build up expressions, which in turn are used to define the 
objective or constraints of the optimization problem. An expression can be explicitly written, 
as in 

1*x[1] + 2*x[2] + 3*x[3] 

where x is assumed to be an array of variables (IloNumVarArray). Expressions can also be 
created piece by piece, with a loop:

IloExpr expr(env);
for (int i = 0; i < x.getSize(); ++i)
  expr += data[i] * x[i];

While Concert Technology supports very general expressions, only linear or piecewise linear 
expressions can be used in models to be solved with IloCplex. When you are done using 
an expression object (that is, you created a constraint with it) you need to delete it by calling 
its method end(), for example:

expr.end();

Declaring the Objective—The IloObjective Object

Objects of class IloObjective represent objective functions of optimization models. 
IloCplex may only handle models with at most one objective function, though the 
modeling API provided by Concert Technology does not impose this restriction. An 
objective function is specified by creating an instance of IloObjective. For example:

IloObjective obj(env, 
                 1*x[1] + 2*x[2] + 3*x[3],
                 IloObjective::Minimize);

defines the objective to minimize the expression 1*x[1] + 2*x[2] + 3*x[3].

Adding Constraints—The IloRange Object

Similarly, objects of class IloRange represent constraints for the format 
lower bound <= expression <= upper bound. Any floating point value or +/- 
IloInfinity can be used for the bounds. For example:

IloRange r1(env, 3.0, x[1] + x[2], 3.0);

defines the constraint x[1] + x[2] == 3.0. 

Formulating a Problem—The IloModel Object

To formulate a full optimization problem, the objects that are part of it need to be selected. 
This is done by adding them to an instance of IloModel, the class used to represent 
optimization problems. For instance:

IloModel model(env);
model.add(obj);
model.add(r1);



M O D E L I N G  A N  O P T I M I Z A T I O N  P R O B L E M  W I T H  C O N C E R T  T E C H N O L O G Y

32 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

defines a model consisting of the objective obj, constraint r1, and all the variables they use. 
Notice that variables need not be added to a model explicitly, as they are implicitly 
considered if any of the other modeling objects in the model use them. However, variables 
may be explicitly added to a model if desired. 

For convenience, Concert Technology provides the functions IloMinimize and 
IloMaximize to define minimization and maximization objective functions. Also, 
operators <=, ==, and <= are overloaded to create IloRange constraints. This allows us to 
rewrite the above examples in a more compact and readable way: 

IloModel model(env); 
model.add(IloMinimize(env, 1*x[1] + 2*x[2] + 3*x[3]); 
model.add(x[1] + x[2] == 3.0);

With this notation the C++ variables obj and r1 need not be created. 

The IloModel class is itself a class of modeling objects. Thus, one model can be added to 
another. A possible use of this is to capture different scenarios in different models, all of 
which are extensions to a core model. The core model could be represented as an IloModel 
object added to the IloModel objects that represent the individual scenarios.

Data Management Classes

Usually the data describing an optimization problem must be collected before or during the 
creation of the Concert Technology representation of the model. Though in principle 
modeling does not depend on how the data is generated and represented, this task may be 
facilitated by using the array or set classes provided by Concert Technology. 

For example, objects of class IloNumArray can be used to store numerical data in arrays. 
Elements of the class IloNumArray can be accessed like elements of standard C++ arrays, 
but the class also offers a wealth of additional functions. For example, Concert Technology 
arrays are extensible; in other words they transparently adapt to the required size when new 
elements are added using the method add(). Conversely, elements can be removed from 
anywhere in the array with the method remove(). Concert Technology arrays also provide 
debugging support when compiled in debug mode by using assert to ensure that no 
element beyond the array bounds is accessed. Input and output operators (that is, 
operator << and operator >>) are provided for arrays. For example, the code:

IloNumArray data(env, 3, 1.0, 2.0, 3.0); 
cout << data << endl;

produces the following output: 

[1.0, 2.0, 3.0] 

When you are done using an array and want to reclaim its memory, call method end(), for 
example, data.end(). However, when ending the environment, all memory of arrays 
belonging to the same environment is returned to the system as well. Thus, in practice you 



<functionhead>

I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 33

U
sin

g
 C

o
n

cert 
Tech

n
o

lo
g

y

do not call end() on an array (or any other Concert Technology object) just before calling 
env.end().

The constructor for arrays specifies that an array of size 3 with elements 1.0, 2.0, and 3.0 is 
constructed. This output format can be read back in with, for example:

cin >> data;

The example at the end of this chapter takes advantage of this function and reads the 
problem data from a file. 

Finally, we want to point out that Concert Technology provides the template class 
IloArray<X> to create array classes for your own type X. This can be used to generate 
multidimensional arrays. All the functions described above are supported for IloArray 
classes except for input/output, which depends on the input and output operator being 
defined for type X.

Solving Concert Technology Models with IloCplex

CPLEX generally does not need to be involved while you create your model. However, once 
the model is set up, it is time to create your cplex object, that is, an instance of the class 
IloCplex, to be used to solve the model. IloCplex is a class derived from 
IloAlgorithm.. There are other Concert Technology algorithm classes, also derived from 
IloAlgorithm.. Some models might also be solved by using other algorithms, such as the 
class IloSolver for constraint programming, or by using a hybrid algorithm consisting of 
both IloSolver and CPLEX. Some models, on the other hand, cannot be solved with 
CPLEX. 

The makeup of the model determines whether or not CPLEX can be used to solve it. More 
precisely, in order to be handled by IloCplex objects, a model may only consist of 
modeling objects of the following classes: 

Table 1.1 Concert Technology Modeling Objects

To model: Use:

numerical variables objects of class IloNumVar, as long as they are not 
constructed with a list of feasible values

semi-continuous variable objects of class IloSemiContVar 

linear objective functions objects of class IloObjective with linear or piecewise 
linear expressions

linear constraints objects of class IloRange with linear or piecewise linear 
expressions

variable type conversions objects of class IloConversion 



S O L V I N G  C O N C E R T  T E C H N O L O G Y  M O D E L S  W I T H  I L O C P L E X

34 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

For a description of special ordered sets see Using Special Ordered Sets (SOS) on page 168. 
The last class, IloAnd, is listed for completeness only and is generally not used with 
CPLEX, except with the class IloSolution, as described in the ILOG Concert Technology 
User’s Manual. 

Extracting a Model

In this manual we describe only one optimization model and use only one instance of 
IloCplex at a time to solve the model. Consequently, we talk about these as the model and 
the cplex object. It should be noted, however, that in Concert Technology an arbitrary 
number of models and algorithm objects can be created, provided you have enough licenses. 
The cplex object can be created using the constructor:

IloCplex cplex(env);

To use it to solve the model, the model must first be extracted to cplex by calling:

cplex.extract(model);

This method copies the data from the model into the appropriate optimized data structures, 
which CPLEX uses for solving the problem. It does so by extracting each of the modeling 
objects added to the model and each of the objects referenced by them. For every extracted 
modeling object, corresponding data structures are created internally in the cplex object. 
For readers familiar with the sparse matrix representation used internally by CPLEX, a 
variable becomes a column and a constraint becomes a row. As we will discuss later, these 
data structures are kept synchronized with the modeling objects even if the modeling objects 
are modified. 

If you consider a variable to be part of your model, even though it is not (initially) used in 
any constraint, you should add this variable explicitly to the model. This ensures that the 
variable will be extracted. This may also be important if you query solution information for 
the variable, since solution information is available only for modeling objects that are known 
to CPLEX because they have been extracted from a model. 

If you feel uncertain about whether or not an object will be extracted, you can add it to the 
model to be sure. Even if an object is added multiple times, it will only be extracted once and 
thus will not slow the solution process down. 

special ordered sets of type 1 objects of class IloSOS1

special ordered sets of type 2 objects of class IloSOS2 and 

constraints objects of class IloAnd. 

Table 1.1 Concert Technology Modeling Objects (Continued)

To model: Use:



<functionhead>

I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 35

U
sin

g
 C

o
n

cert 
Tech

n
o

lo
g

y

Since the sequence of creating the cplex object and extracting the model to it is such a 
common one, IloCplex provides the shortcut: 

IloCplex cplex(model);

This is completely equivalent to separate calls and ensures that the environment used for the 
cplex object will be the same as that used for the model when it is extracted, as required by 
Concert Technology. The shortcut uses the environment from the model to construct the 
cplex object before extraction.

Solving a Model

Once the model is extracted to the cplex object, you are ready to solve it. This is done by 
calling

cplex.solve();

For most problems this is all that is needed for solving the model. Nonetheless, CPLEX 
offers a variety of controls that allow you to tailor the solution process for your specific 
needs. 

Choosing an Optimizer

The most important control is the selection of the optimizer option to use for solving LPs. 
Solving the extracted model with CPLEX involves solving one or a series of LPs: 

◆ Only one LP must be solved if the extracted model is an LP itself, that is, if it does not 
contain integer, boolean, semi-continuous or semi-integer variables, SOS, or piecewise 
linear functions. Chapter 4, Solving Linear Programming Problems discusses the 
algorithms available for solving LPs. 

◆ In all other cases, the extracted problem that CPLEX sees is indeed a MIP and, in 
general, a series of LPs need to be solved. Method cplex.isMIP() returns IloTrue in 
such a case. Chapter 5, Solving Mixed Integer Programming Problems discusses the 
algorithms applied. 

The optimizer option used for solving the first LP (whether or not it is the only one or just 
the first one in a series of problems) is controlled by calling the method:

cplex.setRootAlgorithm(alg);

where alg is a member of the nested enumeration type:

enum IloCplex::Algorithm { 
  Primal, 
  Dual, 
  Barrier, 
  NetworkPrimal, 
  NetworkDual, 
  DualBarrier



S O L V I N G  C O N C E R T  T E C H N O L O G Y  M O D E L S  W I T H  I L O C P L E X

36 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

};

As a nested enumeration type, the fully qualified names that must be used in the program are 
IloCplex::Primal, IloCplex::Dual, and so on. Table 1.2 displays the meaning of the 
optimizer options defined by IloCplex::Algorithm.

If the extracted model contains more than one LP, the algorithm for solving all but the first 
LP is controlled by calling method cplex.setNodeAlgorithm(alg). The current setting 
for the root and node algorithm can be queried using methods:

IloCplex::Algorithm IloCplex::getRootAlgorithm() const;
IloCplex::Algorithm IloCplex::getNodeAlgorithm() const;

Controlling CPLEX Optimizers

Though CPLEX defaults will prove sufficient to solve most of the problems, CPLEX offers 
a variety of parameters to control various algorithmic choices. ILOG CPLEX parameters 
can assume values of type bool, num, int, and string. IloCplex provides four 
categories of parameters that are listed in the nested enumeration types 
IloCplex::BoolParam, IloCplex::IntParam, IloCplex::NumParam, 
IloCplex::StringParam. 

To access the current value of a parameter that interests you from the Concert Technology 
Library, use the method getParam. To access the default value of a parameter, use the 
method getDefault. Use the methods getMin and getMax to access the minimum and 
maximum values of num and int type parameters.

Some integer parameters are tied to nested enumerations that define symbolic constants for 
the values the parameter may assume. In particular, these enumeration types are: 
IloCplex::MIPEmphasisType, IloCplex::VariableSelect, 
IloCplex::NodeSelect, IloCplex::PrimalPricing, and 

Table 1.2 Optimizer Options

IloCplex::Primal use the primal simplex algorithm

IloCplex::Dual use the dual simplex algorithm

IloCplex::Barrier use the barrier algorithm. The type of crossover performed 
after the barrier algorithm is determined by parameter 
IloCplex::BarCrossAlg.

IloCplex::NetworkPrimal use the primal network simplex algorithm on an embedded 
network followed by the primal simplex algorithm on the 
entire problem

IloCplex::NetworkDual use the primal network simplex algorithm on an embedded 
network followed by the dual simplex algorithm on the 
entire problem

IloCplex::DualBarrier use the dual simplex algorithm up to the simplex iteration 
limit, if the LP is not solved by then switch to the barrier 
algorithm. This option is available only for MIPs. 



<functionhead>

I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 37

U
sin

g
 C

o
n

cert 
Tech

n
o

lo
g

y

IloCplex::DualPricing. They are used for parameters IloCplex::MIPEmphasis, 
IloCplex::VarSel, IloCplex::NodeSel, IloCplex::PPriInd, and 
IloCplex::DPriInd, respectively. Only the parameter IloCplex::MIPEmphasis may 
be of importance for general use.

There are, of course, routines in the Concert Technology Library to set these parameters. 
Use the following methods to set the values of CPLEX parameters:

IloCplex::setParam(BoolParam, value);
IloCplex::setParam(IntParam, value);
IloCplex::setParam(NumParam, value);
IloCplex::setParam(StringParam, value);

For example, the numerical parameter IloCplex::EpOpt controlling the optimality 
tolerance for the simplex algorithms can be set to 0.0001 by calling 

cplex.setParam(IloCplex::EpOpt, 0.0001); 

The ILOG CPLEX Reference Manual documents the type of each parameter (bool, int, 
num, string) along with the Concert Technology enumeration value, symbolic constant, 
and reference number representing the parameter.

The method setDefaults resets all parameters (except the name of the log file) to their 
default values, including the ILOG CPLEX callback functions. This routine resets the 
callback functions to NULL. 

When solving MIPs, additional controls of the solution process are provided. Priority orders 
and branching directions can be used to control the branching in a static way. These are 
discussed in Priority on page 162. These controls are static in the sense that they allow you 
to control the solution process based on data that does not change during the solution and 
can thus be setup before solving the model. 

Dynamic control of the solution process of MIPs is provided through control callbacks. They 
are discussed in Using Callbacks on page 293. Callbacks allow you to control the solution 
process based on information that is generated during the solution process.

Accessing Solution Information

Accessing Solution Status

Calling cplex.solve() returns a boolean indicating whether or not a feasible solution (but 
not necessarily the optimal one) has been found. To obtain more of the information about the 
model that CPLEX found during the call to the solve() method, cplex.getStatus() 
can be called. It returns a member of the nested enumeration type:

enum IloAlgorithm::Status {
  Unknown,
  Feasible,



A C C E S S I N G  S O L U T I O N  I N F O R M A T I O N

38 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

  Optimal,
  Infeasible,
  Unbounded,
  InfeasibleOrUnbounded,
  Error
};

Notice that the fully qualified names have the IloAlgorithm prefix. Table 1.3 shows what 
the possible return statuses mean for the extracted model. 

As can be seen, these statuses indicate information about the model that the CPLEX 
optimizer was able to prove during the last call to method solve(). In addition, the CPLEX 
optimizer provides information about how it terminated. For example, it may have 
terminated with only a feasible but not optimal solution because it hit a limit or because a 
user callback terminated the optimization. Such information is accessible by calling method 
cplex.getCplexStatus(), which returns a member of the nested enumeration type 
IloCplex::Status. For more information about those statuses see the ILOG CPLEX 
Reference Manual.

Table 1.3 Algorithm Status and Information About the Model

Return Status Extracted Model

Feasible has been proven to be feasible. A feasible solution can be 
queried.

Optimal has been solved to optimality. The optimal solution can be 
queried.

Infeasible has been proven to be infeasible.

Unbounded has been proven to be unbounded. The notion of 
unboundedness adopted by IloCplex does not include that 
the model has been proven to be feasible. Instead, what has 
been proven is that if there is a feasible solution with objective 
value x^*, there exists a feasible solution with objective value 
x^*-1 for a minimization problem, or x^*+1 for a maximization 
problem.

InfeasibleOrUnbounded has been proven to be infeasible or unbounded.

Unknown has not been able to be processed far enough to prove 
anything about the model. A common reason may be that a 
time limit was hit.

Error has not been able to be processed or an error occurred 
during the optimization.



<functionhead>

I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 39

U
sin

g
 C

o
n

cert 
Tech

n
o

lo
g

y

Querying Solution Data

If cplex.solve() returns IloTrue, a feasible solution has been found and solution values 
for model variables are available to be queried. For example, the solution value for the 
numeric variable var1 can be accessed as follows:

IloNum x1 = cplex.getValue(var1);

However, querying solution values variable by variable may result in ugly code. Here the use 
of Concert Technology arrays provides a much more compact way of accessing the solution 
values. Assuming your variables are stored in anIloNumVarArray var, you can use 

IloNumArray x(env);
cplex.getValues(x, var);

to access the solution values for all variables in var at once. Value x[i] contains the 
solution value for variable var[i]. 

Solution data is not restricted to the solution values of variables. It also includes values of 
slack variables for linear constraints and the objective value. If the extracted model does not 
contain an objective object, IloCplex assumes a 0 expression objective. The objective 
value is returned by calling method cplex.getObjValue(). Slack values are accessed 
with the methods getSlack() and getSlacks(), which take linear constraints as a 
parameter.

For LPs, solution data includes information such as dual variables and reduced cost. Such 
information can be queried with the methods, getDual(), getDuals(), 
getReducedCost(), and getReducedCosts().

Accessing Basis Information

When solving the LPs with a simplex algorithm, that is using all but the 
IloCplex::Barrier optimizer options, basis information is available as well. Basis 
information can be consulted using the method IloCplex::getStatuses() which 
returns basis status information for variables and constraints. 



A C C E S S I N G  S O L U T I O N  I N F O R M A T I O N

40 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

Such information is encoded by the nested enumeration type:

IloCplex::BasisStatus { 
  Basic, 
  AtLower, 
  AtUpper, 
  FreeOrSuperbasic 
}; 

Performing Sensitivity Analysis

The availability of a basis allows you to perform sensitivity analysis for your model. Such 
analysis tells you by how much you can modify your model without affecting the solution 
you found. The modifications supported by the sensitivity analysis function include bound 
changes, changes of the right hand side vector and changes of the objective function. They 
are analyzed by methods IloCplex::getBoundSA(), IloCplex::getRHSSA(), and 
IloCplex::getObjSA(), respectively. 

Analyzing Infeasible Problems

An important feature of CPLEX is that even if no feasible solution has been found, that is, if 
cplex.solve() returns IloFalse, some information about the problem can be queried 
when solving LPs. All the methods discussed so far may successfully return information 
about the current (infeasible) solution CPLEX maintains. 

Unfortunately, there is no simple comprehensive rule about whether or not current solution 
information can be queried. This is because, by default, CPLEX uses a presolve procedure to 
simplify the model. If, for example, the model is proven to be infeasible during the presolve, 
no current solution is generated by the optimizer. If, in contrast, infeasibility is only proven 
by the optimizer, current solution information is available to be queried. The status returned 
by calling cplex.getCplexStatus() may help to determine which case you are facing, 
but it is probably safer and easier to include the methods for querying solution within try/
catch statements.

When an LP has been proven to be infeasible, CPLEX provides assistance for determining 
the cause of the infeasibility. This is done by computing what is known as an irreducibly 
inconsistent set (IIS), which is a description of the minimal subproblem that is still 
infeasible. Here minimality is defined by the property: if you remove any of the constraints 
(including finite bounds), the infeasibility vanishes. An IIS is computed for an infeasible 
model by calling method cplex.getIIS(). 



<functionhead>

I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 41

U
sin

g
 C

o
n

cert 
Tech

n
o

lo
g

y

Solution Quality 

The CPLEX optimizer uses finite precision arithmetic to compute solutions. To compensate 
for numerical errors due to this, tolerances are used by which the computed solution is 
allowed to violate feasibility or optimality conditions. Thus the solution computed by the 
solve() method may in fact slightly violate the bounds specified in the model for example. 
You can call:

IloNum violation = cplex.getQuality(IloCplex::MaxPrimalInfeas); 

to query the maximum bound violation among all variables and slacks. If you are also 
interested in the variable or constraint where the maximum violation occurs, call instead:

IloRange maxrange; 
IloNumVar maxvar; 
IloNum violation = cplex.getQuality(IloCplex::MaxPrimalInfeas,
                                    &maxrange, 
                                    &maxvar);

CPLEX will copy the variable or constraint handle in which the maximum violation occurs 
to maxvar or maxrange and make the other handle an empty one. The maximum primal 
infeasibility is only one example of a wealth of quality measures. The full list is defined by 
the nested enumeration type IloCplex::Quality. All of these can be used as a parameter 
for the getQuality() methods, though some measures are not available for all optimizer 
option choices.

Modifying a Model

In some applications you may want to solve the modification of another model, in order, for 
example, to do scenario analysis or to make adaptations based on the solution of the first 
model. To do this, you do not have to start a new model from scratch, but instead you can 
take an existing model and change it to your needs. This is done by calling the modification 
methods of the individual modeling objects. 

When an extracted model is modified, the modification is tracked in the cplex object. This 
is done through notification. Whenever a modification method is called, cplex objects that 
have extracted the model are notified about it. The cplex objects then track the modification 
in their internal data structures. 

Not only does CPLEX track all modifications of the model it has extracted, but also it tries to 
maintain as much solution information from a previous invocation of solve() as is possible 
and reasonable. 

We already encountered what is perhaps the most important modification method, that is, the 
method IloModel::add() for adding modeling objects to a model. Conversely, you may 
call IloModel::remove() to remove a modeling object from a model. Objective functions 
can be modified by changing their sense and by editing their expression, or by changing their 



M O D I F Y I N G  A  M O D E L

42 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

expression completely. Similarly, the bounds of constraints and their expressions can be 
modified. For a complete list of supported modifications, see the documentation of the 
individual modeling objects in the ILOG Concert Reference Manual.

Deleting and Removing Modeling Objects

A special type of modification is that of deleting a modeling object by calling its end() 
method. Consider, for example, the deletion of a variable. What happens if the variable you 
delete has been used in constraints or the objective, or has been extracted to CPLEX? 
Concert Technology carefully removes the deleted variable from all other modeling objects 
and algorithms that may keep a reference to the variable in question. This applies to any 
modeling object to be removed. However, user-defined handles to the removed variable are 
not managed by Concert Technology. Instead it is up to the user to make sure that these 
handles are not used after the deletion of the modeling object. The only operation allowed 
then is the assignment operator. 

Concert Technology also provides a way to remove a modeling object from all other 
modeling objects and algorithms exactly the same way as when deleting it, yet without 
deleting the modeling object. This is done by calling the method removeFromAll(). This 
may be helpful to temporarily remove a variable from your model while keeping the option 
to add it back later on. 

It is important to understand the difference between the above and calling 
model.remove(obj) for an object obj. In this case, it does not necessarily mean that obj 
is removed from the problem CPLEX maintains. Whether or not this happens depends on the 
removed object being referenced by yet another extracted modeling object. Usually when a 
constraint is removed from the extracted model, the constraint is also removed from CPLEX 
as well, unless it was added to the model more than once. 

Consider the case where a variable is removed from CPLEX after one of the delete or 
remove operations discussed above. If the cplex object contains a simplex basis, by default 
the status for that variable is removed from the basis as well. If the variable happens to be 
basic, the operation corrupts the basis. If this is not desired, CPLEX provides a delete mode 
that first pivots the variable out of the basis before removing it. The resulting basis is not 
guaranteed to be feasible or optimal, but it will still constitute a valid basis. To select this 
mode, call method:

cplex.setDeleteMode(IloCplex::FixBasis); 

Similarly, when removing a constraint with the FixBasis delete mode, CPLEX will pivot 
the corresponding slack or artificial variable into the basis before removing it, to assure 
maintaining a valid basis. In either case, if no valid basis was available in the first place, no 
pivot operation is performed. To set the delete mode back to its default setting, call:

cplex.setDeleteMode(IloCplex::LeaveBasis);



<functionhead>

I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 43

U
sin

g
 C

o
n

cert 
Tech

n
o

lo
g

y

Changing Variable Type

The type of a variable cannot be changed by calling modification methods. Instead, Concert 
Technology provides the modeling class IloConversion, the objects of which allow you to 
override the type of a variable in a model. This design allows you to use the same variable in 
different models with different types. Consider for example model1 containing integer 
variable x. You can then create model2, as a copy of model1, that treats x as a continuous 
variable, with the following code: 

IloModel model2(env); 
model2.add(model1); 
model2.add(IloConversion(env, x, ILOFLOAT)); 

A conversion object, that is, an instance of IloConversion, can only specify a type for a 
variable that is in a model. Converting the type more than once is an error, because there is 
no rule about which would have precedence. However, this is not a restriction, since you can 
remove the conversion from a model and add a new one.

Handling Errors 

In Concert Technology two kinds of errors are distinguished:

1. Programming errors, such as:

● accessing empty handle objects

● mixing modeling objects from different environments

● accessing Concert Technology array elements beyond an array’s size

● passing arrays of incompatible size to functions. 

Such errors are usually an oversight of the programmer. Once they are recognized and 
fixed there is usually no danger of corrupting an application. In a production version, it is 
not necessary to handle these kinds of errors. 

In Concert Technology such error conditions are handled using assert statements. If 
compiled without -DNDEBUG, the error check is performed and the code aborts with an 
error message indicating which assertion failed. A production version should then be 
compiled with the -DNDEBUG compiler option, which removes all the checking. In other 
words, no CPU cycles are consumed for checking the assertions. 

2. Runtime errors, such as memory exhaustion.

A correct program assumes that such failures can occur and therefore must be treated, 
even in a production version. In Concert Technology, if such an error condition occurs, 
an exception is thrown. 



H A N D L I N G  E R R O R S

44 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

All exceptions thrown by Concert Technology classes (including IloCplex) are derived 
from IloException. Exceptions thrown by algorithm classes such as IloCplex are 
derived from its child class IloAlgorithm::Exception. The most common exceptions 
thrown by CPLEX are derived from IloCplex::Exception, a child class of 
IloAlgorithm::Exception. 

Objects of the exception class IloCplex::Exception correspond to the error codes 
generated by the C Callable Library. The error code can be queried from a caught exception 
by calling method: 

IloInt IloCplex::Exception::getStatus() const; 

The error message can be queried by calling method: 

const char* IloException::getMessage() const; 

which is a virtual method inherited from the base class IloException. If you want to 
access only the message for printing to a channel or output stream, it is more convenient to 
use the overloaded output operator (operator<<) provided by Concert Technology for 
IloException. 

In addition to exceptions corresponding to error codes from the C Callable Library, a cplex 
object may throw exceptions pertaining only to IloCplex. For example, the exception 
IloCplex::MultipleObjException is thrown if a model is extracted containing more 
than one objective function. Such additional exception classes are derived from class 
IloCplex::Exception; objects can be recognized by a negative status code returned 
when calling method getStatus(). 

In contrast to most other Concert Technology classes, exception classes are not handle 
classes. Thus, the correct type of an exception is lost if it is caught by value rather than by 
reference (that is, using catch(IloException& e) {...}). This is one reason that we 
suggest catching IloException objects by reference, as demonstrated in all examples. See, 
for example, ilodiet.cpp. Some derived exceptions may carry information that would be 
lost if caught by value. So if you output an exception caught by reference, you may get a 
more precise message than when outputting the same exception caught by value.

There is a second reason for catching exceptions by reference. Some exceptions contain 
arrays to communicate the reason for the failure to the calling function. If this information 
were lost by calling the exception by value, method end() could not be called for such 
arrays and their memory would be leaked (until env.end() is called). After catching an 
expression by reference, calling the exception’s method end() will free all the memory that 
may be used by arrays (or expressions) of the actual exception that was thrown. 

In summary, the preferred way of catching an exception is:

catch (IloException& e) {
  ...
  e.end();
}



<functionhead>

I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 45

U
sin

g
 C

o
n

cert 
Tech

n
o

lo
g

y

where IloException may be substituted for the desired Concert Technology exception 
class.

Example: Dietary Optimization

The optimization problem solved in this example is to compose a diet from a set of foods, so 
that the nutritional requirements are satisfied and the total cost is minimized. Example 
diet.cpp illustrates:

◆ Creating a Model Row by Row 

◆ Creating a Model Column by Column

◆ Creating Multi-Dimensional Arrays with IloArray 

◆ Using Arrays for Input/Output 

◆ Solving the Model with IloCplex

Problem Representation

The problem contains a set of foods, which are the modeling variables; a set of nutritional 
requirements to be satisfied, which are the constraints; and an objective of minimizing the 
total cost of the food. There are two ways of looking at this problem:

◆ The problem can be modeled in a rowwise fashion, by entering the variables first and 
then adding the constraints on the variables and the objective function.

◆ The problem can be modeled in a columnwise fashion, by constructing a series of empty 
constraints and then inserting the variables into the constraints and the objective 
function.

Concert Technology is equally suited for both kinds of modeling; in fact, you can even mix 
both approaches in the same program. If a new food product is created, you can create a new 
variable for it regardless of how the model was originally built. Similarly, if a new nutrient is 
discovered, you can add a new constraint for it.

Creating a Model Row by Row

You walk into the store and compile a list of foods that are offered. For each food, you store 
the price per unit and the amount in stock. For some foods that you particularly like, you also 
set a minimum amount you would like to use in your diet. Then, for each of the foods, you 
create a modeling variable to represent the quantity to be purchased for your diet. 

Now you get a medical book and look up which nutrients are known and relevant for you. 
For each nutrient, you note the minimum and maximum amounts that should be found in 
your diet. Also, you go through the list of foods and determine how much a food item will 



E X A M P L E :  D I E T A R Y  O P T I M I Z A T I O N

46 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

contribute for each nutrient. This gives you one constraint per nutrient, which can naturally 
be represented as a range constraint:

nutrMin[i] <= sum_j (nutrPer[i][j] * Buy[j]) <= nutrMax[i] 

where i represents the number of the nutrient under consideration, nutrMin[i] and 
nutrMax[i] the minimum and maximum amount of nutrient i and nutrPer[i][j] the 
amount of nutrient i in food j. Finally, you specify your objective function:

minimize sum_j (cost[j] * Buy[j])

This way of creating the model is shown in the function buildModelByRow, in example 
ilodiet.cpp.

Creating a Model Column by Column

You start with the medical book where you compile the list of nutrients that you want to 
ensure are properly represented in your diet. For each of the nutrients, you create an empty 
constraint: 

nutrMin[i] <= ... <= nutrMax[i] 

where ... is left to be filled once you walk into the store. Also, you set up the objective 
function to minimize the cost. We refer to constraint i as range[i] and to the objective as 
cost. 

Now you walk into the store and, for each food, you check the price and nutritional content. 
With this data you create a variable representing the amount you want to buy of the food 
type and install it in the objective function and constraints. That is, you create the following 
column: 

cost(foodCost[j]) "+" "sum_i" (range[i](nutrPer[i][j])) 

where the notation “+” and “sum” indicate that you “add” the new variable j to the objective 
cost and constraints range[i]. The value in parenthesis is the linear coefficient that is used 
for the new variable. We chose this notation for its similarity to the syntax actually used in 
Concert Technology, as demonstrated in the function buildModelByColumn, in example 
ilodiet.cpp. 

Creating Multi-Dimensional Arrays with IloArray

All data defining the problem are read from a file. The nutrients per food are stored in a two-
dimensional array. Concert Technology does not provide a predefined array class; however, 
by using the template class IloArray, you can create your own two-dimensional array 
class. This class is defined with the type definition:

typedef IloArray<IloNumArray> IloNumArray2; 

and is then ready to use, just like any predefined Concert Technology class, for example 
IloNumArray, the one-dimensional array class for numerical data. 



<functionhead>

I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 47

U
sin

g
 C

o
n

cert 
Tech

n
o

lo
g

y

Program Description

The main program starts by declaring the environment and terminates by calling method 
end() for the environment. The code in between is encapsulated in a try block that catches 
all Concert Technology exceptions and prints them to the C++ error stream cerr. All other 
exceptions are caught as well, and a simple error message is issued. The first action of the 
program is to evaluate command line parameters and call function usage in cases of misuse. 

Using Arrays for Input/Output

If all goes well, the input file is opened in the file ifstream. After that, the arrays for 
storing the problem data are created by declaring the appropriate variables. Then the arrays 
are filled by using the input operator with the data file. The data is checked for consistency 
and, if it fails, the program is aborted, again by throwing an exception. 

After the problem data has been read and verified, we are ready to build the model. To do so 
we construct the model object with the declaration 

IloModel mod(env); 

The array Buy is created to store the modeling variable. Since the environment is not passed 
to the constructor of Buy, an empty handle is constructed. So at this point the variable Buy 
cannot be used. 

Depending on the command line function, either buildMethodByRow or 
buildMethodByColumn is called. Both create the dietary model from the input data and 
return an array of modeling variables as an instance of the class IloNumVarArray. At that 
point, Buy is assigned to an initialized handle containing all the modeling variables and can 
be used afterwards. 

Building the Model by Row

The function buildModelByRow implements the rowwise creation of the model. It first gets 
the environment from the model object passed to it. Then the modeling variables Buy are 
created. Instead of calling the constructor for the variables individually for each variable, we 
create the full array of variables, with the array of lower and upper bounds and the variable 
type as parameter. In this array, variable Buy[i] is created such that it has lower bound 
foodMin[i], upper bound foodMax[i], and type type. 

The statement: 

mod.add(IloMinimize(env, IloScalProd(Buy, foodCost))); 

creates the objective function and adds it to the model. The IloScalProd function creates 
the expression sum_j (Buy[j] * foodCost[j]) which is then passed to the function 

Note: In such cases, an exception is thrown. This ensures that env.end() is called before 
the program is terminated. 



E X A M P L E :  D I E T A R Y  O P T I M I Z A T I O N

48 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

IloMinimize. That function creates and returns the actual IloObjective object, which is 
added to the model with the call mod.add(). 

The following loop creates the constraints of the problem one by one and adds them to the 
model. First the expression sum_j (Buy[j] * nutrPer[i][j]) is created by building a 
Concert Technology expression. An expression variable expr of type IloExpr is created, 
and linear terms are added to it by using operator+= in a loop. The expression is used with 
the overloaded operator<= to construct a range constraint (an IloRange object) which is 
added to the model:

mod.add(nutrMin[i] <= expr <= nutrMax[i]); 

After an expression has been used for creating a constraint, it is deleted by calling 
expr.end().

Finally, the array of modeling variables Buy is returned. 

Building the Model by Column

The function buildModelByColumn()implements the columnwise creation of the model. 
It begins by creating the array of modeling variables Buy of size 0. This is later populated 
when the columns of the problem are created and eventually returned. 

The statement: 

IloObjective cost = IloAdd(mod, IloMinimize(env)); 

creates a minimization objective function object with 0 expressions and adds it to the model. 
The objective object is created with the function IloMinimize. The template function 
IloAdd is used to add the objective object to the model and to return an objective object 
with the same type, so that we can store the objective in variable cost. The method 
IloModel::add() returns the modeling object as an IloExtractable, which cannot be 
assigned to a variable of a derived class such as IloObjective. Similarly an array of range 
constraints with 0 expressions is created, added to the model, and stored in array range. 

In the following loop, the columns of the model are created one by one. First a 
representation of each new column is created, using the numeric column variable col (an 
instance of IloNumColumn), and initialized with the objective coefficient for the new 
variable. This coefficient is returned by cost(foodCost[j]) which calls the overloaded 
operator() for IloObjective objects. Then the coefficients for the constraints are added 
to the column using operator+=. The coefficient for row i is created with 
range[i](nutrPer[i][j]), which calls the overloaded operator() for IloRange 
objects. 

When a column is completely constructed, a new variable is created for it and added to the 
array of modeling variables Buy. The construction of the variable is performed by the 
constructor: 

IloNumVar(col, foodMin[j], foodMax[j], type) 



<functionhead>

I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 49

U
sin

g
 C

o
n

cert 
Tech

n
o

lo
g

y

which creates the new variable with lower bound foodMin[j], upper bound foodMax[j] 
and type type, and adds it to the existing objective and ranges with the coefficients specified 
in column col. Again, after creating the variable for this column, the IloColumn object is 
deleted by calling col.end().

Solving the Model with IloCplex

After the model has been populated, we are ready to create the cplex object and extract the 
model to it by calling: 

IloCplex cplex(mod); 

It is then ready to solve the model, but for demonstration purposes we first write the 
extracted model to file diet.lp. Doing so can help you debug your model, as the file 
contains exactly what CPLEX sees. If it does not match what you expected, it will probably 
help you locate the code that generated the wrong part. 

The model is then solved by calling method solve(). Finally, the solution status and 
solution vector are output to the output channel cplex.out(). By default this channel is 
initialized to cout. All logging during optimization is also output to this channel. To turn off 
logging, you would set the out() stream of cplex to a null stream by calling 
cplex.setOut(env.getNullStream()).

Complete Program

The complete program, ilodiet.cpp, shown here is also provided online, in the standard 
distribution.

#include <ilcplex/ilocplex.h>
ILOSTLBEGIN

void usage(const char* name) {
  cerr << endl;
  cerr << "usage:   " << name << " [options] <file>" << endl;
  cerr << "options: -c  build model by column" << endl;
  cerr << "         -i  use integer variables" << endl;

Notes:
◆ All the definitions needed for a CPLEX Concert Technology application are imported by 

including the file <ilcplex/ilocplex.h>.
◆ The line ILOSTLBEGIN is a macro that is needed for portability. Microsoft Visual C++ 

code varies, depending on whether you use the STL or not. This macro allows you to 
switch between both types of code without the need to otherwise change your source 
code.

◆ Function usage is called in case the program is executed with incorrect command line 
arguments.



E X A M P L E :  D I E T A R Y  O P T I M I Z A T I O N

50 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

  cerr << endl;
}

typedef IloArray<IloNumArray> IloNumArray2;

IloNumVarArray
buildModelByRow(IloModel mod,
                const IloNumArray foodMin,
                const IloNumArray foodMax,
                const IloNumArray foodCost, 
                const IloNumArray nutrMin,
                const IloNumArray nutrMax,
                const IloNumArray2& nutrPer,
                IloNumVar::Type type) {
  IloEnv env = mod.getEnv();

  IloNumVarArray Buy (env, foodMin, foodMax, type);

  IloInt i, j;
  IloInt n = foodCost.getSize();
  IloInt m = nutrMin.getSize();

  mod.add(IloMinimize(env, IloScalProd(Buy,foodCost)));
  for (i = 0; i < m; i++) {
     IloExpr expr(env);
     for (j = 0; j < n; j++)  expr += Buy[j] * nutrPer[i][j];
     mod.add(nutrMin[i] <= expr <= nutrMax[i]);
  }

  return (Buy);
}

IloNumVarArray
buildModelByColumn(IloModel mod,
                   const IloNumArray foodMin,
                   const IloNumArray foodMax,
                   const IloNumArray foodCost, 
                   const IloNumArray nutrMin,
                   const IloNumArray nutrMax,
                   const IloNumArray2& nutrPer,
                   IloNumVar::Type type) {
  IloEnv env = mod.getEnv();

  IloNumVarArray Buy(env);

  IloInt i, j;
  IloInt n = foodCost.getSize();
  IloInt m = nutrMin.getSize();

  IloObjective  cost  = IloAdd(mod, IloMinimize(env));
  IloRangeArray range = IloAdd(mod, IloRangeArray(env, nutrMin, nutrMax));

  for (j = 0; j < n; j++) {
    IloNumColumn col = cost(foodCost[j]);



<functionhead>

I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 51

U
sin

g
 C

o
n

cert 
Tech

n
o

lo
g

y

    for (i = 0; i < m; i++)  col += range[i](nutrPer[i][j]);
    Buy.add(IloNumVar(col, foodMin[j], foodMax[j], type));
  }

  return (Buy);
}

int
main(int argc, char **argv)
{
  IloEnv env;

  try {
    const char*     filename  = "../../../examples/data/diet.dat";
    IloBool         byColumn  = IloFalse;
    IloNumVar::Type varType   = ILOFLOAT;

    IloInt i;

    for (i = 1; i < argc; ++i) {
      if (argv[i][0] == ’-’) {
        switch (argv[i][1]) {
        case ’c’:
          byColumn = IloTrue;
          break;
        case ’i’:
          varType = ILOINT;
          break;
        default:
          usage(argv[0]);
          throw (-1);
        }
      }
      else {
        filename = argv[i];
        break;
      }
    }

    ifstream file(filename);
    if ( !file ) {
      cerr << "ERROR: could not open file ’" << filename << "’ for reading" << 
endl;
      usage(argv[0]);
      throw (-1);
    }

    // model data

    IloNumArray  foodCost(env), foodMin(env), foodMax(env);
    IloNumArray  nutrMin(env), nutrMax(env);
    IloNumArray2 nutrPer(env);

    file >> foodCost >> foodMin >> foodMax;
    file >> nutrMin >> nutrMax;



E X A M P L E :  D I E T A R Y  O P T I M I Z A T I O N

52 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

    file >> nutrPer;

    IloInt nFoods = foodCost.getSize();
    IloInt nNutr  = nutrMin.getSize();

    if ( foodMin.getSize() != nFoods ||
         foodMax.getSize() != nFoods ||
         nutrPer.getSize() != nNutr  ||
         nutrMax.getSize() != nNutr    ) {
      cerr << "ERROR: Data file ’" << filename
           << "’ contains inconsistent data" << endl;
      throw (-1);
    }

    for (i = 0; i < nNutr; ++i) {
      if (nutrPer[i].getSize() != nFoods) {
        cerr << "ERROR: Data file ’" << argv[0]
             << "’ contains inconsistent data" << endl;
        throw (-1);
      }
    }

    // Build model

    IloModel       mod(env);
    IloNumVarArray Buy;
    if ( byColumn ) {
      Buy = buildModelByColumn(mod, foodMin, foodMax, foodCost,
                               nutrMin, nutrMax, nutrPer, varType);
    }
    else {
      Buy = buildModelByRow(mod, foodMin, foodMax, foodCost,
                            nutrMin, nutrMax, nutrPer, varType);
    }

    // Solve model

    IloCplex cplex(mod);
    cplex.exportModel("diet.lp");

    cplex.solve();
    cplex.out() << "solution status = " << cplex.getStatus() << endl;

    cplex.out() << endl;
    cplex.out() << "cost   = " << cplex.getObjValue() << endl;
    for (i = 0; i < foodCost.getSize(); i++) 
      cplex.out() << "  Buy" << i << " = " << cplex.getValue(Buy[i]) << endl;
  }
  catch (IloException& ex) {
    cerr << "Error: " << ex << endl;
  }
  catch (...) {
    cerr << "Error" << endl;
  }



<functionhead>

I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 53

U
sin

g
 C

o
n

cert 
Tech

n
o

lo
g

y

  env.end();

  return 0;
}



E X A M P L E :  D I E T A R Y  O P T I M I Z A T I O N

54 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L



C H A P T E R

I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 55

U
sin

g
 th

e C
allab

le 
L

ib
rary

2

Using the ILOG CPLEX Callable Library

This chapter describes how to write C programs using the ILOG ILOG CPLEX Callable 
Library. It includes sections on:

◆ Architecture of the CPLEX Callable Library, including information on licensing and on 
compiling and linking your programs

◆ Using the Callable Library in an Application

◆ ILOG CPLEX Programming Practices

◆ Managing Parameters from the Callable Library

◆ Example: Dietary Optimization

Architecture of the CPLEX Callable Library

ILOG CPLEX includes a callable C library that makes it easier to develop applications to 
optimize, to modify, and to interpret the results of mathematical programming problems 
whether linear, mixed integer, or convex quadratic ones.

You can use the Callable Library to write applications that conform to many modern 
computer programming paradigms, such as client-server applications within distributed 
computing environments, multithreaded applications running on multiple processors, 



A R C H I T E C T U R E  O F  T H E  C P L E X  C A L L A B L E  L I B R A R Y

56 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

applications linked to database managers, or applications using flexible graphic user 
interface builders, just to name a few.

The Callable Library together with the ILOG CPLEX database make up the ILOG CPLEX 
core, as you see in Figure 2.1. The ILOG CPLEX database includes the computing 
environment, its communication channels, and your problem objects. You will associate the 
core with your application by calling library routines.

Figure 2.1 

Figure 2.1  A view of the ILOG CPLEX world

The ILOG CPLEX Callable Library itself contains routines organized into several 
categories:

◆ optimization routines enable you to define a problem, optimize it, and generate results;

◆ utility routines handle application programming issues;

◆ problem modification routines let you change a problem after you have created it within 
the ILOG CPLEX database;

◆ problem query routines access information about a problem after you have created it;

User

Operating System

User-Written Application
read

write

display

CPLEX 

CPLEX Database

CPLEX Core

environment, channels, 
problem objects

Callable Library



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 57

U
sin

g
 th

e C
allab

le 
L

ib
rary

<functionhead>

◆ file reading and writing routines move information from the file system of your 
operating system into your application, or from your application into the file system;

◆ parameter routines enable you to query, set, or modify parameter values maintained by 
ILOG CPLEX.

Licenses

CPLEX runs under the control of the ILOG License Manager (ILM). Before you can run any 
application program that calls CPLEX, you must have established a valid license that it can 
read. Licensing instructions are provided to you separately when you buy or upgrade 
CPLEX. Contact your local ILOG support department if this information has not been 
communicated to you or if you find that you need help in establishing your CPLEX 7.0 
license.

Compiling and Linking

Compilation and linking instructions are provided with the files that come in the standard 
distribution of CPLEX for your computer platform. Check the readme file for details.

Using the Callable Library in an Application

This section tells you how to use the Callable Library in your own applications. Briefly, you 
must initialize the ILOG CPLEX environment, instantiate a problem object, and fill it with 
data. Then your application calls one of the ILOG CPLEX optimizers to optimize your 
problem. Optionally, your application can also modify the problem object and re-optimize it. 
ILOG CPLEX is designed to support this sequence of operations—modification and re-
optimization of linear programming problems (LPs)—efficiently by reusing the current 
basis of a problem as its starting point (when applicable). After it finishes using 
ILOG CPLEX, your application must free the problem object and release the ILOG CPLEX 
environment it has been using. The following sections explain these steps in greater detail.

Initialize the ILOG CPLEX Environment

ILOG CPLEX needs certain internal data structures to operate. In your own application, you 
use a routine from the Callable Library to initialize these data structures. You must initialize 
these data structures before your application calls any other routine in the ILOG CPLEX 
Callable Library.

To initialize a ILOG CPLEX environment, you must use the routine CPXopenCPLEX(). 

This routine checks for a valid ILOG CPLEX license and then returns a C pointer to the 
ILOG CPLEX environment that is creates. Your application then passes this C pointer to 



U S I N G  T H E  C A L L A B L E  L I B R A R Y  I N  A N  A P P L I C A T I O N

58 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

other ILOG CPLEX routines (except CPXmsg()). As a developer, you decide for yourself 
whether the variable containing this pointer should be global or local in your application

A multithreaded application needs multiple ILOG CPLEX environments. Consequently, 
ILOG CPLEX allows more than one environment to exist at a time; each one consumes a 
licensed process.

Instantiate the Problem Object

Once you have initialized a ILOG CPLEX environment, your next step is to instantiate (that 
is, create and initialize) a problem object by calling CPXcreateprob(). This routine 
returns a C pointer to the problem object. Your application then passes this pointer to other 
routines of the Callable Library.

Most applications will use only one problem object, though ILOG CPLEX allows you to 
create multiple problem objects within a given ILOG CPLEX environment. Similarly, most 
applications create only one ILOG CPLEX environment, although ILOG CPLEX allows l 
environments, where l is the number of licensed ILOG CPLEX users on your system.

Put Data in the Problem Object

When you instantiate a problem object, it is originally empty. In other words, it has no 
constraints, no variables, and no coefficient matrix. ILOG CPLEX offers you several 
alternative ways to put data into an empty problem object (that is, to populate your problem 
object).

◆ You can assemble arrays of data and then call CPXcopylp() to copy the data into the 
problem object.

◆ You can make a sequence of calls, in any convenient order, to these routines:

● CPXnewcols();

● CPXnewrows();

● CPXaddcols();

● CPXaddrows();

● CPXchgcoeflist();

◆ If data already exist in MPS or LP format in a file, you can call CPXreadcopyprob() to 
read that file and copy the data into the problem object. (MPS—Mathematical 
Programming System—is an industry-standard format for organizing data in 
mathematical programming problems. LP—linear programming—is a ILOG CPLEX-
specific format for expressing linear programming problems as equations or inequalities. 
Understanding File Formats on page 264 explains these formats in greater detail.)



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 59

U
sin

g
 th

e C
allab

le 
L

ib
rary

<functionhead>

Optimize the Problem

Call one of the ILOG CPLEX optimizers to solve the problem object that you have 
instantiated and populated. Choosing an Optimizer for Your LP Problem on page 96 explains 
in greater detail how to choose an appropriate optimizer for your problem.

Change the Problem Object

In analyzing a given mathematical program, you may make changes in a model and study 
their effect. As you make such changes, you must keep ILOG CPLEX informed about the 
modifications so that ILOG CPLEX can efficiently re-optimize your changed problem. 
Always use the problem modification routines from the Callable Library to make such 
changes and thus keep ILOG CPLEX informed. In other words, do not change a problem by 
altering the original data arrays and calling CPXcopylp() again. That tempting strategy 
usually will not make the best use of ILOG CPLEX. Instead, modify your problem by means 
of the problem modification routines.

For example, let’s say a user has already solved a given problem and then changes the upper 
bound on a variable by means of an appropriate call to the Callable Library. ILOG CPLEX 
will then begin any further optimization from the previous optimal basis. If that basis is still 
optimal with respect to the new bound, then ILOG CPLEX will return that information 
without even needing to refactor the basis.

Destroy the Problem Object

Use the routine CPXfreeprob() to destroy a problem object when your application no 
longer needs it.

Release the ILOG CPLEX Environment

After all the calls from your application to the ILOG CPLEX Callable Library are complete, 
you must release the ILOG CPLEX environment by calling the routine CPXcloseCPLEX(). 
This routine tells ILOG CPLEX that:

◆ all application calls to the Callable Library are complete;

◆ ILOG CPLEX should release any memory allocated by ILOG CPLEX for this 
environment;

◆ the application has relinquished the ILOG CPLEX license for this run, thus making the 
license available to the next user.



I L O G C P L E X  P R O G R A M M I N G  P R A C T I C E S

60 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

ILOG CPLEX Programming Practices

This section lists the programming practices we observe in developing and maintaining the 
ILOG CPLEX Callable Library.

The ILOG CPLEX Callable Library supports modern programming practices. It uses no 
external variables. Indeed, no global nor static variables are used in the library so that the 
Callable Library is fully reentrant and thread-safe. The names of all library routines begin 
with the three-character prefix CPX to prevent namespace conflicts with your own routines 
or with other libraries. Also to avoid clutter in the namespace, there is a minimal number of 
routines for setting and querying parameters. 

Variable Names and Calling Conventions

Routines in the ILOG CPLEX Callable Library obey the C programming convention of call 
by value (as opposed to call by reference, for example, in FORTRAN and BASIC). If a 
routine in the Callable Library needs the address of a variable in order to change the value of 
the variable, then that fact is documented in the ILOG CPLEX Reference Manual by the 
suffix _p in the variable name in the synopsis of the routine. In C, you create such values by 
means of the & operator to take the address of a variable and to pass this address to the 
Callable Library routine.

For example, let’s look at the synopses for two routines, CPXgetobjval() and 
CPXgetx(), as they are documented in the ILOG CPLEX Reference Manual to clarify this 
calling convention. Here is the synopsis of the routine CPXgetobjval(): 

In that routine, the third parameter is a pointer to a variable of type double. To call this 
routine from C, declare: 

Then call CPXgetobjval() in this way: 

In contrast, here is the synopsis of the routine CPXgetx(): 

You call it by creating a double-precision array by means of either one of two methods. The 
first method dynamically allocates the array, like this: 

int CPXgetobjval (CPXENVptr env, CPXLPptr lp, double *objval_p)

double objval;

status = CPXgetobjval (env, lp, &objval);

int CPXgetx (CPXENV env, CPXLPptr lp, double *x, int begin, int end)

double *x = NULL;
x = (double *) malloc (100*sizeof(double));



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 61

U
sin

g
 th

e C
allab

le 
L

ib
rary

<functionhead>

The second method declares the array as a local variable, like this: 

Then to see the optimal values for columns 5 through 104, for example, you could write this: 

The variable objval_p in the synopsis of CPXgetobjval() and the variable x in the 
synopsis of CPXgetx() are both of type (double *). However, the suffix _p in the 
parameter objval_p indicates that you should use an address of a single variable in one 
call, while the lack of _p in x indicates that you should pass an array in the other.

For guidance about how to pass values to ILOG CPLEX routines from application 
languages such as FORTRAN or BASIC that conventionally call by reference, see Call by 
Reference on page 69 in this manual, and consult the documentation for those languages.

Data Types

In the Callable Library, ILOG CPLEX defines a few special data types for specific 
ILOG CPLEX objects, as you see in Table 2.1. 

When any of these special variables are set to a value returned by an appropriate routine, that 
value can be passed directly to other ILOG CPLEX routines that require such parameters. 
The actual internal type of these variables is a memory address (that is, a pointer); this 
address uniquely identifies the corresponding object. If you are programming in a language 
other than C, you should choose an appropriate integer type or pointer type to hold the 
values of these variables.

Ownership of Problem Data

The ILOG CPLEX Callable Library does not take ownership of user memory. All arguments 
are copied from your user-defined arrays into ILOG CPLEX-allocated memory. 
ILOG CPLEX manages all problem-related memory. After you call a ILOG CPLEX routine 

double x[100];

status = CPXgetx (env, lp, x, 5, 104);

Table 2.1 Special data types in the ILOG CPLEX Callable Library

Data type Is a pointer to Declaration Set by calling

CPXENVptr ILOG CPLEX 
environment

CPXENVptr env; CPXopenCPLEX()

CPXLPptr problem object CPXLPptr lp; CPXcreateprob()

CPXNETptr problem object CPXNETptr net; CPXNETcreateprob()

CPXCHANNELptr message channel CPXCHANNELptr channel; CPXgetchannels()

CPXaddchannel()



I L O G C P L E X  P R O G R A M M I N G  P R A C T I C E S

62 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

that copies data into a ILOG CPLEX problem object, you can free the memory you used as 
arguments to the copying routine.

Copying in MIP and QP

If you are licensed to use the ILOG CPLEX Mixed Integer Optimizer, the routine 
CPXcopyctype() copies information about variable types in a mixed integer programming 
application (MIP). 

If you are licensed to use the ILOG CPLEX Barrier Optimizer, the routines 
CPXcopyqsep() and CPXcopyquad() are for copying information about quadratic 
objective coefficients in a convex quadratic programming application (QP).

Problem Size and Memory Allocation Issues

As we indicated in Change the Problem Object on page 59, after you have created a problem 
object by calling CPXcreateprob(), you can modify the problem in various ways through 
calls to routines from the Callable Library. There is no need for you to allocate extra space in 
anticipation of future problem modifications. Any limit on problem size is determined by 
system resources and the underlying implementation of the system function malloc()—not 
by artificial limits in ILOG CPLEX.

As you modify a problem object through calls to modification routines from the Callable 
Library, ILOG CPLEX automatically handles memory allocations to accommodate the 
increasing size of the problem. In other words, you do not have to keep track of the problem 
size nor make corresponding memory allocations yourself as long as you are using library 
modification routines such as CPXaddrows() or CPXaddcols().

However, the sequence of Callable Library routines that you invoke can influence the 
efficiency of memory management. Likewise, parameters controlling row growth 
(CPX_PARAM_ROWGROWTH), column growth (CPX_PARAM_COLGROWTH), and nonzero 
growth (CPX_PARAM_NZGROWTH) can also influence how efficiently ILOG CPLEX allocates 
memory to accommodate the problem object. These growth parameters determine how 
much extra space ILOG CPLEX allocates in its internal structures when additions to a 
problem object increase the size of the problem object so that it exceeds currently allocated 
space. 

Table 2.2 Default values of ILOG CPLEX growth parameters

Parameter Default value

CPX_PARAM_ROWGROWTH 100

CPX_PARAM_COLGROWTH 100

CPX_PARAM_NZGROWTH 500



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 63

U
sin

g
 th

e C
allab

le 
L

ib
rary

<functionhead>

Table 2.2 shows you the default values of these growth parameters. At these default values, 
if an application populates the problem object one row at a time, then CPLEX will cache the 
row additions until an updated problem is needed, for example when a query or optimization 
function is called. Similarly, it will cache column-based additions after 100 columns, and 
nonzero-based arrays when the additions of coefficients produces another 500 nonzeros to 
add to the matrix. Memory Management and Problem Growth on page 103 offers guidelines 
about performance tuning with these parameters.

Status and Return Values

The Callable Library routine CPXopenCPLEX() returns a pointer to a ILOG CPLEX 
environment. In case of failure, it returns a NULL pointer. The parameter *status_p (that is, 
one of its arguments) is set to 0 if the routine is successful; in case of failure, that parameter 
is set to a nonzero value that indicates the reason for the failure. Each failure value is unique 
and documented in the ILOG CPLEX Reference Manual.

The Callable Library routine CPXcreateprob() returns a pointer to a ILOG CPLEX 
problem object and sets its parameter *status_p to 0 (zero) to indicate success. In 
case of failure, it returns a NULL pointer and sets *status_p to a nonzero value indicating 
the reason for the failure.

Some query routines in the Callable Library return a nonzero value when they are 
successful. For example, CPXgetnumcols() returns the number of columns in the 
constraint matrix (that is, the number of variables in the problem object). However, most 
query routines return 0 (zero) indicating success of the query and entail one or more 
parameters (such as a buffer or character string) to contain the results of the query. For 
example, CPXgetrowname() returns the name of a row in its name parameter.

Most other routines in the Callable Library return an integer value, 0 (zero) indicating 
success of the call. A nonzero return value indicates a failure. Each failure value is unique 
and documented in the ILOG CPLEX Reference Manual.

We strongly recommend that your application check the status—whether the status is 
indicated by the return value or by a parameter—of the routine that it calls before it 
proceeds.

Symbolic Constants

Most ILOG CPLEX routines return or require values that are defined as symbolic constants 
in the header file (that is, the include file) cplex.h. We highly recommend this practice of 
using symbolic constants, rather than hard-coded numeric values. Symbolic names improve 
the readability of calling applications. Moreover, if numeric values happen to change in 
subsequent releases of the product, the symbolic names will remain the same, thus making 
applications easier to maintain.



I L O G C P L E X  P R O G R A M M I N G  P R A C T I C E S

64 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

Parameter Routines

You can set many parameters in the ILOG CPLEX environment to control ILOG CPLEX 
operation. The values of these parameters may be integer, double, or character strings, so 
there are sets of routines for accessing and setting them. Table 2.3 shows you the names and 

purpose of these routines. Each of these routines accepts the same first argument: a pointer 
to the ILOG CPLEX environment (that is, the pointer returned by CPXopenCPLEX()). The 
second argument of each of those parameter routines is the parameter number, a symbolic 
constant defined in the header file, cplex.h. Managing Parameters from the Callable 
Library on page 70 offers more details about parameter settings.

Null Arguments

Certain ILOG CPLEX routines that accept optional arguments allow you to pass a NULL 
pointer in place of the optional argument. The documentation of those routines in the 
ILOG CPLEX Reference Manual indicates explicitly whether NULL pointer arguments are 
acceptable. (Passing null arguments is an effective way to avoid allocating unnecessary 
arrays.)

Row and Column References

Consistent with standard C programming practices, in ILOG CPLEX an array containing k 
items will contain these items in locations 0 (zero) through k-1. Thus a linear program with 
m rows and n columns will have its rows indexed from 0 to m-1, and its columns from 0 
to n-1.

Within the linear programming data structure, the rows and columns that represent 
constraints and variables are referenced by an index number. Each row and column may 
optionally have an associated name. If you add or delete rows, the index numbers usually 
change. However, ILOG CPLEX updates the names so that each row or column index will 
correspond to the correct row or column name. Double checking names against index 
numbers is the only sure way to determine which changes may have been made to matrix 
indices in such a context. The routines CPXgetrowindex() and CPXgetcolindex() 
translate names to indices.

Table 2.3 Callable Library routines for parameters in the ILOG CPLEX environment

Type Change value Access current value Access default, max, min

integer CPXsetintparam() CPXgetintparam() CPXinfointparam()

double CPXsetdblparam() CPXgetdblparam() CPXinfodblparam()

string CPXsetstrparam() CPXgetstrparam() CPXinfostrparam()



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 65

U
sin

g
 th

e C
allab

le 
L

ib
rary

<functionhead>

If additions or deletions to the constraint matrix are few, then:

◆ for deletions, ILOG CPLEX decrements each reference index above the deletion point, 
and

◆ for additions, ILOG CPLEX makes all additions at the end of the existing range.

Here is an example to illustrate how rows are renumbered when rows k+1 to l-1 are 
deleted. That is, l-(k+1) elements are deleted in the example: 

Character Strings 

You can pass character strings as parameters to various ILOG CPLEX routines, for example, 
as row or column names. The Interactive Optimizer truncates output strings usually at 18 
characters. Routines from the Callable Library truncate strings at 255 characters in output 
text files (such as MPS, LP, and SOS text files) but not in binary SAV files. Routines from 
the Callable Library also truncate strings at 255 characters in names that occur in messages. 
Routines of the Callable Library that produce log files, such as the simplex iteration log file 
or the MIP node log file, truncate at 16 characters. The Callable Library routine 
CPXwritesol() truncates character strings in binary solution files at 8 characters and in 
text solution files at 16 characters. Input, such as names read from LP and MPS files or 
typed interactively by the enter command, are truncated to 255 characters. However, we do 
not recommend that you rely on this truncation because unexpected behavior may result.

Checking Problem Data

If you inadvertently make an error entering problem data, the problem object will not 
correspond to your intentions. One possible result may be a segmentation fault or other 
disruption of your application. In other cases, ILOG CPLEX may solve a different model 
from the one you intended, and that situation may or may not result in error messages from 
ILOG CPLEX.

Using the Data Checking Parameter 

To help you detect this kind of error, you can set the parameter CPX_PARAM_DATACHECK to 
the value CPX_ON to activate additional checking of array arguments for CPXcopy...(), 
CPXread...(), and CPXchg...() functions. The additional checks include:

◆ invalid sense/ctype/sostype values

◆ indexes out of range, for example, rowind >= numrows

Rows before deletion 0, . . .
k,

k+1, . . . , l-1, l, . . ., end

Rows after deletion 0, . . .
k,

k+1, . . . , [end-(l-(k+1))]



I L O G C P L E X  P R O G R A M M I N G  P R A C T I C E S

66 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

◆ duplicate entries

◆ matbeg or sosbeg array with decreasing values

◆ NANs in double arrays

◆ NULLs in name arrays

When the parameter is set to CPX_OFF, only simple checks, for example checking for the 
existence of the environment, are performed.

Using Diagnostic Routines for Debugging

ILOG CPLEX also provides diagnostic routines to look for common errors in the definition 
of problem data. In the standard distribution of ILOG CPLEX, the file check.c contains the 
source code for these routines:

◆ CPXcheckcopylp()

◆ CPXcheckcopylpwnames()

◆ CPXcheckcopyqpsep()

◆ CPXcheckcopyquad()

◆ CPXcheckaddrows()

◆ CPXcheckaddcols()

◆ CPXcheckchgcoeflist()

◆ CPXcheckvals()

◆ CPXcheckcopyctype() 

◆ CPXcheckcopysos() 

◆ CPXNETcheckcopynet() 

Each of those routines performs a series of diagnostic tests of the problem data and issues 
warnings or error messages whenever it detects a potential error. To use them, you must 
compile and link the file check.c. After compiling and linking that file, you will be able to 
step through the source code of these routines with a debugger to help isolate problems.

If you have observed anomalies in your application, you can exploit this diagnostic 
capability by calling the appropriate routines just before a copying routine. The diagnostic 
routine may then detect errors in the problem data that could subsequently cause 
inexplicable behavior.

Those checking routines send all messages to one of the standard ILOG CPLEX message 
channels. You capture that output by setting the parameter CPX_PARAM_SCRIND (if you 
want messages directed to your screen) or by calling the routine CPXsetlogfile().



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 67

U
sin

g
 th

e C
allab

le 
L

ib
rary

<functionhead>

Callbacks

The Callable Library supports callbacks so that you can define functions that will be called 
at crucial points in your application:

◆ during the presolve process;

◆ once per iteration in a linear programming routine;

◆ once before a node is processed in a mixed integer optimization (if the end-user is 
licensed for the ILOG CPLEX Mixed Integer Optimizer).

In addition, callback functions can call CPXgetcallbackinfo() to retrieve information 
about the progress of an optimization algorithm. They can also return a value to indicate 
whether an optimization should be aborted. CPXgetcallbackinfo() is the only routine of 
the Callable Library that a user-defined callback may call. (Of course, calls to routines not in 
the Callable Library are permitted.) 

Using Callbacks on page 293 describes callback facilities in greater detail.

Portability

ILOG CPLEX contains a number of features to help you create Callable Library 
applications that can be easily ported between UNIX and Windows 95 and NT (that is, 
Win32) platforms. 

CPXPUBLIC

All ILOG CPLEX Callable Library routines except CPXmsg() have the word CPXPUBLIC 
as part of their prototype. On UNIX platforms, this has no effect. On Win32 platforms, the 
CPXPUBLIC designation tells the compiler that all of the ILOG CPLEX functions are 
compiled with the Microsoft __stdcall calling convention. The exception CPXmsg() 
cannot be called by __stdcall because it takes a variable number of arguments. 
Consequently, CPXmsg() is declared as CPXPUBVARARGS; that calling convention is defined 
as __cdecl for Win32 systems.

Function Pointers

All ILOG CPLEX Callable Library routines that require pointers to functions expect the 
passed-in pointers to be declared as CPXPUBLIC. Consequently, when your application uses 
the ILOG CPLEX Callable Library routines CPXaddfuncdest(), 
CPXsetlpcallbackfunc(), and CPXsetmipcallbackfunc(), it must declare the user-
written callback functions with the CPXPUBLIC designation. For UNIX systems, this has no 
effect. For Win32 systems, this will cause the callback functions to be declared with the 
__stdcall calling convention. For examples of function pointers and callbacks, see 
Example: Using Callbacks on page 303 and Example: Using the Message Handler on 
page 272.



I L O G C P L E X  P R O G R A M M I N G  P R A C T I C E S

68 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

CPXCHARptr and CPXVOIDptr

The types CPXCHARptr and CPXVOIDptr are used in the header file cplex.h to avoid the 
complicated syntax of using the CPXPUBLIC designation on functions that return char or 
void pointers. 

File Pointers

File pointer arguments for Callable Library routines should be declared with the type 
CPXFILEptr. On UNIX platforms, this practice is equivalent to using the file pointer type. 
On Win32 platforms, the file pointers declared this way will correspond to the environment 
of the ILOG CPLEX DLL. Any file pointer passed to a Callable Library routine should be 
obtained with a call to CPXfopen() and closed with CPXfclose(). Callable Library 
routines with file pointer arguments include CPXsetlogfile(), CPXaddfpdest(), 
CPXdelfpdest(), and CPXfputs(). Handling Message Channels: Callable Library 
Routines on page 271 discusses most of those routines.

String Functions

Several routines in the ILOG CPLEX Callable Library make it easier to work with strings. 
These functions are helpful when you are writing applications in a language, such as Visual 
Basic, that does not allow you to dereference a pointer. The string routines in the 
ILOG CPLEX Callable Library are CPXmemcpy(), CPXstrlen(), CPXstrcpy(), and 
CPXmsgstr().

ILOG CPLEX-Allocated Memory

The Callable Library read routines CPXreadcopyprob(), etc., return pointers to memory 
allocated by the Callable Library. The Callable Library routine CPXfree() frees these 
pointers. On UNIX systems, it is acceptable, but not recommended for portability reasons, to 
use the system call free(). 

For more complete access to ILOG CPLEX memory management, you also have the 
routines CPXmalloc() and CPXrealloc(). However, you are not required to use these 
two routines in order to have correctly functioning Callable Library applications. 

FORTRAN Interface

The Callable Library can be interfaced with FORTRAN applications. You can download 
examples of a FORTRAN application from the ILOG web site at http://www.ilog.com/
products/cplex. Choose Tech Support; then choose Callable Library Examples. The 
examples were compiled on a Sun Solaris operating system. Since C-to-FORTRAN 
interfaces vary across platforms (operating system, hardware, compilers, etc.), you may need 
to modify the examples for your particular system.

Whether you need intermediate “glue” routines for the interface depends on your operating 
system. As a first step in building such an interface, we advise you to study your system 



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 69

U
sin

g
 th

e C
allab

le 
L

ib
rary

<functionhead>

documentation about C-to-FORTRAN interfaces. In that context, this section lists a few 
considerations particular to ILOG CPLEX in building a FORTRAN interface.

Case-Sensitivity

As you know, FORTRAN is a case-insensitive language, whereas routines in the 
ILOG CPLEX Callable Library have names with mixed case. Most FORTRAN compilers 
have an option, such as the option -U on UNIX systems, that treats symbols in a case-
sensitive way. We recommend that you use this option in any file that calls ILOG CPLEX 
Callable Library routines.

On some operating systems, such as DEC Alpha running Digital Unix, certain intrinsic 
FORTRAN functions must be in all upper case (that is, capital letters) for the compiler to 
accept those functions.

Underscore

On some systems, all FORTRAN external symbols are created with an underscore character 
(that is, _) added to the end of the symbol name. Some systems have an option to turn off 
this feature; for example, on DEC Alpha running Digital Unix, the option 
-assume nounderscore turns off the postpended underscore. If you are able to turn off 
those postpended underscores, you may not need other “glue” routines.

Six-Character Identifiers

FORTRAN 77 allows identifiers that are unique only up to six characters. However, in 
practice, most FORTRAN compilers allow you to exceed this limit. Since routines in the 
Callable Library have names greater than six characters, you need to verify whether your 
FORTRAN compiler enforces this limit or allows longer identifiers.

Call by Reference

By default, FORTRAN passes arguments by reference; that is, the address of a variable is 
passed to a routine, not its value. In contrast, many routines of the Callable Library require 
arguments passed by value. To accommodate those routines, most FORTRAN compilers 
have the VMS FORTRAN extension %VAL(). This operator used in calls to external 
functions or subroutines causes its argument to be passed by value (rather than by the default 
FORTRAN convention of passed by reference). For example, with that extension, you can 
call the routine CPXprimopt() with this FORTRAN statement: 

Pointers

Certain ILOG CPLEX routines return a pointer to memory. In FORTRAN 77, such a pointer 
cannot be dereferenced; however, you can store its value in an appropriate integer type, and 
you can then pass it to other ILOG CPLEX routines. On most operating systems, the default 
integer type of four bytes is sufficient to hold pointer variables. On some systems, such as 
DEC Alpha, a variable of type INTEGER*8 may be needed. Consult your system 

status = CPXprimopt (%val(env), %val(lp))



M A N A G I N G  P A R A M E T E R S  F R O M  T H E  C A L L A B L E  L I B R A R Y

70 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

documentation to determine the appropriate integer type to hold variables that are C 
pointers.

Strings

When you pass strings to routines of the Callable Library, they expect C strings; that is, 
strings terminated by an ASCII NULL character, denoted \0 in C. Consequently, when you 
pass a FORTRAN string, you must add a terminating NULL character; you do so by means of 
the FORTRAN intrinsic function CHAR(0).

C++ Interface

The ILOG CPLEX header file, cplex.h, includes the extern C statements necessary for 
use with C++. You include it directly in C++ source. The standard distribution of 
ILOG CPLEX includes examples of wrapper classes for C++ applications. The wrapper 
classes do not implement all Callable Library routines, but they are easy to extend for any 
routines you do need.

Managing Parameters from the Callable Library

Some ILOG CPLEX parameters assume values of type double; others assume values of 
type int; others are strings (that is, C-type char*). Consequently, in the Callable Library, 
there are sets of routines—one for int, one for double, one for char*—to access and to 
change parameters that control the ILOG CPLEX environment and guide optimization.

For example, the routine CPXinfointparam() shows you the default, the maximum, and 
the minimum values of a given parameter of type int, whereas the routine 
CPXinfodblparam() shows you the default, the maximum, and the minimum values of a 
given parameter of type double, and the routine CPXinfostrparam() shows you the 
default value of a given string parameter. Those three Callable Library routines observe the 
same conventions: they return 0 from a successful call and a nonzero value in case of error. 

The routines CPXinfointparam() and CPXinfodblparam() expect five arguments:

◆ a pointer to the environment; that is, a pointer of type CPXENVptr returned by 
CPXopenCPLEX();

◆ an indication of the parameter to check; this argument may be a symbolic constant, such 
as CPX_PARAM_CLOCKTYPE, or a reference number, such as 1006; the symbolic 
constants and reference numbers of all ILOG CPLEX parameters are documented in the 
ILOG CPLEX Reference Manual and they are defined in the include file cplex.h.

◆ a pointer to a variable to hold the default value of the parameter;

◆ a pointer to a variable to hold the minimum value of the parameter;

◆ a pointer to a variable to hold the maximum value of the parameter.



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 71

U
sin

g
 th

e C
allab

le 
L

ib
rary

<functionhead>

The routine CPXinfostrparam() differs slightly in that it does not expect pointers to 
variables to hold the minimum and maximum values as those concepts do not apply to a 
string parameter.

To access the current value of a parameter that interests you from the Callable Library, use 
the routine CPXgetintparam() for parameters of type int, CPXgetdblparam() for 
parameters of type double, and CPXgetstrparam() for string parameters. These routines 
also expect arguments to indicate the environment, the parameter you want to check, and a 
pointer to a variable to hold that current value.

No doubt you have noticed in other chapters of this manual that you can set parameters from 
the Callable Library. There are, of course, routines in the Callable Library to set such 
parameters: one sets parameters of type int; another sets parameters of type double; 
another sets string parameters.

◆ CPXsetintparam() accepts arguments to indicate:

● the environment; that is, a pointer of type CPXENVptr returned by 
CPXopenCPLEX();

● the parameter to set; this routine sets parameters of type int;

● the value you want the parameter to assume.

◆ CPXsetdblparam() accepts arguments to indicate:

● the environment; that is, a pointer of type CPXENVptr returned by 
CPXopenCPLEX();

● the parameter to set; this routine sets parameters of type double;

● the value you want the parameter to assume.

◆ CPXsetstrparam() accepts arguments to indicate:

● the environment; that is, a pointer of type CPXENVptr returned by 
CPXopenCPLEX();

● the parameter to set; this routine sets parameters of type char*;

● the value you want the parameter to assume.

The ILOG CPLEX Reference Manual documents the type of each parameter (int, double, 
char*) along with the symbolic constant and reference number representing the parameter.

The routine CPXsetdefaults() resets all parameters (except the name of the log file) to 
their default values, including the ILOG CPLEX callback functions. This routine resets the 
callback functions to NULL. Like other Callable Library routines to manage parameters, this 
one accepts an argument indicating the environment, and it returns 0 for success or a 
nonzero value in case of error.



E X A M P L E :  D I E T A R Y  O P T I M I Z A T I O N

72 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

Example: Dietary Optimization

The optimization problem solved in this example is to compose a diet from a set of foods, so 
that the nutritional requirements are satisfied and the total cost is minimized. Example 
diet.c illustrates:

◆ Creating a Model Row by Row 

◆ Creating a Model Column by Column

◆ Solving the Model with CPXlpopt()

Problem Representation

The problem contains a set of foods, which are the modeling variables; a set of nutritional 
requirements to be satisfied, which are the constraints, and an objective of minimizing the 
total cost of the food. There are two ways to look at this problem:

◆ The problem can be modeled in a row-wise fashion, by entering the variables first and 
then adding the constraints on the variables and the objective function.

◆ The problem can be modeled in a column-wise fashion, by constructing a series of empty 
constraints and then inserting the variables into the constraints and the objective 
function.

The diet problem is equally suited for both kinds of modeling. In fact you can even mix both 
approaches in the same program: If a new food product, you can create a new variable for it, 
regardless of how the model was originally built. Similarly, is a new nutrient is discovered, 
you can add a new constraint for it.

Creating a Model Row by Row

You walk into the store and compile a list of foods that are offered. For each food, you store 
the price per unit and the amount they have in stock. For some foods that you particularly 
like, you also set a minimum amount you would like to use in your diet. Then for each of the 
foods you create a modeling variable to represent the quantity to be purchased for your diet. 

Now you get a medical book and look up which nutrients are known and relevant for you. 
For each nutrient, you note the minimum and maximum amount that should be found in your 
diet. Also, you go through the list of foods and determine how much a food item will 
contribute for each nutrient. This gives you one constraint per nutrient, which can naturally 
be represented as a range constraint 

nutrmin[i] <= sum_j (nutrper[i][j] * buy[j]) <= nutrmax[i] 

where i represents the number of the nutrient under consideration, nutrmin[i] and 
nutrmax[i] the minimum and maximum amount of nutrient i and nutrper[i][j] the 
amount of nutrient i in food j. Finally, you specify your objective function 



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 73

U
sin

g
 th

e C
allab

le 
L

ib
rary

<functionhead>

sense = sum_j (cost[j] * buy[j])

This way to create the model is shown in function populatebyrow in example diet.c.

Creating a Model Column by Column

You start with the medical book where you compile the list of nutrients that you want to 
ensure are properly represented in your diet. For each of the nutrients you create an empty 
constraint 

nutrmin[i] <= ... <= nutrmax[i] 

where ... is left to be filled once you walk into your store. Also you setup the objective 
function to minimize the cost. We will refer to constraint i as rng[i] and to the objective as 
cost. 

Now you walk into the store and, for each food, you check its price and nutritional content. 
With this data you create a variable representing the amount you want to buy of the food 
type and install it in the objective function and constraints. That is you create the following 
column: 

cost(foodCost[j]) "+" "sum_i" (rng[i](nutrper[i][j])) 

where the notation "+" and "sum" indicates that you “add” the new variable j to the 
objective cost and constraints range[i]. The value in parenthesis is the linear coefficient 
that is used for the new variable). We chose this notation for its similarity to the syntax 
actually used in the Callable Library as demonstrated in function populatebycolumn in 
example diet.c. 

Program Description

All definitions needed for a CPLEX Callable Library program are imported by including file 
<ilcplex/cplex.h> at the beginning of the program. After a number of lines that 
establish the calling sequences for the routines that to be used, the program named main 
begins by checking for correct command line arguments, printing a usage reminder and 
exiting in case of errors.

Next, the data defining the problem are read from a file specified in the command line at run 
time. The details of this are handled in the routine readdata. In this file, cost, lower bound, 
and upper bound are specified for each type of food; then minimum and maximum levels of 
several nutrients needed in the diet are specified; finally, a table giving levels of each nutrient 
found in each unit of food is given. The result of a successful call to this routine is two 
variables &nfoods and  &nnutr containing the number of foods and nutrients in the data 
file, arrays &cost, &lb, &ub containing the information on the foods, arrays &nutrmin, 
&nutrmax containing nutritional requirements for the proposed diet, and array &nutrper 
containing the nutritional value of the foods.



E X A M P L E :  D I E T A R Y  O P T I M I Z A T I O N

74 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

Preparations to build and solve the model with CPLEX begin with the call to 
CPXopenCPLEX(). This establishes a CPLEX environment in which to contain the LP 
problem, and succeeds only if a valid CPLEX license is found.

After some calls to set parameters, one to control the output that comes to the user’s 
terminal, and the other to turn on data checking for debugging purposes, a problem object is 
initialized through the call to CPXcreateprob(). This call returns a pointer to an empty 
problem object, which now can be populated with data. 

Two alternative approaches to filling this problem object are implemented in this program, 
populatebyrow() and populatebycolumn(), and which one is executed is determined 
at run time by a calling parameter on the command line. The routine populatebyrow() 
operates by first defining all the columns through a call to CPXnewcols() and then 
repeatedly calls CPXaddrows() to enter the data of the constraints. The routine 
populatebycolumn() takes the complementary approach of establishing all the rows first 
with a call to CPXnewrows() and then sequentially adds the column data by calls to 
CPXaddcols(). 

Solving the Model with CPXlpopt()

The model is at this point ready to be solved, and this is accomplished through the call to 
CPXlpopt(), which by default uses the dual simplex optimizer.

After this, the program finishes by making a call to CPXsolution() to obtain the values for 
each variable in this optimal solution, printing these values, and writing the problem to a 
disk file (for possible evaluation by the user) via the call to CPXwriteprob(). It then 
terminates after freeing all the arrays that have been allocated along the way.

Complete Program

The complete program, diet.c, appears here or online in the standard distribution.

#include <ilcplex/cplex.h>

/* Bring in the declarations for the string functions */

#include <stdlib.h>
#include <string.h>

/* Include declaration for functions at end of program */

#ifndef  CPX_PROTOTYPE_MIN

static int
   readarray         (FILE *in, int *num_p, double **data_p),
   readdata          (char* file,
                      int *nfoods_p, double **cost_p, double **lb_p, double 
**ub_p, 
                      int *nnutr_p, double **nutrmin_p, double **nutrmax_p,
                      double ***nutrper_p),
   populatebyrow     (CPXENVptr env, CPXLPptr lp,
                      int nfoods, double *cost, double *lb, double *ub, 



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 75

U
sin

g
 th

e C
allab

le 
L

ib
rary

<functionhead>

                      int nnutr, double *nutrmin, double *nutrmax,
                      double **nutrper),
   populatebycolumn  (CPXENVptr env, CPXLPptr lp,
                      int nfoods, double *cost, double *lb, double *ub, 
                      int nnutr, double *nutrmin, double *nutrmax,
                      double **nutrper);

static void
   free_and_null     (char **ptr),
   usage             (char *progname);

#else

static int
   readarray         (),
   readdata          (),
   populatebyrow     (),
   populatebycolumn  ();

static void
   free_and_null     (),
   usage             ();

#endif

#ifndef  CPX_PROTOTYPE_MIN
int
main (int argc, char **argv)
#else
int
main (argc, argv)
int  argc;
char **argv;
#endif
{
   int status = 0;

   int    nfoods;
   int    nnutr;
   double *cost     = NULL;
   double *lb       = NULL;
   double *ub       = NULL;
   double *nutrmin  = NULL;
   double *nutrmax  = NULL;
   double **nutrper = NULL;

   double *x = NULL;
   double objval;
   int    solstat;

   /* Declare and allocate space for the variables and arrays where we
      will store the optimization results including the status, objective
      value, variable values, dual values, row slacks and variable
      reduced costs. */

   CPXENVptr     env = NULL;
   CPXLPptr      lp = NULL;



E X A M P L E :  D I E T A R Y  O P T I M I Z A T I O N

76 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

   int           i, j;

   /* Check the command line arguments */

   if (( argc != 3 )                        ||
       ( argv[1][0] != ‘-’ )                ||
       ( strchr (“rc”, argv[1][1]) == NULL )  ) {
      usage (argv[0]);
      goto TERMINATE;
   }

   status = readdata(argv[2], &nfoods, &cost, &lb, &ub,
                     &nnutr, &nutrmin, &nutrmax, &nutrper);
   if ( status ) goto TERMINATE;

   /* Initialize the CPLEX environment */

   env = CPXopenCPLEX (&status);

   /* If an error occurs, the status value indicates the reason for
      failure.  A call to CPXgeterrorstring will produce the text of
      the error message.  Note that CPXopenCPLEX produces no output,
      so the only way to see the cause of the error is to use
      CPXgeterrorstring.  For other CPLEX routines, the errors will
      be seen if the CPX_PARAM_SCRIND indicator is set to CPX_ON.  */

   if ( env == NULL ) {
      char  errmsg[1024];
      fprintf (stderr, “Could not open CPLEX environment.\n”);
      CPXgeterrorstring (env, status, errmsg);
      fprintf (stderr, “%s”, errmsg);
      goto TERMINATE;
   }

   /* Turn on output to the screen */

   status = CPXsetintparam (env, CPX_PARAM_SCRIND, CPX_ON);
   if ( status ) {
      fprintf (stderr, 
               “Failure to turn on screen indicator, error %d.\n”, status);
      goto TERMINATE;
   }

   /* Turn on data checking */

   status = CPXsetintparam (env, CPX_PARAM_DATACHECK, CPX_ON);
   if ( status ) {
      fprintf (stderr, 
               “Failure to turn on data checking, error %d.\n”, status);
      goto TERMINATE;
   }

   /* Create the problem. */

   lp = CPXcreateprob (env, &status, “diet”);

   /* A returned pointer of NULL may mean that not enough memory



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 77

U
sin

g
 th

e C
allab

le 
L

ib
rary

<functionhead>

      was available or there was some other problem.  In the case of 
      failure, an error message will have been written to the error 
      channel from inside CPLEX.  In this example, the setting of
      the parameter CPX_PARAM_SCRIND causes the error message to
      appear on stdout.  */

   if ( lp == NULL ) {
      fprintf (stderr, “Failed to create LP.\n”);
      goto TERMINATE;
   }

   /* Now populate the problem with the data.  For building large
      problems, consider setting the row, column and nonzero growth
      parameters before performing this task. */

   switch (argv[1][1]) {
      case ‘r’:
         status = populatebyrow (env, lp, nfoods, cost, lb, ub, 
                                 nnutr, nutrmin, nutrmax, nutrper);
         break;
      case ‘c’:
         status = populatebycolumn (env, lp, nfoods, cost, lb, ub, 
                                    nnutr, nutrmin, nutrmax, nutrper);
         break;
   }

   if ( status ) {
      fprintf (stderr, “Failed to populate problem.\n”);
      goto TERMINATE;
   }

   /* Optimize the problem and obtain solution. */

   status = CPXlpopt (env, lp);
   if ( status ) {
      fprintf (stderr, “Failed to optimize LP.\n”);
      goto TERMINATE;
   }

   x = (double *) malloc (nfoods * sizeof(double));
   if ( x == NULL ) {
      status = CPXERR_NO_MEMORY;
      fprintf (stderr, “Could not allocate memory for solution.\n”);
      goto TERMINATE;
   }

   status = CPXsolution (env, lp, &solstat, &objval, x, NULL, NULL, NULL);
   if ( status ) {
      fprintf (stderr, “Failed to obtain solution.\n”);
      goto TERMINATE;
   }

   /* Write the output to the screen. */

   printf (“\nSolution status = %d\n”, solstat);
   printf (“Solution value  = %f\n\n”, objval);

   for (j = 0; j < nfoods; j++)



E X A M P L E :  D I E T A R Y  O P T I M I Z A T I O N

78 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

      printf (“Food %d:  Buy = %10f\n”, j, x[j]);

   /* Finally, write a copy of the problem to a file. */

   status = CPXwriteprob (env, lp, “diet.lp”, NULL);
   if ( status ) {
      fprintf (stderr, “Failed to write LP to disk.\n”);
      goto TERMINATE;
   }
   
TERMINATE:

   /* Free up the problem as allocated by CPXcreateprob, if necessary */

   if ( lp != NULL ) {
      status = CPXfreeprob (env, &lp);
      if ( status ) {
         fprintf (stderr, “CPXfreeprob failed, error code %d.\n”, status);
      }
   }

   /* Free up the CPLEX environment, if necessary */

   if ( env != NULL ) {
      status = CPXcloseCPLEX (&env);

      /* Note that CPXcloseCPLEX produces no output,
         so the only way to see the cause of the error is to use
         CPXgeterrorstring.  For other CPLEX routines, the errors will
         be seen if the CPX_PARAM_SCRIND indicator is set to CPX_ON. */

      if ( status > 0 ) {
         char  errmsg[1024];
         fprintf (stderr, “Could not close CPLEX environment.\n”);
         CPXgeterrorstring (env, status, errmsg);
         fprintf (stderr, “%s”, errmsg);
      }
   }

   if ( nutrper != NULL ) {
      for (i = 0; i < nnutr; ++i) {
         free_and_null ((char **) &(nutrper[i]));
      }
   }
   free_and_null ((char **) &nutrper);
   free_and_null ((char **) &cost);
   free_and_null ((char **) &cost);
   free_and_null ((char **) &lb);
   free_and_null ((char **) &ub);
   free_and_null ((char **) &nutrmin);
   free_and_null ((char **) &nutrmax);
   free_and_null ((char **) &x);

   return (status);

}  /* END main */



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 79

U
sin

g
 th

e C
allab

le 
L

ib
rary

<functionhead>

#ifndef  CPX_PROTOTYPE_MIN
static int
populatebyrow (CPXENVptr env, CPXLPptr lp,
               int nfoods, double *cost, double *lb, double *ub, 
               int nnutr, double *nutrmin, double *nutrmax,
               double **nutrper)
#else
static int
populatebyrow (env, lp)
CPXENVptr  env;
CPXLPptr   lp;
int        nfoods;
double     *cost;
double     *lb;
double     *ub;
int        nnutr;
double     *nutrmin;
double     *nutrmax;
double     **nutrper;
#endif
{
   int status = 0;

   int zero = 0;
   int *ind = NULL;
   int i, j;

   ind = (int*) malloc(nfoods * sizeof(int));
   if ( ind == NULL ) {
      status = CPXERR_NO_MEMORY;
      goto TERMINATE;
   }
   for (j = 0; j < nfoods; j++) ind[j] = j;

   status = CPXnewcols (env, lp, nfoods, cost, lb, ub, NULL, NULL);
   if ( status )  goto TERMINATE;

   for (i = 0; i < nnutr; i++) {
      double rng  = nutrmax[i] - nutrmin[i];

      status = CPXaddrows (env, lp, 0, 1, nfoods, nutrmin+i, “R”,
                           &zero, ind, nutrper[i], NULL, NULL);
      if ( status )  goto TERMINATE;

      status = CPXchgrngval (env, lp, 1, &i, &rng);
      if ( status )  goto TERMINATE;
   }

TERMINATE:

   free_and_null ((char **)&ind);

   return (status);

}  /* END populatebyrow */



E X A M P L E :  D I E T A R Y  O P T I M I Z A T I O N

80 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

/* To populate by column, we first create the rows, and then add the
   columns.  */

#ifndef  CPX_PROTOTYPE_MIN
static int
populatebycolumn (CPXENVptr env, CPXLPptr lp,
                  int nfoods, double *cost, double *lb, double *ub, 
                  int nnutr, double *nutrmin, double *nutrmax,
                  double **nutrper)
#else
static int
populatebycolumn (env, lp)
CPXENVptr  env;
CPXLPptr   lp;
int        nfoods;
double     *cost;
double     *lb;
double     *ub;
int        nnutr;
double     *nutrmin;
double     *nutrmax;
double     **nutrper;
#endif
{
   int status = 0;

   int i, j;

   int    zero    = 0;
   int    *ind    = NULL;
   double *val    = NULL;
   char   *sense  = NULL;
   double *rngval = NULL;

   sense = (char*)malloc(nnutr * sizeof(char));
   if ( sense == NULL ) {
      status = CPXERR_NO_MEMORY;
      goto TERMINATE;
   }
   for (i = 0; i < nnutr; i++) sense[i] = ‘R’;

   val = (double*)malloc(nnutr * sizeof(double));
   if ( val == NULL ) {
      status = CPXERR_NO_MEMORY;
      goto TERMINATE;
   }

   rngval = (double*)malloc(nnutr * sizeof(double));
   if ( rngval == NULL ) {
      status = CPXERR_NO_MEMORY;
      goto TERMINATE;
   }
   for (i = 0; i < nnutr; i++) rngval[i] = nutrmax[i] - nutrmin[i];

   ind = (int*) malloc(nfoods * sizeof(int));
   if ( ind == NULL ) {
      status = CPXERR_NO_MEMORY;
      goto TERMINATE;



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 81

U
sin

g
 th

e C
allab

le 
L

ib
rary

<functionhead>

   }
   for (i = 0; i < nnutr; i++) ind[i] = i;

   status = CPXnewrows (env, lp, nnutr, nutrmin, sense, rngval, NULL);
   if ( status )  goto TERMINATE;

   for (j = 0; j < nfoods; ++j) {
      for (i = 0; i < nnutr; i++) val[i] = nutrper[i][j];

      status = CPXaddcols (env, lp, 1, nnutr, cost+j, &zero,
                           ind, val, lb+j, ub+j, NULL);
      if ( status )  goto TERMINATE;
   }

TERMINATE:

   free_and_null ((char **)&sense);
   free_and_null ((char **)&rngval);
   free_and_null ((char **)&ind);
   free_and_null ((char **)&val);

   return (status);

}  /* END populatebycolumn */

/* This simple routine frees up the pointer *ptr, and sets *ptr to NULL */

#ifndef  CPX_PROTOTYPE_MIN
static void
free_and_null (char **ptr)
#else
static void
free_and_null (ptr)
char  **ptr;
#endif
{
   if ( *ptr != NULL ) {
      free (*ptr);
      *ptr = NULL;
   }
} /* END free_and_null */  

#ifndef  CPX_PROTOTYPE_MIN
static void
usage (char *progname)
#else
static void
usage (progname)
char *progname;
#endif
{
   fprintf (stderr,”Usage: %s -X <datafile>\n”, progname);
   fprintf (stderr,”   where X is one of the following options: \n”);
   fprintf (stderr,”      r          generate problem by row\n”);
   fprintf (stderr,”      c          generate problem by column\n”);



E X A M P L E :  D I E T A R Y  O P T I M I Z A T I O N

82 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

   fprintf (stderr,” Exiting...\n”);
} /* END usage */

#ifndef  CPX_PROTOTYPE_MIN
static int
readarray (FILE *in, int *num_p, double **data_p)
#else
static int
readarray()
FILE   *in;
int    *num_p;
double **data_p;
#endif
{
   int  status = 0;
   int  max, num;
   char ch;

   num = 0;
   max = 10;

   *data_p = (double*)malloc(max * sizeof(double));
   if ( *data_p == NULL ) {
      status = CPXERR_NO_MEMORY;
      goto TERMINATE;
   }

   for (;;) {
      fscanf (in, “%c”, &ch);
      if ( ch == ‘\t’ ||
           ch == ‘\r’ ||
           ch == ‘ ‘  ||
           ch == ‘\n’   ) continue;
      if ( ch == ‘[‘ ) break;
      status = -1;
      goto TERMINATE;
   }

   for(;;) {
      int read;
      read = fscanf (in, “%lg”, (*data_p)+num);
      if ( read == 0 ) {
         status = -1;
         goto TERMINATE;
      }
      num++;
      if ( num >= max ) {
         max *= 2;
         *data_p = (double*)realloc(*data_p, max * sizeof(double));
         if ( *data_p == NULL ) {
            status = CPXERR_NO_MEMORY;
            goto TERMINATE;
         }
      }
      do {
         fscanf (in, “%c”, &ch);
      } while (ch == ‘ ‘ || ch == ‘\n’ || ch == ‘\t’  || ch == ‘\r’);



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 83

U
sin

g
 th

e C
allab

le 
L

ib
rary

<functionhead>

      if ( ch == ‘]’ ) break;
      else if ( ch != ‘,’ ) {
         status = -1;
         goto TERMINATE;
      }
   }

   *num_p = num;

TERMINATE:

   return (status);

} /* END readarray */

#ifndef  CPX_PROTOTYPE_MIN
static int
readdata (char* file,
          int *nfoods_p, double **cost_p, double **lb_p, double **ub_p, 
          int *nnutr_p, double **nutrmin_p, double **nutrmax_p,
          double ***nutrper_p)
#else
static int
readdata ()
char   *file;
int    *nfoods_p;
double **cost_p;
double **lb_p;
double **ub_p;
int    *nnutr_p;
double **nutrmin_p;
double **nutrmax_p;
double ***nutrper_p;
#endif
{
   int status = 0;

   int ncost, nlb, nub;
   int nmin, nmax;

   int  i, n;
   char ch;
   FILE *in = NULL;

   in = fopen(file, “r”);
   if ( in == NULL ) {
      status = -1;
      goto TERMINATE;
   }

   if ( (status = readarray(in, &ncost, cost_p)) ) goto TERMINATE;
   if ( (status = readarray(in, &nlb,   lb_p))   ) goto TERMINATE;
   if ( (status = readarray(in, &nub,   ub_p))   ) goto TERMINATE;
   if ( ncost != nlb  ||  ncost != nub ) {
      status = -1;
      goto TERMINATE;
   }



E X A M P L E :  D I E T A R Y  O P T I M I Z A T I O N

84 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

   *nfoods_p = ncost;

   if ( (status = readarray(in, &nmin, nutrmin_p)) ) goto TERMINATE;

   if ( (status = readarray(in, &nmax, nutrmax_p)) ) goto TERMINATE;

   if ( nmax != nmin ) {

      status = -1;

      goto TERMINATE;

   }

   *nnutr_p = nmin;

   *nutrper_p = (double**)malloc(nmin * sizeof(double*));

   if ( *nutrper_p == NULL ) {

      status = CPXERR_NO_MEMORY;

      goto TERMINATE;

   }

   for (;;) {

      fscanf (in, “%c”, &ch);

      if ( ch == ‘\t’ ||

           ch == ‘\r’ ||

           ch == ‘ ‘  ||

           ch == ‘\n’   ) continue;

      if ( ch == ‘[‘ ) break;

      status = -1;

      goto TERMINATE;

   }

   for ( i = 0; i < nmin; i++ ) {

      if ( (status = readarray(in, &n, (*nutrper_p)+i)) ) goto TERMINATE;

      if ( n != ncost ) {

         status = -1;

         goto TERMINATE;

      }

      fscanf (in, “%c”, &ch);

      if ( i < nmin-1  &&  ch != ‘,’ ) {

         status = -1;

         goto TERMINATE;

      }

   }

   if ( ch != ‘]’ ) {

      status = -1;

      goto TERMINATE;

   }

TERMINATE:

   return (status);

} /* END readdata */



C H A P T E R

I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 85

F
u

rth
er P

ro
g

ram
m

in
g

 
C

o
n

sid
eratio

n
s

3

Further Programming Considerations

This chapter offers suggestions for improving application development and debugging 
completed applications. It includes sections on:

◆ Tips for Successful Application Development

◆ Using the Interactive Optimizer for Debugging

◆ Eliminating Common Programming Errors

Tips for Successful Application Development

In the previous chapters, we indicated briefly the minimal steps to use the Component 
Libraries in an application. This section offers guidelines for successfully developing an 
application that exploits the ILOG CPLEX Component Libraries according to those steps. 
These guidelines aim to help you minimize development time and maximize application 
performance.

Prototype the Model

We strongly recommend that you begin by creating a small-scale version of the model for 
your problem. (There are modeling languages, such as ILOG OPL, that may be helpful to 



T I P S  F O R  S U C C E S S F U L  A P P L I C A T I O N  D E V E L O P M E N T

86 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

you for this task.) This prototype model can serve as a test-bed for your application and a 
point of reference during development.

Identify Routines to Use

If you decompose your application into manageable components, you can more easily 
identify the tools you must complete the application. Part of this decomposition consists of 
determining which methods or routines from the ILOG CPLEX Component Libraries your 
application will call. Such a decomposition will assist you in testing for completeness; it 
may also help you isolate troublesome areas of the application during development; and it 
will aid you in measuring how much work is already done and how much remains.

Test Interactively

The Interactive Optimizer in ILOG CPLEX (introduced in the manual ILOG CPLEX 
Getting Started) offers a reliable means to test the ILOG CPLEX component of your 
application interactively, particularly if you have prototyped your problem model. 
Interactive testing through the Interactive Optimizer can also help you identify precisely 
which methods or routines from the Component Libraries your application needs. 
Additionally, interactive testing early in development may also uncover any flaws in 
procedural logic before they entail costly coding efforts.

Most importantly, optimization commands in the Interactive Optimizer perform exactly like 
optimization routines in the Component Libraries. In other words, the command primopt 
works just the same way as the method 
IloCplex::setRootAlgorithm(IloCplex::Primal) and the routine 
CPXprimopt(); likewise, the command tranopt works like the method 
IloCplex::setRootAlgorithm(IloCplex::Dual) and the routine CPXdualopt(); 
netopt works like IloCplex::setRootAlgorithm(IloCplex::Barrier) and  
CPXhybnetopt(), and so forth. Consequently, any discrepancy between the Interactive 
Optimizer and the Component Libraries routines with respect to the solutions found, 
memory used, or time taken indicates a problem in the logic of the application calling the 
routines.

Assemble Data Efficiently

As we indicated in previous chapters, ILOG CPLEX offers several ways of putting data into 
your problem or (more formally) populating the problem object. You must decide which 
approach is best adapted to your application, based on your knowledge of the problem data 
and application specifications. These considerations may enter into your decision:

◆ If your Callable Library application builds the arrays of the problem in memory and then 
calls CPXcopylp(), it avoids time-consuming reads from disk files.



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 87

F
u

rth
er P

ro
g

ram
m

in
g

 
C

o
n

sid
eratio

n
s

<functionhead>

◆ In the Callable Library, using the routines CPXnewcols(), CPXnewrows(), 
CPXaddcols(), CPXaddrows(), and CPXchgcoeflist() may help you build 
modular code that will be more easily modified and maintained than code that assembles 
all problem data in one step.

◆ An application that reads an MPS or LP file may reduce the coding effort but, on the 
other hand, may increase runtime and disk space requirements.

Keep in mind that if an application using the ILOG CPLEX Component Libraries reads 
an MPS or LP file, then some other program must generate that formatted file. The data 
structures used to generate the file can almost certainly be used directly to build the 
problem-populating arrays for CPXcopylp() or CPXaddrows()—a choice resulting in 
less coding and a faster, more efficient application. 

In short, formatted files are useful for prototyping your application. For production 
purposes, assembly of data arrays in memory may be a better enhancement.

Test Data

CPLEX provides the CPX_PARAM_DATACHECK parameter to check the correctness of data 
used in the CPXcopy...(), CPXread...(), and CPXchg...() functions. When this 
parameter is set, CPLEX will perform extra checks to determine that array arguments 
contain valid values, such as indices within range, no duplicate entries, valid row sense 
indicators and valid numerical values. These checks can be very useful during development, 
but are probably too costly for deployed applications. The checks are similar to but not as 
extensive as those performed by the CPXcheck...() functions. When the parameter is not 
set (the default), only simple error checks are performed, for example, checking for the 
existence of the environment.

Choose an Optimizer

After you have instantiated and populated a problem object, you solve it by calling one of 
the optimizers available in the ILOG CPLEX Component Libraries. Your choice of 
optimizer depends on the type of problem:

◆ If the problem is a linear program, use the linear optimizer.

◆ If the linear program includes a large embedded network, consider using the network 
optimizer.

◆ If the problem includes integer variables (MIP), use the branch & cut algorithm 
(implemented in the separately licensed ILOG CPLEX Mixed Integer Optimizer).

◆ If the problem is a convex quadratic program (QP), use the primal-dual barrier method 
(implemented in the separately licensed ILOG CPLEX Barrier Optimizer).



T I P S  F O R  S U C C E S S F U L  A P P L I C A T I O N  D E V E L O P M E N T

88 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

In ILOG CPLEX, there are many possible parameter settings for each optimizer. Generally, 
the default parameter settings are best for linear programming problems, but Chapter 4, 
Solving Linear Programming Problems, offers more detail about improving performance 
with respect to LP problems. Integer programming problems are more sensitive to specific 
parameter settings, so you may need to experiment with them, as suggested in Chapter 5, 
Solving Mixed Integer Programming Problems. 

In either case, the Interactive Optimizer in ILOG CPLEX lets you try different parameter 
settings and different optimizers to determine the best optimization procedure for your 
particular application. From what you learn by experimenting with commands in the 
Interactive Optimizer, you can more readily choose which method or routine from the 
Component Libraries to call in your application.

Program with a View toward Maintenance and Modifications

Good programming practices save development time and make an application easier to 
understand and modify. Tips for Successful Application Development on page 85 describes 
our programming conventions in developing ILOG CPLEX. In addition, we recommend the 
following programming practices.

Comment Your Code

Comments, written in mixed upper- and lower-case, will prove useful to you at a later date 
when you stare at code written months ago and try to figure out what it does. They will also 
prove useful to our staff, should you need to send us your application for technical support.

Write Readable Code

Follow conventional formatting practices so that your code will be easier to read, both for 
you and for others. Use fewer than 80 characters per line. Put each statement on a separate 
line. Use white space (for example, space, blank lines, tabs) to distinguish logical blocks of 
code. Display compound loops with clearly indented bodies. Display if statements like 
combs; that is, we recommend that you align if and else in the same column and then 
indent the corresponding block. Likewise, we recommend that you indent the body of 
compound statements, loops, and other structures distinctly from their corresponding 
headers and closing brackets. Use uniform indentation (for example, three to five spaces). 
Put at least one space before and after each relational operator, as well as before and after 
each binary plus (+) and minus (-). Use space as you do in normal English.

Avoid Side-Effects

We recommend that you minimize side-effects by avoiding expressions that produce internal 
effects. In C, for example, try to avoid expressions of this form: 

where the expression assigns the values of d and a.

a = c + (d =  e*f);  /* A BAD IDEA */



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 89

F
u

rth
er P

ro
g

ram
m

in
g

 
C

o
n

sid
eratio

n
s

<functionhead>

Don’t Change Argument Values

A user-defined function should not change the values of its arguments. Do not use an 
argument to a function on the left-hand side of an assignment statement in that function. 
Since C and C++ pass arguments by value, treat the arguments strictly as values; do not 
change them inside a function.

Declare the Type of Return Values

Always declare the return type of functions explicitly. Though C has a “historical tradition” 
of making the default return type of all functions int, we recommend that you explicitly 
declare the return type of functions that return a value, and use void for procedures that do 
not return a value.

Manage the Flow of Your Code

Use only one return statement in any function. Limit your use of break statements to the 
inside of switch statements. In C, do not use continue statements and limit your use of 
goto statements to exit conditions that branch to the end of a function. Handle error 
conditions in C++ with a try/catch block and in C with a goto statement that transfers 
control to the end of the function so that your functions have only one exit point. 

In other words, control the flow of your functions so that each block has one entry point and 
one exit point. This “one way in, one way out” rule makes code easier to read and debug.

Localize Variables

Avoid global variables at all costs. Code that exploits global variables invariably produces 
side-effects which in turn make the code harder to debug. Global variables also set up 
peculiar reactions that make it difficult to include your code successfully within other 
applications. Also global variables preclude multithreading unless you invoke locking 
techniques. As an alternative to global variables, pass arguments down from one function to 
another.

Name Your Constants

Scalars—both numbers and characters—that remain constant throughout your application 
should be named. For example, if your application includes a value such as 1000, create a 
constant with the #define statement to name it. If the value ever changes in the future, its 
occurrences will be easy to find and modify as a named constant.

Choose Clarity First, Efficiency Later

Code first for clarity. Get your code working accurately first so that you maintain a good 
understanding of what it is doing. Then, once it works correctly, look for opportunities to 
improve performance.



U S I N G  T H E  I N T E R A C T I V E  O P T I M I Z E R  F O R  D E B U G G I N G

90 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

Debug Effectively

Using Diagnostic Routines for Debugging on page 66, contains tips and guidelines for 
debugging an application that uses the ILOG CPLEX Callable Library. In that context, we 
recommend using a symbolic debugger as well as other widely available development tools 
to produce error-free code.

Test Correctness, Test Performance

Even a program that has been carefully debugged so that it runs correctly may still contain 
errors or “features” that inhibit its performance with respect to execution speed, memory 
use, and so forth. Just as the ILOG CPLEX Interactive Optimizer can aid in your tests for 
correctness, it can also help you improve performance. It uses the same routines as the 
Component Libraries; consequently, it requires the same amount of time to solve a problem 
created by a callable-library application. We recommend that you use CPXwriteprob(), 
specifying a file type of SAV, to create a binary representation of the problem object of your 
application. Then read that representation into the Interactive Optimizer, and solve it there. If 
your application sets parameters, use the same settings in the Interactive Optimizer. If you 
find that your application takes significantly longer to solve the problem than does the 
Interactive Optimizer, then you can probably improve the performance of your application. 
In such a case, look closely at issues like memory fragmentation, unnecessary compiler 
options, inappropriate linker options, and programming practices that slow the application 
without causing incorrect results (such as operations within a loop that should be outside the 
loop).

Using the Interactive Optimizer for Debugging

The ILOG CPLEX Interactive Optimizer distributed with the Component Libraries offers a 
way to see what is going on within the ILOG CPLEX-part of your application when you 
observe peculiar behavior in your optimization application. The commands of the 
Interactive Optimizer correspond exactly to routines of the Component Libraries, so 
anomalies due to the ILOG CPLEX-part of your application will manifest themselves in the 
Interactive Optimizer as well, and contrariwise, if the Interactive Optimizer behaves 
appropriately on your problem, you can be reasonably sure that routines you call in your 
application from the Component Libraries work in the same appropriate way.

The first step in using the Interactive Optimizer for debugging is to write a version of the 
problem from the application into a formatted file that can then be loaded into the Interactive 
Optimizer. To do so, insert a call to the method IloCplex::exportModel() or to the 
routine CPXwriteprob() into your application. Use that call to create a file, whether an LP, 
SAV, or MPS formatted problem file. (Understanding File Formats on page 264 briefly 



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 91

F
u

rth
er P

ro
g

ram
m

in
g

 
C

o
n

sid
eratio

n
s

<functionhead>

describes these file formats.) Then read that file into the Interactive Optimizer and optimize 
the problem there.

Note that MPS, LP and SAV files have differences that influence how to interpret the results 
of the Interactive Optimizer for debugging. SAV files contain the exact binary representation 
of the problem as it appears in your program, while MPS and LP files are text files 
containing possibly less precision for numeric data. And, unless every variable appears on 
the objective function, CPLEX will probably order the variables differently when it reads the 
problem from an LP file than from an MPS or SAV file. With this in mind, SAV files are the 
most useful for debugging using the Interactive Optimizer, followed by MPS files, then 
finally LP files, in terms of the change in behavior you might see by use of explicit files. On 
the other hand, LP files are often quite helpful when you want to examine the problem, more 
so than as input for the Interactive Optimizer. Furthermore, try solving both the SAV and 
MPS files of the same problem using the Interactive Optimizer. Different results may 
provide additional insight into the source of the difficulty. In particular, use the following 
guidelines with respect to reproducing your program’s behavior in the Interactive Optimizer.

1. If you can reproduce the behavior with a SAV file, but not with an MPS file, this suggests 
corruption or errors in the problem data arrays. Use the diagnostic routines in the source 
file check.c to track down the problem.

2. If you can reproduce the behavior in neither the SAV file nor the MPS file, the most 
likely cause of the problem is that your program has some sort of memory error. Memory 
debugging tools such as Purify or Insure will usually find such problems quickly.

3. When solving a problem in MPS or LP format, if the Interactive Optimizer issues a 
message about a segmentation fault or similar ungraceful interruption and exits, contact 
CPLEX technical support to arrange for transferring the problem file. The Interactive 
Optimizer should never exit with a system interrupt when solving a problem from a text 
file, even if the program that created the file has errors. Such cases are extremely rare.

If the peculiar behavior that you observed in your application persists in the Interactive 
Optimizer, then you must examine the LP or MPS or SAV problem file to determine whether 
the problem file actually defines the problem you intended. If it does not define the problem 
you intended to optimize, then the problem is being passed incorrectly from your application 
to ILOG CPLEX, so you need to look at that part of your application.

Make sure the problem statistics and matrix coefficients indicated by the Interactive 
Optimizer match the ones for the intended model in your application. Use the Interactive 
Optimizer command display problem stats to verify that the size of the problem, the 
sense of the constraints, and the types of variables match your expectations. For example, if 
your model is supposed to contain only general integer variables, but the Interactive 
Optimizer indicates the presence of binary variables, check the type variable passed to the 
constructor of the variable (Concert Technology Library) or check the specification of the 
ctype array and the routine CPXcopyctype() (Callable Library). You can also examine 



E L I M I N A T I N G  C O M M O N  P R O G R A M M I N G  E R R O R S

92 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

the matrix, objective, and right-hand side coefficients in an LP or MPS file to see if they are 
consistent with the values you expect in the model.

Eliminating Common Programming Errors

We hope this section serves as a checklist to help you eliminate common pitfalls from your 
application.

Check Your Include Files

Make sure that the header file ilocplex.h (Concert Technology Library) or  cplex.h 
(Callable Library) is included at the top of your application source file. If that file is not 
included, then compile-time, linking, or runtime errors may occur.

Clean House and Try Again

Remove all object files, recompile, and relink your application.

Read Your Messages

ILOG CPLEX detects many different kinds of errors and generates exception, warnings, or 
error messages about them. 

To query exceptions in the Concert Technology Library, use the methods:

IloInt IloCplex::Exception::getStatus() const; 
const char* IloException::getMessage() const; 

To view warnings and error messages in the Callable Library, you must direct them either to 
your screen or to a log file.

◆ To direct all messages to your screen, use the routine CPXsetintparam() to set the 
parameter CPX_PARAM_SCRIND.

◆ To direct all messages to a log file, use the routine CPXsetlogfile().

Check Return Values

Most methods and routines of the Component Libraries return a value that indicates whether 
the routine failed, where it failed, and why it failed. This return value can help you isolate 
the point in your application where an error occurs.

If a return value indicates failure, always check whether sufficient memory is available.



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 93

F
u

rth
er P

ro
g

ram
m

in
g

 
C

o
n

sid
eratio

n
s

<functionhead>

Beware of Numbering Conventions

If you delete a portion of a problem, ILOG CPLEX changes not only the dimensions but 
also the indices of the problem. If your application continues to use the former dimensions 
and indices, errors will occur. Therefore, in parts of your application that delete portions of 
the problem, look carefully at how dimensions and indices are represented.

Make Local Variables Temporarily Global

If you are having difficulty tracking down the source of an anomaly in the heap, try making 
certain local variables temporarily global. This debugging trick may prove useful after your 
application reads in a problem file or modifies a problem object. If application behavior 
changes when you change a local variable to global, then you may get from it a better idea of 
the source of the anomaly.

Solve the Problem You Intended

Your application may inadvertently alter the problem and thus produce unexpected results. 
To check whether your application is solving the problem you intended, use the Interactive 
Optimizer, as we suggest on page 90, and the diagnostic routines, as described on page 66. 

You should not ignore any ILOG CPLEX warning message in this situation either, so read 
your messages, as we suggest on page 92.

If you are working in the Interactive Optimizer, we also suggest that you use the command 
display problem stats to check the problem dimensions.

Special Considerations for Fortran

Check row and column indices. Fortran conventionally numbers from one (1), whereas C 
and C++ number from zero (0). This difference in numbering conventions can lead to 
unexpected results with regard to row and column indices when your application modifies a 
problem or exercises query routines.

We strongly recommend that you use the Fortran declaration IMPLICIT NONE to help you 
detect any unintended type conversions, as such inadvertent conversions frequently lead to 
strange application behavior.

Tell Us

Finally, if your problem remains unsolved by ILOG CPLEX, or if you believe you have 
discovered a bug in ILOG CPLEX, we would appreciate hearing from you about it. 



T E L L  U S

94 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L



C H A P T E R

I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 95

S
o

lvin
g

 L
P

 P
ro

b
lem

s

4

Solving Linear Programming Problems

This chapter tells you more about solving linear programs with ILOG CPLEX using the LP 
optimizers. It contains sections on:

◆ Choosing an Optimizer for Your LP Problem

◆ Tuning LP Performance

◆ Diagnosing Performance Problems

◆ Diagnosing LP Infeasibility

◆ Example: Using a Starting Basis in an LP Problem

◆ Solving LP Problems with the Barrier Optimizer

◆ Interpreting the Barrier Log File

◆ Understanding Solution Quality from the Barrier LP Optimizer

◆ Overcoming Numerical Difficulties

◆ Diagnosing Barrier Optimizer Infeasibility



C H O O S I N G  A N  O P T I M I Z E R  F O R  Y O U R  L P  P R O B L E M

96 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

Choosing an Optimizer for Your LP Problem

As we explain in Using the Callable Library in an Application on page 57, to exploit 
ILOG CPLEX in your own application, you must first create a ILOG CPLEX environment, 
instantiate a problem object, and populate the problem object with data. As your next step, 
you call a ILOG CPLEX optimizer. ILOG CPLEX offers several different optimizers for 
linear programming problems. All of these optimizers are available to you in three forms, as 
you see in Table 4.1: as commands for you to issue in the Interactive Optimizer, as 
parameters to select in the Concert Technology Library, and as routines to call from the 
Callable Library in your own application. 

Automatic Selection of Best Optimizer

If you are unfamiliar with the relationship between problem characteristics and optimizer 
speed, you may prefer to let CPLEX determine the best algorithm to use to optimize your 
problem. Most models are well solved by the default optimizer selected by calling 
optimize / cplex.solve() / CPXlpopt(). We recommend using this option unless you 
wish to tune performance.

Under defaults, CPLEX solves an LP model using the dual simplex method. The primal 
simplex method is available as an alternative optimizer and can be faster on some models. To 
determine whether your problem contains a network, try the network optimizer as well. 
Additionally, if you are licensed to use it, we suggest that you try the primal-dual 
logarithmic barrier optimizer (that is, the ILOG CPLEX Barrier Optimizer); it is applicable 
to very large, sparse problems, particularly those with a block-matrix structure. The 
following sections say more about each linear optimizer.

Dual Simplex Optimizer 

If you are familiar with linear programming theory, then you recall that a linear 
programming problem can be stated in primal or dual form, and an optimal solution (if one 

Table 4.1 Optimizers for Linear Programming (LP) Problems

Optimizer
Interactive 
Command

Concert Technology Library Parameter
Callable Library 
Routine

automatically chosen optimize cplex.solve() CPXlpopt()

primal simplex primopt cplex.setRootAlgorithm(IloCplex::Primal) CPXprimopt()

dual simplex tranopt cplex.setRootAlgorithm(IloCplex::Dual) CPXdualopt()

network netopt cplex.setRootAlgorithm(IloCplex::NetworkDual) CPXhybnetopt()

primal-dual barrier baropt cplex.setRootAlgorithm(IloCplex::BarrierPrimal) CPXhybbaropt()



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 97

S
o

lvin
g

 L
P

 P
ro

b
lem

s

<functionhead>

exists) of the dual has a direct relationship to an optimal solution of the primal model. 
CPLEX’s Dual Simplex Optimizer makes use of this relationship, but still reports the 
solution in terms of the primal model. Recent computational advances in the dual simplex 
method have made it the first choice for optimizing a linear programming problem. This is 
especially true for primal-degenerate problems with little variability in the right-hand side 
coefficients but significant variability in the cost coefficients. 

Primal Simplex Optimizer

CPLEX’s Primal Simplex Optimizer also can effectively solve a wide variety of linear 
programming problems with its default parameter settings. With recent advances in the dual 
simplex method, the primal simplex method is no longer the obvious choice for a first try at 
optimizing a linear programming problem. However, this method will sometimes work 
better on problems where the number of variables exceeds the number of constraints 
significantly, or on problems that exhibit little variability in the cost coefficients. Few 
problem exhibit poor numerical performance in both primal and dual form. Consequently, if 
you have a problem where numerical difficulties occur when you use the dual simplex 
optimizer, then consider using the primal simplex optimizer instead. 

Network Optimizer

If a major part of your problem is structured as a network, then the ILOG CPLEX Network 
Optimizer may have a positive impact on performance. The ILOG CPLEX Network 
Optimizer recognizes a special class of linear programming problems with network 
structure. It uses highly efficient network algorithms on that part of the problem to find a 
solution from which it then constructs an advanced basis for the rest of your problem. From 
this advanced basis, ILOG CPLEX then iterates to find a solution to the full problem. 
Chapter 6, Solving Network-Flow Problems describes this optimizer in greater detail.

Primal-Dual Barrier Optimizer 

The optional primal-dual ILOG CPLEX Barrier Optimizer requires a special license. It 
offers an approach completely different from the primal and dual simplex optimizers and 
from the network optimizer—an approach particularly efficient in large, sparse problems 
(for example, more than 1000 rows or columns, relatively few nonzeros per column). 
Solving LP Problems with the Barrier Optimizer on page 129 explains this optimizer in 
greater detail in the context of linear programming, and Chapter 7, Solving Quadratic 
Programming Problems covers this optimizer in the context of convex quadratic objective 
functions.



T U N I N G  L P  P E R F O R M A N C E

98 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

Tuning LP Performance

Each of the optimizers available in CPLEX is designed to solve most linear programming 
problems under its default parameter settings. However, characteristics of your particular 
problem may make performance tuning advantageous.

As a first step in tuning performance, try the different CPLEX optimizers, as we suggested 
in Choosing an Optimizer for Your LP Problem on page 96. The following sections describe 
other features of CPLEX to consider in tuning the performance of your application:

◆ Preprocessing: Presolver and Aggregator

◆ Preprocessing: Explicitly Solving the Dual

◆ Starting from an Advanced Basis

◆ Adjusting Parameters

Preprocessing: Presolver and Aggregator

By default, the preprocessing parameters of ILOG CPLEX are on. That is, ILOG CPLEX 
customarily preprocesses problems by simplifying constraints, reducing problem size, and 
eliminating redundancy. Its presolver tries to reduce the size of a problem by decreasing the 
number of rows and columns. Its aggregator tries to eliminate variables and rows through 
substitution. However, if your problem contains no redundancy nor other opportunities for 
simplification, then it will solve faster and it will save memory if you turn off the 
preprocessing in ILOG CPLEX.

◆ This command turns off preprocessing in the Interactive Optimizer: 
set preprocessing presolve no

◆ To turn off preprocessing when using the Component Libraries, set the parameter 
IloCplex::PreInd or CPX_PARAM_PREIND. 

By default, ILOG CPLEX will not invoke the aggregator when the presolver is off.

Rarely, a preprocessed problem may prove more difficult than the original. In such cases, to 
improve performance, turn the presolver off or alternatively, specify a particular number of 
passes for the presolver to make through the model by setting the numpass parameter to a 
positive number.

Occasionally, the substitutions that the ILOG CPLEX aggregator makes will increase matrix 
density and thus make each iteration too expensive to be advantageous. In such cases, lower 
the preprocessing fill parameter; it limits substitutions to minimize the addition of nonzeros. 
ILOG CPLEX will make fewer substitutions as a consequence, and the resulting problem 
will be less dense. 



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 99

S
o

lvin
g

 L
P

 P
ro

b
lem

s

<functionhead>

To lower the preprocessing fill parameter:

◆ In the Interactive Optimizer, use the command set preprocessing fill with a 
lower value than its default value of 10.

◆ When using the Component Libraries, set the parameter IloCplex::AggFill or 
CPX_PARAM_AGGFILL.

By default, ILOG CPLEX applies its aggregator once when it is using the LP optimizers. 
For some problems, it may be worthwhile to apply the aggregator more than once. In those 
cases, set the preprocessing aggregator parameter to a positive integer value.

To apply the aggregator more than once:

◆ In the Interactive Optimizer, use the command, for example: 
set preprocessing aggregator 2. 

◆ When using the Component Libraries, set the parameter IloCplex::AggInd or 
CPX_PARAM_AGGIND.

In cases where your model may be primal infeasible or unbounded (dual infeasible), it may 
be desirable to control the kinds of presolve reductions which CPLEX makes, in order to 
make your analysis of the outcome of optimization more certain. These reductions can be 
divided into two types: primal reductions and dual reductions. A reduction is primal if it 
doesn’t depend on the objective function. A reduction is dual if it doesn’t depend on the right 
hand side. By default, presolve performs both kinds of reductions.

Under the default, if the presolved model is infeasible, we know only that the original model 
is either infeasible or unbounded. But if presolve has performed only primal reductions and 
the presolved model is infeasible, then we have full assurance that the original model is also 
infeasible. Similarly if presolve has performed only dual reductions and the presolved model 
is unbounded, then the original model is verified as unbounded. 

To control the dual reductions performed by presolve. In the:

◆ Interactive Optimizer, the command: set preprocessing reduce

◆ Concert Technology Library, the parameter: IloCplex::Reduce

◆ Callable Library, the parameter: CPX_PARAM_REDUCE 

can be used to select one of the following values:

0 = no primal and dual reductions
1 = only primal reductions
2 = only dual reductions
3 = both primal and dual reductions

If your problem includes network structures, there is a possibility that ILOG CPLEX 
preprocessing may eliminate those structures from your model. For that reason, you should 
consider turning off preprocessing before you invoke the network optimizer.



T U N I N G  L P  P E R F O R M A N C E

100 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

The dependency checker strengthens problem reduction by detecting redundant constraints. 
Such reductions are usually most effective with the primal-dual barrier optimizer. 

To turn on the dependency checker to strengthen reduction:

◆ In the Interactive Optimizer, use the command set preprocessing dependency 1 . 

◆ When using the Component Libraries, set the parameter IloCplex::DepInd or 
CPX_PARAM_DEPIND.

To reduce memory usage, presolve may compress the arrays used for storage of the original 
model. This can make more memory available for the use of the optimizer that the user has 
called. Under default settings CPLEX automatically determines, from characteristics of the 
model, whether to perform this compression. You can explicitly turn this feature on or off by 
setting the presolve compression parameter to -1 for off, or 1 for on; the default of 0 
specifies the automatic setting. 

To set presolve compression:

◆ In the Interactive Optimizer enter the command set preprocessing compress. 

◆ In the Component Libraries use the parameter IloCplex::PreCompress or 
CPX_PARAM_PRECOMPRESS. 

In case you want to save the preprocessed version of a problem:

◆ In the Interactive Optimizer, use the write command with the pre file type to save a 
binary copy to a file. 

◆ When using the Component Libraries, use the method IloCplex::exportModel() or 
the routine CPXwriteprob().

Preprocessing: Explicitly Solving the Dual

In some situations, such as a model that has many more rows than columns, it may be 
advantageous to have ILOG CPLEX treat your model internally as the dual formulation. 
Then you can call any of the linear optimizers on that formulation, and again CPLEX will 
report results in terms of your original formulation. 

To treat your model internally as the dual formulation and have ILOG CPLEX return results 
in terms of your original formulation:

In the Interactive Optimizer, follow these steps:

1. If you have previously turned off the presolver, turn it back on. (The default setting of the 
presolver is on. Dual preprocessing is ignored when the presolver is off.) Turn the 
presolver on with the command set preprocessing presolve yes.

2. Call for dual simplex preprocessing with the command set preprocessing dual 1.

3. Then solve with any of CPLEX’s linear optimizers.



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 101

S
o

lvin
g

 L
P

 P
ro

b
lem

s

<functionhead>

Similarly, when using the Component Libraries, in your own application, you can first turn 
on the preprocessing presolver, request dual preprocessing and call the default optimizer, 
like this:

The default setting of this parameter is 0, meaning "automatic". With this setting, CPLEX 
examines the problem and decides whether solving the primal or dual problem will be more 
efficient. Currently, CPLEX performs this assessment only with the barrier optimizer. For all 
other optimizers the default setting causes CPLEX to solve the primal problem.

It is worth emphasizing, to those versed in linear programming theory, that the decision to 
solve the dual formulation of your model, via this preprocessing parameter, is entirely 
separate from the choice of using the dual simplex method versus the primal simplex method 
to perform the optimization. Although these features have theoretical underpinnings in 
common, it is not redundant to consider (for example) solving the dual formulation of your 
model with the dual simplex method; this would not simply result in the same computational 
path as solving the primal formulation with the primal simplex method. In the case already 
mentioned of a model with many more rows than columns, either simplex variant may 
perform much better when solving the dual formulation, due to the smaller basis matrix that 
is maintained.

Starting from an Advanced Basis

As another performance improvement, consider starting from an advanced basis. (The 
primal simplex, dual simplex, and network optimizers can start optimizing from an advanced 
basis if one is available; the primal-dual ILOG CPLEX Barrier Optimizer does not start 
from an advanced basis.) If you can start from an advanced basis, then ILOG CPLEX may 
iterate significantly fewer times, particularly if your current problem is similar to a problem 
that you have solved previously. Even when problems are different, starting from an 
advanced basis may still help performance. For example, if your current problem is 
composed of several smaller problems, an optimal basis from one of the component 
problems may significantly speed up solution of the larger problem.

Note that if you are solving a sequence of LP models all within one run, by entering a model, 
solving it, modifying the model, and solving it again, under default settings the advanced 
basis will be used for the last of these steps automatically. 

In other cases, you can communicate the final basis from one run to the start of the next by 
first saving the basis to a file before the end of the first run. 

cplex.setParam(IloCplex::PreInd, IloTrue);
cplex.setParam(IloCplex::PreDual, IloTrue);
cplex.solve();

CPXsetintparam(env, CPX_PARAM_PREIND, CPX_ON);
CPXsetintparam(env, CPX_PARAM_PREDUAL, CPX_ON);
CPXlpopt(env, lp);



T U N I N G  L P  P E R F O R M A N C E

102 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

To save the basis of the optimized problem to a file:

◆ When using the Component Libraries to optimize your problem, save by means of the 
method cplex.exportModel() or the routine CPXwriteprob().

◆ In the Interactive Optimizer, use the write command with the file type sav. 

To read an advanced basis from a saved file into the Interactive Optimizer, follow these 
steps:

1. Assure that the advanced start parameter is set to its default value of yes: 
set advance y.

2. Read the file with the read command, and specify the file type as bas.

Similarly, when using the Component Libraries, set the parameter IloCplex::AdvInd or 
CPX_PARAM_ADVIND, to 1 and call the method Ilocplex.importModel() or the routine 
CPXreadcopybase().

Adjusting Parameters

After you have chosen the right optimizer and, if appropriate, you have started from an 
advanced basis, you may want to experiment with different parameter settings to improve 
performance. This section describes parameters that are most likely to affect performance of 
linear optimizers. (Managing Parameters from the Callable Library on page 70, discusses 
parameter settings in general.)

To adjust parameters:

◆ In the Interactive Optimizer, use the set command.

◆ For the Concert Technology Library, use the method cplex.setParam().

◆ For the Callable Library, the routine CPXsetintparam() adjusts integer-valued 
parameters, and the routine CPXsetdblparam() adjusts parameters that take values of 
type double. 

For more performance tuning suggestions, refer to the following sections:

◆ Memory Management and Problem Growth

◆ Pricing Algorithm and Gradient Parameters

◆ Scaling

◆ Refactoring Frequency

◆ Crash

If you find better parameter settings for your problem, save them in a parameter 
specification file, as explained in Saving a Parameter Specification File on page 339.



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 103

S
o

lvin
g

 L
P

 P
ro

b
lem

s

<functionhead>

Memory Management and Problem Growth

As it works, ILOG CPLEX automatically handles memory allocations to accommodate the 
increasing size of a problem object as you modify the object through calls to modification 
routines in the Callable Library. The sequence of Callable Library routines that you invoke 
can influence the efficiency of memory management. As we show in Table 2.2 on page 62, 
you can control how ILOG CPLEX allocates memory through its growth parameters.

How you should set these growth parameters depends on how you build the problem object 
in a particular application. CPLEX will automatically manage (via a cache) most changes to 
prevent inefficiency when the changes will require memory re-allocations. If an application 
builds a large problem in small increments, you still may be able to improve performance by    
increasing the growth parameters. In particular, if you know reasonably accurate upper 
bounds on the number of rows, columns, and nonzeros, and you are building a large problem 
in very small pieces with many calls to the problem modification routines, then setting the 
growth parameters to the known upper bounds will make ILOG CPLEX perform the fewest 
allocations and may thus improve performance of the problem modification routines. 
However, overly generous upper bounds may result in excessive memory use.

Pricing Algorithm and Gradient Parameters 

The gradient parameters in Table 4.2 determine the pricing algorithms that ILOG CPLEX 
uses. Consequently, these are the algorithmic parameters most likely to affect simplex linear 
programming performance. The default setting of these gradient parameters choose the 
pricing algorithms that are best for most problems. Moreover, the enhancements of the linear 
algebra routines that the ILOG CPLEX Simplex Optimizers use affect the various gradient 
options differently. When you are selecting alternate pricing algorithms, look at these values 
as guides:

◆ overall solution time;

◆ number of Phase I iterations (that is, iterations before ILOG CPLEX arrives at an initial 
feasible solution);

◆ total number of iterations.

ILOG CPLEX records those values in the log file as it works. (By default, ILOG CPLEX 
creates the log file in the directory where it is executing, and it names the log file 
cplex.log. Managing Log Files: the Log File Parameter on page 269 tells you how to 
rename and relocate this log file.)

If the number of iterations required to solve your problem is approximately the same as the 
number of rows, then you are doing well. If the number of iterations is three times greater 



T U N I N G  L P  P E R F O R M A N C E

104 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

than the number of rows (or more), then it may very well be possible to improve 
performance by changing the gradient parameter that determines the pricing algorithm. 

Table 4.3 lists acceptable values for the primal simplex pricing parameter. Table 4.4 lists 
values for dual simplex pricing parameter. The following paragraphs explain those values 
and offer advice about them.  

For the primal simplex pricing parameter, reduced-cost pricing (-1 or 
CPX_PPRIIND_PARTIAL) is less computationally expensive, so you may prefer it for small 
or relatively easy problems. Try reduced-cost pricing, and watch for faster solution times. 
Also if your problem is dense (say, 20-30 nonzeros per column), reduced-cost pricing may 
be advantageous.

In contrast, if you have a more difficult problem taking many iterations to complete Phase I 
and arrive at an initial solution, then you should consider devex pricing (1 or 
CPX_PPRIIND_DEVEX). Devex pricing benefits more from ILOG CPLEX linear algebra 
enhancements than does partial pricing, so it may be an attractive alternative to partial 
pricing in some problems. Do not use devex pricing, however, if your problem has many 
columns and relatively few rows. In such a case, the number of calculations required per 
iteration will usually be disadvantageous.

If you observe that devex pricing helps, then you might also consider steepest-edge pricing 
(2 or CPX_PPRIIND_STEEP). Steepest-edge pricing is computationally more expensive than 

Table 4.2 Gradient Parameters

Parameter Primal Simplex Dual Simplex

In Interactive Optimizer simplex pgradient simplex dgradient

In Concert Technology Library IloCplex::PPriInd IloCplex::DPriInd

In Callable Library CPX_PARAM_PPRIIND CPX_PARAM_DPRIIND

Table 4.3 Primal Simplex Pricing Algorithm Values

Symbolic constant value Integer value Pricing algorithm

CPX_PPRIIND_PARTIAL -1 reduced-cost pricing

CPX_PPRIIND_AUTO 0 (default) hybrid reduced-cost and devex pricing

CPX_PPRIIND_DEVEX 1 devex pricing

CPX_PPRIIND_STEEP 2 steepest-edge pricing

CPX_PPRIIND_STEEPQSTART 3 steepest-edge pricing with initial slack 
norms

CPX_PPRIIND_FULL 4 full pricing



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 105

S
o

lvin
g

 L
P

 P
ro

b
lem

s

<functionhead>

reduced-cost pricing, but it may produce the best results on difficult problems. One way of 
reducing the computational intensity of steepest-edge pricing is to choose steepest-edge 
pricing with initial slack norms (3 or CPX_PPRIIND_STEEPQSTART).

For the dual simplex pricing parameter, the default value selects steepest-edge pricing with 
unit initial norms. That is, the default (0 or CPX_DPRIIND_AUTO) automatically selects 4 or 
CPX_DPRIIND_STEEPQSTART. You may also consider starting with exact norms, since 
ILOG CPLEX has reduced the cost of initializing norms. 

Scaling

Poorly conditioned problems (that is, problems in which even minor changes in data result in 
major changes in solutions) may benefit from an alternative scaling method. Scaling 
attempts to rectify poorly conditioned problems by multiplying rows or columns by 
constants without changing the fundamental sense of the problem. If you observe that your 
problem has difficulty staying feasible during its solution, then you should consider an 
alternative scaling method. 

To set an alternative scaling method:

◆ In the Interactive Optimizer, use the command set read scale i, substituting 0 
(zero) for i to achieve equilibration scaling or 1 (one) for i to achieve more aggressive 
scaling. In certain cases, it may be advantageous to turn off scaling. To do so in the 
Interactive Optimizer, use the command set read scale -1.

◆ When using the Component Libraries, set the parameter IloCplex::ScaInd or  
CPX_PARAM_SCAIND. to the appropriate value.

Refactoring Frequency

ILOG CPLEX dynamically determines the frequency at which the basis of a problem is 
refactored in order to maximize iteration speed. On very large problems, ILOG CPLEX 
refactors the basis matrix infrequently. Very rarely should you consider increasing the 
number of iterations between refactoring. In such cases:

Table 4.4 Dual Simplex Pricing Algorithm Values

Symbolic Constant Values Integer Value Pricing Algorithm

CPX_DPRIIND_AUTO 0 (default) ILOG CPLEX determines 
automatically

CPX_DPRIIND_FULL 1 standard dual pricing

CPX_DPRIIND_STEEP 2 steepest-edge pricing

CPX_DPRIIND_FULL_STEEP 3 steepest-edge pricing in slack space

CPX_DPRIIND_STEEPQSTART 4 steepest-edge pricing with unit initial 
norms



T U N I N G  L P  P E R F O R M A N C E

106 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

◆ In the Interactive Optimizer, use the command set simplex refactor i 
(substituting a positive integer for i) to change the refactoring frequency. 

◆ When using the Component Libraries, set the parameter IloCplex::ReInv or 
CPX_PARAM_REINV.

Crash

It is possible to control the way ILOG CPLEX builds an initial basis through the crash 
parameter.

In the primal simplex optimizer, the crash setting determines how ILOG CPLEX uses the 
coefficients of the objective function to select the starting basis. If its value is 1 (one), 
ILOG CPLEX uses the coefficients to guide its selection; if its value is 0 (zero), 
ILOG CPLEX ignores the coefficients; if its value is -1, ILOG CPLEX does the opposite of 
what the coefficients normally suggest. These values are summarized in Table 4.5.  

In the dual simplex optimizer, the crash setting determines whether ILOG CPLEX 
aggressively uses primal variables instead of slack variables while it still tries to preserve as 
much dual feasibility as possible. If its value is 1 (one), it indicates the default starting basis; 
if its value is 0 (zero) or -1, it indicates an aggressive starting basis. These values are 
summarized in Table 4.6. 

To control the way ILOG CPLEX builds an initial basis:

◆ In the Interactive Optimizer, use the command set simplex crash i (substituting 1, 
0, or -1 for i) . 

◆ When using the Component Libraries, set the parameter IloCplex::CraInd or 
CPX_PARAM_CRAIND.

Table 4.5 Values of the ILOG CPLEX Crash Parameter for the Primal Simplex Optimizer

Value Meaning for Primal Simplex Optimizer

1 Use coefficients of objective function to select basis

0 Ignore coefficients of objective function

-1 Select basis contrary to one indicated by coefficients of objective function

Table 4.6 Values of the ILOG CPLEX Crash Parameter for the Dual Simplex Optimizer

Value Meaning for Dual Simplex Optimizer

1 Use default starting basis

0 Use an aggressive starting basis

-1 Use an aggressive starting basis



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 107

S
o

lvin
g

 L
P

 P
ro

b
lem

s

<functionhead>

Diagnosing Performance Problems

While some linear programming models offer opportunities for performance tuning, others, 
unfortunately, entail outright performance problems that require diagnosis and correction. 
This section indicates how to diagnose and correct such performance problems as lack of 
memory or numerical difficulties.

Lack of Memory

To sustain computational speed, ILOG CPLEX tries to use only available physical memory, 
rather than virtual memory or paged memory. Even if your problem data fit in memory, 
ILOG CPLEX will need still more memory to optimize the problem. When ILOG CPLEX 
recognizes that only limited memory is available, it automatically makes algorithmic 
adjustments to compensate. These adjustments almost always reduce optimization speed. If 
you detect when these automatic adjustments occur, then you can determine when you need 
to add additional memory to your computer to sustain computational speed for your 
particular problem. The following sections offer guidance for you to detect these automatic 
adjustments.

Warning Messages

In certain cases, ILOG CPLEX issues a warning message when it cannot perform an 
operation, but it continues to work on the problem. Other ILOG CPLEX messages indicate 
that ILOG CPLEX is compressing the problem to conserve memory. These warnings mean 
that ILOG CPLEX finds insufficient memory available, so it is following an alternate—less 
desirable—path to a solution. If you provide more memory, ILOG CPLEX will return to the 
best path toward a solution.

Paging Virtual Memory

On systems such as UNIX, where there is virtual memory management, if you observe 
paging of memory to disk, then your application is incurring a performance penalty. If you 
increase available memory in such a case, performance will speed up dramatically.

Refactoring Frequency and Memory Requirements

The ILOG CPLEX Primal and Dual Simplex Optimizers refactor the problem basis at a rate 
determined by the refactor parameter:

◆ simplex refactor in the Interactive Optimizer,

◆ IloCplex::ReInv in the Concert Technology Library, and

◆ CPX_PARAM_REINV in the Callable Library. 

The longer ILOG CPLEX works between refactoring, the greater the amount of memory it 
needs for each iteration. Consequently, one way of conserving memory is to increase the 
refactoring frequency by decreasing the interval between refactorings. In fact, if little 



D I A G N O S I N G  P E R F O R M A N C E  P R O B L E M S

108 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

memory is available to it, ILOG CPLEX will automatically decrease the refactoring interval 
in order to use less memory at each iteration.

Since refactoring is an expensive operation, decreasing the refactoring interval will generally 
slow performance. You can tell whether performance is being degraded in this way by 
checking the iteration log file.

In an extreme case, lack of memory may force ILOG CPLEX to refactor at every iteration, 
and the impact on performance will be dramatic. If you provide more memory in such a 
situation, the benefit will be tremendous.

Preprocessing and Memory Requirements

By default, the ILOG CPLEX presolver and aggregator are active. That is, ILOG CPLEX 
automatically preprocesses your problem before optimizing, and this preprocessing requires 
memory. If memory is extremely tight, consider turning off preprocessing.

To turn off preprocessing:

◆ In the Interactive Optimizer, use the command set preprocessing presolve 0 .

◆ When using the Component Libraries, set the parameter IloCplex::PreInd or 
CPX_PARAM_PREIND.

Numerical Difficulties

ILOG CPLEX is designed to handle the numerical difficulties of linear programming 
automatically. In this context, numerical difficulties mean such phenomena as repeated 
occurrence of singularities, little or no progress toward realizing the objective function 
value, little or no progress in scaled infeasibility, repeated problem perturbations, repeated 
occurrences of the problem becoming infeasible. While ILOG CPLEX will usually achieve 
an optimal solution in spite of these difficulties, you can help it do so more efficiently. This 
section describes situations in which you can help.

Some problems will not be solvable even after you take the measures we suggest. Such 
problems are so poorly conditioned that their optimal solutions are beyond the numerical 
precision of your computer.

Numerically Sensitive Data

There is no absolute link between the form of data in a model and the numerical difficulty 
the problem poses. Nevertheless, certain choices in how you present the data to CPLEX can 
have an adverse effect.

Placing large upper bounds (say, in the neighborhood of 1e9 to 1e12) on individual variables 
can cause difficulty during Presolve. If you intend for such large bounds to mean “no bound 
is really in effect” it is better to simply not include such bounds in the first place. 

Large coefficients anywhere in the model can likewise cause trouble at various points in the 
solution process. Even if the coefficients are of more modest size, a wide variation (say, six 



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 109

S
o

lvin
g

 L
P

 P
ro

b
lem

s

<functionhead>

or more orders of magnitude) in coefficients found in the objective function or right hand 
side, or in any given row or column of the matrix, can cause difficulty either in Presolve 
when it makes substitutions, or in the optimizer routines, particularly the barrier optimizer, 
as convergence is approached.

A related source of difficulty is the form of rounding when fractions are represented as 
decimals; expressing 1/3 as .33333333 on a computer that in principle computes values to 
about 16 digits can introduce an apparent “exact” value that will be treated as given but may 
not represent what you intend. This difficulty is compounded if similar or related values are 
represented a little differently elsewhere in the model. The underlying principle behind all 
these cautions is that “information” contained down in the 8th or 10th decimal place of data 
needs to convey actual meaning or the optimizer may start to draw false conclusions.

Measuring Problem Sensitivity with Basis Condition Number

Ill-conditioned matrices are sensitive to minute changes in problem data. That is, in such 
problems, small changes in data can lead to very large changes in the reported problem 
solution. ILOG CPLEX provides a basis condition number to measure the sensitivity of a 
linear system to the problem data. You might also think of the basis condition number as the 
number of places in precision that can be lost. 

For example, if the basis condition number at optimality is 1e13, then a change in a single 
matrix coefficient in the thirteenth place may dramatically alter the solution. Furthermore, 
since many computers provide about 16 places of accuracy in double precision, only three 
accurate places are left in such a solution. Even if an answer is obtained, perhaps only the 
first three significant digits are reliable.

Because of this effective loss of precision for matrices with high basis condition numbers, 
ILOG CPLEX may be unable to select an optimal basis. In other words, a high basis 
condition number can make it impossible to find a solution. 

◆ In the Interactive Optimizer, use the command display solution kappa in order to 
see the basis condition number of a resident basis matrix. 

◆ In the Concert Technology Library, use the method 
cplex.getQuality(IloCplex::Kappa).

◆ In the Callable Library, use the routine CPXgetdblquality() to access the condition 
number in the double-precision variable dvalue, like this:  

Repeated Singularities

Whenever ILOG CPLEX encounters a singularity, it removes a column from the current 
basis and proceeds with its work. ILOG CPLEX reports such actions to the log file (by 
default) and to the screen (if you are working in the Interactive Optimizer or if the message-
to-screen indicator CPX_PARAM_SCRIND is set to 1 (one)). Once it finds an optimal solution 
under these conditions, ILOG CPLEX will then re-include the discarded column to be sure 

status = CPXgetdblquality(env, lp, &dvalue, CPX_KAPPA);



D I A G N O S I N G  P E R F O R M A N C E  P R O B L E M S

110 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

that no better solution is available. If no better objective value can be obtained, then the 
problem has been solved. Otherwise, ILOG CPLEX continues its work until it reaches 
optimality.

Occasionally, new singularities occur, or the same singularities recur. ILOG CPLEX 
observes a limit on the number of singularities it tolerates. By default, the limit is ten. After 
encountering ten singularities, ILOG CPLEX will save in memory the best factorable basis 
found so far and stop its solution process. You may want to save this basis to a file for later 
use.

To change the number of singularities that ILOG CPLEX tolerates:

◆ In the Interactive Optimizer, use the command 
set simplex limits singularity i, substituting a non-negative value for i.

◆ When using the Component Libraries, set the parameter IloCplex::SingLim or 
CPX_PARAM_SINGLIM.

To save the best factorable basis found so far in the Interactive Optimizer, use the write 
command with the file type sav. When using the Component Libraries, use the method 
cplex.exportModel() or the routine CPXwriteprob().

If ILOG CPLEX encounters repeated singularities in your problem, you may want to try 
alternative scaling on the problem (rather than simply increasing ILOG CPLEX tolerance 
for singularities). Scaling on page 105 explains how to try alternative scaling.

If alternate scaling does not help, another tactic to try is to increase the Markowitz tolerance. 
The Markowitz tolerance controls the kinds of pivots permitted. If you set it near its 
maximum value of 0.99999, it may make iterations slower but more numerically stable. 
Inability to Stay Feasible on page 111 shows how to change the Markowitz tolerance.

If none of these ideas help, you may need to alter the model of your problem. Consider 
removing the offending variables manually from your model, and review the model to find 
other ways to represent the functions of those variables.

Stalling Due to Degeneracy

Highly degenerate linear programs tend to stall optimization progress in the primal and dual 
simplex optimizers. When stalling occurs with the primal simplex optimizer, ILOG CPLEX 
automatically perturbs the variable bounds; when stalling occurs with the dual simplex 
optimizer, ILOG CPLEX perturbs the objective function.

In either case, perturbation creates a different but closely related problem. Once 
ILOG CPLEX has solved the perturbed problem, it removes the perturbation by resetting 
problem data to their original values.

If ILOG CPLEX automatically perturbs your problem early in the solution process, you 
should consider starting the solution process yourself with a perturbation. (Starting in this 
way will save the time that would be wasted if you first allowed optimization to stall and 
then let ILOG CPLEX perturb the problem automatically.) 



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 111

S
o

lvin
g

 L
P

 P
ro

b
lem

s

<functionhead>

To start perturbation yourself:

◆ In the Interactive Optimizer, use the command set simplex perturbation y i 

where the first option, y, indicates yes and the second option, i, (which you fill in with a 
value appropriate for your problem) indicates how much perturbation to introduce. 

◆ When using the Component Libraries set the parameter IloCplex::PerInd or 
CPX_PARAM_PERIND to turn on perturbation from the start, and set the parameter 
IloCplex::EpPer or CPX_PARAM_EPPER to any positive value greater than 1e-8.

If you observe that your problem has been perturbed more than once, then consider whether 
the simplex perturbation-limit parameter is too large. The perturbation-limit parameter 
determines the number of iterations ILOG CPLEX tries before it assumes the problem has 
stalled. At its default value, 0 (zero), ILOG CPLEX determines internally how many 
iterations to perform before declaring a stall. If you set this parameter to some other 
nonnegative integer, then ILOG CPLEX uses that limit to determine when a problem has 
stalled. If you reduce the perturbation-limit parameter, you may be able to reduce the 
number of times the problem is necessarily perturbed. 

To reduce the simplex perturbation-limit parameter:

◆ In the Interactive Optimizer, use the command 
set simplex limits perturbation i, substituting a smaller value for i. 

◆ When using the Component Libraries, set the parameter IloCplex::PerLim or 
CPX_PARAM_PERLIM.

Inability to Stay Feasible

If a problem repeatedly becomes infeasible in Phase II (that is, after ILOG CPLEX has 
achieved a feasible solution), then numerical difficulties may be occurring. It may help to 
increase the Markowitz tolerance in such a case. By default, its value is 0.01, and suitable 
values range from 0.0001 to 0.99999.

To increase Markowitz tolerance:

◆ In the Interactive Optimizer, use the command 
set simplex tolerances markowitz n, substituting a greater value for n. 

◆ When using the Component Libraries set the parameter IloCplex::EpMrk or  
CPX_PARAM_EPMRK.

Sometimes slow progress in Phase I (the period when ILOG CPLEX calculates the first 
feasible solution) is due to similar numerical difficulties, less obvious because feasibility is 
not gained and lost. In the progress reported in the log file, an increase in the printed sum of 
infeasibilities may be a symptom of this case. If so, it may be worth while to set a higher 
Markowitz tolerance, just as in the more obvious case of numerical difficulties in Phase II.



D I A G N O S I N G  L P  I N F E A S I B I L I T Y

112 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

Diagnosing LP Infeasibility

ILOG CPLEX reports statistics about any problem that it optimizes. For infeasible solutions, 
it reports values that you can analyze to determine where your problem formulation proved 
infeasible. In certain situations, you can then alter your problem formulation or change 
ILOG CPLEX parameters to achieve a satisfactory solution. This section explains how to 
analyze such reports and indicates steps to take to alter your problem formulation or to 
change ILOG CPLEX parameters.

◆ When the ILOG CPLEX Primal Simplex Optimizer terminates with an infeasible basic 
solution, it calculates dual variables and reduced costs relative to the Phase I objective; 
that is, relative to the infeasibility function. The Phase I objective function depends on 
the current basis. Consequently, if you use the primal simplex optimizer with various 
parameter settings, an infeasible problem will produce different objective values and 
different solutions.

◆ When the CPLEX Dual Simplex Optimizer terminates and reports an unbounded 
solution, then the original problem is infeasible. When the dual simplex optimizer 
terminates and reports an infeasible problem, the original problem is either infeasible, 
too, or unbounded.  

Table 4.7 summarizes these implications. 

The Effect of Preprocessing on Feasibility

CPLEX preprocessing may declare a model infeasible before the selected optimization 
algorithm begins. This saves considerable execution time in most cases. It is important, 
when this is the outcome, to understand that there are two classes of reductions performed 
by the preprocessor. 

Reductions that are independent of the objective function are called    primal reductions; 
those that are independent of the right-hand side are called dual reductions. Preprocessing 
operates on the assumption that the model being solved is expected by the user to be feasible 
and that a finite optimal solution exists. If this assumption is false, then the model is either 
infeasible or no bounded optimal solutions exist, i.e. unbounded. Since primal reductions are 
independent of the objective function, they cannot detect unboundedness, they can only 
detect infeasibility. Similarly, dual reductions can only detect unboundedness. 

Table 4.7 Implications of Dual Solutions for Primal Formulations

If the dual is Then the primal is

unbounded infeasible

infeasible either infeasible or unbounded



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 113

S
o

lvin
g

 L
P

 P
ro

b
lem

s

<functionhead>

Thus, to aid analysis of an infeasible or unbounded declaration by the preprocessor, a 
parameter is provided that the user can set, so that the optimization can be rerun to assure 
that the results reported by the preprocessor can be interpreted. If a model is declared by the 
preprocessor to be infeasible or unbounded and the user believes that it might be infeasible, 
the parameter IloCplex::Reduce or CPX_PARAM_REDUCE 
(set preprocessing reduce in the Interactive Optimizer) can be set to 1 by the user, 
and the preprocessor will only perform primal reductions. If the preprocessor still finds 
inconsistency in the model, it will be declared by the preprocessor to be infeasible, instead of 
infeasible or unbounded. Similarly, setting the parameter to 2 means that if the preprocessor 
detects unboundedness in the model, it will be declared unambiguously to be unbounded. 

These parameters are intended for diagnostic use, as turning off reductions will usually have 
a negative impact on performance of the optimization algorithms in the normal (feasible and 
bounded) case.

Coping with an Ill-Conditioned Problem or Handling Unscaled Infeasibilities

By default, ILOG CPLEX scales a problem before attempting to solve it. After it finds an 
optimal solution, it then checks for any violations of optimality or feasibility in the original, 
unscaled problem. If there is a violation of reduced cost (indicating nonoptimality) or of a 
bound (indicating infeasibility), ILOG CPLEX reports both the maximum scaled and 
unscaled feasibility violations.

Unscaled infeasibilities are rare, but they may occur when a problem is ill-conditioned. For 
example, a problem containing a row in which the coefficients have vastly different 
magnitude is ill-conditioned in this sense and may result in unscaled feasibilities.

It may be possible to produce a better solution anyway in spite of unscaled infeasibilities, or 
it may be necessary for you to revise the coefficients. To determine which way to go, we 
recommend these steps in such a case:

1. Use the command display solution quality in the Interactive Optimizer to locate 
the infeasibilities.

2. Examine the coefficient matrix for poorly scaled rows and columns.

3. Evaluate whether you can change unnecessarily large or small coefficients.

4. Consider alternate scalings.

You may also be able to re-optimize the problem successfully after you reduce optimality 
tolerance, as explained in Maximum Reduced-Cost Infeasibility on page 114, or after you 
reduce feasibility tolerance, as explained in Maximum Bound Infeasibility: Identifying 
Largest Bound Violation on page 114. When you change these tolerances, ILOG CPLEX 
may produce a better solution to your problem, but lowering these tolerances sometimes 
produces erratic behavior or an unstable optimal basis.



D I A G N O S I N G  L P  I N F E A S I B I L I T Y

114 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

Check the basis condition number, as explained in Measuring Problem Sensitivity with Basis 
Condition Number on page 109. If the condition number is fairly low (for example, as little 
as 1e5 or less), then you can be confident about the solution. If the condition number is high, 
or if reducing tolerance does not help, then you must revise the problem model because the 
current model may be too ill-conditioned to produce a numerically reliable result.

Interpreting Solution Statistics

By default, individual infeasibilities are written to a log file but not displayed on the screen. 
To display the infeasibilities on your screen, use the command 
set output logonly y cplex.log.

Regardless of whether a solution is infeasible or optimal, the command 
display solution quality in the Interactive Optimizer displays the bound and 
reduced-cost infeasibilities for both the scaled and unscaled problem. In fact, it displays the 
following summary statistics for both the scaled and unscaled problem:

◆ maximum bound infeasibility, that is, the largest bound violation;

◆ maximum reduced-cost infeasibility;

◆ maximum row residual;

◆ maximum dual residual;

◆ maximum absolute value of a variable, a slack variable, a dual variable, and a reduced 
cost.

The following sections discuss these summary statistics in greater detail. 

Maximum Bound Infeasibility: Identifying Largest Bound Violation

The maximum bound infeasibility identifies the largest bound violation. This information 
may help you determine the cause of infeasibility in your problem. If the largest bound 
violation exceeds the feasibility tolerance of your problem by only a small amount, then you 
may be able to get a feasible solution to the problem by increasing the feasibility tolerance.

◆ To increase the feasibility tolerance of your problem in the Interactive Optimizer, use the 
command set simplex tolerances feasibility n, substituting a smaller value 
for n. Its range is between 1e-9 and 0.1. Its default value is 1e-06. 

◆ To change the infeasibility tolerance when using the Component Libraries set the 
parameter IloCplex::EpRHS or CPX_PARAM_EPRHS.

Maximum Reduced-Cost Infeasibility

The maximum reduced-cost infeasibility identifies a value for the optimality tolerance that 
would cause ILOG CPLEX to perform additional iterations. It refers to the infeasibility in 
the dual slack associated with reduced costs. Whether ILOG CPLEX terminated with an 
optimal or infeasible solution, if the maximum reduced-cost infeasibility is only slightly 



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 115

S
o

lvin
g

 L
P

 P
ro

b
lem

s

<functionhead>

smaller in absolute value than the optimality tolerance, then solving the problem with a 
smaller optimality tolerance may result in an improvement in the objective function.

To lower the optimality tolerance in your problem in the Interactive Optimizer, use the 
command set simplex tolerances optimality n, substituting a lower value for n. 
Its range is between 1e-9 and 0.1. Its default value is 1e-06. To lower the optimality tolerance 
when using the Component Libraries set the parameter IloCplex::EpOpt or 
CPX_PARAM_EPOPT.

Maximum Row Residual

The maximum row residual identifies the maximum constraint violation. ILOG CPLEX 
Simplex Optimizers control these residuals only indirectly by applying numerically sound 
methods to solve the given linear system. When ILOG CPLEX terminates with an infeasible 
solution, all infeasibilities will appear as bound violations on structural or slack variables, 
not constraint violations. The maximum row residual may help you determine whether a 
model of your problem is poorly scaled, or whether the final basis (whether it is optimal or 
infeasible) is ill-conditioned.

Maximum Dual Residual

The maximum dual residual indicates whether the current optimality tolerance is set 
appropriately. If the maximum dual residual exceeds the optimality tolerance, ILOG CPLEX 
may stall before it reaches an optimal solution. In particular, if ILOG CPLEX stalls during 
Phase I after almost reducing the sum of infeasibilities to 0 (zero), then you may be able to 
find a feasible solution if you increase the optimality tolerance.

To increase the optimality tolerance in your problem in the Interactive Optimizer, use the 
command set simplex tolerances optimality n, substituting a larger value for n. 
Its range is between 1e-09 and 0.1. Its default value is 1e-06. To increase the optimality 
tolerance when using the Component Libraries set the parameter IloCplex::EpOpt or 
CPX_PARAM_EPOPT.

Maximum Absolute Values: Detecting Ill-Conditioned Problems

When you are trying to determine whether your problem is ill-conditioned, you need to 
consider the following maximum absolute values, all available in the infeasibility analysis 
that ILOG CPLEX provides you:

◆ variables;

◆ slack variables;

◆ dual variables;

◆ reduced costs (that is, dual slack variables).

When using the Component Libraries, use the method cplex.getQuality() or the 
routine CPXgetdblquality() to access the information provided by the command 
display solution quality in the Interactive Optimizer.



D I A G N O S I N G  L P  I N F E A S I B I L I T Y

116 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

If you determine from this analysis that your model is indeed ill-conditioned, then you need 
to reformulate it. Coping with an Ill-Conditioned Problem or Handling Unscaled 
Infeasibilities on page 113 outlines steps to follow in this situation.

Finding a Set of Irreducibly Inconsistent Constraints

If ILOG CPLEX reports that your problem is infeasible, then you should invoke the 
ILOG CPLEX infeasibility finder to save time and effort in the development process. This 
diagnostic tool computes a set of infeasible constraints and column bounds that would be 
feasible if one of them (a constraint or variable) were removed. Such a set is known as 
irreducibly inconsistent.

To work, the infeasibility finder must have a problem that satisfies two conditions:

◆ the problem has been optimized using the primal method or barrier with crossover, and

◆ the problem has terminated with an infeasible basic solution to the primal problem.

When the ILOG CPLEX presolver detects infeasibility during preprocessing, no 
optimization has yet taken place. Furthermore, since the presolver may perform many passes 
on a problem, the reason that it identifies a row as infeasible may not be obvious. To run the 
infeasibility finder and to see solution statistics in such a case, you should first turn off 
ILOG CPLEX preprocessing before you optimize, as explained in Preprocessing: Presolver 
and Aggregator on page 98, before you invoke the infeasibility finder.

Also if you are licensed to use the primal-dual ILOG CPLEX Barrier Optimizer, remember 
that you may call it optionally without simplex crossover. In such a case, ILOG CPLEX will 
not produce the infeasible basis that the infeasibility finder needs, so if you want to run the 
infeasibility finder with the primal-dual barrier optimizer, then you must call that optimizer 
with simplex crossover turned on.

Infeasibility Finder in the Interactive Optimizer

To invoke the infeasibility finder and to display part of its findings in the Interactive 
Optimizer, use the command display iis. By default, ILOG CPLEX records all its 
findings in a log file. To send these findings to your screen as well, use the command 
set output logonly y cplex.log.

You can also write an IIS file from the Interactive Optimizer and then examine it with your 
preferred text editor to see all the constraints and bounds in the irreducibly inconsistent set.

For an example of how to use the infeasibility finder and how to interpret its results, see 
Example: Output from the Infeasibility Finder in the Interactive Optimizer on page 117.

Infeasibility Finder in the Component Libraries

When using the Component Libraries, to specify the infeasibility finder, set the parameter 
IloCplex::IISInd or  CPX_PARAM_IISIND. Its default value of 0 (zero) invokes an 
algorithm that requires minimal computation time but it may generate a large set of 



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 117

S
o

lvin
g

 L
P

 P
ro

b
lem

s

<functionhead>

inconsistent constraints. Its alternative value of 1 (one) may take longer but generates a 
minimal set of irreducibly inconsistent constraints. After you have specified the kind of IIS 
to generate, use the method cplex.getIIS() or the routine CPXfindiis() to tell 
ILOG CPLEX to compute the set. Then use the method cplex.out() or the routines 
CPXdisplayiis() or CPXiiswrite() to output the results for review.

Correcting Multiple Infeasibilities

The infeasibility finder will find only one irreducibly inconsistent set (IIS), though a given 
problem may contain many independent IISs. Consequently, even after you detect and 
correct one such IIS in your problem, it may still remain infeasible. In such a case, you need 
to run the infeasibility finder more than once to detect those multiple causes of infeasibility 
in your problem.

Example: Output from the Infeasibility Finder in the Interactive Optimizer

After you have optimized a problem and CPLEX has terminated with a primal infeasible 
basic solution, then you can invoke the CPLEX infeasibility finder on this optimized 
problem and its infeasible basic solution. The ILOG CPLEX infeasibility finder will 
compute an irreducibly inconsistent set (IIS) of constraints and column bounds from your 
problem and record this IIS in a log file along with other useful information to help you 
locate the source of infeasibility and aid you in revising or reformulating your problem 
model.

If you want ILOG CPLEX to display this additional information on your screen in the 
Interactive Optimizer, use the command set output logonly yes. After that command, 
invoke the infeasibility finder with the command display iis. ILOG CPLEX will 
respond like this: 

As you can see, ILOG CPLEX states how many rows and columns comprise the IIS. It also 
tells the row and column names, and it identifies the bound causing the infeasibility. In this 
example, all the columns in the IIS are limited by their upper bound. If you remove any of 
the upper bounds on those columns, then the IIS becomes feasible. The bound information 
about rows is really needed only for ranged rows. In the case of ranged rows, the bound 

Starting Infeasibility Finder Algorithm...
Performing row sensitivity filter
Performing column sensitivity filter

Number of rows in the iis: 3
Number of columns in the iis: 3
Names of rows in the iis:
NODE5    (fixed)
D7       (lower bound)
D8       (lower bound)
Names of columns in the iis:
T25      (upper bound)
T35      (upper bound)
T47      (upper bound)
Iis Computation Time =    0.01 sec.



D I A G N O S I N G  L P  I N F E A S I B I L I T Y

118 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

indicates whether the row lies at the lower or upper end of the range of right-hand side 
values. For other kinds of rows, there is only one possible right-hand side value at which the 
row can lie. Greater-than constraints must lie at their lower bound. Less-than constraints 
must lie at their upper bound. Equality constraints are fixed.

Example: Writing an IIS-Type File

After you have invoked the infeasibility finder with the display iis command, if you 
want additional information to determine the cause of infeasibility, use the write command 
and the file type iis to generate a ILOG CPLEX LP format file containing each individual 
constraint and bound in the IIS. You can then use the xecute command to call an ordinary 
text editor during your ILOG CPLEX session to examine the contents of that IIS file. It will 
look something like this example: 

In this example, you see that the bounds on T25 and T35 combine with the row NODE5 to 
imply that . However, row D7 and the bound on T47 imply that . 
Since row D8 requires , we see that , so the constraints and bounds 
are infeasible. Notice that every constraint and bound contributes to this infeasibility, 
according to the definition of an IIS. There are, in consequence, many different ways to 
modify such a problem to make it feasible. The “right” change will depend on your 
knowledge of the problem.

When ILOG CPLEX records the constraints and bounds of an IIS, it also lists as free all 
columns that intersect one or more rows in the IIS but do not have bounds in the IIS. This 
portion of the file ensures that when you read the file into ILOG CPLEX, the resulting 
problem satisfies the definition of an IIS. After you read in such a file, you can perform 
additional problem analysis within your ILOG CPLEX session.

CPLEX> write infeas.iis

Starting Infeasibility Finder Algorithm...
Performing row sensitivity filter
Performing column sensitivity filter
Irreducibly inconsistent set written to file ‘infeas.iis’.

CPLEX> xecute edit infeas.iis

Minimize
subject to
\Rows in the iis:
 NODE5: T25 + T35 - T57 - T58  = 0
 D7:    T47 + T57 >= 20
 D8:    T58 >= 30
\Columns in the iis:
Bounds
 T25 <= 10
 T35 <= 10
 T47 <= 2
\Non-iis columns intersecting iis rows:
 T57 Free
 T58 Free

T57 T58+ 20≤ T57 18≥
T58 30≥ T57 T58+ 48≥



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 119

S
o

lvin
g

 L
P

 P
ro

b
lem

s

<functionhead>

Example: Interpreting a Cumulative Constraint

In the example that we have been looking at, there were sufficiently few rows and column 
bounds in the IIS for us to see the cause of infeasibility at a glance. In contrast, other IIS files 
may contain so many rows and columns that it becomes difficult to see the cause of 
infeasibility. When an IIS contains many equality constraints and only a few bounds, for 
example, this phenomenon commonly occurs. In such a situation, the equality constraints 
transfer the infeasibility from one part of the model to another until eventually no more 
transfers can occur. Consequently, such an IIS file will also contain a cumulative constraint 
consisting of the sum of all the equality rows. This cumulative constraint can direct you 
toward the cause of infeasibility, as the following sample IIS illustrates: 

Since there are 15 rows in this IIS file, the cause of infeasibility is not immediately obvious. 
However, if we look at the sum of the bounds on the columns, we see that 

Minimize
subject to
\Rows in the iis:
 2:   - x24 + x97 + x98 - x99 - x104  = -7758
 3:   - x97 + x99 + x100 - x114 - x115  = 0
 4:   - x98 + x104  = 0
 10:  - x105 + x107 + x108 - x109  = -151
 11:  - x108 + x109 + x110 - x111  = -642
 12:  - x101 - x102 - x110 + x111 + x112 + x113 - x117  = -2517
 13:  - x112 + x117 + x118 - x119  = -186
 14:  - x118 + x119 + x120 + x121 - x122 - x123  = -271
 15:  - x120 + x122  = -130
 16:  - x121 + x123 + x124 - x125  = -716
 17:  - x124 + x125 + x126 - x127  = -2627
 18:  - x126 + x127 + x128 - x129  = -1077
 19:  - x128 + x129 + x130 - x131  = -593
 249: - x100 + x101 + x103  = 0
 251: - x113 + x114 + x116  = 0
\Sum of equality rows in iis:
\  - x24 - x102 + x103 - x105 + x107 - x115 + x116 + x130 - x131 = -16668
\Columns in the iis:
Bounds
 x24 <= 14434
 x102 = 0
 x103 = 0
 x105 = 0
 x107 = 0
 x115 = 0
 x116 = 0
 x130 = 0
 x131 = 0
\Non-iis columns intersecting iis rows:
 x97 Free
 x98 Free
 x99 Free
.
.
.
End



D I A G N O S I N G  L P  I N F E A S I B I L I T Y

120 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

, so it is impossible 
to satisfy the sum of equality rows. Therefore, to correct the infeasibility, we must alter one 
or more of the bounds, or we must increase one or more of the right-hand side values.

Example: Setting a Time Limit on the Infeasibility Finder

The ILOG CPLEX infeasibility finder will stop when its total runtime exceeds the limit set 
by the command set timelimit. The infeasibility finder works by removing constraints 
and bounds that cannot be involved in the IIS, so it can provide partial information about an 
IIS when it reaches its time limit. The collection of constraints and bounds it offers then do 
not strictly satisfy the definition of an IIS. However, the collection does contain a true IIS 
within it, and frequently it provides enough information for you to diagnose the cause of 
infeasibility in your problem. When it reaches the time limit, ILOG CPLEX output indicates 
that it has found only a partial IIS. The following example illustrates this idea. In it, we set a 
time limit and then invoke the feasibility finder. 

Tactics for Interpreting IIS Output

The size of the IIS reported by ILOG CPLEX depends on many factors in the problem 
model. If an IIS contains hundreds of rows and columns, you may find it hard to determine 
the cause of the infeasibility. Fortunately, there are tactics to help you interpret IIS output:

◆ Consider selecting an alternative IIS algorithm. The default algorithm emphasizes 
computation speed, and it may give rise to a relatively large IIS. If so, try setting the 
iisfind parameter to 1 (one) to invoke the alternative algorithm, and then run the 
infeasibility finder again. Normally, the resulting IIS is smaller because the alternative 
algorithm emphasizes finding a minimal IIS at the expense of computation speed.

◆ If the problem contains equality constraints, examine the cumulative constraint 
consisting of the sum of the equality rows. As we illustrated in one of the examples, the 
cumulative constraint can simplify your interpretation of the IIS output. More generally, 
if you take other linear combinations of rows in the IIS, that may also help. For example, 
if you add an equality row to an inequality row, the result may yield a simpler inequality 
row.

◆ Try preprocessing with the ILOG CPLEX presolver and aggregator. The presolver may 
even detect infeasibility by itself. If not, running the infeasibility finder on the presolved 
problem may help by reducing the problem size and removing extraneous constraints 
that do not directly cause the infeasibility but still appear in the IIS. Similarly, running 

CPLEX> set timelimit 2
CPLEX> display iis

Starting Infeasibility Finder Algorithm...
Performing row sensitivity filter
Infeasibility Finder Algorithm exceeded time limit.
Partial infeasibility output available.

Number of rows in the (partial) iis: 101
Number of columns in the (partial) iis: 99

x24– x102– x103 x105– x107 x115– x116 x130 x131–+ + + + 14434–≥



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 121

S
o

lvin
g

 L
P

 P
ro

b
lem

s

<functionhead>

the infeasibility finder on an aggregated problem may help because the aggregator 
performs substitutions that may remove extraneous variables that clutter the IIS output. 
More generally, if you perform substitutions, you may simplify the output so that it can 
be interpreted more easily.

◆ Other simplifications of the constraints in the IIS may make it easier to interpret the IIS. 
We mean such simplifications as combining variables, multiplying constraints by 
constants, and rearranging sums.

Example: Using a Starting Basis in an LP Problem

This example shows you how to use a basis to start an optimization from an advanced point.

Example ilolpex6.cpp

The example, ilolpex6.c, resembles one you may have studied in the manual Getting 
Started with ILOG CPLEX, ilolpex1.c. This example differs from that earlier one in 
these ways:

◆ Arrays are constructed using the populatebyrow method, and thus no command line 
arguments are needed to select a construction method.

◆ In the main routine, the arrays cstat and rstat set the status of the initial basis.

◆ After the problem data has been copied into the problem object, the basis is copied by a 
call to cplex.getStatuses().

◆ After the problem has been optimized, the iteration count is printed. For the given data 
and basis, the basis is optimal, so no iterations are required to optimize the problem.

The main program starts by declaring the environment and terminates by calling method 
end() for the environment. The code in between is encapsulated in a try block that catches 
all Concert Technology exceptions and prints them to the C++ error stream cerr. All other 
exceptions are caught as well, and a simple error message is issued. Next the model object 
and the cplex object are constructed. The function populatebycolumn() builds the 
problem object and, as we noted earlier, cplex.getStatuses() copies the advanced 
starting basis.

Complete Program

The complete program, ilolpex6.cpp, appears here or online in the standard distribution

#include <ilcplex/ilocplex.h>
ILOSTLBEGIN

static void



E X A M P L E :  U S I N G  A  S T A R T I N G  B A S I S  I N  A N  L P  P R O B L E M

122 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

   populatebycolumn (IloModel model, IloNumVarArray var, IloRangeArray rng);

int
main (int argc, char **argv)
{
   IloEnv   env;
   try {
      IloModel model(env, “example”);

      IloNumVarArray var(env);
      IloRangeArray  rng(env);
      populatebycolumn (model, var, rng);

      IloCplex cplex(model);

      IloCplex::BasisStatusArray cstat(env), rstat(env);
      cstat.add(IloCplex::AtUpper);
      cstat.add(IloCplex::Basic);
      cstat.add(IloCplex::Basic);
      rstat.add(IloCplex::AtLower);
      rstat.add(IloCplex::AtLower);
      cplex.setStatuses(cstat, var, rstat, rng);
      cplex.solve();

      cplex.out() << “Solution status = “ << cplex.getStatus() << endl;
      cplex.out() << “Solution value  = “ << cplex.getObjValue() << endl;
      cplex.out() << “Iteration count = “ << cplex.getNiterations() << endl;

      IloNumArray vals(env);
      cplex.getValues(vals, var);
      env.out() << “Values        = “ << vals << endl;
      cplex.getSlacks(vals, rng);
      env.out() << “Slacks        = “ << vals << endl;
      cplex.getDuals(vals, rng);
      env.out() << “Duals         = “ << vals << endl;
      cplex.getReducedCosts(vals, var);
      env.out() << “Reduced Costs = “ << vals << endl;

      cplex.exportModel(“lpex6.lp”);
   }
   catch (IloException& e) {
      cerr << “Concert exception caught: “ << e << endl;
   }
   catch (...) {
      cerr << “Unknown exception caught” << endl;
   }

   env.end();
   return 0;
}  // END main

static void



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 123

S
o

lvin
g

 L
P

 P
ro

b
lem

s

<functionhead>

populatebycolumn (IloModel model, IloNumVarArray x, IloRangeArray c)
{
   IloEnv env = model.getEnv();

   IloObjective obj = IloMaximize(env);
   c.add(IloRange(env, -IloInfinity, 20.0));
   c.add(IloRange(env, -IloInfinity, 30.0));

   x.add(IloNumVar(obj(1.0) + c[0](-1.0) + c[1]( 1.0), 35.0, 40.0));
   x.add(obj(2.0) + c[0]( 1.0) + c[1](-3.0));
   x.add(obj(3.0) + c[0]( 1.0) + c[1]( 1.0));

   model.add(obj);
   model.add(c);

}  // END populatebycolumn

Example lpex6.c

The example, lpex6.c, resembles one you may have studied in the ILOG CPLEX Getting 
Started manual, lpex1.c. This example differs from that earlier one in these ways:

◆ In the main routine, the arrays cstat and rstat set the status of the initial basis.

◆ After the problem data has been copied into the problem object, the basis is copied by a 
call to CPXcopybase().

◆ After the problem has been optimized, the iteration count is printed. For the given data 
and basis, the basis is optimal, so no iterations are required to optimize the problem.

The application begins with declarations of arrays to store the solution of the problem. Then, 
before it calls any other ILOG CPLEX routine, the application invokes the Callable Library 
routine CPXopenCPLEX() to initialize the ILOG CPLEX environment. Once the 
environment has been initialized, the application calls other ILOG CPLEX Callable Library 
routines, such as CPXsetintparam() with the argument CPX_PARAM_SCRIND to direct 
output to the screen and most importantly, CPXcreateprob() to create the problem object. 
The routine populatebycolumn() builds the problem object, and as we noted earlier, 
CPXcopybase() copies the advanced starting basis.

Before the application ends, it calls CPXfreeprob() to free space allocated to the problem 
object and CPXcloseCPLEX() to free the environment.

Complete Program

The complete program, lpex6.c, appears here or online in the standard distribution

#include <ilcplex/cplex.h>

/* Bring in the declarations for the string functions */



E X A M P L E :  U S I N G  A  S T A R T I N G  B A S I S  I N  A N  L P  P R O B L E M

124 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

#include <string.h>

/* Include declaration for function at end of program */

#ifndef  CPX_PROTOTYPE_MIN

static int
   populatebycolumn  (CPXENVptr env, CPXLPptr lp);

#else

static int
   populatebycolumn ();

#endif

/* The problem we are optimizing will have 2 rows, 3 columns 
   and 6 nonzeros.  */

#define NUMROWS    2
#define NUMCOLS    3
#define NUMNZ      6

#ifndef  CPX_PROTOTYPE_MIN
int
main (void)
#else
int
main ()
#endif
{
   char     probname[16];  /* Problem name is max 16 characters */
   int      cstat[NUMCOLS];
   int      rstat[NUMROWS];

   /* Declare and allocate space for the variables and arrays where we
      will store the optimization results including the status, objective
      value, variable values, dual values, row slacks and variable
      reduced costs. */

   int      solstat;
   double   objval;
   double   x[NUMCOLS];
   double   pi[NUMROWS];
   double   slack[NUMROWS];
   double   dj[NUMCOLS];

   CPXENVptr     env = NULL;
   CPXLPptr      lp = NULL;
   int           status;
   int           i, j;



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 125

S
o

lvin
g

 L
P

 P
ro

b
lem

s

<functionhead>

   int           cur_numrows, cur_numcols;

   /* Initialize the CPLEX environment */

   env = CPXopenCPLEX (&status);

   /* If an error occurs, the status value indicates the reason for
      failure.  A call to CPXgeterrorstring will produce the text of
      the error message.  Note that CPXopenCPLEX produces no output,
      so the only way to see the cause of the error is to use
      CPXgeterrorstring.  For other CPLEX routines, the errors will
      be seen if the CPX_PARAM_SCRIND indicator is set to CPX_ON.  */

   if ( env == NULL ) {
      char  errmsg[1024];
      fprintf (stderr, “Could not open CPLEX environment.\n”);
      CPXgeterrorstring (env, status, errmsg);
      fprintf (stderr, “%s”, errmsg);
      goto TERMINATE;
   }

   /* Turn on output to the screen */

   status = CPXsetintparam (env, CPX_PARAM_SCRIND, CPX_ON);
   if ( status ) {
      fprintf (stderr, 
               “Failure to turn on screen indicator, error %d.\n”, status);
      goto TERMINATE;
   }

   /* Create the problem. */

   strcpy (probname, “example”);
   lp = CPXcreateprob (env, &status, probname);

   /* A returned pointer of NULL may mean that not enough memory
      was available or there was some other problem.  In the case of 
      failure, an error message will have been written to the error 
      channel from inside CPLEX.  In this example, the setting of
      the parameter CPX_PARAM_SCRIND causes the error message to
      appear on stdout. */

   if ( lp == NULL ) {
      fprintf (stderr, “Failed to create LP.\n”);
      goto TERMINATE;
   }

   /* Now populate the problem with the data. */

   status = populatebycolumn (env, lp);

   if ( status ) {



E X A M P L E :  U S I N G  A  S T A R T I N G  B A S I S  I N  A N  L P  P R O B L E M

126 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

      fprintf (stderr, “Failed to populate problem data.\n”);
      goto TERMINATE;
   }

   /* We assume we know the optimal basis.  Variables 1 and 2 are basic,
      while variable 0 is at its upper bound */

   cstat[0] = CPX_AT_UPPER; 
   cstat[1] = CPX_BASIC;     
   cstat[2] = CPX_BASIC;

   /* The row statuses are all nonbasic for this problem */

   rstat[0] = CPX_AT_LOWER;
   rstat[1] = CPX_AT_LOWER;

   /* Now copy the basis */

   status = CPXcopybase (env, lp, cstat, rstat);
   if ( status ) {
      fprintf (stderr, “Failed to copy the basis.\n”);
      goto TERMINATE;
   }

   /* Optimize the problem and obtain solution. */

   status = CPXlpopt (env, lp);
   if ( status ) {
      fprintf (stderr, “Failed to optimize LP.\n”);
      goto TERMINATE;
   }

   status = CPXsolution (env, lp, &solstat, &objval, x, pi, slack, dj);
   if ( status ) {
      fprintf (stderr, “Failed to obtain solution.\n”);
      goto TERMINATE;
   }

   /* Write the output to the screen. */

   printf (“\nSolution status = %d\n”, solstat);
   printf (“Solution value  = %f\n”, objval);
   printf (“Iteration count = %d\n\n”, CPXgetitcnt (env, lp));

   /* The size of the problem should be obtained by asking CPLEX what
      the actual size is, rather than using sizes from when the problem 
      was built.  cur_numrows and cur_numcols store the current number 
      of rows and columns, respectively.  */

   cur_numrows = CPXgetnumrows (env, lp);
   cur_numcols = CPXgetnumcols (env, lp);
   for (i = 0; i < cur_numrows; i++) {



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 127

S
o

lvin
g

 L
P

 P
ro

b
lem

s

<functionhead>

      printf (“Row %d:  Slack = %10f  Pi = %10f\n”, i, slack[i], pi[i]);
   }

   for (j = 0; j < cur_numcols; j++) {
      printf (“Column %d:  Value = %10f  Reduced cost = %10f\n”,
              j, x[j], dj[j]);
   }

   /* Finally, write a copy of the problem to a file. */

   status = CPXwriteprob (env, lp, “lpex6.sav”, NULL);
   if ( status ) {
      fprintf (stderr, “Failed to write LP to disk.\n”);
      goto TERMINATE;
   }
   
TERMINATE:

   /* Free up the problem as allocated by CPXcreateprob, if necessary */

   if ( lp != NULL ) {
      status = CPXfreeprob (env, &lp);
      if ( status ) {
         fprintf (stderr, “CPXfreeprob failed, error code %d.\n”, status);
      }
   }

   /* Free up the CPLEX environment, if necessary */

   if ( env != NULL ) {
      status = CPXcloseCPLEX (&env);

      /* Note that CPXcloseCPLEX produces no output,
         so the only way to see the cause of the error is to use
         CPXgeterrorstring.  For other CPLEX routines, the errors will
         be seen if the CPX_PARAM_SCRIND indicator is set to CPX_ON. */

      if ( status ) {
         char  errmsg[1024];
         fprintf (stderr, “Could not close CPLEX environment.\n”);
         CPXgeterrorstring (env, status, errmsg);
         fprintf (stderr, “%s”, errmsg);
      }
   }
     
   return (status);

}  /* END main */

/* This function builds by column the linear program:



E X A M P L E :  U S I N G  A  S T A R T I N G  B A S I S  I N  A N  L P  P R O B L E M

128 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

      Maximize
       obj: x1 + 2 x2 + 3 x3
      Subject To
       c1: - x1 + x2 + x3 <= 20
       c2: x1 - 3 x2 + x3 <= 30
      Bounds
       0 <= x1 <= 40
      End
 */

#ifndef  CPX_PROTOTYPE_MIN
static int
populatebycolumn (CPXENVptr env, CPXLPptr lp)
#else
static int
populatebycolumn (env, lp)
CPXENVptr  env;
CPXLPptr   lp;
#endif
{
   int      status    = 0;
   double   obj[NUMCOLS];
   double   lb[NUMCOLS];
   double   ub[NUMCOLS];
   char     *colname[NUMCOLS];
   int      matbeg[NUMCOLS];
   int      matind[NUMNZ];
   double   matval[NUMNZ];
   double   rhs[NUMROWS];
   char     sense[NUMROWS];
   char     *rowname[NUMROWS];

   /* To build the problem by column, create the rows, and then 
      add the columns. */

   CPXchgobjsen (env, lp, CPX_MAX);  /* Problem is maximization */

   /* Now create the new rows.  First, populate the arrays. */

   rowname[0] = “c1”;
   sense[0]   = ‘L’;
   rhs[0]     = 20.0;

   rowname[1] = “c2”;
   sense[1]   = ‘L’;
   rhs[1]     = 30.0;

   status = CPXnewrows (env, lp, NUMROWS, rhs, sense, NULL, rowname);
   if ( status )   goto TERMINATE;

   /* Now add the new columns.  First, populate the arrays. */

       obj[0] = 1.0;      obj[1] = 2.0;           obj[2] = 3.0;



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 129

S
o

lvin
g

 L
P

 P
ro

b
lem

s

<functionhead>

    matbeg[0] = 0;     matbeg[1] = 2;          matbeg[2] = 4;
      
    matind[0] = 0;     matind[2] = 0;          matind[4] = 0;
    matval[0] = -1.0;  matval[2] = 1.0;        matval[4] = 1.0;
 
    matind[1] = 1;     matind[3] = 1;          matind[5] = 1;
    matval[1] = 1.0;   matval[3] = -3.0;       matval[5] = 1.0;

        lb[0] = 0.0;       lb[1] = 0.0;           lb[2]  = 0.0;
        ub[0] = 40.0;      ub[1] = CPX_INFBOUND;  ub[2]  = CPX_INFBOUND;

   colname[0] = “x1”; colname[1] = “x2”;      colname[2] = “x3”;

   status = CPXaddcols (env, lp, NUMCOLS, NUMNZ, obj, matbeg, matind,
                        matval, lb, ub, colname);
   if ( status )  goto TERMINATE;

TERMINATE:

   return (status);

}  /* END populatebycolumn */

Solving LP Problems with the Barrier Optimizer

This section tells you more about solving linear programming problems using the 
ILOG CPLEX Barrier Optimizer. (Chapter 7, Solving Quadratic Programming Problems, 
explains how to use the ILOG CPLEX Barrier Optimizer in convex quadratic problems.) It 
includes sections on:

◆ Identifying LPs for Barrier Optimization

◆ Interpreting the Barrier Log File

◆ Understanding Solution Quality from the Barrier LP Optimizer

◆ Overcoming Numerical Difficulties

◆ Diagnosing Barrier Optimizer Infeasibility

To use the ILOG CPLEX Barrier Optimizer in application development, you must hold a 
special, optional, development license. If you call barrier routines from the ILOG CPLEX 
Callable Library in your applications, your end users must be licensed for runtime or derived 
work. For more information about ILOG CPLEX licensing, contact your ILOG CPLEX 
representative. 



S O L V I N G  L P  P R O B L E M S  W I T H  T H E  B A R R I E R  O P T I M I Z E R

130 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

Identifying LPs for Barrier Optimization

The ILOG CPLEX Barrier Optimizer is well suited to large, sparse problems. An alternative 
to the simplex optimizers, it exploits a primal-dual logarithmic barrier algorithm to generate 
a sequence of strictly positive primal and dual solutions to a problem. ILOG CPLEX finds 
the primal solutions, conventionally denoted (x, s), from the primal formulation:

Minimize cTx

subject to Ax = b 

with these bounds x + s = u and x ≥ l 

where A is the constraint matrix, including slack and surplus variables; u is the upper and l 
the lower bounds on the variables. 

Simultaneously, ILOG CPLEX automatically finds the dual solutions, conventionally 
denoted (y, z, w) from the corresponding dual formulation:

Maximize bTy - uTw + lTz

subject to ATy - w + z = c

with these bounds w ≥ 0 and z ≥ 0

All possible solutions maintain strictly positive primal solutions (x - l, s) and strictly positive 
reduced costs (z, w) so that the value 0 (zero) forms a barrier for primal and dual variables 
within the algorithm.

ILOG CPLEX measures progress by the primal feasibility, dual feasibility, and duality gap 
at each iteration. To measure feasibility, ILOG CPLEX considers the accuracy with which 
the primal constraints (Ax = b, x + s = u) and dual constraints (ATy + z - w = c) are 
satisfied. The optimizer stops when it finds feasible primal and dual solutions that are 
complementary. A complementary solution is one where the sums of the products (xj -lj)zj 
and (uj - xj)zj are within some tolerance of 0 (zero). Since each (xj -lj), (uj - xj), and zj is 
strictly positive, the sum can be near zero only if each of the individual products is near zero. 
The sum of these products is known as the complementarity of the problem.

On each iteration of the barrier optimizer, ILOG CPLEX computes a matrix based on AAT 
and then computes a Cholesky factor of it. This factored matrix has the same number of 
nonzeros on each iteration. The number of nonzeros in this matrix is influenced by the 
barrier ordering parameter. The particular ordering that is most effective depends on the 
platform (computer hardware and operating system) and the specific problem.

The ILOG CPLEX Barrier Optimizer is appropriate and often advantageous for large 
problems, for example, those with more than 1000 rows or columns. It is effective on 
problems with staircase structures or banded structures in the constraint matrix. It is also 
effective on problems with a small number of nonzeros per column.

Its performance is most dependent on these characteristics:



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 131

S
o

lvin
g

 L
P

 P
ro

b
lem

s

<functionhead>

◆ the number of nonzeros in the Cholesky factor;

◆ the presence of dense columns, that is, columns with a relatively high number of nonzero 
entries.

To decide whether to use the barrier optimizer on a given problem, you should look at both 
these characteristics. (We explain how to check those characteristics later in this chapter in 
Step 2 and Step 3 on page 132.)

Barrier Simplex Crossover

Since many users prefer basic solutions because they can be used to restart optimization, the 
ILOG CPLEX Barrier Optimizer includes basis crossover algorithms. By default, the 
Interactive Barrier Optimizer baropt automatically invokes a primal crossover when the 
barrier algorithm terminates (unless termination occurs abnormally because of insufficient 
memory or numerical difficulties). Optionally, you can also execute barrier optimization 
with a dual crossover or with no crossover at all. The section Using the Barrier Optimizer in 
the Interactive Optimizer on page 132 explains how to control crossover in the Interactive 
Optimizer. From the Callable Library, use the routine CPXhybbaropt() with an argument 
to indicate crossover.

Differences between Barrier and Simplex Optimizers

The barrier optimizer and the simplex optimizers (primal and dual) are fundamentally 
different approaches to solving linear programming problems. The key differences between 
them have these implications:

◆ Simplex and barrier optimizers differ with respect to the nature of solutions.

Simplex solutions are basic solutions. Barrier solutions are not. Consequently, when you 
use the barrier optimizer alone, you get no basis for advanced restarts. If you want to 
optimize the same or similar problems repeatedly, the barrier optimizer alone may not be 
appropriate. 

Also since a barrier solution is not a basic solution, no range information is available for 
sensitivity analysis when you use the barrier optimizer alone.

Furthermore, barrier solutions tend to be midface solutions. In cases where multiple 
optima exist, barrier solutions tend to place the variables at values between their bounds, 
whereas in basic solutions from a simplex technique, the values of the variables are more 
likely to be at either their upper or their lower bound. While objective values will be the 
same, the nature of the solutions can be very different.

◆ Simplex and barrier optimizers have different numerical properties, sensitivity, and 
behavior. For example, the barrier optimizer is sensitive to the presence of unbounded 
optimal faces, whereas the simplex optimizers are not. As a result, problems that are 
numerically difficult for one method may be easier to solve by the other.



S O L V I N G  L P  P R O B L E M S  W I T H  T H E  B A R R I E R  O P T I M I Z E R

132 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

◆ Simplex and barrier optimizers have different memory requirements. Depending on the 
size of the Cholesky factor, the barrier optimizer can require significantly more memory 
than the simplex optimizers.

◆ Simplex and barrier optimizers work well on different types of problems. The barrier 
optimizer works well on problems where the AAT remains sparse. Also, highly 
degenerate problems that pose difficulties for the primal or dual simplex optimizers may 
be solved quickly by the barrier optimizer. In contrast, the simplex optimizers will 
probably perform better on problems where the AAT and the resulting Cholesky factor 
are relatively dense, though it is sometimes difficult to predict from the dimensions of the 
model when this will be the case.

Using the Barrier Optimizer

We have described how the ILOG CPLEX Barrier Optimizer finds primal and dual solutions 
from the primal and dual formulations of a model (see the section Identifying LPs for Barrier 
Optimization on page 130) , but you do not have to reformulate the problem yourself. The 
ILOG CPLEX Barrier Optimizer automatically creates the primal and dual formulations of 
the problem for you after you enter or read in the problem.

Using the Barrier Optimizer in the Interactive Optimizer

In the Interactive Optimizer, we recommend this way of working with the ILOG CPLEX 
Barrier Optimizer:

1. Enter the problem. You enter an LP problem to solve with the barrier optimizer just as 
you enter other LP problems. In the Interactive Optimizer, use the enter command to 
type in the problem data interactively, or use the read command to read a problem from 
a file in MPS, LP, or SAV format.

2. Check the number of nonzeros in the Cholesky factor. To do so, use the command 
set barrier limits iterations 0; then use the command baropt stop. These 
two commands together will make ILOG CPLEX count the number of nonzeros in the 
Cholesky factor but stop before it begins barrier iterations.

3. Check for dense columns. If you use the command display problem histogram c, 
ILOG CPLEX will show you the number of columns with nonzeros in the 
unpreprocessed problem. If you want to see the density of columns in the processed, 
presolved, aggregated problem, do this:

a. Write the preprocessed problem to a file with the file extension .pre; use the write 
command to do so.

b. Read the file in with the read command.

c. Display the histogram with its column option: display problem histogram c. 
You will be able to identify dense columns at a glance.



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 133

S
o

lvin
g

 L
P

 P
ro

b
lem

s

<functionhead>

4. Use the baropt command to start optimization.

The option stop tells ILOG CPLEX to stop with a nonbasis barrier solution. 
(Afterwards, you can apply the command primopt or tranopt explicitly to this 
nonbasis, barrier solution to cross over to a primal or dual basic solution.)

The option primopt (or the shortcut p) tells ILOG CPLEX to cross over automatically 
to a basic solution using the primal simplex optimizer.

The option dualopt (or the shortcut d) tells ILOG CPLEX to cross over to a basic 
solution using the dual simplex optimizer.

If you specify no option, ILOG CPLEX assumes dualopt.

5. Check ILOG CPLEX progress. Use the command set barrier display to change 
the level of information displayed on the screen or logged to a file.

Using the Barrier Optimizer in the Component Libraries

Initialize the ILOG CPLEX environment, create the problem object, and populate the 
problem object, as explained in Creating an Application with CPLEX Concert Technology 
Library on page 29 and Using the Callable Library in an Application on page 57. 

◆ In the Concert Technology Library, use the method:

● cplex.setRootAlgorithm(IloCplex::Barrier) to invoke the CPLEX Barrier 
Optimizer without crossover.

● cplex.setRootAlgorithm(IloCplex::BarrierPrimal) to invoke the CPLEX 
Barrier Optimizer with primal crossover.

● cplex.setRootAlgorithm(IloCplex::BarrierDual) to invoke the CPLEX 
Barrier Optimizer with dual crossover.

◆ In the Callable Library, use the routine:

● CPXhybbaropt() to invoke the ILOG CPLEX Barrier Optimizer with crossover.

● CPXbaropt() to invoke the ILOG CPLEX Barrier Optimizer without crossover.

Special Options

In addition to the parameters available for other ILOG CPLEX LP optimizers, there are also 
parameters to control the ILOG CPLEX Barrier Optimizer. In the Interactive Optimizer, to 
see a list of the parameters specific to the ILOG CPLEX Barrier Optimizer, use the 
command set barrier.



S O L V I N G  L P  P R O B L E M S  W I T H  T H E  B A R R I E R  O P T I M I Z E R

134 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

Controlling Crossover

In the Concert Technology Library, crossover is specified in the method that invokes the 
optimizer.

In the Interactive Optimizer, options to the baropt command control whether the 
ILOG CPLEX Barrier Optimizer stops with a nonbasic solution or crosses over to a simplex 
optimizer to generate a basic solution. Table 4.8 summarizes those options to the baropt 
command in the Interactive Optimizer.  

Table 4.9 shows you the corresponding routines from the Callable Library.  

Using VEC File Format

When you use the ILOG CPLEX Barrier Optimizer with no crossover (for example, with the 
command baropt stop), you can save the primal and dual variable values and their 
associated reduced cost and dual values in a VEC-format file. You can then read that VEC 
file into ILOG CPLEX before you initiate a crossover at a later time. After you read a VEC 
file into ILOG CPLEX, all three optimizers—primal simplex, dual simplex, and barrier 
simplex—automatically invoke crossover. 

Even if you have set the advanced basis indicator to no (meaning that you do not intend to 
start from an advanced basis), ILOG CPLEX automatically resets the indicator to yes when 

Table 4.8 Options to the Barrier Optimizer to Control Crossover

Option Purpose

(no option) ILOG CPLEX assumes primopt option

stop ILOG CPLEX stops optimization with a nonbasic, barrier 
solution

primopt After barrier optimization, ILOG CPLEX uses primal 
crossover

dualopt After barrier optimization, ILOG CPLEX uses dual 
crossover

Table 4.9 Routines of the Callable Library to Control Crossover

Option Callable Library routine

(no option) CPXhybbaropt (env, lp, CPX_ALG_PRIMAL)

stop CPXbaropt (env, lp)

primopt CPXhybbaropt (env, lp, CPX_ALG_PRIMAL)

dualopt CPXhybbaropt (env, lp, CPX_ALG_DUAL)



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 135

S
o

lvin
g

 L
P

 P
ro

b
lem

s

<functionhead>

it reads a VEC file. If you turn off the advanced basis indicator after reading a VEC file, then 
the simplex optimizers will honor this setting and will not initiate crossover.

Interpreting the Barrier Log File 

Like the ILOG CPLEX Simplex Optimizers, the ILOG CPLEX Barrier Optimizer records 
information about its progress in a log file as it works. Some users find it helpful to keep a 
new log file for each session. By default, ILOG CPLEX records information in a file named 
cplex.log. In the:

◆ Interactive Optimizer, use the command set logfile filename to change the name 
of the log file. 

◆ Callable Library, use the routine CPXsetlogfile() with arguments to indicate the log 
file.

You can control the level of information about barrier optimization that ILOG CPLEX 
records in the log file. 

◆ Level one, the default, includes the usual and customary information, explained in 
greater detail later in this section. 

◆ Level two, rarely needed, gives information about the automatically computed barrier 
column-nonzeros parameter and provides diagnostic detail for ILOG CPLEX technical 
support. To set level two, in the:

● Interactive Optimizer, use the command set barrier display 2. 

● From the Callable Library, set the parameter CPX_PARAM_BARDISPLAY. 

◆ To turn off progress information entirely, use the value 0 (zero) in the command or 
routine.



S O L V I N G  L P  P R O B L E M S  W I T H  T H E  B A R R I E R  O P T I M I Z E R

136 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

To give you an idea about a barrier log file, here is the log file for a pure barrier optimization 
(that is, the baropt command with the stop option) at display level one (the default). 

Preprocessing in the Log File

The opening lines of that log file record information about preprocessing by the 
ILOG CPLEX presolver and aggregator. After those preprocessing statistics, the next line 
records the number of nonzeros in the lower triangle of a particular matrix, AAT, denoted 
A*A’ in the log file.

Nonzeros in Lower Triangle of AAT in the Log File

The number of nonzeros in the lower triangle of AAT gives an early indication of how long 
each barrier iteration will take. The larger this number, the more time each barrier iteration 
requires. If this number is close to 50% of the square of the number of rows, then the 
problem may contain dense columns that are not being detected. In that case, examine the 
histogram of column counts; then consider setting the barrier column-nonzeros parameter to 
a value that enables ILOG CPLEX to treat more columns as being dense.

Ordering-Algorithm Time in the Log File

After the number of nonzeros in the lower triangle of AAT, ILOG CPLEX records the time 
required by the ordering algorithm. (The ILOG CPLEX Barrier Optimizer offers you a 
choice of four ordering algorithms, explained in Choosing an Ordering Algorithm on 
page 142.) This line in the log file verifies that ILOG CPLEX is using the order you chose.

Tried aggregator 1 time.
LP Presolve eliminated 9 rows and 11 columns.
Aggregator did 6 substitutions.
Reduced LP has 12 rows, 15 columns, and 38 nonzeros.
Presolve time =    0.00 sec.
Number of nonzeros in lower triangle of A*A’ = 26
Using Approximate Minimum Degree ordering
Total time for automatic ordering = 0.00 sec.
Summary statistics for Cholesky factor:
  Rows in Factor            = 12
  Integer space required    = 12
  Total non-zeros in factor = 78
  Total FP ops to factor    = 650
 Itn      Primal Obj        Dual Obj  Prim Inf Upper Inf  Dual Inf          
   0  -1.3177911e+01  -1.2600000e+03  6.55e+02  0.00e+00  3.92e+01
   1  -4.8683118e+01  -5.4058675e+02  3.91e+01  0.00e+00  1.18e+01
   2  -1.6008142e+02  -3.5969226e+02  1.35e-13  7.11e-15  5.81e+00
   3  -3.5186681e+02  -6.1738305e+02  1.59e-10  1.78e-15  5.16e-01
   4  -4.5808732e+02  -4.7450513e+02  5.08e-12  1.95e-14  4.62e-02
   5  -4.6435693e+02  -4.6531819e+02  1.66e-12  1.27e-14  1.59e-03
   6  -4.6473085e+02  -4.6476678e+02  5.53e-11  2.17e-14  2.43e-15
   7  -4.6475237e+02  -4.6475361e+02  5.59e-13  2.99e-14  2.19e-15
   8  -4.6475312e+02  -4.6475316e+02  1.73e-13  1.55e-14  1.17e-15
   9  -4.6475314e+02  -4.6475314e+02  1.45e-13  2.81e-14  2.17e-15

Barrier - Optimal:  Objective =   -4.6475314194e+02
Solution time =    0.01 sec.  Iterations = 9



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 137

S
o

lvin
g

 L
P

 P
ro

b
lem

s

<functionhead>

Cholesky Factor in the Log File

After the time required by the ordering algorithm, ILOG CPLEX records information about 
the Cholesky factor. ILOG CPLEX computes this matrix on each iteration. The number of 
rows in the Cholesky factor represents the number after preprocessing. The size of the dense 
window indicates how dense the factored matrix is. If the size of the dense window is large 
with respect to the number of rows, then the Cholesky factor is dense, and consequently, the 
ILOG CPLEX Barrier Optimizer will require more time per iteration.

The next line of information about the Cholesky factor—integer space required—indicates 
the amount of memory needed to store the sparsity pattern of the factored matrix. If this 
number is low, then the factor can be computed more quickly than when the number is high.

Information about the Cholesky factor ends with the number of nonzeros in the factored 
matrix. This number is directly related to the time required per iteration of the ILOG CPLEX 
Barrier Optimizer. In fact, the difference between this number and the number of nonzeros in 
AAT indicates the fill-level of the Cholesky factor. If the fill-level is large, consider an 
alternate ordering algorithm.

Iteration Progress in the Log File

After the information about the Cholesky factor, the log file records progress at each 
iteration. It records both primal and dual objectives (as Primal Obj and Dual Obj) per 
iteration.

It also records absolute infeasibilities per iteration. Internally, the ILOG CPLEX Barrier 
Optimizer treats inequality constraints as equality constraints with added slack and surplus 
variables. Consequently, primal constraints in a problem are written as Ax = b and x + s = u, 
and the dual constraints are written as ATy + z - w = c. As a result, in the log file, the 
infeasibilities represent norms, as summarized in Table 4.10.  

If solution values are large in absolute value, then the infeasibilities may appear inordinately 
large because they are recorded in the log file in absolute terms. The optimizer uses relative 
infeasibilities as termination criteria.

Infeasibility Ratio in the Log File

If you are using one of the barrier infeasibility algorithms available in the ILOG CPLEX 
Barrier Optimizer (that is, in the Interactive Optimizer you have used the command 
set barrier algorithm 1 or set barrier algorithm 2 or from the Callable 

Table 4.10 Infeasibilities and Norms in the Log File of a Barrier Optimization

Infeasibility In log file Norm

primal Prim Inf |b - Ax|

upper Upper Inf |u - (x + s)|

dual Dual Inf |c - yA - z + w|



S O L V I N G  L P  P R O B L E M S  W I T H  T H E  B A R R I E R  O P T I M I Z E R

138 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

Library, you used the routine CPXsetintparam() to set the parameter 
CPX_PARAM_BARALG to the value 1 or 2), then ILOG CPLEX records an additional column 
of output titled Inf Ratio, the infeasibility ratio. This ratio, always positive, is a measure 
of progress for that particular algorithm. In a problem with an optimal solution, you will see 
this ratio increase to a large number. In contrast, in a problem that is primal infeasible or dual 
infeasible, this ratio will decrease to a very small number.

Understanding Solution Quality from the Barrier LP Optimizer

When ILOG CPLEX successfully solves a problem with the ILOG CPLEX Barrier 
Optimizer, it reports the optimal objective value and solution time in a log file, as it does for 
other LP optimizers.

Because barrier solutions (prior to crossover) are not basic solutions, certain solution 
statistics associated with basic solutions are not available for a strictly barrier solution. For 
example, reduced costs and dual values are available for strictly barrier LP solutions, but 
range information about them is not.

To help you evaluate the quality of a barrier solution more readily, ILOG CPLEX offers a 
special display of information about barrier solution quality. To display this information in 
the Interactive Optimizer, use the command display solution quality after 
optimization. When using the Component Libraries, use the method 
cplex.getQuality() or use the routines CPXgetintquality() for integer information 
and CPXgetdblquality() for double-valued information.

Table 4.11 Barrier Solution Quality Display

Item Meaning

primal objective primal objective value cTx

dual objective dual objective value bTy - uTw + lTz

duality gap difference between primal and dual objectives

complementarity sum of column and row complementarity

column complementarity (total) sum of |(xj - lj )• zj| + |(uj - xj )• wj|

column complementarity (max) maximum of |(xj - lj )• zj| and |(uj - xj )• wj| over 
all variables

row complementarity (total) sum of |slacki • yi|

row complementarity (max) maximum of |slacki • yi|

primal norm |x| (total) sum of absolute values of all primal variables



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 139

S
o

lvin
g

 L
P

 P
ro

b
lem

s

<functionhead>

Table 4.11 lists the items ILOG CPLEX displays and explains their meaning. In the solution 
quality display, the term pi refers to dual solution values, that is, the y values in the 
conventional barrier problem-formulation. The term rc refers to reduced cost, that is, the 
difference z - w in the conventional barrier problem-formulation. Other terms are best 
understood in the context of primal and dual LP formulations. 

Normalized errors, for example, represent the accuracy of satisfying the constraints while 
considering the quantities used to compute Ax on each row and yTA on each column. In the 
primal case, for each row, we consider the nonzero coefficients and the xj values used to 
compute Ax. If these numbers are large in absolute value, then it is acceptable to have a 
larger absolute error in the primal constraint.

Similar reasoning applies to the dual constraint.

primal norm |x| (max) maximum of absolute values of all primal 
variables

dual norm |rc| (total) sum of absolute values of all reduced costs

dual norm |rc| (max) maximum of absolute values of all reduced 
costs

primal error (Ax = b) (total, max) total and maximum error in satisfying primal 
equality constraints

dual error (A’pi + rc = c) (total, max) total and maximum error in satisfying dual 
equality constraints

primal x bound error (total, max) total and maximum error in satisfying primal 
lower and upper bound constraints

primal slack bound error (total, max) total and maximum violation in slack variables

dual pi bound error (total, max) total and maximum violation with respect to zero 
of dual variables on inequality rows

dual rc bound error (total, max) total and maximum violation with respect to zero 
of reduced costs

primal normalized error (Ax = b) (max) accuracy of primal constraints

dual normalized error (A'pi + rc = c) 
(max)

accuracy of dual constraints

Table 4.11 Barrier Solution Quality Display (Continued)

Item Meaning



S O L V I N G  L P  P R O B L E M S  W I T H  T H E  B A R R I E R  O P T I M I Z E R

140 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

If ILOG CPLEX returned an optimal solution, but the primal error seems high to you, the 
primal normalized error should be low, since it takes into account the scaling of the problem 
and solution.

After a simplex optimization—whether primal, dual, or network—or after a crossover, the 
display command will display information related to the quality of the simplex solution.

Tuning Barrier Optimizer Performance

Naturally, the default parameter settings for the ILOG CPLEX Barrier Optimizer work best 
on most problems. However, you can tune several algorithmic parameters to improve 
performance or to overcome numerical difficulties. These parameters are described in the 
sections:

◆ Out-of-Core Barrier: Letting the Optimizer Use Disk for Storage

◆ Preprocessing: the Presolver and Aggregator

◆ Detecting and Eliminating Dense Columns

◆ Choosing an Ordering Algorithm

◆ Using a Starting-Point Heuristic

In addition, several parameters set termination criteria. With them, you control when 
ILOG CPLEX stops optimization. 

You can also control convergence tolerance—another factor that influences performance. 
Convergence tolerance determines how nearly optimal a solution ILOG CPLEX must find: 
tight convergence tolerance means ILOG CPLEX must keep working until it finds a solution 
very close to the optimal one; loose tolerance means ILOG CPLEX can return a solution 
within a greater range of the optimal one and thus stop calculating sooner.

Performance of the ILOG CPLEX Barrier Optimizer is most highly dependent on the size of 
the Cholesky factor computed at each iteration. When you adjust barrier parameters, always 
check their impact on the size of the Cholesky factor. At default output settings, this size is 
reported at the beginning of each barrier optimization in the log file, as we explain in 
Cholesky Factor in the Log File on page 137.

Another important performance issue is the presence of dense columns. By a dense column, 
we mean that a given variable appears in a relatively large number of rows. You can check 
column density as we suggest in Step 3 on page 132. We also say more about column 
density in Detecting and Eliminating Dense Columns on page 142.

In adjusting parameters, you may need to experiment to find beneficial settings because the 
precise effect of parametric changes will depend on the nature of your LP problem as well as 
your platform (hardware, operating system, compiler, etc.). Once you have found 
satisfactory parametric settings, keep them in a parameter specification file for re-use, as 
explained in Saving a Parameter Specification File on page 339.



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 141

S
o

lvin
g

 L
P

 P
ro

b
lem

s

<functionhead>

Out-of-Core Barrier: Letting the Optimizer Use Disk for Storage

Under default settings, the CPLEX Barrier Optimizer will do all of its work using central 
memory (variously referred to also as RAM, core, or physical memory). For models too 
large to solve in the central memory  on your computer, or in cases where it is simply not 
desired to use this  much memory, it is possible to instruct the barrier optimizer to use disk 
for part of  the working storage it needs, specifically the Cholesky factorization.  Since disk 
is slower than central memory, there may be some lost  performance by making this choice 
on models that could be solved entirely in central memory, but the out-of-core feature in the 
CPLEX  Barrier Optimizer is designed to make this as efficient as possible. It generally will 
be far more effective than relying on the operating  system’s virtual memory (swap space).

To activate out-of-core Barrier:

◆ In the Interactive Optimizer, use the command: set barrier outofcore yes.

◆ When using the Component Libraries, set the parameter IloCplex::BarOOC or 
CPX_PARAM_BAROOC to 1.

Even when out-of-core Barrier is activated, the factorization will stay  in central memory 
unless its size exceeds the value of the Working Memory  parameter. The default for this 
parameter is 128, meaning 128 megabytes.  

To select a different threshold for use of disk working storage, say  32 megabytes:

◆ In the Interactive Optimizer, use the command: set workmem  32. 

◆ When using the Component Libraries, set the parameter  IloCplex::WorkMem or 
CPX_PARAM_WORKMEM.

When Barrier is being run out-of-core, the location of disk storage is controlled by the 
Working Directory parameter. For example, if you wish to use the directory /tmp/mywork 
for this purpose, where this directory already exists at the start of the CPLEX Barrier run:

◆ In the Interactive Optimizer, use the command set workdir /tmp/mywork.

◆ When using the Component Libraries, set the parameter IloCplex::WorkDir or 
CPX_PARAM_WORKDIR to be the string ’/tmp/mywork’.

Preprocessing: the Presolver and Aggregator

For best performance of the ILOG CPLEX Barrier Optimizer, preprocessing should almost 
always be on. That is, we recommend that you use the default setting where the presolver 
and aggregator are active. While they may use more memory, they also reduce the problem, 
and problem reduction is crucial to barrier optimizer performance. In fact, reduction is so 
important that even when you turn off preprocessing, ILOG CPLEX still applies minimal 
presolving before barrier optimization.

For problems that contain linearly dependent rows, it is a good idea to turn on the 
preprocessing dependency parameter. (By default, it is off.) This dependency checker may 



S O L V I N G  L P  P R O B L E M S  W I T H  T H E  B A R R I E R  O P T I M I Z E R

142 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

add some preprocessing time, but it can detect and remove linearly dependent rows to 
improve overall performance.

To turn on the preprocessing dependency parameter:

◆ In the Interactive Optimizer, use the command set preprocessing dependency 1. 

◆ When using the Component Libraries, set the parameter IloCplex::DepInd or 
CPX_PARAM_DEPIND.

Detecting and Eliminating Dense Columns

Dense columns can significantly degrade barrier optimizer performance. (A dense column is 
one in which a given variable appears in many rows.) For that reason, we recommend that 
after you enter or read a problem for barrier optimization, you check it for dense columns by 
inspecting its column histogram after preprocessing, as in Step 3 on page 132.

In fact, when a few dense columns are present in a problem, it is often effective to 
reformulate the problem to remove those dense columns from the model.

Otherwise, you can control whether ILOG CPLEX perceives columns as dense by setting 
the column nonzeros parameter. At its default setting, ILOG CPLEX calculates an 
appropriate value for this parameter automatically. However, if your problem contains one 
(or a few) dense columns that remain undetected at the default setting, you can adjust this 
parameter yourself to help ILOG CPLEX detect it (or them). For example, in a large 
problem in which one column contains forty entries while the other columns contain less 
than five entries, you will benefit by setting the column nonzeros parameter to 30. This 
setting allows ILOG CPLEX to recognize that column as dense and thus invoke techniques 
to handle it.

To set the column nonzeros parameter:

◆ In the Interactive Optimizer, use the command set barrier colnonzeros i, 
substituting a positive integer for i. 

◆ When using the Component Libraries, set the parameter IloCplex::BarColNz or  
CPX_PARAM_BARCOLNZ.

Once ILOG CPLEX detects a dense column, it takes steps to eliminate it.

Choosing an Ordering Algorithm

ILOG CPLEX offers several different algorithms in the CPLEX Barrier Optimizer for 
ordering the rows of a matrix: 

◆ automatic, the default, indicated by the value 0;

◆ approximate minimum degree (AMD), indicated by the value 1;

◆ approximate minimum fill (AMF) indicated by the value 2;

◆ nested dissection (ND) indicated by the value 3.



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 143

S
o

lvin
g

 L
P

 P
ro

b
lem

s

<functionhead>

The log file, as we explain in Ordering-Algorithm Time in the Log File on page 136, records 
the time spent by the ordering algorithm in a barrier optimization, so you can experiment 
with different ordering algorithms and compare their performance on your problem.

Automatic ordering, the default option, will usually be the best choice. This option attempts 
to choose the most effective of the available ordering methods, and it usually results in the 
best order. It may require more time than the other settings. The ordering time is usually 
small relative to the total solution time, and a better order can lead to a smaller total solution 
time. In other words, a change in this parameter is unlikely to improve performance very 
much.

The AMD algorithm provides good quality order within moderate ordering time. AMF 
usually provides better order than AMD (usually 5-10% smaller factors) but it requires 
somewhat more time (10-20% more). ND often produces significantly better order than 
AMD or AMF. Ten-fold reductions in runtimes of the ILOG CPLEX Barrier Optimizer have 
been observed with it on some problems. However, ND sometimes produces worse order, 
and it requires much more time.

To change from one ordering algorithm to another:

◆ In the Interactive Optimizer, use the command set barrier ordering i, 
substituting a value (0, 1, 2, or 3) for i. 

◆ When using the Component Libraries, set the parameter IloCplex::BarOrder or  
CPX_PARAM_BARORDER.

Using a Starting-Point Heuristic

ILOG CPLEX supports several different heuristics to compute the starting point for the 
ILOG CPLEX Barrier Optimizer. Table 4.12 summarizes the parameter values to indicate 
which starting-point heuristic to use. 

For most problems the default works well. Indeed, changing the starting-point heuristic may 
even worsen performance overall. However, if you are using the dual preprocessing option 
(for example, set preprocessing dual 1), then one of the other heuristics for 
computing a starting point may perform better than the default.

Table 4.12 Parameter Values for Starting-Point Heuristics

Value Heuristic

1 dual is 0 (default)

2 estimate dual

3 average primal estimate, dual 0

4 average primal estimate, estimate dual



S O L V I N G  L P  P R O B L E M S  W I T H  T H E  B A R R I E R  O P T I M I Z E R

144 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

To change the starting point heuristic:

◆ In the Interactive Optimizer, use the command set barrier startalg i, 
substituting a value for i. 

◆ When using the Component Libraries, set the parameter IloCplex::BarStartAlg or  
CPX_PARAM_BARSTARTALG.

Overcoming Numerical Difficulties

As we noted in Differences between Barrier and Simplex Optimizers on page 131, the 
algorithms in the barrier optimizer have very different numerical properties from those in the 
simplex optimizer. While the barrier optimizer is often extremely fast, particularly on very 
large problems, numerical difficulties occasionally arise with it in certain classes of 
problems. For that reason, we recommend that you run simplex optimizers in conjunction 
with the barrier optimizer to verify solutions. At its default settings, the ILOG CPLEX 
Barrier Optimizer always crosses over after a barrier solution to a simplex optimizer, so this 
verification occurs automatically.

Difficulties in the Quality of Solution

Understanding Solution Quality from the Barrier LP Optimizer on page 138 lists the items 
that ILOG CPLEX displays about the quality of a barrier solution. If the ILOG CPLEX 
Barrier Optimizer terminates its work with a solution that does not meet your quality 
requirements, you can adjust parameters that influence the quality of a solution. Those 
adjustments affect the choice of ordering algorithm, the choice of barrier algorithm, the limit 
on barrier corrections, and the choice of starting-point heuristic—topics introduced in 
Tuning Barrier Optimizer Performance on page 140 and recapitulated here in the following 
subsections.

Change the Ordering Algorithm

As we explain about tuning performance in Choosing an Ordering Algorithm on page 142, 
you can choose one of several ordering algorithms to use in the ILOG CPLEX Barrier 
Optimizer. To improve the quality of a solution in some problems, change the ordering 
algorithm, as suggested on page 143.

Change the Barrier Algorithm

The ILOG CPLEX Barrier Optimizer implements the algorithms listed in Table 4.13. The 
default option invokes option 3 for LPs and option 1 for MIPs where the ILOG CPLEX 
Barrier Optimizer is used on the subproblems. Naturally, the default is the fastest for most 
problems, but it may not work well on problems that are primal infeasible or dual infeasible. 
Options 1 and 2 in the ILOG CPLEX Barrier Optimizer implement a barrier algorithm that 
also detects infeasibility. (They differ from each other in how they compute a starting point.) 
Though they are slower than the default option, in a problem demonstrating numerical 



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 145

S
o

lvin
g

 L
P

 P
ro

b
lem

s

<functionhead>

difficulties, they may eliminate the numerical difficulties and thus improve the quality of the 
solution. 

To change the barrier algorithm:

◆ In the Interactive Optimizer, use the command set barrier algorithm i. 

◆ When using the Component Libraries, set the parameter IloCplex::BarAlg or  
CPX_PARAM_BARALG.

Change the Limit on Barrier Corrections 

The default barrier algorithm in the ILOG CPLEX Barrier Optimizer computes an estimate 
of the maximum number of centering corrections that ILOG CPLEX should make on each 
iteration. You can see this computed value by setting barrier display level two, as explained 
in Interpreting the Barrier Log File on page 135, and checking the value of the parameter to 
limit corrections. (Its default value is -1.) If you see that the current value is 0 (zero), then 
you should experiment with greater settings. Setting this parameter to a value greater than 0 
may improve numerical performance, but there may also be an increase in computation time. 

To set the parameter to limit barrier corrections:

◆ In the Interactive Optimizer use the command 
set barrier limits corrections i, substituting an integer greater than zero but 
less than or equal to ten for i. 

◆ When using the Component Libraries, set the parameter IloCplex::BarMaxCor or  
CPX_PARAM_BARMAXCOR.

Choose a Different Starting-Point Heuristic

As we explained in Using a Starting-Point Heuristic on page 143, the default starting-point 
heuristic works well for most problems suitable to barrier optimization, and in fact, changing 
the starting-point heuristic can worsen performance. However, if you are preprocessing your 
problem as dual (for example, in the Interactive Optimizer you issued the command 
set preprocessing dual), then a different starting-point heuristic may perform better 
than the default. To change the starting-point heuristic, see Table 4.12 on page 143.

Table 4.13 Values of the Parameter to Choose the Algorithm in the Barrier Optimizer

Value Meaning

0 default

1 algorithm starts with infeasibility estimate 

2 algorithm starts with infeasibility constant

3 standard barrier algorithm



S O L V I N G  L P  P R O B L E M S  W I T H  T H E  B A R R I E R  O P T I M I Z E R

146 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

Difficulties during Optimization

Numerical difficulties can degrade performance of the ILOG CPLEX Barrier Optimizer or 
even prevent convergence toward a solution. There are several possible sources of numerical 
difficulties:

◆ elimination of too many dense columns may cause numerical instability;

◆ tight convergence tolerance may aggravate small numerical inconsistencies in a problem;

◆ unbounded optimal faces may remain undetected and thus prevent convergence.

The following subsections offer guidance about overcoming those difficulties.

Numerical Instability Due to Elimination of Too Many Dense Columns 

Detecting and Eliminating Dense Columns on page 142 explains how to change parameters 
to encourage ILOG CPLEX to detect and eliminate as many dense columns as possible. 
However, in some problems, if ILOG CPLEX removes too many dense columns, it may 
cause numerical instability. 

You can check how many dense columns ILOG CPLEX removes by looking at the 
preprocessing statistics at the beginning of the log file, as we explained in Preprocessing in 
the Log File on page 136. If you observe that the removal of too many dense columns results 
in numerical instability in your problem, then increase the column nonzeros parameter.

The default value of the column nonzeros parameter is 0 (zero); that value tells 
ILOG CPLEX to calculate the parameter automatically.

To see the current value of the column nonzeros parameter—either one you have set or one 
ILOG CPLEX has automatically calculated—you need to look at the level two display. To 
see the level two display:

◆ In the Interactive Optimizer, use the command set barrier display 2. 

◆ From the Callable Library, set the parameter CPX_PARAM_BARDISPLAY. 

Either alternative will record level two information in the log file, where you can see the 
current value of the column nonzeros parameter.

If you determine that the current value of the column nonzeros parameter is inappropriate for 
your problem and thus tells ILOG CPLEX to remove too many dense columns, then you can 
increase the parameter to keep the number of dense columns removed low. In the Interactive 
Optimizer, use the command set barrier colnonzeros i, substituting a larger value 
for i. When using the Component Libraries, set the parameter IloCplex::BarColNz or 
CPX_PARAM_BARCOLNZ.

Small Numerical Inconsistencies and Tight Convergence Tolerance 

If your problem contains small numerical inconsistencies, it may be difficult for the 
ILOG CPLEX Barrier Optimizer to achieve a satisfactory solution at the default setting of 
the complementarity convergence tolerance. In such a case, you should increase that 
tolerance to a value greater than its default, 1e-8. 



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 147

S
o

lvin
g

 L
P

 P
ro

b
lem

s

<functionhead>

To increase complementarity convergence tolerance:

◆ In the Interactive Optimizer, use the command set barrier convergetol i, 
substituting a greater than or equal to 1e-10 for i. 

◆ When using the Component Libraries, set the parameter IloCplex::BarEpComp or 
CPX_PARAM_BAREPCOMP.

Unbounded Variables and Unbounded Optimal Faces

An unbounded optimal face occurs in an LP that contains a sequence of optimal solutions, 
all with the same value for the objective function and unbounded variable values. The 
ILOG CPLEX Barrier Optimizer will fail to terminate normally if an undetected unbounded 
optimal face exists.

Normally, the ILOG CPLEX Barrier Optimizer uses its barrier growth parameter to detect 
such conditions. If this parameter is increased beyond it default value, the ILOG CPLEX 
Barrier Optimizer will be less likely to determine that the problem has an unbounded 
optimal face and more likely to encounter numerical difficulties.

Consequently, you should change the barrier growth parameter only if you find that the 
ILOG CPLEX Barrier Optimizer is terminating its work before it finds the true optimum 
because it has falsely detected an unbounded face.

Furthermore, if you know that all the variables in your problem have a finite upper bound, 
then you should set an upper bound on all previously unbound variables in your problem. 

To set an upper bound on unbound variables:

◆ In the Interactive Optimizer, use the command set barrier limits varupper i, 
substituting your known upper bound for i. 

◆ When using the Component Libraries, set the parameter IloCplex::BarVarUp or 
CPX_PARAM_BARVARUP. 

ILOG CPLEX will then use that upper bound to temporarily set a bound on any previously 
unbound variables.

Difficulties with Unbounded Problems

ILOG CPLEX detects unbounded problems in either of two ways:

◆ either it finds a solution with small complementarity that is not feasible for either the 
primal or the dual formulation of the problem;

◆ or the iterations tend toward infinity with the objective value becoming very large in 
absolute value.

The ILOG CPLEX Barrier Optimizer stops when the absolute value of either the primal or 
dual objective exceeds the object-range parameter.



S O L V I N G  L P  P R O B L E M S  W I T H  T H E  B A R R I E R  O P T I M I Z E R

148 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

If you increase the value of the object-range parameter, then the ILOG CPLEX Barrier 
Optimizer will iterate more times before it decides that the current problem suffers from an 
unbounded objective value.

If you know that your problem has large objective values, consider increasing the object-
range parameter. In the Interactive Optimizer, use the command 
set barrier limits objrange i, substituting a large positive value for i. When using 
the Component Libraries, set the parameter IloCplex::BarObjRng or 
CPX_PARAM_BAROBJRNG.

Also if you know that your problem has large objective values, consider changing the 
algorithm that the ILOG CPLEX Barrier Optimizer is using from the default to one of the 
alternatives. To change the algorithm:

◆ In the Interactive Optimizer, use the command set barrier algorithm i, 
substituting a value from Table 4.13 on page 145. 

◆ When using the Component Libraries, set the parameter IloCplex::BarAlg or  
CPX_PARAM_BARALG.

Diagnosing Barrier Optimizer Infeasibility

When the ILOG CPLEX Barrier Optimizer terminates and reports an infeasible solution, all 
the usual solution information is available. However, the solution values, reduced costs, and 
dual variables reported then do not correspond to a basis; hence, that information does not 
have the same meaning as the corresponding output from the ILOG CPLEX simplex 
optimizers.

Actually, since the ILOG CPLEX Barrier Optimizer works in a single phase, all reduced 
costs and dual variables are calculated in terms of the original objective function.

If the ILOG CPLEX Barrier Optimizer reports to you that a problem is infeasible, but you 
still need a basic solution for the problem, use the primal simplex optimizer. For example, in 
the Interactive Optimizer, use the command primopt. ILOG CPLEX will then use the 
solution provided by the barrier optimizer to determine a starting basis for the primal 
simplex optimizer. When the primal simplex optimizer finishes its work, you will have an 
infeasible basic solution for further infeasibility analysis.

If the default algorithm in the ILOG CPLEX Barrier Optimizer determines that your 
problem is primal infeasible or dual infeasible, then try the alternate algorithms in the barrier 
optimizer. These algorithms, though slower than the default, are better at detecting primal 
and dual infeasibility. To change the algorithm:

◆ In the Interactive Optimizer, use the command set barrier algorithm i, 
substituting a value from Table 4.13 on page 145. 

◆ When using the Component Libraries, set the parameter IloCplex::BarAlg or  
CPX_PARAM_BARALG.



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 149

S
o

lvin
g

 L
P

 P
ro

b
lem

s

<functionhead>

In Finding a Set of Irreducibly Inconsistent Constraints on page 116, we explained how to 
invoke the infeasibility finder on a solution basis found by one of the simplex optimizers. If 
you are using the pure barrier optimizer (that is, with no crossover to a simplex optimizer), 
then it will not generate a basis on which you can call the infeasibility finder to analyze your 
constraints and locate an IIS. Consequently, if you are interested in finding an IIS for your 
problem, you should invoke the ILOG CPLEX Barrier Optimizer with crossover, as 
explained in Controlling Crossover on page 134.



S O L V I N G  L P  P R O B L E M S  W I T H  T H E  B A R R I E R  O P T I M I Z E R

150 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L



C H A P T E R

I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 151

S
o

lvin
g

 M
IP

 P
ro

b
lem

s

5

Solving Mixed Integer Programming
Problems

The ILOG CPLEX Mixed Integer Optimizer enables you to solve models in which one or 
more variables must be restricted to integer solution values. This chapter tells you more 
about optimizing mixed integer programming (MIP) problems with ILOG CPLEX. It 
includes sections on:

◆ Sample: Stating a MIP Problem

◆ Considering Preliminary Issues

◆ Using the Mixed Integer Optimizer

◆ Using Sensitivity Information in a MIP

◆ Using Special Ordered Sets (SOS)

◆ Using Semi-Continuous Variables

◆ Progress Reports: Interpreting the Node Log

◆ Troubleshooting MIP Performance Problems

◆ Example: Optimizing a Basic MIP Problem

◆ Example: Reading a MIP Problem from a File

◆ Example: Using SOS and Priority



S A M P L E :  S T A T I N G  A  M I P  P R O B L E M

152 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

To use the ILOG CPLEX Mixed Integer Optimizer in application development, your 
development license must include the MIP option. If you call MIP routines from the Concert 
Technology or Callable Libraries in your applications, your end-users’ runtime (derivative 
work) licenses must also include the MIP option. For more information about ILOG CPLEX 
licensing, contact your ILOG CPLEX representative.

Sample: Stating a MIP Problem

A mixed integer programming (MIP) problem may consist of both integer and continuous 
variables. The integer variables may be restricted to the values 0 (zero) and 1 (one), in which 
case they are referred to as binary variables. Or they may take on any integer values, in 
which case they are referred to as general integer variables. A variable that may take either 
the value 0 or a value between a lower and an upper bound is referred to as semi-continuous. 
A semi-continuous variable that is restricted to integer values is referred to as semi-integer. 
(Continuous variables in a mixed integer programming problem are not restricted to integer 
values.) The following illustrates a mixed integer programming problem, which is solved in 
the example program ilomipex1.cpp / mipex1.c, discussed later in this chapter: 

Considering Preliminary Issues

When you are optimizing a MIP, there are a few preliminary issues that you need to consider 
to get the most out of ILOG CPLEX. The following sections cover such topics as entering 
variable type, displaying MIPs in the Interactive Optimizer, determining the problem type, 
and switching to relaxed versions of your problem. 

Maximize x1 + 2x2 + 3x3 + x4

subject to - x1 + x2 + x3 + 10x4 ≤ 20

x1 - 3x2 + x3 ≤ 30

x2 - 3.5x4 = 0

with these bounds 0 ≤ x1 ≤ 40

0 ≤ x2 ≤ +∞
0 ≤ x3 ≤ +∞
2 ≤ x4 ≤ 3

x4 integer



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 153

S
o

lvin
g

 M
IP

 P
ro

b
lem

s

<functionhead>

Entering MIP Problems

You enter MIPs into ILOG CPLEX in the same way as LPs, as explained in Put Data in the 
Problem Object on page 58, with this additional consideration: you need to indicate which 
variables are binary, general integer, semi-continuous, and semi-integer, and which are 
contained in special ordered sets (SOS). 

Concert Technology Library users can specify this information by passing a type value to the 
appropriate constructor when creating the variable. Use IloNumVar::Bool for binary 
variables, IloNumVar::Int for general integer variables, IloSemiContVar for semi-
continuous variables, and IloSemiContVar::Int for semi-integer variables. SOS 
variables are created as instances of the class IloSOS1 or IloSOS2.

Callable Library users can specify this information through the CPXcopyctype() routine.

In the Interactive Optimizer, to indicate binary integers in the context of the enter 
command, type binaries on a separate line, followed by the designated binary variables. 
To indicate general integers, type generals on a separate line, followed by the designated 
general variables. To indicate semi-continuous variables, type semi-continuous on a    
separate line, followed by the designated variables. Semi-integer variables are indicated by 
being specified as both general integer and semi-continuous. The order of these three 
sections does not matter. To enter the general integer variable of the Sample: Stating a MIP 
Problem on page 152, you type this: 

You may also read MIP data in from a formatted file, just as you do for linear programming 
problems. Chapter 8, More About Using ILOG CPLEX in this manual describes file formats 
briefly, and the ILOG CPLEX Reference Manual documents file formats, such as MPS, LP, 
and others. 

◆ To read MIP problem data into the Interactive Optimizer, use the read command with an 
option to indicate the file type. 

◆ To read MIP problem data into your application, use the importModel() method in the 
Concert Technology Library or use a copy routine from the Callable Library. Table 5.1 
summarizes the available routines and their purpose. 

generals
x4



C O N S I D E R I N G  P R E L I M I N A R Y  I S S U E S

154 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

 

Displaying MIP Problems

If you are licensed to use the ILOG CPLEX Mixed Integer Optimizer, then you will see 
additional display options in the Interactive Optimizer. Table 5.2 summarizes these 
additional options.

In the Concert Technology Library, use one of the accessor methods supplied with the 
appropriate object class, such as IloSOS2::getVariables. Refer to the ILOG Concert 
Technology Reference Manual for more information.

From the Callable Library, use the routines CPXgetctype() and CPXgetsos() to access 
this information. 

Table 5.1 Callable Library Routines for Reading Formatted Files into MIP Applications

To read this format Use this Callable Library routine

MPS, LP, or SAV file CPXreadcopyprob()

MST file containing MIP start values CPXreadcopymipstart()

ORD file containing MIP priority order CPXreadcopyorder()

ORD file containing MIP branching directions CPXreadcopyorder()

SOS file CPXreadcopysos()

MPS file containing SOS information CPXreadcopyprob()

Table 5.2 Interactive Optimizer Display Options for MIP Problems

Interactive command Purpose

display problem binaries lists variables restricted to binary values

display problem generals lists variables restricted to integer values

display problem semi-continuous lists variables of type semi-continuous and 
semi-integer

display problem integers lists all of the above

display problem sos lists the names of variables in one or more 
Special Ordered Sets

display problem stats lists LP statistics plus:

• binary variable types, if present;

• general variable types, if present;

• and number of SOS, if present.



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 155

S
o

lvin
g

 M
IP

 P
ro

b
lem

s

<functionhead>

Determining Problem Type and Variable Type in MIPs

When you enter a problem in the Interactive Optimizer, ILOG CPLEX determines the 
problem type from the available information. If there are no binary variables, no general 
variables, and no SOS, ILOG CPLEX treats the problem type as LP. Before any variables 
can be changed to binary or general type (that is, restricted to integer values), the problem 
type must be changed to MIP. Reading an SOS description automatically changes the 
problem type to MIP. 

Changing Problem Type 

If you are licensed to use the ILOG CPLEX Mixed Integer Optimizer, then you will see 
additional change options in the Interactive Optimizer. To change the problem type to MIP, 
use the command change problem mip.

The command change problem shows you the type of the current problem and prompts 
you to indicate the type of problem you would like it to be. In other words, with this 
command, you can change the current MIP problem to its continuous relaxation or to its 
fixed MIP. Its continuous relaxation is a linear program in which all its variables are 
continuous (rather than restricted to integer values). Its fixed MIP is the linear program in 
which the integer variables are fixed at the values they attained in the best integer solution.

Since a continuous relaxation of a MIP and the fixed MIP are both linear programs, all the 
features of the ILOG CPLEX Interactive Optimizer are available to them, including 
information about the quality of solutions and about sensitivity analysis. The original 
variable bounds and their types are restored when the problem type is changed back to MIP.

Changing Variable Type

The command change type adds (or removes) the restriction on a variable that it must be 
an integer. In the Interactive Optimizer, when you enter the command change type, the 
system prompts you to enter the variable that you want to change, and then it prompts you to 
enter the type (c for continuous, b for binary, i for general integer, s for semi-continuous, n 
for semi-integer).

You can change a variable to binary even if its bounds are not 0 (zero) and 1 (one). However, 
in such a case, the system issues a warning message at optimization, and the optimization 
may terminate with a bound violation. 

Consequently, in the example that we mentioned (see Sample: Stating a MIP Problem on 
page 152), if we want to make x4 a binary variable, we should first change the bounds on x4 
to 0 and 1; then we can safely change its type to binary.

If you change a variable’s type to be semi-continuous or semi-integer, make sure to create 
both a lower bound and an upper bound for it. These variable types specify that at an optimal 
solution the value for the variable must be either exactly zero or else be between the lower 
and upper bounds (and further subject to the restriction that the value be an integer, in the 
case of semi-integer variables).



U S I N G  T H E  M I X E D  I N T E G E R  O P T I M I Z E R

156 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

By the way, if its type has been changed to MIP, a problem may be a mixed integer problem, 
even if all its variables are continuous.

Modifying Relaxed and Fixed Problems

The change command in the Interactive Optimizer does not apply to the continuous 
relaxation of a MIP; nor does it apply to the fixed MIP. If you want to interactively modify 
and re-solve a relaxed or fixed version of a MIP, then you should follow these steps:

1. Write out the relaxed or fixed version to a file.

2. Read back in the relaxed or fixed version.

If you simply change the problem type to LP, all the MIP-related information will be 
discarded. After this modification, you will not be able to restore the original MIP problem.

Using the Mixed Integer Optimizer

The ILOG CPLEX Mixed Integer Optimizer exploits a branch & cut algorithm. 

To invoke the Mixed Integer Optimizer:

◆ In the Interactive Optimizer, use the mipopt command. 

◆ In the Concert Technology Library, with the method IloCplex::solve().

◆ In the Callable Library, you call it with the CPXmipopt() routine.

Branch & Cut

In the branch & cut algorithm, ILOG CPLEX solves a series of LP subproblems. To manage 
those subproblems efficiently, ILOG CPLEX builds a tree in which each subproblem is a 
node. The root of the tree is the LP relaxation of the original MIP problem. 

If the solution to the relaxation has one or more fractional variables, ILOG CPLEX will try 
to find cuts. Cuts are constraints that cut away areas of the feasible region of the relaxation 
that contain fractional solutions. ILOG CPLEX can generate several types of cuts. (Cuts on 
page 159 tells you more about that topic.) Such algorithms have been known historically as 
branch & bound, especially when cuts are not generated.

If the solution to the relaxation still has one or more fractional-valued integer variables after 
ILOG CPLEX tries to add cuts, then ILOG CPLEX branches on a fractional variable to 
generate two new subproblems, each with more restrictive bounds on the branching variable. 
For example, with binary variables, one node will fix the variable at 0 (zero), the other, at 
1 (one).

The subproblems may result in an all-integer solution, in an infeasible solution, or another 
fractional solution. If the solution is fractional, ILOG CPLEX repeats the process. 



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 157

S
o

lvin
g

 M
IP

 P
ro

b
lem

s

<functionhead>

ILOG CPLEX cuts off nodes when the value of the objective function associated with the 
subproblem at that node is worse than the cutoff value. The cutoff value is determined in 
either of two ways:

◆ You set the cutoff value in the: 

● Interactive Optimizer by means of the command 
set mip tolerances lowercutoff (when you are maximizing the objective) or 
set mip tolerances uppercutoff (when you are minimizing the objective); 

●  Concert Technology Library set the parameter CutLo or CutUp.

● Callable Library set the parameter CPX_PARAM_CUTLO or CPX_PARAM_CUTUP. 

The default value of the lower cutoff is -1e+75; the default value of the upper cutoff is 
1e+75. You can supply any number that you find appropriate for your problem.

◆ ILOG CPLEX will use the value of the best integer solution found so far, as modified by 
tolerance parameters. 

● In the Interactive Optimizer, use the command 
set mip tolerances objdifference for an absolute objective difference cutoff 
or set mip tolerances relobjdifference for a relative objective difference 
cutoff. 

● In the Concert Technology Library set the parameter ObjDif or RelObjDif.

● In the Callable Library, set the parameter CPX_PARAM_OBJDIF or 
CPX_PARAM_RELOBJDIF. 

Be careful in changing these tolerances: if either of them is nonzero, you may miss the 
optimal solution by as much as that amount. For example, if the true optimum is 100, and 
the absolute cutoff is set to 5, and a feasible solution of, say, 103 is found at some point, 
then the cutoff will discard all nodes with a solution worse than 98, and thus the solution 
of 100 will be overlooked.

Once ILOG CPLEX finds an integer solution, it does the following:

◆ it makes that integer solution the incumbent solution and that node the incumbent node;

◆ it makes the value of the objective function at that node (modified by the objective 
difference parameter) the new cutoff value;

◆ it prunes from the tree all subproblems for which the value of the objective function is no 
better than the incumbent.

You control the path that ILOG CPLEX traverses in the tree through several parameters, as 
summarized in Table 5.3 and explained further in later sections. Briefly, ILOG CPLEX must 
make different kinds of choices:



U S I N G  T H E  M I X E D  I N T E G E R  O P T I M I Z E R

158 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

◆ within a tree, about which node to branch on, 

◆ at a node, which variable to branch on, and 

◆ at a variable, which direction to branch (up or down or other). 

At each node, ILOG CPLEX may delve deeper into the tree or it may backtrack. The value 
of the backtrack parameter, page 176, influences this decision. When ILOG CPLEX 
backtracks, there are usually large numbers of available, unexplored nodes. The node 
selection parameter, page 177, influences its selection. Once a node has been selected, the 
variable selection parameter, page 176, influences which variable is selected for branching. 
Priority, page 162, provides a powerful mechanism through which you supply problem-
specific directives about the order of variables during branching. You also supply problem-
specific preferences about branching direction, either globally or by specific variable. And 
special ordered sets (SOS), page 169, may also improve branching strategy.

Feasibility and Optimality

The parameter IloCplex::MipEmphasis / CPX_PARAM_MIPEMPHASIS (set mip 
emphasis in the Interactive Optimizer) specifies whether CPLEX should emphasize 
feasibility or optimality as it solves the problem. 

At the default setting of 0, CPLEX uses tactics designed to find a proved optimal solution 
most quickly, with less regard for the speed at which feasible solutions are produced along 
the way. With a setting of 1, CPLEX uses tactics designed to find the first and subsequent 
feasible solutions more quickly, at the likely expense of prolonging the time required to find 
a proven optimal solution. 

Either setting will deliver a proved optimum, will produce feasible solutions during the 
course of computation, and will honor other parameter settings (such as time limits or 
branching strategies); the difference is in the trade-offs the MIP algorithm makes between 
the competing aims. Since proving optimality is often far more difficult than finding feasible 
solutions, setting this parameter to 1 is useful in situations (for example) where obtaining a 
good solution within a time limit is more important than arriving at a proved optimum.

Table 5.3 Parameters for Controlling Branch & Cut Strategy

Interactive Optimizer 
Command

Concert Technology Library 
Function

Callable Library Routine

set mip strategy backtrack IloCplex::setParam(BtTol, n) CPXsetdblparam(env, CPX_PARAM_BTTOL, n)

set mip strategy nodeselect IloCplex::setParam(NodeSel, i) CPXsetintparam(env, CPX_PARAM_NODESEL, i)

set mip strategy variableselect IloCplex::setParam(VarSel, i) CPXsetintparam(env, CPX_PARAM_VARSEL, i)

set mip strategy bbinterval IloCplex::setParam(BBInterval, i) CPXsetintparam(env, CPX_PARAM_BBINTERVAL, i)

set mip strategy branch IloCplex::setParam(BrDir, i) CPXsetintparam(env, CPX_PARAM_BRDIR, i)



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 159

S
o

lvin
g

 M
IP

 P
ro

b
lem

s

<functionhead>

Cuts 

Cuts are constraints added to a model to restrict (cut away) noninteger solutions that would 
otherwise be solutions of the LP relaxation. The addition of cuts usually reduces the number 
of branches needed to solve a MIP. 

In the following descriptions of cuts, the term subproblem includes the root node (that is, the 
LP relaxation). Cuts are most frequently seen at the root node, but they may be added by 
ILOG CPLEX at other nodes as conditions warrant.

ILOG CPLEX generates its cuts in such a way that they are valid for all subproblems, even 
when they are discovered during analysis of a particular subproblem. If the solution to a 
subproblem violates one of the subsequent cuts, ILOG CPLEX may add an LP constraint to 
reflect this condition.

Clique Cuts

A clique is a relationship among a group of binary variables such that at most one variable in 
the group can be positive in any integer feasible solution. Before optimization starts, 
ILOG CPLEX constructs a graph representing these relationships and finds maximal cliques 
in the graph.

Cover Cuts 

If a constraint takes the form of a knapsack constraint (that is, a sum of binary variables with 
nonnegative coefficients less than or equal to a nonnegative right-hand side), then there is a 
minimal cover associated with the constraint. A minimal cover is a subset of the variables of 
the inequality such that if all the subset variables were set to one, the knapsack constraint 
would be violated, but if any one subset variable were excluded, the constraint would be 
satisfied. ILOG CPLEX can generate a constraint corresponding to this condition, and this 
cut is called a cover cut.

Disjunctive Cuts

A MIP problem can be divided into two subproblems with disjunctive feasible regions of 
their LP relaxations by branching on an integer variable. Disjunctive cuts are inequalities 
valid for the feasible regions of LP relaxations of the subproblems, but not valid for the 
feasible region of LP relaxation of the MIP problem.

Flow Cover Cuts 

Flow covers are generated from constraints that contain continuous variables, where the 
continuous variables have variable upper bounds that are zero or positive depending on the 
setting of associated binary variables. The idea of a flow cover comes from considering the 
constraint containing the continuous variables as describing a single node in a network 
where the continuous variables are in-flows and out-flows. The flows will be on or off 
depending on the settings of the associated binary variables for the variable upper bounds. 
The flows and the demand at the single node imply a knapsack constraint. That knapsack 



U S I N G  T H E  M I X E D  I N T E G E R  O P T I M I Z E R

160 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

constraint is then used to generate a cover cut on the flows (that is, on the continuous 
variables and their variable upper bounds).

Flow Path Cuts

Flow path cuts are generated by considering a set of constraints containing the continuous 
variables that describe a path structure in a network, where the constraints are nodes and the 
continuous variables are in-flows and out-flows. The flows will be on or off depending on 
the settings of the associated binary variables.

Gomory Fractional Cuts

Gomory fractional cuts are generated by applying integer rounding on a pivot row in the 
optimal LP tableau for a (basic) integer variable with a fractional solution value.

Generalized Upper Bound (GUB) Cover Cuts

A GUB constraint for a set of binary variables is a sum of variables less than or equal to one. 
If the variables in a GUB constraint are also members of a knapsack constraint, then the 
minimal cover can be selected with the additional consideration that at most one of the 
members of the GUB constraint can be one in a solution. This additional restriction makes 
the GUB cover cuts stronger (that is, more restrictive) than ordinary cover cuts.

Implied Bound Cuts

In some models, binary variables imply bounds on continuous variables. ILOG CPLEX 
generates potential cuts to reflect these relationships.

Mixed Integer Rounding (MIR) Cuts

MIR cuts are generated by applying integer rounding on the coefficients of integer variables 
and the right-hand side of a constraint.

Adding Cuts and Re-Optimizing

Each time ILOG CPLEX adds a cut, the subproblem is re-optimized. CPLEX repeats the 
process of adding cuts at a node until it finds no further effective cuts. It then selects the 
branching variable for the subproblem.

Parameters control the way each class of cuts is used. Those parameters are listed in 
Table 5.4.  

Table 5.4 Parameters for Controlling Cuts

Cut Type Interactive Command
Concert Technology 
Library Parameter

Callable Library 
Parameter

Clique set mip cuts cliques IloCplex::Cliques CPX_PARAM_CLIQUES

Cover set mip cuts covers IloCplex::Covers CPX_PARAM_COVERS

Disjunctive set mip cuts disjunctive IloCplex::DisjCuts CPX_PARAM_DISJCUTS



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 161

S
o

lvin
g

 M
IP

 P
ro

b
lem

s

<functionhead>

The default value of each of those parameters is 0 (zero). By default, ILOG CPLEX 
automatically determines how often (if at all) it should try to generate that class of cut. A 
setting of -1 indicates that no cuts of the class should be generated; a setting of 1 indicates 
that cuts of the class should be generated moderately; and a setting of 2 indicates that cuts of 
the class should be generated aggressively. For disjunctive cuts, a setting of 3 is permitted, 
which indicates that disjunctive cuts should be generated very aggressively.

In the Interactive Optimizer, the command set mip cuts all i applies the value i to all 
classes of cut parameters. That is, you can set them all at once.

The cuts-factor parameter controls the number of cuts ILOG CPLEX adds to the model. The 
problem can grow to cuts-factor times the original number of rows in the model (or in the 
presolved model, if the presolver is active). Thus, a cuts-factor of 1.0 would mean that no 
cuts will be generated, which may be a more convenient way of turning off all cuts than 
setting them individually. The default cuts-factor value of 4.0 works well in most cases, as it 
allows a generous number of cuts while in rare instances it also serves to limit unchecked 
growth in the problem size. 

Set the cuts-factor parameter in the:

◆ Interactive Optimizer with the command set mip limits cutsfactor . 

◆ Concert Technology Library with the function IloCplex::setParam(CutsFactor, 
n).  

◆ Callable Library with the routine CPXsetdblparam(env, CPX_PARAM_CUTSFACTOR, 
n). 

Flow Cover set mip cuts flowcuts IloCplex::FlowCovers CPX_PARAM_FLOWCOVERS

Flow Path set mip cuts pathcut IloCplex::FlowPaths CPX_PARAM_FLOWPATHS

Gomory set mip cuts gomory IloCplex::FracCuts CPX_PARAM_FRACCUTS

GUB Cover set mip cuts gubcovers IloCplex::GUBCovers CPX_PARAM_GUBCOVERS

Implied Bound set mip cuts implied IloCplex::ImplBd CPX_PARAM_IMPLBD

Mixed Integer 
Rounding (MIR)

set mip cuts mircut IloCplex::MIRCuts CPX_PARAM_MIRCUTS

Table 5.4 Parameters for Controlling Cuts (Continued)

Cut Type Interactive Command
Concert Technology 
Library Parameter

Callable Library 
Parameter



U S I N G  T H E  M I X E D  I N T E G E R  O P T I M I Z E R

162 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

The cuts aggregation parameter controls the number of constraints allowed to be aggregated 
for generating MIR and flow cover cuts. Set this parameter in the:

◆ Interactive Optimizer with the command set mip limits aggforcut . 

◆ Concert Technology Library with the function IloCplex::setParam(AggCutLim, 
i). 

◆ Callable Library with the routine CPXsetintparam(env, CPX_PARAM_AGGCUTLIM, 
i) .

The gomorypass parameter controls the number of passes for generating Gomory fractional 
cuts. Set this parameter in the:

◆ Interactive Optimizer with the command set mip limits gomorypass.

◆ Concert Technology Library with the function IloCplex::setParam(FracPass, 
i).

◆ Callable Library with the routine 
CPXsetintparam(env, CPX_PARAM_FRACPASS, i). 

The parameter will not have any effect if the parameter for set mip cuts gomory has a 
nonzero value. The gomorycand parameter controls the number of variable candidates to be 
considered for generating Gomory fractional cuts. Set this parameter in the:

◆ Interactive Optimizer with the command set mip limits gomorycand.

◆ Concert Technology Library  with the function IloCplex::setParam(FracCand, 
i).

◆ Callable Library with the routine CPXsetintparam(env, CPX_PARAM_FRACCAND, 
i).

Priority

In branch & cut, ILOG CPLEX makes decisions about which variable to branch on at a 
node. You can control the order in which ILOG CPLEX branches on variables by issuing a 
priority order. A priority order assigns a branching priority to some or all of the integer 
variables in a model. ILOG CPLEX branches on variables with an assigned priority before 
variables without a priority. It also branches on variables with higher priority before 
variables with lower priority, when the variables have fractional values.

You can specify priority for any variable, though the priority is used only if the variable is a 
general integer variable, a binary integer variable, or a member of a special ordered set.

Sometimes, a generic priority may be helpful. There are options for setting priority among 
variables based on the magnitude of their coefficients in the objective function, on the range 
of their bounds, and on their objective value divided by column count. 



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 163

S
o

lvin
g

 M
IP

 P
ro

b
lem

s

<functionhead>

For example:

◆ In the Interactive Optimizer, the command set mip ordertype 1 will make 
ILOG CPLEX branch on variables by decreasing cost. 

◆ For the Concert Technology Library, the corresponding parameter is 
IloCplex::MIPOrdType.

◆ For the Callable Library it is CPX_PARAM_MIPORDTYPE.

If you explicitly read a file of priority orders, its settings will override any generic priority 
order you may have set by interactive commands. 

◆ In the Interactive Optimizer, the command set mip strategy order 0 overrides all 
priority orders—whether set by a command or from a file—so that ILOG CPLEX uses 
no priority orders. 

◆ For the Concert Technology Library the corresponding parameter is 
IloCplex::MIPOrdInt.

◆ For the Callable Library it is CPX_PARAM_MIPORDIND.

Problems that use integer variables to represent different types of decisions should assign 
higher priority to those that must be decided first. For example, if some variables in a model 
activate processes, and others use those activated processes, then the first group of variables 
should be assigned higher priority than the second group. In that way, you can use priority to 
achieve better solutions.

Priority based on the magnitude of objective coefficients is often useful in this way.

Heuristics

CPLEX supports a heuristic to find integer solutions at nodes during the branch & cut 
procedure. To invoke this heuristic:

◆ In the Interactive Optimizer, use the command set mip strategy heuristicfreq. 

◆ In the Concert Technology Library, set the parameter IloCplex::HeurFreq.

◆ From the Callable Library, set the parameter CPX_PARAM_HEURFREQ. 

For example, if the frequency is set to 20, then the node heuristic will be applied at node 0, 
node 20, node 40, and so on. At the default setting 0 (zero), ILOG CPLEX automatically 
determines the frequency dynamically. The value -1 turns this feature off.

Preprocessing: Presolver and Aggregator

When you invoke the MIP optimizer—whether through the Interactive Optimizer command 
mipopt, through a call to the Concert Technology Library function IloCplex::solve(), 
or through the Callable Library routine CPXmipopt()—ILOG CPLEX by default 



U S I N G  T H E  M I X E D  I N T E G E R  O P T I M I Z E R

164 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

automatically preprocesses your problem. Table 5.5 summarizes the preprocessing 
parameters. In preprocessing, ILOG CPLEX applies its presolver and aggregator once or 
more to reduce the size of the integer program in order to strengthen the initial linear 
relaxation and to decrease the overall size of the mixed integer program. 

The parameters reduce and numpass have the same meanings for LP and MIP. 
Preprocessing: Presolver and Aggregator on page 98 explains the meanings and 
adjustments of all these parameters.

While preprocessing, ILOG CPLEX also attempts to strengthen bounds on variables. This 
bound strengthening may take a long time. In such cases, you may want to turn off bound 
strengthening.

ILOG CPLEX also attempts to reduce coefficients during preprocessing. Coefficient 
reduction usually strengthens the linear programming relaxation and reduces the number of 
nodes in the branch & cut tree, but not always. Sometimes, it increases the amount of time 
needed to solve the linear programs at each node—enough time to offset the benefit of fewer 
nodes. Two levels of coefficient reduction are available, so it is worthwhile to experiment 
with these preprocessing options to see whether they are beneficial to your problem.

In addition, you may also set the relaxation parameter to tell ILOG CPLEX to apply 
preprocessing to the initial relaxation of the problem. Sometimes this preprocessing will 
result in additional, beneficial presolve transformations in the LP relaxation—
transformations that are not possible in the original MIP model.

ILOG CPLEX preprocesses a MIP by default. However, if you use a basis to start LP 
optimization at the root node, ILOG CPLEX will proceed with that starting basis without 
preprocessing it. In other words, if you change a MIP to a relaxed problem, optimize it as an 
LP, and use that basis to start MIP-optimization, then no preprocessing will occur. 

Table 5.5 Parameters for Controlling MIP Preprocessing

Interactive Command
Concert Technology 
Library Parameter

Callable Library 
Parameter

Comment

set preprocessing aggregator IloCplex::AggInd CPX_PARAM_AGGIND on by default

set preprocessing presolve IloCplex::PreInd CPX_PARAM_PREIND on by default

set preprocessing boundstrength IloCplex::BndStrenInd CPX_PARAM_BNDSTRENIND presolve must be on

set preprocessing coeffreduce IloCplex::CoeRedInd CPX_PARAM_COEREDIND presolve must be on

set preprocessing relax IloCplex::RelaxPreInd CPX_PARAM_RELAXPREIND applies to relaxation

set preprocessing reduce IloCplex::Reduce CPX_PARAM_REDUCE all on by default

set preprocessing numpass not available CPX_PARAM_PREPASS automatic by default



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 165

S
o

lvin
g

 M
IP

 P
ro

b
lem

s

<functionhead>

If you want to apply a particular LP algorithm to the first relaxation, this strategy is 
reasonable. However, for problems that benefit from MIP preprocessing, we do not 
recommend it. Instead, we recommend that you use parameters to indicate which algorithm 
to use on the first relaxation (startalgorithm in the Interactive Optimizer and 
CPX_PARAM_STARTALG in the Callable Library) and which to use on the subproblems 
(subalgorithm in the Interactive Optimizer and CPX_PARAM_SUBALG in the Callable 
Library). In Concert Technology Library, use the methods 
IloCplex::setRootAlgorithm and IloCplex::setNodeAlgorithm. Subproblem 
Optimization on page 187 explains more about choosing algorithms for the first relaxation 
and subsequent subproblems.

Starting from a Solution

You can provide a known solution (for example, from a MIP problem previously solved or 
from your knowledge of the problem) to serve as the first integer solution. In such a start, 
you must specify values for all integer variables, for all semi-continuous variables, and for 
all members of special ordered sets. Optionally, you may also specify values for continuous 
variables. ILOG CPLEX evaluates that start solution for integrality and feasibility. If it is 
integer-feasible, it will become an integer solution of the current problem.

Occasionally, a set of MIP start values will be integer feasible for the original problem, but 
not feasible for the preprocessed problem because of complicated transformations carried 
out by the presolver or aggregator. ILOG CPLEX issues a warning whenever the MIP start 
values do not provide an integer solution, and optimization continues.

You control whether ILOG CPLEX uses a MIP start solution through the mipstart 
parameter. 

◆ In the Interactive Optimizer, use the command set mip strategy mipstart 1. 

◆ For the Concert Technology Library, use the method 
IloCplex::setParam(MIPStart, IloTrue). 

◆ For the Callable Library, use the routine 
CPXsetintparam(env, CPX_PARAM_MIPSTART, CPX_ON).

ILOG CPLEX reads and writes MIP start information in MST files (that is, MIP start-file 
format, as described briefly inUnderstanding File Formats on page 264 or documented in 
the ILOG CPLEX Reference Manual).

CPLEX saves starting values for all integer variables, all semi-continuous variables, and all 
members of special ordered sets at the end of MIP optimization when there is a feasible 
solution. These values can then be used in subsequent optimizations. 

◆ In the Interactive Optimizer, use the write command to generate an MST file. 

◆ In the Concert Technology Library, use the method IloCplex::exportModel(). 



U S I N G  T H E  M I X E D  I N T E G E R  O P T I M I Z E R

166 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

◆ In the Callable Library, use the routine CPXmstwrite().

Termination

ILOG CPLEX terminates MIP optimization under a variety of circumstances. First, 
ILOG CPLEX declares integer optimality and terminates when it finds an integer solution 
and all nodes have been processed. Optimality in this case is relative to whatever tolerances 
and optimality criteria you have set. For example, ILOG CPLEX considers the cutoff value 
and the objective difference parameter in this context.

In addition, ILOG CPLEX terminates optimization when it reaches a limit that you have set. 
You can set limits on time, number of nodes, size of tree memory, size of the node log file, 
and number of integer solutions. Table 5.6 summarizes those parameters and their purpose. 

The limit on tree memory terminates optimization only when the parameter controlling the 
node file (in the Interactive Optimizer, mip strategy file, in the Concert Technology 
Library, IloCplex::NodeFileInd, in the Callable Library, CPX_PARAM_NODEFILEIND) 
is 0, the default. If the value is other than 0, optimization will continue. 

ILOG CPLEX also terminates when an error occurs, such as when ILOG CPLEX runs out 
of memory or when a subproblem cannot be solved. If an error is due to failure to solve a 
subproblem, an additional line appears in the node log file to indicate the reason for that 
failure.

Writing a Tree File

When ILOG CPLEX terminates a MIP optimization before it achieves optimality (for 
example, because it has reached a limit you set), it still has significant information about the 
current branch & cut tree. You can save this information by writing it to a file of type TRE (a 
binary, proprietary ILOG CPLEX format). Later, you can then read the saved TRE file and 
restart the optimization from where ILOG CPLEX left off.

Table 5.6 Parameters to limit MIP optimization

To set a limit on
Use this parameter

Concert Technology Library Callable Library Interactive Optimizer

elapsed time IloCplex::TiLim CPX_PARAM_TILIM timelimit

number of nodes IloCplex::NodeLim CPX_PARAM_NODELIM mip limits nodes

size of tree memory IloCplex::TreLim CPX_PARAM_TRELIM mip limits treememory

size of node log file IloCplex::WorkMem CPX_PARAM_WORKMEM workmem

number of integer solutions IloCplex::IntSolLim CPX_PARAM_INTSOLLIM mip limits solutions



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 167

S
o

lvin
g

 M
IP

 P
ro

b
lem

s

<functionhead>

To save a MIP in a TRE file:

◆ In the Interactive Optimizer, use the command write filename.tre or 
write filename tre. 

◆ From the Callable Library, use the routine CPXtreewrite().

A TRE file may be quite large (corresponding to the current size of an active tree) so it may 
consume considerable disk space.

If you modify the model of a MIP after you create its TRE file, then the TRE file will be of 
no use to you. ILOG CPLEX will accept the old TRE file if the basic dimensions of the 
problem have not changed, but the results it produces from it will likely be invalid for the 
modified model.

Post-Solution Information in a MIP

Interpreting Solution Statistics on page 114 explains how to use the display command in 
the Interactive Optimizer to see post-solution information from the linear optimizers. 
However, because of the way integer solutions are generated, the display command shows 
you only limited information from the MIP optimizer. In fact, ILOG CPLEX generates 
integer solutions by solving subproblems that have different bounds from the original 
problem, so computing solution values with the original bounds will not usually give the 
same solution. Nevertheless, the following solution statistics are available from the MIP 
optimizer:

◆ objective function value for the best integer solution, if one exists;

◆ best bound, that is, best objective function value among remaining subproblems;

◆ solution quality;

◆ primal values for the best integer solution, if one has been found;

◆ slack values for best integer solution, if one has been found.

If you request other solution statistics, ILOG CPLEX will issue the error message, “Not 
available for mixed integer problems—use CHANGE PROBLEM to change the problem 
type.”

Using Sensitivity Information in a MIP

Other post-solution information does not have the same meaning in a mixed integer program 
as in a linear program because of the special nature of the integer variables in the MIP. The 
reduced costs, dual values, and sensitivity ranges give you information about the effect of 
making small changes in problem data so long as feasibility is maintained. Integer variables, 



U S I N G  S P E C I A L  O R D E R E D  S E T S  ( S O S )

168 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

however, lose feasibility if a small change is made in their value, so this post-solution 
information cannot be used to evaluate changes in problem data in the usual way of LPs.

Integer variables typically represent major structural decisions in a model, and often many 
continuous variables of the model are related to these major decisions. With that observation 
in mind, if you take the integer variable values as given, then you can use post-solution 
information applying only to the continuous variables in the usual way.

To access this limited sensitivity information in a MIP:

◆ In the Interactive Optimizer, use the command change problem fixed to fix the 
values of the integer variables. 

◆ In the Callable Library, use the routine CPXchgprobtype().

ILOG CPLEX then sets the variable bounds so that upper and lower bounds are those in the 
current integer solution. You can then optimize the resulting linear program and display its 
post-solution statistics.

Using Special Ordered Sets (SOS) 

A special ordered set (SOS) is an additional way to specify integrality conditions in a model. 
There are various types of SOS:

◆ SOS Type 1 is a set of variables (whether all integer, all continuous, or mixed integer and 
continuous) where at most one variable may be nonzero.

◆ SOS Type 2 is a set or integer or continuous variables where at most two variables may 
be nonzero. If two variables are nonzero, they must be adjacent in the set.

ILOG CPLEX uses special branching strategies to take advantage of SOS. The special 
branching strategies depend upon the order among the variables in the set. The order is 
specified by assigning weights to each variable. The order of the variables in the model 
(such as in the MPS or LP format data file, or the column index in a Callable Library 
application) is not used in SOS branching. If there is no order relationship among the 
variables (such that weights cannot be specified or would not be meaningful), SOS 
branching should not be used. For many classes of problems, these branching strategies can 
significantly improve performance. 

Example: SOS Type 1 for Sizing a Warehouse

To give you a feel for how SOS can be useful, here’s an example of an SOS Type 1 used to 
choose the size of a warehouse. Let’s assume for this example that we can build a warehouse 
of 10000, 20000, 40000, or 50000 square feet. We define binary variables for the four sizes, 
say, x1, x2, x4, and x5. We connect these variables by a constraint defining another variable to 
denote available square feet, like this: z - 10000x1 - 20000x2 - 40000x4 - 50000x5 = 0.



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 169

S
o

lvin
g

 M
IP

 P
ro

b
lem

s

<functionhead>

Those four variables are members of a special ordered set. Only one size can be chosen for 
the warehouse; that is, at most one of the x variables can be nonzero in the solution. And, 
there is an order relationship among the x variables (namely, the sizes) that can be used as 
weights. We say that the weights of the set members are 10000, 20000, 40000, and 50000.

Let’s say furthermore that we have a fractional (that is, noninteger) solution of x1 = 0.1, 
x5 = 0.9. These values indicate that other parts of the model have imposed the requirement 
of 46000 square feet since 0.1*10000 + 0.9*50000 = 46000. In SOS parlance, we say that 
the weighted average of the set is (0.1*10000 + 0.9*50000)/(0.1 + 0.9) = 46000. 

We split the set before the variable with weight exceeding the weighted average. In this case, 
we split the set like this: x1, x2, and x4 will be in one subset; x5 in the other.

Now we branch. One branch restricts x1, x2, x4 to 0 (zero). This branch results in x5 being set 
to 1 (one). 

The other branch, where x5 is set to 0 (zero), results in an infeasible solution, so we remove 
it from further consideration.

If a warehouse must be built, then we need the additional constraint that 
x1 + x2 + x4 + x5 = 1. The implicit constraint for an SOS Type 1 is less than or equal to one. 
The linear programming relaxation may more closely resemble the MIP if we add that 
constraint.

Declaring SOS Members

ILOG CPLEX offers you several ways to declare an SOS in a problem:

◆ Use an SOS file (that is, one in SOS format, with the file extension .sos). SOS files offer 
you the most powerful and flexible alternative because the SOS file structure allows you 
to do several tasks at once:

● provide branching priorities for sets, 

● assign weights to individual set members,

● define overlapping sets.

◆ Use SOS declarations within an MPS or LP file (that is, one in MPS format with the file 
extension .mps or in LP format with the file extension .lp. If you already have MPS 
files with SOS information, you may prefer this option. Conventions for declaring SOS 
information in MPS files are documented in the ILOG CPLEX Reference Manual.

Setting Branching Priority for an SOS

An entire SOS can be given a branching priority. There are two alternative ways to give an 
SOS branching priority, both documented in the ILOG CPLEX Reference Manual:

◆ Use an SOS file to set priorities.



U S I N G  S E M I - C O N T I N U O U S  V A R I A B L E S

170 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

◆ Use an ORD file to set priorities.

ILOG CPLEX derives the branching priority of a set from the branching priorities of its 
members: the entire set is assigned the highest priority among its members.

To specify SOS priorities:

◆ In the Concert Technology Library, use the functions IloCplex::setPriority() and 
IloCplex::setPriorities(). 

◆ In the Callable Library, use the routines CPXcopysos() or CPXcopyorder().

Assigning SOS Weights

Members of an SOS should be given unique weights that in turn define the order of the 
variables in the set. (These unique weights are also called reference row values.) The most 
flexible way for you to assign weights is through an SOS, MPS, or LP file. An alternative is 
to use MPS format to assign a single reference row containing weights. Such a reference row 
may be a free row with specific weighting information, or it may be the objective function, 
or it may be a constraint row. 

◆ In the Concert Technology library, SOS weights are specified in the constructor when the 
SOS is created. 

◆ In the Callable Library, the routine CPXcopysos() lets you specify weights directly in 
an application.

In our SOS example, page 168, we used the coefficients of the warehouse capacity 
constraint to assign weights.

Using Semi-Continuous Variables 

Semi-continuous variables are variables that may take either the value 0 or values in a finite 
range [a, b]. Semi-continuous variables can be specified in MPS and LP files. In the Concert 
Technology Library, semi-continuous variables are instances of the class IloSemiContVar. 
In the Callable Library, semi-continuous variables can be entered with type CPX_SEMICONT 
or CPX_SEMIINT via the routine CPXcopycttype().

Progress Reports: Interpreting the Node Log

As we explained earlier, when ILOG CPLEX optimizes mixed integer programs, it builds a 
tree with the linear relaxation of the original MIP at the root and subproblems to optimize at 
the nodes of the tree. ILOG CPLEX reports its progress in optimizing the original problem 
in a node log file as it traverses this tree.



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 171

S
o

lvin
g

 M
IP

 P
ro

b
lem

s

<functionhead>

Through ILOG CPLEX parameters, you control how information in the log file is recorded 
and displayed. You can use those parameters at their default values (adequate for most 
problems), or you can reset them through commands in the Interactive Optimizer, through 
member functions in the Concert Technology Library, or through routines from the Callable 
Library. Table 5.7 summarizes those parameters, and the following paragraphs explain how 
to use them. 

Generally, ILOG CPLEX records a line in the node log about every node with an integer 
solution and about every n nodes solved, where n is controlled by the MIP interval 
parameter.

◆ In the Interactive Optimizer, use the command set mip interval i to change the 
MIP interval parameter in order to log node information more (a smaller value of i) or 
less (a larger value of i) frequently. 

◆ From the Callable Library, use the routine CPXsetintparam() with arguments to 
indicate the environment, the parameter CPX_PARAM_MIPINTERVAL, and a positive 
integer value. The default value is 100.

Here is an example of such a node log file: 

In that example, ILOG CPLEX found the optimal objective function value of 5 at 13 of the 
nodes in 41 iterations, and ILOG CPLEX found an optimal integer solution at node 4. The 
MIP interval parameter was set at 10, so every tenth node was logged, in addition to the 
node where an integer solution was found. 

Table 5.7 Parameters for Controlling the ILOG CPLEX Node Log File

Default
Interactive 
Command

Concert Technology Library 
Function

Callable Library Routine

2 set mip display IloCplex::setParam(MIPDisplay, i) CPXsetintparam(env,CPX_PARAM_MIPDISPLAY,i)

100 set mip interval IloCplex::setParam(MIPInterval, i) CPXsetintparam(env,CPX_PARAM_MIPINTERVAL,i)

Tried aggregator 1 time.
No MIP presolve or aggregator reductions.
Presolve time =    0.00 sec.
Root relaxation solution time = 0.00 sec
Objective is integral.

     Nodes                                     Cuts/
  Node Left  Objective  IInf  Best Integer   Best Node  ItCnt Gap

     0   0     4.0000     6                     4.0000     12
*    4   2     5.0000     0        5.0000       4.0000     17 20.00%
    10   1     cutoff              5.0000       4.0000     31 20.00%

Integer optimal solution:  Objective =   5.0000000000e+000
Solution time =    0.02 sec.    Iterations = 41   Nodes = 13



P R O G R E S S  R E P O R T S :  I N T E R P R E T I N G  T H E  N O D E  L O G

172 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

As you can see in that example, ILOG CPLEX logs an asterisk (*) in the left-most column 
for any node where it finds an integer-feasible solution. In the next column, it logs the node 
number. It next logs the number of nodes left to explore.

In the next column, ILOG CPLEX either records the objective value at the node or a reason 
to fathom the node. (A node is fathomed if the solution of a subproblem at the node is 
infeasible; or if the value of objective function at the node is worse than the cutoff value for 
branch & cut; or if the node supplies an integer solution.) 

In the column labeled IInf, ILOG CPLEX records the number of integer-infeasible 
variables and special ordered sets. If no solution has been found, the next column is left 
blank; otherwise, it records the best integer solution found so far. 

The column labeled Cuts/Best Node records the best objective function value of all the 
unexplored nodes. If the word Cuts appears in this column, it means various cuts were 
generated; if a particular name of a cut appears, then only that kind of cut was generated. 

The column labeled ItCnt records the cumulative iteration count of the algorithm solving 
the subproblems. Until a solution has been found, the column labeled Gap is blank. If a 
solution has been found, the relative gap value is printed when it is less than 999.99; 
otherwise, hyphens are printed. The gap is computed as abs(best integer -

best node)/(1e-10 + abs(best integer)). Consequently, the printed gap value 
may not always move smoothly. In particular, there may be sharp improvements whenever a 
new best integer solution is found.

ILOG CPLEX also logs its addition of cuts to a model. Here is an example of a node log file 
from a problem where ILOG CPLEX made cover cuts. 

ILOG CPLEX also logs the number of clique inequalities in the clique table at the beginning 
of optimization and the number eventually applied. Cuts generated at intermediate nodes are 
not logged individually unless they happen to be generated at a node logged for other 
reasons. ILOG CPLEX logs the number of applied cuts of all classes at the end.

MIP Presolve eliminated 0 rows and 1 columns.
MIP Presolve modified 12 coefficients.
Reduced MIP has 15 rows, 32 columns, and 97 nonzeros.
Presolve time =    0.00 sec.

    Nodes                                      Cuts/
 Node  Left   Objective  IInf  Best Integer  Best Node  ItCnt Gap

    0     0   2819.3574     7                2819.3574     35
              2881.8340     8                Covers: 4     44
              2881.8340    12                Covers: 3     48
*   7     6   3089.0000     0     3089.0000  2904.0815     62 5.99%

Cover cuts applied:  30

Integer optimal solution:  Objective =   3.0890000000e+003
Solution time =    0.10 sec.    Iterations = 192   Nodes = 44



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 173

S
o

lvin
g

 M
IP

 P
ro

b
lem

s

<functionhead>

CPLEX also indicates, in the node log file, each instance of a successful application of the 
node heuristic. The following example shows a node log file for a problem where the 
heuristic found a solution at node 0. The + denotes a node generated by the heuristic.

Periodically, if the MIP display parameter is greater than 0 (zero), ILOG CPLEX records the 
cumulative time spent since the beginning of the current MIP optimization and the amount 
of memory used by branch & cut. (By periodically, we mean that time and memory 
information appears either every 20 nodes or ten times the MIP display parameter, 
whichever is greater. The default value of the MIP display parameter is 2.) The following 
example shows you one line from a node log file indicating elapsed time and memory use. 

To change the MIP display parameter:

◆ In the Interactive Optimizer, use the command set mip display. 

◆ From the Callable Library, use the routine CPXsetintparam() with arguments to 
indicate the environment, the parameter CPX_PARAM_MIPDISPLAY, and a value. 

Table 5.8 lists the acceptable values for this parameter. 

ILOG CPLEX prints an additional summary line in the log if optimization stops before it is 
complete. This summary line shows the best MIP bound, that is, the best objective value 
among all the remaining node subproblems. The following example shows you lines from a 

       Nodes                                      Cuts/
  Node  Left   Objective  IInf  Best Integer  Best Node  ItCnt Gap
    0     0      403.8465  640                 403.8465   4037
                 405.2839  609              Cliques: 10   5208
                 405.2891  612              Cliques:  2   5288
Heuristic: feasible at 437.000, still looking
Heuristic: feasible at 437.000, still looking
Heuristic complete
*   0+    0      436.0000    0      436.0000   405.2891   5288 7.04%

Elapsed b&b time = 120.01 sec. (tree size =  0.09 MB)

Table 5.8 Values of the MIP Display Parameter

Value Effect

0 no display

1 display integer feasible solutions

2 display nodes under mip interval control

3 same as 2, but add information on node cuts

4 same as 3, but add LP display for root node

5 same as 3, but add LP display for all nodes



P R O G R E S S  R E P O R T S :  I N T E R P R E T I N G  T H E  N O D E  L O G

174 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

node log file where an integer solution has not yet been found, and the best remaining 
objective value is 2973.9912281. 

Sample: Stating a MIP Problem on page 152 offers a typical MIP problem. Here is the node 
log file for that problem with the default setting of the MIP display parameter: 

These additional items appear only in the node log file (not on screen):

◆ Variable records the name of the variable where ILOG CPLEX branched to create this 
node. If the branch was due to a special ordered set, the name listed here will be the 
right-most variable in the left subset.

◆ B indicates the branching direction:

● D means the variables was restricted to a lower value;

● U means the variable was restricted to a higher value;

● L means the left subset of the special ordered set was restricted to 0 (zero);

● R means the right subset of the special ordered set was restricted to 0 (zero).

◆ Parent indicates the node number of the parent.

◆ Depth indicates the depth of this node in the branch & cut tree.

Node limit, no integer solution.
Current MIP best bound =    2.9739912281e+03 (gap is infinite)
Solution time =    0.01 sec.  Iterations = 68  Nodes = 7 (7)

Tried aggregator 1 time.
Aggregator did 1 substitutions.
Reduced MIP has 2 rows, 3 columns, and 6 nonzeros.
Presolve time =    0.00 sec.
Clique table:0 GUB, 0 GUBEQ, 0 two-covers, 0 probed
ImplBd table: 0 bounds
Root relaxation solution time =    0.00 sec.

      Nodes                                     Cuts/
 Node  Left  Objective  IInf  Best Integer  Best Node  ItCnt Gap

   0     0    125.2083     1                 125.2083      3 
*             122.5000     0      122.5000   Cuts:  2      4 

Mixed integer rounding cuts applied: 1
Gomory fractoinal cuts applied: 1

Integer optimal solution:  Objective =   1.2250000000e+002
Solution time =    0.02 sec.    Iterations = 4   Nodes = 0



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 175

S
o

lvin
g

 M
IP

 P
ro

b
lem

s

<functionhead>

Troubleshooting MIP Performance Problems

Even the most sophisticated methods currently available to solve pure integer and mixed 
integer programming problems require noticeably more computation than the methods for 
similarly sized pure linear programs. Many relatively small integer programming models, in 
fact, still take enormous amounts of computing time to solve. Indeed, some such models have 
never yet been solved. In the face of these practical obstacles to a solution, proper formulation 
of the model is crucial to successful solution of pure integer or mixed integer programs.

For help in formulating a model of your own integer or mixed integer problem, you may 
want to consult H.P. Williams’s textbook about practical model building (referenced in 
Further Reading on page 25 in this manual). 

Also you may want to develop a better understanding of branch & cut, a feature of the 
ILOG CPLEX MIP Optimizer. For that purpose, Williams’s book offers a good introduction, 
and Nemhauser and Wolsey’s book (also referenced in Further Reading on page 25 in this 
manual) goes into greater depth about branch & cut as well as other techniques implemented 
in the ILOG CPLEX MIP Optimizer.

While we have found that the default MIP parameters settings work well for most problems, 
runtimes can sometime be improved by modifying these settings. This section proposes 
alternate parameter settings that can help when you are solving difficult MIPs.

Probing

While most of the suggestions in this section are oriented toward overcoming specific 
obstacles, the probing parameter can help in many different ways on difficult models. 
Probing is a technique that looks at the logical implications of fixing each binary variable to 
0 or 1. Probing can be expensive, so this parameter should be used selectively. On models 
that are in some sense easy, the extra time spent probing may not reduce the overall time 
enough to be worthwhile. On difficult models, probing may incur very large runtime costs at 
the beginning and yet pay off with shorter overall runtime. When you are tuning 
performance, it is usually because the model is difficult, and then probing is worth trying. 

When the probing parameter is set to 1 (one), CPLEX performs a limited amount of probing 
(to limit probing runtime); when set to 2, the full amount of probing implemented in CPLEX 
is performed.

To activate probing::

◆ In the Interactive Optimizer, use the command set mip strategy probe i.

◆ In the Concert Technology Library, set the integer parameter Probe.

◆ In the Callable Library, set the integer parameter CPX_PARAM_PROBE.



T R O U B L E S H O O T I N G  M I P  P E R F O R M A N C E  P R O B L E M S

176 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

Too Much Time at Node 0

For some problems, ILOG CPLEX will spend a significant amount of time performing 
computation at node 0, apart from solving the LP relaxation. While this investment of time 
normally saves in the overall branch & cut, it does not always do so. Time spent at node 0 
can be reduced by two parameters. 

First, you can turn off the node heuristic: 

◆ In the Interactive Optimizer, use the command 
set mip strategy heuristicfreq -1. 

◆ In the Concert Technology Library, set the integer parameter HeurFreq. 

◆ In the Callable Library, set the integer parameter CPX_PARAM_HEURFREQ.

Second, you can choose a less expensive variable selection strategy:

◆ In the Interactive Optimizer, use the command 
set mip strategy variableselect 1 or 4.

◆ In the Concert Technology Library, set the integer parameter VarSel.

◆ In the Callable Library, set the integer parameter CPX_PARAM_VARSEL.

Time at node 0 can also be consumed by the effort to solve the LP relaxation. Experiment by 
solving the relaxed problem using each of the LP optimizers. These experiments may 
suggest a better setting for the startalgorithm parameter. 

Trouble Finding More than One Feasible Solution

For some models, ILOG CPLEX finds an integer feasible solution early in the process and 
then does not find a better one for quite a while. One possibility, of course, is that the first 
feasible solution is optimal. In that case, there are no better solutions. 

The more common reason for this behavior, though, is the default best-bound variable 
selection strategy. This strategy concentrates on exploring nodes that are high in the 
branch & cut tree for the purpose of proving optimality more quickly. 

One easy setting to try is the MIP emphasis parameter. It’s described in Feasibility and 
Optimality on page 158. A setting of 1 leads to a greater emphasis on finding feasible 
solutions during the course of optimization.

If you want to keep the default emphasis on proving optimality, the most useful parameter 
for altering the default strategy, in the hope of finding new feasible solutions more 
frequently, is the backtrack parameter. To set its value:

◆ In the Interactive Optimizer, set mip strategy backtrack n.

◆ In the Concert Technology Library, set the numeric parameter BtTol.



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 177

S
o

lvin
g

 M
IP

 P
ro

b
lem

s

<functionhead>

◆ In the Callable Library, set the double parameter CPX_PARAM_BTTOL.).

By setting this value closer to 1.0, you force branch & cut to dive deeper into the tree, where 
integer feasible solutions are more likely to be found.

Another approach to finding more feasible solutions is to increase the frequency of the node 
heuristic. To set its value:

◆ In the Interactive Optimizer, set mip strategy heuristicfreq i.

◆ In the Concert Technology Library, set the integer parameter HeurFreq.

◆ In the Callable Library, set the integer parameter CPX_PARAM_HEURFREQ.

This heuristic can be expensive, so exercise caution when setting this parameter to values 
less than 10.

A final approach to finding more feasible solutions is to try an alternate node selection 
strategy. To set the strategy:

◆ In the Interactive Optimizer, set mip strategy nodeselect i.

◆ In the Concert Technology Library, set the integer parameter NodeSel.

◆ In the Callable Library, set the integer parameter CPX_PARAM_NODESEL.

Values 2 and 3 use node estimates to select nodes and thus sometimes produce more frequent 
feasible solutions.

Large Number of Unhelpful Cuts

While the cuts added by ILOG CPLEX reduce runtime for most problems, on occasion they 
can have the opposite effect. If you notice, for example, that ILOG CPLEX adds a large 
number of cuts at the root, but the objective value does not change significantly, then you 
may want to experiment with turning off cuts. 

◆ In the Interactive Optimizer, you can turn cuts off selectively 
(set mip cuts covers -1) or all at once (set mip cuts all -1). 

◆ In the Component Libraries, set the parameters that control classes of cuts (Table 5.4 on 
page 160).

Lack of Movement in the Best Node

For some models, the Best Node value in the node log changes very slowly or not at all. 
Runtimes for such models can sometimes be reduced by the variable selection strategy 
known as strong branching. Strong branching explores a set of candidate branching-



T R O U B L E S H O O T I N G  M I P  P E R F O R M A N C E  P R O B L E M S

178 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

variables in-depth, performing a limited number of simplex iterations to estimate the effect 
of branching up or down on each. 

To activate strong branching :

◆ In the Interactive Optimizer, use the command 
set mip strategy variableselect 3. 

◆ In the Concert Technology Library, set the integer parameter VarSel.

◆ In the Callable Library, set the integer parameter CPX_PARAM_VARSEL. 

On rare occasions, it can be helpful to modify strong branching limits. If you modify the 
limit on the size of the candidate list, then strong branching will explore a larger (or smaller) 
set of candidates. If you modify the limit on strong branching iteration, then strong 
branching will perform more (or fewer) simplex iterations per candidate. Table 5.9 
summarizes those limits and shows the parameter names. 

Time Wasted on Overly Tight Optimality Criteria

Sometimes ILOG CPLEX finds a good integer solution early, but many additional nodes 
must be examined to prove that solution is optimal. You can speed up the process in such a 
case if you are willing to change the optimality tolerance. ILOG CPLEX supports two kinds 
of tolerance:

◆ Relative optimality tolerance guarantees that a solution lies within a certain percentage 
of the optimal solution.

◆ Absolute optimality tolerance guarantees that a solution lies within a certain absolute 
range of the optimal solution. 

The default relative optimality tolerance is 0.0001. At this tolerance, the final integer 
solution is guaranteed to be within 0.01% of the optimal value. Of course, many 
formulations of integer or mixed integer programs do not require such tight tolerance, so 
requiring ILOG CPLEX to seek integer solutions that meet this tolerance in those cases is 

Important: Strong branching consumes significantly more computation time per node than 
the default variable selection strategy.

Table 5.9 Parameters for Limiting Strong Branching

Limit Interactive Command
Concert Technology 
Library Parameter

Callable Library 
Parameter

size of candidate list set mip limits strongcand IloCplex::StrongCandLim CPX_PARAM_STRONGCANDLIM

iterations per 
candidate

set mip limits strongit IloCplex::StrongItLim CPX_PARAM_STRONGITLIM



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 179

S
o

lvin
g

 M
IP

 P
ro

b
lem

s

<functionhead>

wasted computation. If you can accept greater optimality tolerance in your model, then you 
should change the parameter to control relative gap. 

For example, to set the relative gap to one percent:

◆ In the Interactive Optimizer, use this command: set mip tolerance mipgap 0.01. 

◆ In the Concert Technology Library, use the method IloCplex::setParam(EpGap, 
0.01).

◆ In the Callable Library, use the routine CPXsetdblparam(env, CPX_PARAM_EPGAP, 
0.01).

If, however, you know that the objective values of your problem are near zero, then you 
should change the absolute gap because percentages of very small numbers are less useful as 
optimality tolerance. 

For example, to change the absolute gap:

◆ In the Interactive Optimizer, use this command : 
set mip tolerance absmipgap 3.0. 

◆ In the Concert Technology Library, use the method IloCplex::setParam(EpAGap, 
3.0).

◆ In the Callable Library, use the routine CPXsetdblparam(env, CPX_PARAM_EPAGAP, 
3.0). 

Table 5.10 summarizes the default value and range of absolute and relative gap parameters. 

To speed up the proof of optimality, you can set objective difference parameters, both 
relative and absolute. Setting these parameters helps when there are many integer solutions 
with similar objective values. For example, in the Interactive Optimizer, this command 
set mip tolerances objdifference 100.0 makes ILOG CPLEX skip any potential 
solution with its objective value within 100.0 units of the best integer solution so far. 

Table 5.10 Relative, Absolute Gap Parameters (Relative, Absolute Optimality Tolerance)

Relative Gap Absolute Gap

Default value 1e-04 1e-6

Range 0.0-1.0 Any positive value

Concert Technology 
Library parameter

IloCplex::EpGap IloCplex::EpAGap

Callable Library 
parameter

CPX_PARAM_EPGAP CPX_PARAM_EPAGAP

Interactive Optimizer 
option

mipgap absmipgap



T R O U B L E S H O O T I N G  M I P  P E R F O R M A N C E  P R O B L E M S

180 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

Naturally, since this objective difference setting may make ILOG CPLEX skip an interval 
where the true integer optimum may be found, the objective difference setting weakens the 
guarantee of optimality. Table 5.11 summarizes the default value and range of relative and 
absolute objective difference parameters. 

Cutoff parameters can also be helpful in restricting the search for optimality. If you know 
that there are solutions within a certain distance of the initial relaxation of your problem, 
then you can readily set the upper cutoff parameter for minimization problems and the lower 
cutoff parameter for maximization problems. For example:

◆ In the Interactive Optimizer, use this command 
set mip tolerances uppercutoff 5000 in a minimization problem, and this one 
set mip tolerance lowercutoff 200 in a maximization problem. 

◆ When using the Component Libraries, set the parameters IloCplex::CutUp or 
IloCplex::CutLo or  CPX_PARAM_CUTUP or CPX_PARAM_CUTLO and appropriate 
values.

Table 5.12 summarizes the default value and range of the lower and upper cutoff parameters.

Table 5.11 Relative and Absolute Objective Difference Parameters

Relative Objective Difference Absolute Objective Difference

Default value 0.0 0.0

Range 0.0-1.0 Any value

Concert Technology 
Library parameter

IloCplex::RelObjDif IloCplex::ObjDif

Callable Library 
parameter

CPX_PARAM_RELOBJDIF CPX_PARAM_OBJDIF

Interactive Optimizer 
option

relobjdifference objdifference

Table 5.12 Cutoff Parameters

Lower cutoff Upper cutoff

Default value -1e+75 1e+75

Range Any value Any value

Concert Technology 
Library parameter

IloCplex::CutLo IloCplex::CutUp



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 181

S
o

lvin
g

 M
IP

 P
ro

b
lem

s

<functionhead>

When you set a MIP cutoff value, ILOG CPLEX searches with the same solution strategy as 
though it had already found an integer solution, using a node selection strategy that differs 
from the one it uses before a first solution has been found.

Running Out of Memory

The most common difficulty with MIPs is running out of memory. This problem occurs 
when the branch & cut tree becomes so large that insufficient memory remains to solve an 
LP subproblem. As memory gets tight, you may observe warning messages from 
ILOG CPLEX as it attempts various operations in spite of limited memory. In such a 
situation, if ILOG CPLEX does not find a solution shortly, it terminates the process with an 
error message.

The information about a tree that ILOG CPLEX accumulates in memory can be substantial. 
In particular, ILOG CPLEX saves a basis for every unexplored node. Furthermore, when 
ILOG CPLEX uses the best bound or best estimate strategies of node selection, the list of 
unexplored nodes itself can become very long for large or difficult problems. How large the 
unexplored node list can be depends on the actual amount of memory available, the size of 
the problem, and algorithm selected.

A less frequent cause of memory consumption is the generation of cutting planes. Gomory 
fractional cuts, and, in rare instances, Mixed Integer Rounding cuts, are the ones most likely 
to be dense and thus use significant memory under default/automatic settings. You can try 
turning off these cuts, or any of the cuts you see listed as being generated for your model (in 
the cuts summary at the end of the node log), or simply all cuts, through the use of parameter 
settings discussed in the section on cuts in this manual; doing this carries the risk that this 
will make the model harder to solve and only delay the eventual exhaustion of available 
memory during branching.

Certainly, if you increase the amount of available memory, you extend the problem-solving 
capability of ILOG CPLEX. Unfortunately, when a problem fails because of insufficient 
memory, it is difficult to project how much further the process needed to go and how much 
more memory is needed to solve the problem. For these reasons, the following suggestions 
aim at avoiding memory failure whenever possible and recovering gracefully otherwise.

Callable Library 
parameter

CPX_PARAM_CUTLO CPX_PARAM_CUTUP

Interactive Optimizer 
option

lowercutoff uppercutoff

Table 5.12 Cutoff Parameters (Continued)

Lower cutoff Upper cutoff



T R O U B L E S H O O T I N G  M I P  P E R F O R M A N C E  P R O B L E M S

182 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

Reset the Tree Memory Parameter 

To avoid a failure due to running out of memory, we recommend setting the working 
memory parameter to instruct CPLEX to begin using disk for storage of nodes before it 
consumes all available memory. 

To set the working memory parameter:

◆ In the Interactive Optimizer, use the command set workmem n using a value n that is 
smaller than the total available memory in megabytes. 

◆ For the Component Libraries, set the parameter IloCplex::WorkMem or 
CPX_PARAM_WORKMEM. 

Because the storage of nodes can require a lot of space, it may also be advisable to set a tree 
limit on the size of the entire tree being stored so that not all of your disk will be filled up 
with working storage. The call to the MIP optimizer will be stopped once the size of the tree 
exceeds the value of the tree limit parameter. Under default settings the limit is infinity 
(1e+75), but you can set it to a lower value (in megabytes):

To set the tree limit parameter:

◆ In the Interactive Optimizer, use the command set mip limits treememory . 

◆ For the Component Libraries, set the parameter IloCplex::TreLim, or 
CPX_PARAM_TRELIM.

Write a Tree File and Restart

On some platforms, even when the current tree size is within system limits, memory 
fragmentation may be so great that performance becomes poor. To overcome that kind of 
fragmentation, we recommend that you stop optimization, write a tree file (using the TRE 
format), exit ILOG CPLEX, restart it, read in the model and tree file, and continue 
optimization then.

Use Node Files for Storage 

ILOG CPLEX offers a node file storage feature to store some parts of the branch & cut tree 
in files. If you use this feature, CPLEX will be able to explore more nodes within a smaller 
amount of computer memory.This feature includes several options to reduce the use of 
physical memory, and it entails a very small increase in runtime, so it has less overall impact 
on system resources. Node file storage offers a much better option than relying on swap 
space.

This feature is especially helpful when you are using steepest-edge pricing as the 
subproblem simplex pricing strategy because pricing information itself consumes a great 
deal of memory. 



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 183

S
o

lvin
g

 M
IP

 P
ro

b
lem

s

<functionhead>

There are several parameters that control the use of node files. They are summarized as 
follows, and described in detail in the next paragraphs:

ILOG CPLEX invokes node file storage when it reaches the working memory limit. By 
default, the limit is 128 (megabytes). 

To set a limit on the size of the branch & cut tree held in memory:

◆ In the Interactive Optimizer, use the command set workmem n, substituting a value for 
n. 

◆ When using the Component Libraries, set the parameter IloCplex::WorkMem or 
CPX_PARAM_WORKMEM.

ILOG CPLEX uses node file storage most effectively when the amount of working memory 
is reasonably large so that it does not have to create node files too frequently. A reasonable 
amount is to use approximately half the memory, but no more than 32 megabytes. Higher 
values result in only marginally improved efficiency.

When tree storage size exceeds the limit defined by IloCplex::WorkMem / 
CPX_PARAM_WORKMEM, what happens next is determined by the setting of 
IloCplex::NodeFileInd / CPX_PARAM_NODEFILEIND. If the latter parameter is set to 
zero, then optimization proceeds with the tree stored in memory until CPLEX reaches the 
tree memory limit (IloCplex::TreLim / CPX_PARAM_TRELIM). If the parameter is set 
to 1 (the default), then a very fast compression algorithm is used on the nodes to try to 
conserve memory, without resorting to writing the node files to disk. If the parameter is set 
to 2, then node files are written to disk. If the parameter is set to 3, then nodes are both 
compressed (as in option 1) and written to disk (as in option 2). Thus, regardless of the 
setting of IloCplex::NodeFileInd /CPX_PARAM_NODEFILEIND, CPLEX will stop the 
optimization when the total memory used to store the tree exceeds the tree memory limit.

Table 5.13 Node File Control Parameters

Interactive Optimizer Concert Technology Library Callable Library

mip limits treememory IloCplex::TreLim CPX_PARAM_TRELIM

mip strategy file IloCplex::NodeFileInd CPX_PARAM_NODEFILEIND

workdir IloCplex::WorkDir CPX_PARAM_WORKDIR

workmem IloCplex::WorkMem CPX_PARAM_WORKMEM

Table 5.14 Values for the Node File Storage Parameter

Value Meaning Comments

0 no node files optimization continues

1 node file in memory and compressed optimization continues (default)



T R O U B L E S H O O T I N G  M I P  P E R F O R M A N C E  P R O B L E M S

184 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

In cases where node files are written to disk, CPLEX will create a temporary subdirectory 
under the directory specified by the IloCplex::WorkDir / CPX_PARAM_WORKDIR 
parameter. The directory named by this parameter must exist before CPLEX attempts to 
create node files. By default, the value of this parameter is “.”, which means the current 
working directory.

ILOG CPLEX creates the temporary directory by means of system calls. If the system 
environment variable is set (on Windows 95 or NT, the environment variable TMP; on UNIX 
platforms, the environment variable TMPDIR), then the system ignores the ILOG CPLEX 
node-file directory parameter and creates the temporary node-file directory in the location 
indicated by its system environment variable. Furthermore, if the directory specified in the 
ILOG CPLEX node-file directory parameter is invalid (for example, if it contains illegal 
characters, or if the directory does not allow write access), then the system chooses a 
location according to its own logic.

The temporary directory created for node file storage will have a name prefixed by cpx. The 
files within it will also have names prefixed by cpx.

ILOG CPLEX automatically removes the files and their temporary directory when it frees 
the branch & cut tree:

◆ in the Interactive Optimizer, 

● at problem modification;

● at normal termination; 

◆ from the Concert Technology Library,

● when you call env.end()

◆ from the Callable Library, 

● when you call a problem modification routine;

● when you call CPXfreeprob().

If a program terminates abnormally, the files are not removed.

2 node file on disk files created in temporary directory

3 node file on disk and compressed files created in temporary directory

Table 5.14 Values for the Node File Storage Parameter (Continued)

Value Meaning Comments



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 185

S
o

lvin
g

 M
IP

 P
ro

b
lem

s

<functionhead>

Node files may grow very large. You can limit their size by setting the file limit parameter:

◆ In the Interactive Optimizer, use the command set workmem with any positive value. 

◆ In the Concert Technology Library, use the method IloCplex::setParam(Workmem, 
n), and in the Callable Library, use the routine 
CPXsetdblparam(env, CPX_PARAM_WORKMEM, n) where n is any positive value. 
The default value is 128 (megabytes).

When ILOG CPLEX uses node-file storage, the sequence of nodes processed may differ 
from the sequence in which nodes are processed without node-file storage. Nodes in node-
file storage are not accessible to user-written callback routines.

Change Algorithms

The best approach to reduce memory use is to modify the solution process. Here are some 
ways to do so:

◆ Switch to a higher backtracking parameter, as suggested on page 176.

◆ Switch the node selection strategy to best estimate, or more drastically to depth-first, as 
explained on page 177. Depth-first search rarely generates a long, memory-consuming 
list of unexplored nodes since ILOG CPLEX dives deeply into the tree instead of 
jumping around. A narrowly focused search, like depth-first, also often results in faster 
processing times for individual nodes. However, overall efficiency is sometimes worse 
than with best-bound node selection because each branch is searched exhaustively to its 
deepest level before it is fathomed in favor of better branches.

◆ Another memory-conserving strategy is to use strong branching for variable selection. 
Strong branching requires substantial computational effort at each node to determine the 
best branching variable. As a result, it generates fewer nodes and thus makes less overall 
demand on memory. Often, strong branching is faster as well.

◆ On some problems, the automatic generation of cuts results in excessive memory use 
with little benefit in speed. In such cases, we recommend that you turn off cut generation.

● In the Interactive Optimizer, use the commands set mip cuts all -1 to turn off 
all cuts. Use set mip cuts class -1 (where class may be cliques, covers 
etc.) to turn off individual classes of cuts. 

● In the Component Libraries, cuts may be turned off only by class; use the method 
IloCplex::setParam() or the routine CPXsetintparam() with the appropriate 
parameter to indicate which class of cuts to turn off (Cliques / 
CPX_PARAM_CLIQUES, Covers /  CPX_PARAM_COVERS, etc) and the value -1 each 
time. 

See Table 5.4 on page 160 for a complete list of available cuts.



T R O U B L E S H O O T I N G  M I P  P E R F O R M A N C E  P R O B L E M S

186 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

Difficulty Solving Subproblems

There are classes of MIPs that produce very difficult subproblems, for example, if the 
subproblems are dual degenerate. In such a case, an alternative optimizer, such as the primal 
simplex or the primal-dual barrier optimizer, may be better suited to your problem than the 
default dual simplex optimizer for subproblems.

Overcoming Degeneracy

If the subproblems are dual degenerate, then consider using the primal simplex optimizer for 
the subproblems. Set the subalgorithm parameter, as explained in Subalgorithm Parameter 
on page 188, to use the primal simplex optimizer.

Another effective strategy in overcoming dual degeneracy is to permanently perturb the 
problem. For subproblems that are dual degenerate, in the Interactive Optimizer, write out 
the perturbed problem as a DPE file with the command write filename.dpe substituting 
an appropriate file name. (A .dpe file is saved as a binary SAV format file.) Then you can 
read the saved file back in and solve it. The subproblem should then solve more cleanly and 
quickly.

In the case of DPE files solved by the dual simplex optimizer, any integer solution is also 
guaranteed to be an integer-feasible solution to the original problem. In most cases, the 
solution will be optimal or near-optimal as well.

Shortening Long Solution Times

If subproblems are taking many iterations per node to solve, consider using a stronger dual 
pricing algorithm, such as dual steepest-edge pricing.

In case you have selected the primal-dual barrier optimizer to solve the initial LP relaxation, 
you may want to apply it to the subproblems in one of two ways:

◆ barrier with crossover 

● in the Interactive Optimizer use, set mip strategy subalgorithm 4 

● in the Concert Technology Library, use the method 
IloCplex::setNodeAlgorithm(Barrier)

● or CPXsetintparam(env, CPX_PARAM_SUBALG, CPX_NODEALG_BARRIER). 

This choice applies the primal-dual barrier optimizer to all subproblems.

◆ dual to limit, then barrier

● in the Interactive Optimizer use, set mip strategy subalgorithm 5

● in the Concert Technology Library, use the method 
IloCplex::setNodeAlgorithm(DualBarrier)

●  or CPXsetintparam(env, CPX_PARAM_SUBALG, CPX_NODEALG_DUAL)



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 187

S
o

lvin
g

 M
IP

 P
ro

b
lem

s

<functionhead>

Recognizing that the barrier optimizer does not utilize a basis, this choice lets the dual 
simplex optimizer run for a predetermined number of iterations and then switches to the 
barrier optimizer for the subproblem. To use this choice, you need to set the simplex 
iteration limit to a reasonably low number of dual iterations.

If you limit the number of simplex iterations, the limit applies to all invocations of simplex 
optimizers, except crossover. Since the dual simplex optimizer will most often be the best 
method, try to specify a sufficient number of iterations before you force the switch to the 
barrier optimizer.

Subproblem Optimization

In some problems, you can improve performance by evaluating how the LP subproblems are 
solved at the nodes in the branch & cut tree, and then possibly modifying the choice of 
algorithm to solve them. As we mentioned in Preprocessing: Presolver and Aggregator on 
page 163, you can control which algorithm ILOG CPLEX applies to the initial relaxation of 
your problem separately from your control of which algorithm ILOG CPLEX applies to 
other subproblems. Table 5.15 summarizes the commands to control those two parameters. 
The following sections explain those parameters more fully.  

Start-Algorithm Parameter

The start-algorithm parameter indicates the algorithm for ILOG CPLEX to use on the initial 
subproblem. In a typical MIP, that initial subproblem is usually the linear relaxation of the 
original MIP. By default, ILOG CPLEX starts the initial subproblem with the dual simplex 
optimizer. You may have information about your problem that indicates another optimizer 
could be more efficient. Table 5.16 summarizes the values available for the start-algorithm 
parameter. 

To set this parameter:

◆ In the Interactive Optimizer, use the command set mip strategy startalgorithm 
with the value to indicate the optimizer you want. 

◆ In the Concert Technology library, use the method IloCplex::setRootAlgorithm() 
and the appropriate algorithm enumeration value. 

◆ In the Callable Library, use the routine CPXsetintparam() with the parameter 
CPX_PARAM_STARTALG, and the appropriate symbolic constant. 

Table 5.15 Parameters for MIP Initial Relaxation and Subproblems

Interactive command Callable Library parameter Applies to

set mip strategy startalgorithm CPX_PARAM_STARTALG initial relaxation

set mip strategy subalgorithm CPX_PARAM_SUBALG subproblems



T R O U B L E S H O O T I N G  M I P  P E R F O R M A N C E  P R O B L E M S

188 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

Crossover Parameter

To control the kind of crossover used by the barrier optimizer for MIP subproblems, in the 
Interactive Optimizer, use the command set mip strategy crossover i substituting a 
value to indicate which optimizer to call at crossover. From the callable Library, use the 
routine CPXsetintparam() with the parameter CPX_PARAM_MIPHYBALG and a crossover 
value. Table 5.17 lists the acceptable values for this crossover parameter.  

Subalgorithm Parameter

The subalgorithm parameter indicates the algorithm for ILOG CPLEX to use on subsequent 
subproblems. By default, ILOG CPLEX applies the dual simplex optimizer to subproblems, 
but again, you may have information about your problem that tells you another optimizer 
could be more efficient. To specify a subalgorithm in the Interactive Optimizer, use the 
command set mip strategy subalgorithm with the value to indicate the optimizer 
you want. In the Concert Technology library use the method 
IloCplex::setNodeAlgorithm() and the appropriate algorithm enumeration value. In 
the Callable Library, use the routine CPXsetintparam() with the parameter 
CPX_PARAM_SUBALG, and the appropriate symbolic constant. The values and symbolic 
constants are the same for the subalgorithm parameter as for the start-algorithm parameter in 
Table 5.16 on page 188.

Table 5.16 Values of Start-Algorithm and Sub-Algorithm Parameters

Concert Technology 
Library Enumeration

Callable Library Symbolic 
Constant

Value Calls this Optimizer

IloCplex::Primal CPX_NODEALG_PRIMAL 1 primal simplex

IloCplex::Dual CPX_NODEALG_DUAL 2 dual simplex (default)

IloCplex::Network CPX_NODEALG_HYBNETOPT 3 network simplex

IloCplex::Barrier CPX_NODEALG_HYBBAROPT 4 barrier with crossover (if licensed)

IloCplex::DualBarrier CPX_NODEALG_DUAL_HYBBAROPT 5 dual simplex to iteration limits, then 
barrier (if licensed)

CPX_NODEALG_BARRIER 6 barrier without crossover (if licensed)

Table 5.17 Crossover parameter values used for MIP subproblems

Value Calls this Optimizer

1 (default) primal crossover

2 dual crossover



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 189

S
o

lvin
g

 M
IP

 P
ro

b
lem

s

<functionhead>

Example: Optimizing a Basic MIP Problem

This example illustrates how to optimize a MIP with the ILOG CPLEX Component 
Libraries. 

Complete Program: ilomipex1.cpp

The example derives from ilolpex8.cpp. Here are the differences between that linear 
program and this mixed integer program:

◆ The problem to solve is slightly different. It appears in Sample: Stating a MIP Problem 
on page 152.

◆ The routinepopulatebyrow() added the variables, objective, and constraints to the 
model created by the method IloModel model(env).

#include <ilcplex/ilocplex.h>

ILOSTLBEGIN

static void
   populatebyrow(IloModel model, IloNumVarArray var, IloRangeArray con);

int
main (void) {
   IloEnv env;
   try {
      IloModel model(env);

      IloNumVarArray var(env);
      IloRangeArray con(env);
      populatebyrow (model, var, con);

      IloCplex cplex(model);
      cplex.solve();

      env.out() << "Solution status = " << cplex.getStatus() << endl;
      env.out() << "Solution value  = " << cplex.getObjValue() << endl;

      IloNumArray vals(env);
      cplex.getValues(vals, var);
      env.out() << "Values        = " << vals << endl;
      cplex.getSlacks(vals, con);
      env.out() << "Slacks        = " << vals << endl;

      cplex.exportModel("mipex1.lp");
   }
   catch (IloException& e) {
      cerr << "Concert exception caught: " << e << endl;
   }



E X A M P L E :  O P T I M I Z I N G  A  B A S I C  M I P  P R O B L E M

190 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

   catch (...) {
      cerr << "Unknown exception caught" << endl;
   }

   env.end();
   return 0;

}  // END main

static void
populatebyrow (IloModel model, IloNumVarArray x, IloRangeArray c)
{
   IloEnv env = model.getEnv();

   x.add(IloNumVar(env, 0.0, 40.0));
   x.add(IloNumVar(env));
   x.add(IloNumVar(env));
   x.add(IloNumVar(env, 2.0, 3.0, ILOINT));
   model.add(IloMaximize(env, x[0] + 2 * x[1] + 3 * x[2] + x[3]));

   c.add( - x[0] +     x[1] + x[2] + 10 * x[3] <= 20);
   c.add(   x[0] - 3 * x[1] + x[2]             <= 30);
   c.add(              x[1]        - 3.5* x[3] == 0);
   model.add(c);

}  // END populatebyrow

Complete Program: mipex1.c

The example derives from lpex8.c. Here are the differences between that linear program 
and this mixed integer program:

◆ The problem to solve is slightly different. It appears in Sample: Stating a MIP Problem 
on page 152.

◆ The routine setproblemdata() has a parameter, ctype, to set the types of the 
variables to indicate which ones must assume integer values. The routine 
CPXcopyctype() associates this data with the problem that CPXcreateprob() 
creates.

◆ The example calls CPXmipopt() to optimize the problem, not CPXprimopt(), of 
course. CPXmipopt() solves MIPs.

◆ The example calls the routines CPXgetstat(), CPXgetmipobjval(),  
CPXgetmipx(), and CPXgetmipslack() (instead of CPXsolution()) to get a 
solution. 



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 191

S
o

lvin
g

 M
IP

 P
ro

b
lem

s

<functionhead>

We do not get dual variables this way. If we want dual variables, we must do the 
following:

● Use CPXchgprobtype() to change the problem type to CPXPROB_FIXED.

● Then call CPXprimopt() to optimize that problem.

Then use CPXsolution() to get a solution to the fixed problem.

#include <ilcplex/cplex.h>
#include <stdlib.h>

/* Bring in the declarations for the string functions */

#include <string.h>

/* Include declaration for function at end of program */

#ifndef  CPX_PROTOTYPE_MIN

static int
   setproblemdata (char **probname_p, int *numcols_p, int *numrows_p, 
                   int *objsen_p, double **obj_p, double **rhs_p, 
                   char **sense_p, int **matbeg_p, int **matcnt_p, 
                   int **matind_p, double **matval_p, 
                   double **lb_p, double **ub_p, char **ctype_p);

static void
   free_and_null (char **ptr);

#else

static int
   setproblemdata ();

static void
   free_and_null ();

#endif

/* The problem we are optimizing will have 2 rows, 3 columns 
   and 6 nonzeros.  */

#define NUMROWS    3
#define NUMCOLS    4
#define NUMNZ      9

#ifndef  CPX_PROTOTYPE_MIN
int
main (void)
#else
int



E X A M P L E :  O P T I M I Z I N G  A  B A S I C  M I P  P R O B L E M

192 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

main ()
#endif
{
/* Declare pointers for the variables and arrays that will contain
   the data which define the LP problem.  The setproblemdata() routine
   allocates space for the problem data.  */

   char     *probname = NULL;  
   int      numcols;
   int      numrows;
   int      objsen;
   double   *obj = NULL;
   double   *rhs = NULL;
   char     *sense = NULL;
   int      *matbeg = NULL;
   int      *matcnt = NULL;
   int      *matind = NULL;
   double   *matval = NULL;
   double   *lb = NULL;
   double   *ub = NULL;
   char     *ctype = NULL;

   /* Declare and allocate space for the variables and arrays where we will
      store the optimization results including the status, objective value,
      variable values, and row slacks. */

   int      solstat;
   double   objval;
   double   x[NUMCOLS];
   double   slack[NUMROWS];

   CPXENVptr     env = NULL;
   CPXLPptr      lp = NULL;
   int           status;
   int           i, j;
   int           cur_numrows, cur_numcols;

   /* Initialize the CPLEX environment */

   env = CPXopenCPLEX (&status);

   /* If an error occurs, the status value indicates the reason for
      failure.  A call to CPXgeterrorstring will produce the text of
      the error message.  Note that CPXopenCPLEX produces no output,
      so the only way to see the cause of the error is to use
      CPXgeterrorstring.  For other CPLEX routines, the errors will
      be seen if the CPX_PARAM_SCRIND indicator is set to CPX_ON.  */

   if ( env == NULL ) {
      char  errmsg[1024];
      fprintf (stderr, "Could not open CPLEX environment.\n");
      CPXgeterrorstring (env, status, errmsg);



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 193

S
o

lvin
g

 M
IP

 P
ro

b
lem

s

<functionhead>

      fprintf (stderr, "%s", errmsg);
      goto TERMINATE;
   }

   /* Turn on output to the screen */

   status = CPXsetintparam (env, CPX_PARAM_SCRIND, CPX_ON);
   if ( status ) {
      fprintf (stderr, 
               "Failure to turn on screen indicator, error %d.\n", status);
      goto TERMINATE;
   }

   /* Fill in the data for the problem.  */

   status = setproblemdata (&probname, &numcols, &numrows, &objsen, &obj, 
                            &rhs, &sense, &matbeg, &matcnt, &matind, &matval, 
                            &lb, &ub, &ctype);
   if ( status ) {
      fprintf (stderr, "Failed to build problem data arrays.\n");
      goto TERMINATE;
   }

   /* Create the problem. */

   lp = CPXcreateprob (env, &status, probname);

   /* A returned pointer of NULL may mean that not enough memory
      was available or there was some other problem.  In the case of 
      failure, an error message will have been written to the error 
      channel from inside CPLEX.  In this example, the setting of
      the parameter CPX_PARAM_SCRIND causes the error message to
      appear on stdout.  */

   if ( lp == NULL ) {
      fprintf (stderr, "Failed to create LP.\n");
      goto TERMINATE;
   }

   /* Now copy the problem data into the lp */

   status = CPXcopylp (env, lp, numcols, numrows, objsen, obj, rhs, 
                       sense, matbeg, matcnt, matind, matval,
                       lb, ub, NULL);

   if ( status ) {
      fprintf (stderr, "Failed to copy problem data.\n");
      goto TERMINATE;
   }

   /* Now copy the ctype array */



E X A M P L E :  O P T I M I Z I N G  A  B A S I C  M I P  P R O B L E M

194 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

   status = CPXcopyctype (env, lp, ctype);
   if ( status ) {
      fprintf (stderr, "Failed to copy ctype\n");
      goto TERMINATE;
   }

   /* Optimize the problem and obtain solution. */

   status = CPXmipopt (env, lp);
   if ( status ) {
      fprintf (stderr, "Failed to optimize MIP.\n");
      goto TERMINATE;
   }

   solstat = CPXgetstat (env, lp);

   /* Write the output to the screen. */

   printf ("\nSolution status = %d\n", solstat);
    
   status = CPXgetmipobjval (env, lp, &objval);
   if ( status ) {
      fprintf (stderr,"No MIP objective value available.  Exiting...\n");
      goto TERMINATE;
   }

   printf ("Solution value  = %f\n\n", objval);

   /* The size of the problem should be obtained by asking CPLEX what
      the actual size is, rather than using what was passed to CPXcopylp.
      cur_numrows and cur_numcols store the current number of rows and
      columns, respectively.  */

   cur_numrows = CPXgetnumrows (env, lp);
   cur_numcols = CPXgetnumcols (env, lp);

   status = CPXgetmipx (env, lp, x, 0, cur_numcols-1);
   if ( status ) {
      fprintf (stderr, "Failed to get optimal integer x.\n");
      goto TERMINATE;
   }

   status = CPXgetmipslack (env, lp, slack, 0, cur_numrows-1);
   if ( status ) {
      fprintf (stderr, "Failed to get optimal slack values.\n");
      goto TERMINATE;
   }

   for (i = 0; i < cur_numrows; i++) {
      printf ("Row %d:  Slack = %10f\n", i, slack[i]);
   }

   for (j = 0; j < cur_numcols; j++) {



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 195

S
o

lvin
g

 M
IP

 P
ro

b
lem

s

<functionhead>

      printf ("Column %d:  Value = %10f\n", j, x[j]);
   }

   /* Finally, write a copy of the problem to a file. */

   status = CPXwriteprob (env, lp, "mipex1.lp", NULL);
   if ( status ) {
      fprintf (stderr, "Failed to write LP to disk.\n");
      goto TERMINATE;
   }
   
TERMINATE:

   /* Free up the problem as allocated by CPXcreateprob, if necessary */

   if ( lp != NULL ) {
      status = CPXfreeprob (env, &lp);
      if ( status ) {
         fprintf (stderr, "CPXfreeprob failed, error code %d.\n", status);
      }
   }

   /* Free up the CPLEX environment, if necessary */

   if ( env != NULL ) {
      status = CPXcloseCPLEX (&env);

      /* Note that CPXcloseCPLEX produces no output,
         so the only way to see the cause of the error is to use
         CPXgeterrorstring.  For other CPLEX routines, the errors will
         be seen if the CPX_PARAM_SCRIND indicator is set to CPX_ON. */

      if ( status ) {
         char  errmsg[1024];
         fprintf (stderr, "Could not close CPLEX environment.\n");
         CPXgeterrorstring (env, status, errmsg);
         fprintf (stderr, "%s", errmsg);
      }
   }
     
   /* Free up the problem data arrays, if necessary. */

   free_and_null ((char **) &probname);
   free_and_null ((char **) &obj);
   free_and_null ((char **) &rhs);
   free_and_null ((char **) &sense);
   free_and_null ((char **) &matbeg);
   free_and_null ((char **) &matcnt);
   free_and_null ((char **) &matind);
   free_and_null ((char **) &matval);
   free_and_null ((char **) &lb);
   free_and_null ((char **) &ub);



E X A M P L E :  O P T I M I Z I N G  A  B A S I C  M I P  P R O B L E M

196 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

   free_and_null ((char **) &ctype);

   return (status);

}  /* END main */

/* This function fills in the data structures for the mixed integer program:

      Maximize
       obj: x1 + 2 x2 + 3 x3 + x4
      Subject To
       c1: - x1 + x2 + x3 + 10x4  <= 20
       c2: x1 - 3 x2 + x3         <= 30
       c3:       x2       - 3.5x4  = 0
      Bounds
       0 <= x1 <= 40
       2 <= x4 <= 3
      Integers
        x4
      End
 */

#ifndef  CPX_PROTOTYPE_MIN
static int
setproblemdata (char **probname_p, int *numcols_p, int *numrows_p, 
                int *objsen_p, double **obj_p, double **rhs_p, 
                char **sense_p, int **matbeg_p, int **matcnt_p, 
                int **matind_p, double **matval_p, 
                double **lb_p, double **ub_p, char **ctype_p)
#else
static int
setproblemdata (probname_p, numcols_p, numrows_p, objsen_p, obj_p, 
                rhs_p, sense_p, matbeg_p, matcnt_p, matind_p, matval_p, 
                lb_p, ub_p, ctype_p)
char    **probname_p;
int     *numcols_p;
int     *numrows_p;
int     *objsen_p;
double  **obj_p;
double  **rhs_p;
char    **sense_p;
int     **matbeg_p;
int     **matcnt_p;
int     **matind_p;
double  **matval_p;
double  **lb_p;
double  **ub_p;
char    **ctype_p;
#endif
{
   char     *zprobname = NULL;     /* Problem name <= 16 characters */        



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 197

S
o

lvin
g

 M
IP

 P
ro

b
lem

s

<functionhead>

   double   *zobj = NULL;
   double   *zrhs = NULL;
   char     *zsense = NULL;
   int      *zmatbeg = NULL;
   int      *zmatcnt = NULL;
   int      *zmatind = NULL;
   double   *zmatval = NULL;
   double   *zlb = NULL;
   double   *zub = NULL;
   char     *zctype = NULL;
   int      status = 0;

   zprobname = (char *) malloc (16 * sizeof(char)); 
   zobj      = (double *) malloc (NUMCOLS * sizeof(double));
   zrhs      = (double *) malloc (NUMROWS * sizeof(double));
   zsense    = (char *) malloc (NUMROWS * sizeof(char)); 
   zmatbeg   = (int *) malloc (NUMCOLS * sizeof(int));   
   zmatcnt   = (int *) malloc (NUMCOLS * sizeof(int));   
   zmatind   = (int *) malloc (NUMNZ * sizeof(int));   
   zmatval   = (double *) malloc (NUMNZ * sizeof(double));
   zlb       = (double *) malloc (NUMCOLS * sizeof(double));
   zub       = (double *) malloc (NUMCOLS * sizeof(double));
   zctype    = (char *) malloc (NUMCOLS * sizeof(char)); 
 
   if ( zprobname == NULL || zobj    == NULL ||
        zrhs      == NULL || zsense  == NULL ||
        zmatbeg   == NULL || zmatcnt == NULL ||
        zmatind   == NULL || zmatval == NULL ||
        zlb       == NULL || zub     == NULL ||
        zctype    == NULL                       )  {
      status = 1;
      goto TERMINATE;
   }

   strcpy (zprobname, "example");

   /* The code is formatted to make a visual correspondence 
      between the mathematical linear program and the specific data
      items.   */

     zobj[0]  = 1.0;   zobj[1]   = 2.0;  zobj[2]    = 3.0;    zobj[3] = 1.0;  

   zmatbeg[0] = 0;    zmatbeg[1] = 2;    zmatbeg[2] = 5;   zmatbeg[3] = 7;
   zmatcnt[0] = 2;    zmatcnt[1] = 3;    zmatcnt[2] = 2;   zmatcnt[3] = 2;
      
   zmatind[0] = 0;    zmatind[2] = 0;    zmatind[5] = 0;   zmatind[7] = 0;
   zmatval[0] = -1.0; zmatval[2] = 1.0;  zmatval[5] = 1.0; zmatval[7] = 10.0;

   zmatind[1] = 1;    zmatind[3] = 1;    zmatind[6] = 1;     
   zmatval[1] = 1.0;  zmatval[3] = -3.0; zmatval[6] = 1.0;   

                      zmatind[4] = 2;                      zmatind[8] = 2;



E X A M P L E :  O P T I M I Z I N G  A  B A S I C  M I P  P R O B L E M

198 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

                      zmatval[4] = 1.0;                    zmatval[8] = -3.5;

   zlb[0] = 0.0;   zlb[1] = 0.0;      zlb[2] = 0.0;     zlb[3] = 2.0;
   zub[0] = 40.0;  zub[1] = CPX_INFBOUND; zub[2] = CPX_INFBOUND; zub[3] = 3.0;

    zctype[0] = ’C’;    zctype[1] = ’C’;   zctype[2] = ’C’;   zctype[3] = ’I’;

  /* The right-hand-side values don’t fit nicely on a line above.  So put
     them here.  */

   zsense[0] = ’L’;
   zrhs[0]   = 20.0;

   zsense[1] = ’L’;
   zrhs[1]   = 30.0;

   zsense[2] = ’E’;
   zrhs[2]   = 0.0;

TERMINATE:

   if ( status ) {
      free_and_null ((char **) &zprobname);
      free_and_null ((char **) &zobj);
      free_and_null ((char **) &zrhs);
      free_and_null ((char **) &zsense);
      free_and_null ((char **) &zmatbeg);
      free_and_null ((char **) &zmatcnt);
      free_and_null ((char **) &zmatind);
      free_and_null ((char **) &zmatval);
      free_and_null ((char **) &zlb);
      free_and_null ((char **) &zub);
      free_and_null ((char **) &zctype);
   }
   else {
      *numcols_p   = NUMCOLS;
      *numrows_p   = NUMROWS;
      *objsen_p    = CPX_MAX;   /* The problem is maximization */
   
      *probname_p  = zprobname;
      *obj_p       = zobj;
      *rhs_p       = zrhs;
      *sense_p     = zsense;
      *matbeg_p    = zmatbeg;
      *matcnt_p    = zmatcnt;
      *matind_p    = zmatind;
      *matval_p    = zmatval;
      *lb_p        = zlb;
      *ub_p        = zub;
      *ctype_p     = zctype;
   }
   return (status);



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 199

S
o

lvin
g

 M
IP

 P
ro

b
lem

s

<functionhead>

}  /* END setproblemdata */

/* This simple routine frees up the pointer *ptr, and sets *ptr to NULL */

#ifndef  CPX_PROTOTYPE_MIN
static void
free_and_null (char **ptr)
#else
static void
free_and_null (ptr)
char  **ptr;
#endif
{
   if ( *ptr != NULL ) {
      free (*ptr);
      *ptr = NULL;
   }
} /* END free_and_null */  

Example: Reading a MIP Problem from a File

This example shows you how to solve a MIP with the Component Libraries when the 
problem data is stored in a file. 

Example: ilomipex2.cpp

This example derives from ilolpex2.cpp, an LP explained in the manual Getting Started 
with ILOG CPLEX. That LP example differs from this MIP example in these ways:

◆ This example solves only MIPs, so it calls only IloCplex::solve(), and its command 
line does not require the user to indicate an optimizer.

◆ This example doesn’t generate or print a basis.

Like other applications based on the ILOG CPLEX Concert Technology Library, this one 
uses IloEnv env to initialize the Concert Technology environment and 
IloModel model(env) to create a problem object. Before it ends, it calls env.end to free 
the environment.

#include <ilcplex/ilocplex.h>
ILOSTLBEGIN

static void usage (const char *progname);

int
main (int argc, char **argv)



E X A M P L E :  R E A D I N G  A  M I P  P R O B L E M  F R O M  A  F I L E

200 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

{
   IloEnv env;
   try {
      IloModel model(env);
      IloCplex cplex(env);

      if ( argc != 2 ) {
         usage (argv[0]);
         throw(-1);
      }

      IloObjective   obj;
      IloNumVarArray var(env);
      IloRangeArray  rng(env);
      cplex.importModel(model, argv[1], obj, var, rng);

      cplex.extract(model);
      cplex.solve();

      env.out() << "Solution status = " << cplex.getStatus() << endl;
      env.out() << "Solution value  = " << cplex.getObjValue() << endl;

      IloNumArray vals(env);
      cplex.getValues(vals, var);
      env.out() << "Values        = " << vals << endl;
   }
   catch (IloException& e) {
      cerr << "Concert exception caught: " << e << endl;
   }
   catch (...) {
      cerr << "Unknown exception caught" << endl;
   }

   env.end();
   return 0;
}  // END main

static void usage (const char *progname)
{
   cerr << "Usage: " << progname << " filename" << endl;
   cerr << "   where filename is a file with extension " << endl;
   cerr << "      MPS, SAV, or LP (lower case is allowed)" << endl;
   cerr << " Exiting..." << endl;
} // END usage



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 201

S
o

lvin
g

 M
IP

 P
ro

b
lem

s

<functionhead>

Example: mipex2.c

The example derives from lpex2.c, an LP explained in the manual Getting Started with 
ILOG CPLEX. That LP example differs from this MIP example in these ways:

◆ This example solves only MIPs, so it calls only CPXmipopt(), and its command line 
does not require the user to indicate an optimizer.

◆ This example calls CPXgetstat(), CPXgetmipobjval(), and CPXgetmipx() to get 
a solution. It doesn’t generate or print a basis.

Like other applications based on the ILOG CPLEX Callable Library, this one calls 
CPXopenCPLEX() to initialize the ILOG CPLEX environment; it sets the screen-indicator 
parameter to direct output to the screen and calls CPXcreateprob() to create a problem 
object. Before it ends, it calls CPXfreeprob() to free the space allocated to the problem 
object and CPXcloseCPLEX() to free the environment.

#include <ilcplex/cplex.h>

/* Bring in the declarations for the string and character functions 
   and malloc */

#include <ctype.h>
#include <stdlib.h>
#include <string.h>

/* Include declarations for functions in this program */

#ifndef  CPX_PROTOTYPE_MIN

static void
   free_and_null (char **ptr),
   usage         (char *progname);

#else

static void
   free_and_null (),
   usage         ();

#endif

#ifndef  CPX_PROTOTYPE_MIN
int
main (int argc, char *argv[])
#else
int
main (argc, argv)
int   argc;
char  *argv[];
#endif
{
   /* Declare and allocate space for the variables and arrays where we will
      store the optimization results including the status, objective value,
      and variable values. */



E X A M P L E :  R E A D I N G  A  M I P  P R O B L E M  F R O M  A  F I L E

202 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

   int      solstat;
   double   objval;
   double   *x     = NULL;

   CPXENVptr     env = NULL;
   CPXLPptr      lp = NULL;
   int           status;
   int           j;
   int           cur_numcols;

   /* Check the command line arguments */

   if ( argc != 2 ) {
      usage (argv[0]);
      goto TERMINATE;
   }

   /* Initialize the CPLEX environment */

   env = CPXopenCPLEX (&status);

   /* If an error occurs, the status value indicates the reason for
      failure.  A call to CPXgeterrorstring will produce the text of
      the error message.  Note that CPXopenCPLEX produces no output,
      so the only way to see the cause of the error is to use
      CPXgeterrorstring.  For other CPLEX routines, the errors will
      be seen if the CPX_PARAM_SCRIND indicator is set to CPX_ON.  */

   if ( env == NULL ) {
      char  errmsg[1024];
      fprintf (stderr, "Could not open CPLEX environment.\n");
      CPXgeterrorstring (env, status, errmsg);
      fprintf (stderr, "%s", errmsg);
      goto TERMINATE;
   }

   /* Turn on output to the screen */

   status = CPXsetintparam (env, CPX_PARAM_SCRIND, CPX_ON);
   if ( status ) {
      fprintf (stderr, 
               "Failure to turn on screen indicator, error %d.\n", status);
      goto TERMINATE;
   }

   /* Create the problem, using the filename as the problem name */

   lp = CPXcreateprob (env, &status, argv[1]);

   /* A returned pointer of NULL may mean that not enough memory
      was available or there was some other problem.  In the case of 
      failure, an error message will have been written to the error 
      channel from inside CPLEX.  In this example, the setting of
      the parameter CPX_PARAM_SCRIND causes the error message to
      appear on stdout.  Note that most CPLEX routines return
      an error code to indicate the reason for failure.   */



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 203

S
o

lvin
g

 M
IP

 P
ro

b
lem

s

<functionhead>

   if ( lp == NULL ) {
      fprintf (stderr, "Failed to create LP.\n");
      goto TERMINATE;
   }

   /* Now read the file, and copy the data into the created lp */

   status = CPXreadcopyprob (env, lp, argv[1], NULL);
   if ( status ) {
      fprintf (stderr, "Failed to read and copy the problem data.\n");
      goto TERMINATE;
   }

   /* Optimize the problem and obtain solution. */

   status = CPXmipopt (env, lp);

   if ( status ) {
      fprintf (stderr, "Failed to optimize MIP.\n");
      goto TERMINATE;
   }

   solstat = CPXgetstat (env, lp);
   printf ("Solution status %d.\n", solstat);

   status  = CPXgetmipobjval (env, lp, &objval);

   if ( status ) {
      fprintf (stderr,"Failed to obtain objective value.\n");
      goto TERMINATE;
   }

   printf ("Objective value %.10g\n", objval);

   /* The size of the problem should be obtained by asking CPLEX what
      the actual size is. cur_numcols stores the current number 
      of columns. */

   cur_numcols = CPXgetnumcols (env, lp);

   /* Allocate space for solution */

   x = (double *) malloc (cur_numcols*sizeof(double));

   if ( x == NULL ) {
      fprintf (stderr, "No memory for solution values.\n");
      goto TERMINATE;
   }

   status = CPXgetmipx (env, lp, x, 0, cur_numcols-1);
   if ( status ) {
      fprintf (stderr, "Failed to obtain solution.\n");
      goto TERMINATE;
   }

   /* Write out the solution */



E X A M P L E :  R E A D I N G  A  M I P  P R O B L E M  F R O M  A  F I L E

204 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

   for (j = 0; j < cur_numcols; j++) {
      printf ( "Column %d:  Value = %17.10g\n", j, x[j]);
   }

   
TERMINATE:

   /* Free up the solution */

   free_and_null ((char **) &x);

   /* Free up the problem as allocated by CPXcreateprob, if necessary */

   if ( lp != NULL ) {
      status = CPXfreeprob (env, &lp);
      if ( status ) {
         fprintf (stderr, "CPXfreeprob failed, error code %d.\n", status);
      }
   }

   /* Free up the CPLEX environment, if necessary */

   if ( env != NULL ) {
      status = CPXcloseCPLEX (&env);

      /* Note that CPXcloseCPLEX produces no output,
         so the only way to see the cause of the error is to use
         CPXgeterrorstring.  For other CPLEX routines, the errors will
         be seen if the CPX_PARAM_SCRIND indicator is set to CPX_ON. */

      if ( status ) {
      char  errmsg[1024];
         fprintf (stderr, "Could not close CPLEX environment.\n");
         CPXgeterrorstring (env, status, errmsg);
         fprintf (stderr, "%s", errmsg);
      }
   }
     
   return (status);

}  /* END main */

/* This simple routine frees up the pointer *ptr, and sets *ptr to NULL */

#ifndef  CPX_PROTOTYPE_MIN
static void
free_and_null (char **ptr)
#else
static void
free_and_null (ptr)
char  **ptr;
#endif
{
   if ( *ptr != NULL ) {
      free (*ptr);
      *ptr = NULL;
   }



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 205

S
o

lvin
g

 M
IP

 P
ro

b
lem

s

<functionhead>

} /* END free_and_null */ 

#ifndef  CPX_PROTOTYPE_MIN
static void
usage (char *progname)
#else
static void
usage (progname)
char *progname;
#endif
{
   fprintf (stderr,"Usage: %s filename\n", progname);
   fprintf (stderr,"   where filename is a file with extension \n");
   fprintf (stderr,"      MPS, SAV, or LP (lower case is allowed)\n");
   fprintf (stderr,"  This program uses the CPLEX MIP optimizer.\n");
   fprintf (stderr," Exiting...\n");
} /* END usage */

Example: Using SOS and Priority

This example illustrates how to use SOS and priority orders. 

Example: ilomipex3.cpp

It derives from ilomipex1.cpp. The differences between that simpler MIP example and 
this one are:

◆ The problem solved is slightly different so the output is interesting. The actual SOS and 
priority order that the example implements are arbitrary; they do not necessarily 
represent good data for this problem.

◆ The routine setPriorities() sets the SOS and priority order:

#include <ilcplex/ilocplex.h>

ILOSTLBEGIN

static void
   populatebyrow(IloModel model, IloNumVarArray var, IloRangeArray con);

int
main (void) {
   IloEnv env;
   try {
      IloModel model(env);

      IloNumVarArray var(env);
      IloRangeArray con(env);
      populatebyrow (model, var, con);



E X A M P L E :  U S I N G  S O S  A N D  P R I O R I T Y

206 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

      IloCplex cplex(model);
      IloNumVarArray ordvar(env, 2, var[1], var[3]);
      IloNumArray    ordpri(env, 2, 8.0, 7.0);
      cplex.setPriorities (ordvar, ordpri);
      cplex.setDirection(var[1], IloCplex::BranchUp);
      cplex.setDirection(var[3], IloCplex::BranchDown);
      cplex.solve();

      env.out() << "Solution status = " << cplex.getStatus() << endl;
      env.out() << "Solution value  = " << cplex.getObjValue() << endl;

      IloNumArray vals(env);
      cplex.getValues(vals, var);
      env.out() << "Values        = " << vals << endl;
      cplex.getSlacks(vals, con);
      env.out() << "Slacks        = " << vals << endl;

      cplex.exportModel("mipex3.lp");
   }
   catch (IloException& e) {
      cerr << "Concert exception caught: " << e << endl;
   }
   catch (...) {
      cerr << "Unknown exception caught" << endl;
   }

   env.end();
   return 0;

}  // END main

static void
populatebyrow (IloModel model, IloNumVarArray x, IloRangeArray c)
{
   IloEnv env = model.getEnv();

   x.add(IloNumVar(env, 0.0, 40.0));
   x.add(IloNumVar(env, 0.0, IloInfinity, ILOINT));
   x.add(IloNumVar(env, 0.0, IloInfinity, ILOINT));
   x.add(IloNumVar(env, 2.0, 3.0, ILOINT));
   model.add(IloMaximize(env, x[0] + 2 * x[1] + 3 * x[2] + x[3]));

   c.add( - x[0] +     x[1] + x[2] + 10 * x[3] <= 20);
   c.add(   x[0] - 3 * x[1] + x[2]             <= 30);
   c.add(              x[1]        - 3.5* x[3] == 0);
   model.add(c);

   model.add(IloSOS1(model.getEnv(),
                     IloNumVarArray(model.getEnv(), 2, x[2], x[3]),
                     IloNumArray(env, 2, 25.0, 18.0)    ));



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 207

S
o

lvin
g

 M
IP

 P
ro

b
lem

s

<functionhead>

}  // END populatebyrow

Example: mipex3.c

This example derives from mipex1.c. The differences between that simpler MIP example 
and this one are:

◆ The problem solved is slightly different so the output is interesting. The actual SOS and 
priority order that the example implements are arbitrary; they do not necessarily 
represent good data for this problem.

◆ The routine CPXwriteprob() writes the problem to disk before the example copies the 
SOS and priority order to verify that the base problem was copied correctly.

◆ The ILOG CPLEX preprocessing parameters for the presolver and aggregator are turned 
off to make the output interesting. Generally, we do not require nor recommend doing 
this.

◆ The routine setsosandorder() sets the SOS and priority order:

● It calls CPXcopysos() to copy the SOS into the problem object.

● It calls CPXcopyorder() to copy the priority order into the problem object.

● It writes the SOS information to files by calling CPXsoswrite().

● It writes the priority order to files by calling CPXordwrite().

#include <ilcplex/cplex.h>
#include <stdlib.h>

/* Bring in the declarations for the string functions */

#include <string.h>

/* Include declaration for function at end of program */

#ifndef  CPX_PROTOTYPE_MIN

static int
   setproblemdata (char **probname_p, int *numcols_p, int *numrows_p, 
                   int *objsen_p, double **obj_p, double **rhs_p, 
                   char **sense_p, int **matbeg_p, int **matcnt_p, 
                   int **matind_p, double **matval_p, 
                   double **lb_p, double **ub_p, char **ctype_p),
   setsosandorder (CPXENVptr env, CPXLPptr lp);

static void
   free_and_null (char **ptr);

#else



E X A M P L E :  U S I N G  S O S  A N D  P R I O R I T Y

208 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

static int
   setproblemdata (),
   setsosandorder ();

static void
   free_and_null ();

#endif

/* The problem we are optimizing will have 2 rows, 3 columns 
   and 6 nonzeros.  */

#define NUMROWS    3
#define NUMCOLS    4
#define NUMNZ      9

#ifndef  CPX_PROTOTYPE_MIN
int
main (void)
#else
int
main ()
#endif
{
   /* Declare and allocate space for the variables and arrays that 
      will contain the data which define the LP problem */

   char     *probname = NULL;  
   int      numcols;
   int      numrows;
   int      objsen;
   double   *obj = NULL;
   double   *rhs = NULL;
   char     *sense = NULL;
   int      *matbeg = NULL;
   int      *matcnt = NULL;
   int      *matind = NULL;
   double   *matval = NULL;
   double   *lb = NULL;
   double   *ub = NULL;
   char     *ctype = NULL;

   /* Declare and allocate space for the variables and arrays where we
      will store the optimization results including the status, objective
      value, variable values, and row slacks. */

   int      solstat;
   double   objval;
   double   x[NUMCOLS];
   double   slack[NUMROWS];



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 209

S
o

lvin
g

 M
IP

 P
ro

b
lem

s

<functionhead>

   CPXENVptr     env = NULL;
   CPXLPptr      lp = NULL;
   int           status;
   int           i, j;
   int           cur_numrows, cur_numcols;

   /* Initialize the CPLEX environment */

   env = CPXopenCPLEX (&status);

   /* If an error occurs, the status value indicates the reason for
      failure.  A call to CPXgeterrorstring will produce the text of
      the error message.  Note that CPXopenCPLEX produces no output,
      so the only way to see the cause of the error is to use
      CPXgeterrorstring.  For other CPLEX routines, the errors will
      be seen if the CPX_PARAM_SCRIND indicator is set to CPX_ON.  */

   if ( env == NULL ) {
      char  errmsg[1024];
      fprintf (stderr, "Could not open CPLEX environment.\n");
      CPXgeterrorstring (env, status, errmsg);
      fprintf (stderr, "%s", errmsg);
      goto TERMINATE;
   }

   /* Turn on output to the screen */

   status = CPXsetintparam (env, CPX_PARAM_SCRIND, CPX_ON);
   if ( status ) {
      fprintf (stderr, 
               "Failure to turn on screen indicator, error %d.\n", status);
      goto TERMINATE;
   }

   /* Fill in the data for the problem.  */

   status = setproblemdata (&probname, &numcols, &numrows, &objsen, &obj, 
                            &rhs, &sense, &matbeg, &matcnt, &matind, &matval, 
                            &lb, &ub, &ctype);
   if ( status ) {
      fprintf (stderr, "Failed to build problem data arrays.\n");
      goto TERMINATE;
   }

   /* Create the problem. */

   lp = CPXcreateprob (env, &status, probname);

   /* A returned pointer of NULL may mean that not enough memory
      was available or there was some other problem.  In the case of 
      failure, an error message will have been written to the error 



E X A M P L E :  U S I N G  S O S  A N D  P R I O R I T Y

210 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

      channel from inside CPLEX.  In this example, the setting of
      the parameter CPX_PARAM_SCRIND causes the error message to
      appear on stdout.  */

   if ( lp == NULL ) {
      fprintf (stderr, "Failed to create LP.\n");
      goto TERMINATE;
   }

   /* Now copy the problem data into the lp */

   status = CPXcopylp (env, lp, numcols, numrows, objsen, obj, rhs, 
                       sense, matbeg, matcnt, matind, matval,
                       lb, ub, NULL);

   if ( status ) {
      fprintf (stderr, "Failed to copy problem data.\n");
      goto TERMINATE;
   }

   /* Now copy the ctype array */

   status = CPXcopyctype (env, lp, ctype);
   if ( status ) {
      fprintf (stderr, "Failed to copy ctype\n");
      goto TERMINATE;
   }

   /* Write a copy of the problem to a file. */

   status = CPXwriteprob (env, lp, "mipex3.mps", NULL);
   if ( status ) {
      fprintf (stderr, "Failed to write LP to disk.\n");
      goto TERMINATE;
   }

   /* Set up the SOS set and priority order */

   status = setsosandorder (env, lp);
   if ( status ) goto TERMINATE;

   /* Turn off CPLEX presolve, aggregate, and print every node.  This
      is just to make it interesting.  Turning off CPLEX presolve is
      NOT recommended practice !! */

   status = CPXsetintparam (env, CPX_PARAM_PREIND, CPX_OFF);
   if (!status) CPXsetintparam (env, CPX_PARAM_AGGIND, CPX_OFF);
   if (!status) CPXsetintparam (env, CPX_PARAM_MIPINTERVAL, 1);

   if ( status ) {
      fprintf (stderr, "Failed to set some CPLEX parameters.\n");
      goto TERMINATE;
   }



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 211

S
o

lvin
g

 M
IP

 P
ro

b
lem

s

<functionhead>

   /* Optimize the problem and obtain solution. */

   status = CPXmipopt (env, lp);
   if ( status ) {
      fprintf (stderr, "Failed to optimize MIP.\n");
      goto TERMINATE;
   }

   solstat = CPXgetstat (env, lp);

   /* Write the output to the screen. */

   printf ("\nSolution status = %d\n", solstat);
    
   status = CPXgetmipobjval (env, lp, &objval);
   if ( status ) {
      fprintf (stderr,"No MIP objective value available.  Exiting...\n");
      goto TERMINATE;
   }

   printf ("Solution value  = %f\n\n", objval);

   /* The size of the problem should be obtained by asking CPLEX what
      the actual size is, rather than using what was passed to CPXcopylp.
      cur_numrows and cur_numcols store the current number of rows and
      columns, respectively.  */

   cur_numrows = CPXgetnumrows (env, lp);
   cur_numcols = CPXgetnumcols (env, lp);

   status = CPXgetmipx (env, lp, x, 0, cur_numcols-1);
   if ( status ) {
      fprintf (stderr, "Failed to get optimal integer x.\n");
      goto TERMINATE;
   }

   status = CPXgetmipslack (env, lp, slack, 0, cur_numrows-1);
   if ( status ) {
      fprintf (stderr, "Failed to get optimal slack values.\n");
      goto TERMINATE;
   }

   for (i = 0; i < cur_numrows; i++) {
      printf ("Row %d:  Slack = %10f\n", i, slack[i]);
   }

   for (j = 0; j < cur_numcols; j++) {
      printf ("Column %d:  Value = %10f\n", j, x[j]);
   }
   
TERMINATE:



E X A M P L E :  U S I N G  S O S  A N D  P R I O R I T Y

212 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

   /* Free up the problem as allocated by CPXcreateprob, if necessary */

   if ( lp != NULL ) {
      status = CPXfreeprob (env, &lp);
      if ( status ) {
         fprintf (stderr, "CPXfreeprob failed, error code %d.\n", status);
      }
   }

   /* Free up the CPLEX environment, if necessary */

   if ( env != NULL ) {
      status = CPXcloseCPLEX (&env);

      /* Note that CPXcloseCPLEX produces no output,
         so the only way to see the cause of the error is to use
         CPXgeterrorstring.  For other CPLEX routines, the errors will
         be seen if the CPX_PARAM_SCRIND indicator is set to CPX_ON. */

      if ( status ) {
         char  errmsg[1024];
         fprintf (stderr, "Could not close CPLEX environment.\n");
         CPXgeterrorstring (env, status, errmsg);
         fprintf (stderr, "%s", errmsg);
      }
   }

   /* Free up the problem data arrays, if necessary. */

   free_and_null ((char **) &probname);
   free_and_null ((char **) &obj);
   free_and_null ((char **) &rhs);
   free_and_null ((char **) &sense);
   free_and_null ((char **) &matbeg);
   free_and_null ((char **) &matcnt);
   free_and_null ((char **) &matind);
   free_and_null ((char **) &matval);
   free_and_null ((char **) &lb);
   free_and_null ((char **) &ub);
   free_and_null ((char **) &ctype);
     
   return (status);

}  /* END main */

/* This function fills in the data structures for the mixed integer program:

      Maximize
       obj: x1 + 2 x2 + 3 x3 + x4
      Subject To
       c1: - x1 + x2 + x3 + 10x4  <= 20



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 213

S
o

lvin
g

 M
IP

 P
ro

b
lem

s

<functionhead>

       c2: x1 - 3 x2 + x3         <= 30
       c3:       x2       - 3.5x4  = 0
      Bounds
       0 <= x1 <= 40
       2 <= x4 <= 3
      Integers
        x2 x3 x4
      End
 */

#ifndef  CPX_PROTOTYPE_MIN
static int
setproblemdata (char **probname_p, int *numcols_p, int *numrows_p, 
                int *objsen_p, double **obj_p, double **rhs_p, 
                char **sense_p, int **matbeg_p, int **matcnt_p, 
                int **matind_p, double **matval_p, 
                double **lb_p, double **ub_p, char **ctype_p)
#else
static int 
setproblemdata (probname_p, numcols_p, numrows_p, objsen_p, obj_p, 
                rhs_p, sense_p, matbeg_p, matcnt_p, matind_p, matval_p, 
                lb_p, ub_p, ctype_p)
char    **probname_p;
int     *numcols_p;
int     *numrows_p;
int     *objsen_p;
double  **obj_p;
double  **rhs_p;
char    **sense_p;
int     **matbeg_p;
int     **matcnt_p;
int     **matind_p;
double  **matval_p;
double  **lb_p;
double  **ub_p;
char    **ctype_p;
#endif
{
   char     *zprobname = NULL;     /* Problem name <= 16 characters */        
   double   *zobj = NULL;
   double   *zrhs = NULL;
   char     *zsense = NULL;
   int      *zmatbeg = NULL;
   int      *zmatcnt = NULL;
   int      *zmatind = NULL;
   double   *zmatval = NULL;
   double   *zlb = NULL;
   double   *zub = NULL;
   char     *zctype = NULL;
   int      status = 0;



E X A M P L E :  U S I N G  S O S  A N D  P R I O R I T Y

214 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

   zprobname = (char *) malloc (16 * sizeof(char)); 
   zobj      = (double *) malloc (NUMCOLS * sizeof(double));
   zrhs      = (double *) malloc (NUMROWS * sizeof(double));
   zsense    = (char *) malloc (NUMROWS * sizeof(char)); 
   zmatbeg   = (int *) malloc (NUMCOLS * sizeof(int));   
   zmatcnt   = (int *) malloc (NUMCOLS * sizeof(int));   
   zmatind   = (int *) malloc (NUMNZ * sizeof(int));   
   zmatval   = (double *) malloc (NUMNZ * sizeof(double));
   zlb       = (double *) malloc (NUMCOLS * sizeof(double));
   zub       = (double *) malloc (NUMCOLS * sizeof(double));
   zctype    = (char *) malloc (NUMCOLS * sizeof(char)); 
 
   if ( zprobname == NULL || zobj    == NULL ||
        zrhs      == NULL || zsense  == NULL ||
        zmatbeg   == NULL || zmatcnt == NULL ||
        zmatind   == NULL || zmatval == NULL ||
        zlb       == NULL || zub     == NULL ||
        zctype    == NULL                       )  {
      status = 1;
      goto TERMINATE;
   }

   strcpy (zprobname, "example");

   /* The code is formatted to make a visual correspondence 
      between the mathematical linear program and the specific data
      items.   */

     zobj[0] = 1.0;   zobj[1]   = 2.0;  zobj[2] = 3.0;    zobj[3] = 1.0;  

   zmatbeg[0] = 0;    zmatbeg[1] = 2;   zmatbeg[2] = 5;   zmatbeg[3] = 7;
   zmatcnt[0] = 2;    zmatcnt[1] = 3;   zmatcnt[2] = 2;   zmatcnt[3] = 2;
      
   zmatind[0] = 0;    zmatind[2] = 0;   zmatind[5] = 0;   zmatind[7] = 0;
   zmatval[0] = -1.0; zmatval[2] = 1.0; zmatval[5] = 1.0; zmatval[7] = 10.0;

   zmatind[1] = 1;    zmatind[3] = 1;    zmatind[6] = 1;     
   zmatval[1] = 1.0;  zmatval[3] = -3.0; zmatval[6] = 1.0;   

                      zmatind[4] = 2;                     zmatind[8] = 2;
                      zmatval[4] = 1.0;                   zmatval[8] = -3.5;

   zlb[0] = 0.0;    zlb[1] = 0.0;          zlb[2] = 0.0;          zlb[3] = 2.0;
   zub[0] = 40.0;   zub[1] = CPX_INFBOUND; zub[2] = CPX_INFBOUND; zub[3] = 3.0;

   zctype[0] = ’C’;   zctype[1] = ’I’;  zctype[2] = ’I’;   zctype[3] = ’I’;

  /* The right-hand-side values don’t fit nicely on a line above.  So put
     them here.  */

   zsense[0] = ’L’;
   zrhs[0]   = 20.0;



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 215

S
o

lvin
g

 M
IP

 P
ro

b
lem

s

<functionhead>

   zsense[1] = ’L’;
   zrhs[1]   = 30.0;

   zsense[2] = ’E’;
   zrhs[2]   = 0.0;

TERMINATE:

   if ( status ) {
      free_and_null ((char **) &zprobname);
      free_and_null ((char **) &zobj);
      free_and_null ((char **) &zrhs);
      free_and_null ((char **) &zsense);
      free_and_null ((char **) &zmatbeg);
      free_and_null ((char **) &zmatcnt);
      free_and_null ((char **) &zmatind);
      free_and_null ((char **) &zmatval);
      free_and_null ((char **) &zlb);
      free_and_null ((char **) &zub);
      free_and_null ((char **) &zctype);
   }
   else {
      *numcols_p   = NUMCOLS;
      *numrows_p   = NUMROWS;
      *objsen_p    = CPX_MAX;   /* The problem is maximization */
   
      *probname_p  = zprobname;
      *obj_p       = zobj;
      *rhs_p       = zrhs;
      *sense_p     = zsense;
      *matbeg_p    = zmatbeg;
      *matcnt_p    = zmatcnt;
      *matind_p    = zmatind;
      *matval_p    = zmatval;
      *lb_p        = zlb;
      *ub_p        = zub;
      *ctype_p     = zctype;
   }
   return (status);

}  /* END setproblemdata */

#ifndef  CPX_PROTOTYPE_MIN
static int
setsosandorder (CPXENVptr env, CPXLPptr lp)
#else
static int
setsosandorder (env, lp)
CPXENVptr  env;
CPXLPptr   lp;
#endif



E X A M P L E :  U S I N G  S O S  A N D  P R I O R I T Y

216 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

{
   /* Priority order information */
   int  colindex[2];
   int  priority[2];
   int  direction[2];

   /* SOS set information */
   char   sostype[1];
   int    sospri[1];
   int    sosbeg[1];
   int    sosind[2];
   double sosref[2];

   int  status = 0;

   /* Note - for this example, the priority order and SOS information
      are just made up for illustrative purposes.  The priority order
      is not necessarily a good one for this particular problem.  */

   /* Set order info.  Variables 1 and 3 will be in the priority order,
      with respective priorities of 8 and 7, and with respective
      branching directions of up and down */

   colindex[0]  = 1;                 colindex[1]  = 3;
   priority[0]  = 8;                 priority[1]  = 7;
   direction[0] = CPX_BRANCH_UP;     direction[1] = CPX_BRANCH_DOWN;

   status = CPXcopyorder (env, lp, 2, colindex, priority, direction);
   if ( status ) {
      fprintf (stderr, "CPXcopyorder failed.\n");
      goto TERMINATE;
   }

   /* Set SOS set info.  Create one SOS type 1 set, with variables
      2 and 3 in it, with set priority 3, and reference values
      25 and 18  for the 2 variables, respectively.   */

   sostype[0] = CPX_TYPE_SOS1;
   sospri[0]  = 3;
   sosbeg[0]  = 0;
   sosind[0]  = 2;    sosind[1] = 3;   
   sosref[0]  = 25;   sosref[1] = 18; 

   status = CPXcopysos (env, lp, 1, 2, sostype, sospri, 
                        sosbeg, sosind, sosref);
   if ( status ) {
      fprintf (stderr, "CPXcopysos failed.\n");
      goto TERMINATE;
   }

   /* To assist in debugging, write the order and SOS to a file. */

   status = CPXordwrite (env, lp, "mipex3.ord");



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 217

S
o

lvin
g

 M
IP

 P
ro

b
lem

s

<functionhead>

   if ( status ) {
      fprintf (stderr, "CPXordwrite failed.\n");
      goto TERMINATE;
   }

   status = CPXsoswrite (env, lp, "mipex3.sos");
   if ( status ) {
      fprintf (stderr, "CPXsoswrite failed.\n");
      goto TERMINATE;
   }

TERMINATE:

   return (status);

}

/* This simple routine frees up the pointer *ptr, and sets *ptr to NULL */

#ifndef  CPX_PROTOTYPE_MIN
static void
free_and_null (char **ptr)
#else
static void
free_and_null (ptr)
char  **ptr;
#endif
{
   if ( *ptr != NULL ) {
      free (*ptr);
      *ptr = NULL;
   }
} /* END free_and_null */  



E X A M P L E :  U S I N G  S O S  A N D  P R I O R I T Y

218 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L



C H A P T E R

I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 219

S
o

lvin
g

 N
etw

o
rk-F

lo
w

 
P

ro
b

lem
s

6

Solving Network-Flow Problems

This chapter tells you more about the ILOG CPLEX Network Optimizer. It includes sections 
on:

◆ Choosing an Optimizer: Network Considerations

◆ Formulating a Network Problem

◆ Example: Network Optimizer in the Interactive Optimizer

◆ Example: Using the Network Optimizer with the Callable Library

◆ Solving Network-Flow Problems as LP Problems

◆ Example: Network to LP Transformation

◆ Solving LPs with the Network Optimizer

Choosing an Optimizer: Network Considerations

As we explain in Using the Callable Library in an Application on page 57, to exploit 
ILOG CPLEX in your own application, you must first create a ILOG CPLEX environment, 
instantiate a problem object, and populate the problem object with data. As your next step, 
you call a ILOG CPLEX optimizer.



F O R M U L A T I N G  A  N E T W O R K  P R O B L E M

220 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

If part of your problem is structured as a network, then you may want to consider calling the 
ILOG CPLEX Network Optimizer. This optimizer may have a positive impact on 
performance. There are two alternative ways of calling the network optimizer: 

◆ If your entire problem consists of a network flow, you should consider creating a network 
object instead of an LP object. Then populate it, and solve it with the network optimizer. 
This alternative generally yields the best performance because it does not incur the 
overhead of LP data structures.

◆ If your problem is an LP where a large part is a network structure, you may call the 
network optimizer for the populated LP object.

How much performance improvement you observe between using only a simplex optimizer 
versus using the network optimizer followed by either of the simplex optimizers depends on 
the number and nature of the other constraints in your problem. On a pure network problem, 
we have measured performance 100 times faster with the network optimizer. However, if the 
network component of your problem is small relative to its other parts, then using the 
solution of the network part of the problem as a starting point for the remainder may or may 
not improve performance, compared to running the primal or dual simplex optimizer. Only 
experiments with your own problem can tell.

Formulating a Network Problem

A network-flow problem finds the minimal-cost flow through a network, where a network 
consists of a set N of nodes and a set A of arcs connecting the nodes. An arc a in the set A is 
an ordered pair (i, j) where i and j are nodes in the set N; node i is called the tail or the from-
node and node j is called the head or the to-node of the arc a. Not all the pairs of nodes in a 
set N are necessarily connected by arcs in the set A. More than one arc may connect a pair of 
nodes; in other words, a1 = (i, j) and a2 = (i, j) may be two arcs in A, both connecting the 
nodes i and j in N.

Each arc may be associated with four values:

◆ xa is the flow value, that is, the amount passing through the arc a from its tail (or from-
node) to its head (or to-node). The flow values are the modeling variables of a network-
flow problem. Negative values are allowed; a negative flow value indicates that there is 
flow from the head to the tail.

◆ la, the lower bound, determines the minimum flow allowed through the arc a. By default, 
the lower bound on an arc is 0 (zero).

◆ ua, the upper bound, determines the maximum flow allowed through the arc a. By 
default, the upper bound on an arc is positive infinity.

◆ ca, the objective value, determines the contribution to the objective function of one unit 
of flow through the arc.



<functionhead>

I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 221

S
o

lvin
g

 N
etw

o
rk-F

lo
w

 
P

ro
b

lem
s

Each node is associated with one value:

◆ sn is the supply value at node n. 

By convention, a node with strictly positive supply value (that is, sn > 0) is called a supply 
node or a source, and a node with strictly negative supply value (that is, sn < 0) is called a 
demand node or a sink. A node where sn = 0 is called a transshipment node. The sum of all 
supplies must match the sum of all demands; if not, then the network flow problem is 
infeasible.

Tn is the set of arcs whose tails are node n; Hn is the set of arcs whose heads are node n. The 
usual form of a network problem looks like this: 

That is, for each node, the net flow entering and leaving the node must equal its supply 
value, and all flow values must be within their bounds. The solution of a network-flow 
problem is an assignment of flow values to arcs (that is, the modeling variables) to satisfy 
the problem formulation. A flow that satisfies the constraints and bounds is feasible. 

Example: Network Optimizer in the Interactive Optimizer

This example is based on a network where the aim is to minimize cost and where the flow 
through the network has both cost and capacity. Figure 6.1 shows you the nodes and arcs of 
this network. The nodes are labeled by their identifying node number from 1 through 8. The 
number inside a node indicates its supply value; 0 (zero) is assumed where no number is 
given. The arcs are labeled 1 through 14. The lower bound l, upper bound u, and objective 
value c of each arc are displayed in parentheses (l, u, c) beside each arc. In this 
example, node 1 and node 5 are sources, representing a positive net flow, whereas node 4 
and node 8 are sinks, representing negative net flow.

Minimize (or maximize) 

subject to 

with these bounds  

caxa( )
a A∈
∑

xa
a Tn∈
∑ xa

a Hn∈
∑– sn n N∈( )∀=

la xa ua a A∈( )∀≤ ≤



E X A M P L E :  N E T W O R K  O P T I M I Z E R  I N  T H E  I N T E R A C T I V E  O P T I M I Z E R

222 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

Figure 6.1

Figure 6.1  A Directed Network with Arc-Capacity, Flow-Cost, Sinks, and Sources

In the standard distribution of ILOG CPLEX, the file nexample.net contains the 
formatted problem formulation for this example. You can read it into the Interactive 
Optimizer with the command read nexample.net. After you read the problem into the 
Interactive Optimizer, you can solve it with the command netopt or the command 
optimize.

Understanding the Network Log File

As ILOG CPLEX solves the problem, it produces a log like the following lines:  

This network log file differs slightly from the log files produced by other ILOG CPLEX 
optimizers: it contains values enclosed in parentheses that represent modified objective 
function values. 

As long as the network optimizer has not yet found a feasible solution, we say that it is in 
Phase I. In Phase I, the network optimizer uses modified objective coefficients that penalize 
infeasibility. At its default settings, the ILOG CPLEX Network Optimizer displays the value 

Iteration log . . .
Iteration:     0   Infeasibility     =            48.000000 (5.15396e+13)

Network - Optimal:  Objective =    2.6900000000e+02
Solution time =    0.00 sec.  Iterations = 7 (7)

N5

N1 N2

N3 N4

N6

N7

N8
A1 (18, 24, $3)

A8 (
0, 

10
, $

4) A7 (10, 20, $7)
A13 (0, 6, $3)

A
10

 (
0,

 1
5,

 $
6)

A3 (12, 12, $4) A4 (0, 10, $3)

A
5 

(0
, 9

, $
5)

A6 (-inf, +inf, $6)A14 (0, +inf, $6)

A11
 (0

, 1
0,

 $
5)

A12
 (0

, 1
1,

 $
4)

A
9 (0, 5, $2)A

2 
(0

, 2
5,

 $
3)

+20

-15

+5

-10



<functionhead>

I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 223

S
o

lvin
g

 N
etw

o
rk-F

lo
w

 
P

ro
b

lem
s

of the objective function calculated in terms of these modified objective coefficients in 
parentheses in the network log file.

You can control the amount of information recorded in the network log file, just as you 
control the amount of information in other ILOG CPLEX log files. To record no information 
at all in the log file, use the command set network display 0. To display the current 
objective value in parentheses relative to the actual unmodified objective coefficients, use 
the command set network display 1. To see the display we described earlier in this 
section, leave the network display parameter at its default value, 2. (If you have changed the 
default value, you can reset it with the command set network display 2.)

Tuning Performance of the Network Optimizer

The default values of parameters controlling the network optimizer are generally the best 
choices for effective performance. However, the following sections indicate parameters that 
you may want to experiment with in your particular problem.

Controlling Tolerance

You control the feasibility tolerance for the network optimizer through the feasibility 
tolerance parameter. In the Interactive Optimizer, use the command 
set network tolerances feasibility.

Likewise, you control the optimality tolerance for the network optimizer through the 
optimality tolerance parameter. Table 6.1 and Table 6.2 summarize the default value, range, 
and parameter name.  

Table 6.1 Network Tolerance Parameter: Optimality

Optimality tolerance

Default Value 1e-6

Range 0.1 - 1e-11

Callable Parameter CPX_PARAM_NETEPOPT

Interactive Option network tolerances optimality

Table 6.2 Network Tolerance Parameter: Feasibility

Feasibility tolerance

Default Value 1e-6

Range 0.1 - 1e-11

Callable Parameter CPX_PARAM_NETEPRHS

Interactive Option network tolerances feasibility



E X A M P L E :  U S I N G  T H E  N E T W O R K  O P T I M I Z E R  W I T H  T H E  C A L L A B L E  L I B R A R Y

224 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

Selecting a Pricing Algorithm for the Network Optimizer

On the rare occasions when the network optimizer seems to take too long to find a solution, 
you may want to change the pricing algorithm to try to speed up computation. In the 
Interactive Optimizer, use the command set network pricing i, substituting a value 
for i to indicate which pricing algorithm to use. All the choices use variations of partial 
reduced-cost pricing.

Limiting Iterations in the Network Optimizer

Use the command set network iterations i, substituting a value for i, if you want to 
limit the number of iterations that the network optimizer performs.

Changing Sense: from Min to Max

To change a minimization problem to a maximization problem in the Interactive Optimizer, 
use the command change sense max and optimize again. For example, here is a transcript 
of a session in the Interactive Optimizer where we have already entered nexample.net and 
optimized it, and we now change its sense and optimize again: 

Because we had already solved this example once as a minimization problem, the 
maximization started from a feasible solution. You control whether or not the network 
optimizer starts from an existing solution: use the command set advance 1 to indicate in 
the Interactive Optimizer that you want to start from an advanced basis. This setting is the 
default.

Example: Using the Network Optimizer with the Callable Library

In the standard distribution of ILOG CPLEX, the file netex1.c contains code that creates, 
solves, and displays the solution of the network-flow problem illustrated in Figure 6.1 on 
page 222. 

Briefly, the main() function initializes the ILOG CPLEX environment and creates the 
problem object; it also calls the optimizer to solve the problem and retrieves the solution. 

In detail, main() first calls the Callable Library routine CPXopenCPLEX(). As we explain 
in Initialize the ILOG CPLEX Environment on page 57, CPXopenCPLEX() must always be 
the first ILOG CPLEX routine called in a ILOG CPLEX Callable Library application. Those 
routines create the ILOG CPLEX environment and return a pointer (called env) to it. This 
pointer will be passed to every Callable Library routine. If this initialization routine fails, 

CPLEX> change sense max 
Problem is a minimization problem. 
Problem is now a maximization problem. 
CPLEX> netopt 
Iteration log . . . Iteration: 0  Objective =          269.000000
Network - Optimal:  Objective =    5.0400000000e+02 
Solution time =    0.00 sec.  Iterations = 5 (0)



<functionhead>

I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 225

S
o

lvin
g

 N
etw

o
rk-F

lo
w

 
P

ro
b

lem
s

env will be NULL and the error code indicating the reason for the failure will be written to 
status. That error code can be transformed into a string by the Callable Library routine 
CPXgeterrorstring().

After main() initializes the ILOG CPLEX environment, it uses the Callable Library routine 
CPXsetintparam() to turn on the ILOG CPLEX screen indicator parameter 
CPX_PARAM_SCRIND so that ILOG CPLEX output appears on screen. If this parameter is 
turned off, ILOG CPLEX does not produce viewable output, neither on screen, nor in a log 
file. We recommend turning this parameter on when you are debugging your application.

The Callable Library routine CPXNETcreateprob() creates an empty problem object, that 
is, a minimum-cost network-flow problem with no arcs and no nodes.

The function buildNetwork() populates the problem object; that is, it loads the problem 
data into the problem object. Pointer variables in the example are initialized as NULL so that 
you can check whether they point to valid data—a good programming practice. The most 
important calls in this function are to the Callable Library routines, CPXNETaddnodes(), 
which adds nodes with the specified supply values to the network problem, and 
CPXNETaddarcs(), which adds the arcs connecting the nodes with the specified objective 
values and bounds. In this example, both routines are called with their last argument NULL 
indicating that no names are assigned to the network nodes and arcs. If you want to name 
arcs and nodes in your problem, pass an array of strings instead.

The function buildNetwork() also includes a few routines that are not strictly necessary 
to this example, but illustrate concepts you may find useful in other applications. To delete a 
node and all arcs dependent on that node, it uses the Callable Library routine 
CPXNETdelnodes(). To change the objective sense to minimization, it uses the Callable 
Library routine CPXNETchgobjsen().

Also buildNetwork() sets the row growth and column growth parameters 
CPX_PARAM_ROWGROWTH and CPX_PARAM_COLGROWTH. These parameters specify the 
amount that internal arrays are extended if more nodes or arcs are added than currently fit in 
allocated memory. If you build up a problem by adding nodes and arcs one by one, and if 
these parameters are set to a low value, then internal arrays will be frequently reallocated; 
frequent reallocation may negatively impact performance. Ideally, these parameters are set 
to the maximum number of nodes and arcs that the problem will ever have. This setting will 
avoid all reallocation and therefore provide best performance. The parameter 
CPX_PARAM_ROWGROWTH pertains to adding nodes to a network problem (and rows to an LP, 
QP, or MIP problem) whereas CPX_PARAM_COLGROWTH pertains to adding arcs to a network 
problem (or columns to an LP, QP, or MIP problem). 

Let’s return to main(), where it actually calls the network optimizer with the Callable 
Library routine, CPXNETprimopt(). For CPXNETprimopt(), the return value 0 means 
that solution information is available in the network object. Before retrieving that solution, 
we allocate arrays to hold it. Then we use CPXNETsolution() to copy the solution into 
those arrays. After we display the solution on screen, we write the network problem into a 
file, netex1.net in the NET file format.



E X A M P L E :  U S I N G  T H E  N E T W O R K  O P T I M I Z E R  W I T H  T H E  C A L L A B L E  L I B R A R Y

226 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

The TERMINATE: label is used as a place for the program to exit if any type of error occurs. 
Therefore, code following this label cleans up: it frees the memory that has been allocated 
for the solution data; it frees the network object by calling CPXNETfreeprob(); and it frees 
the ILOG CPLEX environment by calling CPXcloseCPLEX(). All freeing should be done 
only if the data is actually available. The Callable Library routine CPXcloseCPLEX() 
should always be the last ILOG CPLEX routine called in a ILOG CPLEX Callable Library 
application. In other words, all ILOG CPLEX objects that have been allocated should be 
freed before the call to CPXcloseCPLEX().

Complete Program: netex1.c

The complete program, netex1.c, appears here or online in the standard distribution.

#include <ilcplex/cplex.h>
#include <stdlib.h>

/* Import the declarations for the string functions */

#include <string.h>

/* Forward declaration for function at end of program */

#ifndef  CPX_PROTOTYPE_MIN

static int
   buildNetwork  (CPXENVptr env, CPXNETptr net);

static void
   free_and_null (char **ptr);

#else

static int
   buildNetwork  ();

static void
   free_and_null ();

#endif

#ifndef  CPX_PROTOTYPE_MIN
int
main (void)
#else
int
main ()
#endif
{
   /* Declare variables and arrays for retrieving problem data and
      solution information later on. */

   int      narcs;



<functionhead>

I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 227

S
o

lvin
g

 N
etw

o
rk-F

lo
w

 
P

ro
b

lem
s

   int      nnodes;
   int      solstat;
   double   objval;
   double   *x     = NULL;
   double   *pi    = NULL;
   double   *slack = NULL;
   double   *dj    = NULL;

   CPXENVptr env = NULL;
   CPXNETptr net = NULL;
   int       status;
   int       i, j;

   /* Initialize the CPLEX environment */

   env = CPXopenCPLEX (&status);

   /* If an error occurs, the status value indicates the reason for
      failure.  A call to CPXgeterrorstring will produce the text of
      the error message.  Note that CPXopenCPLEX produces no
      output, so the only way to see the cause of the error is to use
      CPXgeterrorstring.  For other CPLEX routines, the errors will
      be seen if the CPX_PARAM_SCRIND indicator is set to CPX_ON.  */

   if ( env == NULL ) {
      char  errmsg[1024];
      fprintf (stderr, “Could not open CPLEX environment.\n”);
      CPXgeterrorstring (env, status, errmsg);
      fprintf (stderr, “%s”, errmsg);
      goto TERMINATE;
   }

   /* Turn on output to the screen */

   status = CPXsetintparam (env, CPX_PARAM_SCRIND, CPX_ON);
   if ( status ) {
      fprintf (stderr, 
               “Failure to turn on screen indicator, error %d.\n”, status);
      goto TERMINATE;
   }

   /* Create the problem. */

   net = CPXNETcreateprob (env, &status, “netex1”);

   /* A returned pointer of NULL may mean that not enough memory
      was available or there was some other problem.  In the case of 
      failure, an error message will have been written to the error 
      channel from inside CPLEX.  In this example, the setting of
      the parameter CPX_PARAM_SCRIND causes the error message to
      appear on stdout.  */

   if ( net == NULL ) {
      fprintf (stderr, “Failed to create network object.\n”);
      goto TERMINATE;
   }

   /* Fill in the data for the problem.  Note that since the space for



E X A M P L E :  U S I N G  T H E  N E T W O R K  O P T I M I Z E R  W I T H  T H E  C A L L A B L E  L I B R A R Y

228 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

      the data already exists in local variables, we pass the arrays
      directly to the routine to fill in the data structures.  */

   status = buildNetwork (env, net);

   if ( status ) {
      fprintf (stderr, “Failed to build network problem.\n”);
      goto TERMINATE;
   }

   /* Optimize the problem and obtain solution. */

   status = CPXNETprimopt (env, net);
   if ( status ) {
      fprintf (stderr, “Failed to optimize network.\n”);
      goto TERMINATE;
   }

   /* get network dimensions */

   narcs  = CPXNETgetnumarcs  (env, net);
   nnodes = CPXNETgetnumnodes (env, net);

   /* allocate memory for solution data */

   x     = (double *) malloc (narcs  * sizeof (double));
   dj    = (double *) malloc (narcs  * sizeof (double));
   pi    = (double *) malloc (nnodes * sizeof (double));
   slack = (double *) malloc (nnodes * sizeof (double));

   if ( x     == NULL ||
        dj    == NULL ||
        pi    == NULL ||
        slack == NULL   ) {
      fprintf (stderr, “Failed to allocate arrays.\n”);
      goto TERMINATE;
   }

   status = CPXNETsolution (env, net, &solstat, &objval, x, pi, slack, dj);
   if ( status ) {
      fprintf (stderr, “Failed to obtain solution.\n”);
      goto TERMINATE;
   }

   /* Write the output to the screen. */

   printf (“\nSolution status = %d\n”, solstat);
   printf (“Solution value  = %f\n\n”, objval);

   for (i = 0; i < nnodes; i++) {
      printf (“Node %2d:  Slack = %10f  Pi = %10f\n”, i, slack[i], pi[i]);
   }

   for (j = 0; j < narcs; j++) {
      printf (“Arc  %2d:  Value = %10f  Reduced cost = %10f\n”,
              j, x[j], dj[j]);
   }



<functionhead>

I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 229

S
o

lvin
g

 N
etw

o
rk-F

lo
w

 
P

ro
b

lem
s

   /* Finally, write a copy of the problem to a file. */

   status = CPXNETwriteprob (env, net, “netex1.net”, NULL);
   if ( status ) {
      fprintf (stderr, “Failed to write network to disk.\n”);
      goto TERMINATE;
   }
   
TERMINATE:

   /* Free memory for solution data */

   free_and_null ((char **) &x);
   free_and_null ((char **) &dj);
   free_and_null ((char **) &pi);
   free_and_null ((char **) &slack);

   /* Free up the problem as allocated by CPXNETcreateprob, if necessary */

   if ( net != NULL ) {
      CPXNETfreeprob (env, &net);
      if ( status ) {
         fprintf (stderr, “CPXNETfreeprob failed, error code %d.\n”, status);
      }
   }

   /* Free up the CPLEX environment, if necessary */

   if ( env != NULL ) {
      status = CPXcloseCPLEX (&env);

      /* Note that CPXcloseCPLEX produces no output,
         so the only way to see the cause of the error is to use
         CPXgeterrorstring.  For other CPLEX routines, the errors will
         be seen if the CPX_PARAM_SCRIND indicator is set to CPX_ON. */

      if ( status ) {
      char  errmsg[1024];
         fprintf (stderr, “Could not close CPLEX environment.\n”);
         CPXgeterrorstring (env, status, errmsg);
         fprintf (stderr, “%s”, errmsg);
      }
   }
     
   return (status);

}  /* END main */

#ifndef  CPX_PROTOTYPE_MIN
static int
buildNetwork (CPXENVptr env, CPXNETptr net)
#else
static int
buildNetwork (env, net)
CPXENVptr env;
CPXNETptr net;



E X A M P L E :  U S I N G  T H E  N E T W O R K  O P T I M I Z E R  W I T H  T H E  C A L L A B L E  L I B R A R Y

230 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

#endif
{
   int status = 0;

   /* definitions to improve readability */

#  define NNODES  8
#  define NARCS  14
#  define inf    CPX_INFBOUND

   /* Define list of supply values for the nodes */

   double supply[NNODES] = {20.0, 0.0, 0.0, -15.0, 5.0, 0.0, 0.0, -10.0};

   /* Define list of tail or from-node indices as well as head or
      to-node indices for the arcs.  Notice that according to C
      standard the first node has index 0. */

   int    tail[NARCS] = {   0,    1,    2,    3,    6,    5,    4,
                            4,    2,    3,    3,    5,    5,    1};
   int    head[NARCS] = {   1,    2,    3,    6,    5,    7,    7,
                            1,    1,    4,    5,    3,    4,    5};

   /* Define list of objective values and lower and upper bound values
      for the arcs */

   double obj [NARCS] = { 3.0,  3.0,  4.0,  3.0,  5.0,  6.0,  7.0,
                          4.0,  2.0,  6.0,  5.0,  4.0,  3.0,  6.0};
   double ub  [NARCS] = {24.0, 25.0, 12.0, 10.0,  9.0,  inf, 20.0,
                         10.0,  5.0, 15.0, 10.0, 11.0,  6.0,  inf};
   double lb  [NARCS] = {18.0,  0.0, 12.0,  0.0,  0.0, -inf,  0.0,
                          0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0};

   /* Delete existing network.  This is not necessary in this
      context since we know we have an empty network object.
      Notice that CPXNETdelnodes deletes all arcs incident to
      the deleted nodes as well.  Therefore this one function
      call effectively deletes an existing network problem. */

   if ( CPXNETgetnumnodes (env, net) > 0 ) {
      status = CPXNETdelnodes (env, net, 0,
                               CPXNETgetnumnodes (env, net)-1);
      if ( status ) goto TERMINATE;
   }

   /* Set growth rates for rows/nodes and columns/arcs.  This
      is to avoid internal memory reallocations while adding
      nodes and arcs.  Since we are adding all nodes and all
      arcs using only one function call for each it is actually
      unnecessary, but if more function calls are used, finding
      the right settings may improve performance. */

   status = CPXsetintparam (env, CPX_PARAM_ROWGROWTH, NNODES);
   if ( status ) goto TERMINATE;

   status = CPXsetintparam (env, CPX_PARAM_COLGROWTH, NARCS);
   if ( status ) goto TERMINATE;



<functionhead>

I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 231

S
o

lvin
g

 N
etw

o
rk-F

lo
w

 
P

ro
b

lem
s

   /* Set optimization sense */

   status = CPXNETchgobjsen (env, net, CPX_MIN);
   if ( status ) goto TERMINATE;

   /* Add nodes to network along with their supply values,
      but without any names. */

   status = CPXNETaddnodes (env, net, NNODES, supply, NULL);
   if ( status ) goto TERMINATE;

   /* Add arcs to network along with their objective values and
      bounds, but without any names. */

   status = CPXNETaddarcs (env, net, NARCS, tail, head, lb, ub, obj, NULL);
   if ( status ) goto TERMINATE;

TERMINATE:

   return (status);

}  /* END buildnetwork */

#ifndef  CPX_PROTOTYPE_MIN
static void
free_and_null (char **ptr)
#else
static void
free_and_null (ptr)
char  **ptr;
#endif
{
   if ( *ptr != NULL ) {
      free (*ptr);
      *ptr = NULL;
   }
} /* END free_and_null */

Solving Network-Flow Problems as LP Problems

A network-flow model is an LP model with special structure. The ILOG CPLEX Network 
Optimizer is a highly efficient implementation of the primal simplex technique adapted to 
take advantage of this special structure. In particular, no basis factoring occurs. However, it 
is possible to solve network models using any of the ILOG CPLEX LP optimizers if first, 
you convert the network data structures to those of an LP model. To convert the network 
data structures to LP data structures, in the Interactive Optimizer, use the command 
change problem lp; from the Callable Library, use the routine CPXcopynettolp().



S O L V I N G  N E T W O R K - F L O W  P R O B L E M S  A S  L P  P R O B L E M S

232 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

The LP formulation of our example from Figure 6.1 on page 222 looks like this:  

Minimize

3a1 + 3a2 + 4a3 + 3a4 + 5a5 + 6a6 + 7a7 + 4a8 + 2a9 + 6a10 + 5a11 + 4a12 + 3a13 + 6a14

subject to

a1 = 20

-a1 + a2 - a8 - a9 + a14 = 0

- a2 + a3 + a9 = 0

- a3 + a4 + a10 + a11 - a12 = -15

a7 + a8 - a10 - a13 = 5

- a5 + a6 - a11 + a12 + a13 - a14 = 0

- a4 + a5 = 0

- a6 - a7 = -10

with these bounds

18 ≤ a1 ≤ 24

0 ≤ a2 ≤ 25

a3 = 12

0 ≤ a4 ≤ 10

0 ≤ a5 ≤ 9

a6 free

0 ≤ a7 ≤ 20

0 ≤ a8 ≤ 10

0 ≤ a9 ≤ 5

0 ≤ a10 ≤ 15

0 ≤ a11 ≤ 10

0 ≤ a12 ≤ 11

0 ≤ a13 ≤ 6

0 ≤ a14



<functionhead>

I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 233

S
o

lvin
g

 N
etw

o
rk-F

lo
w

 
P

ro
b

lem
s

In that formulation, in each column there is exactly one coefficient equal to 1 (one), exactly 
one coefficient equal to -1, and all other coefficients are 0 (zero).

Since a network-flow problem corresponds in this way to an LP problem, you can indeed 
solve a network-flow problem by means of a ILOG CPLEX LP optimizer as well. If you 
read a network-flow problem into the Interactive Optimizer, you can transform it into its LP 
formulation with the command change problem lp. After this change, you can apply any 
of the LP optimizers to this problem.

When you change a network-flow problem into an LP problem, the basis information that is 
available in the network-flow problem is passed along to the LP formulation. In fact, if you 
have already solved the network-flow problem to optimality, then if you call the primal or 
dual simplex optimizers (for example, with the Interactive Optimizer command primopt or 
tranopt), that simplex optimizer will perform no iterations.

Generally, you can also use the same basis from a basis file for both the LP and the network 
optimizers. However, there is one exception: in order to use an LP basis with the network 
optimizer, at least one slack variable or one artificial variable needs to be basic. Starting 
from an Advanced Basis on page 101 explains more about this topic in the context of LP 
optimizers.

If you have already read the LP formulation of a problem into the Interactive Optimizer, you 
can transform it into a network with the command change problem network. Given any 
LP problem and this command, ILOG CPLEX will try to find the largest network embedded 
in the LP problem and transform it into a network-flow problem. However, as it does so, it 
discards all rows and columns that are not part of the embedded network. At the same time, 
ILOG CPLEX passes along as much basis information as possible to the network optimizer.

Example: Network to LP Transformation

This example shows how to transform a network-flow problem into its corresponding LP 
formulation. That example also indicates why you might want to make such a change. The 
example reads a network-flow problem from a file (rather than populating the problem 
object by adding rows and columns as we did in netex1.c). It then attempts to solve the 
problem by calling the Callable Library routine CPXNETprimopt(). If it determines that the 
problem is infeasible, it then transforms the problem into its LP formulation so that the 
infeasibility finder can analyze the problem and possibly indicate the cause of the 
infeasibility in an irreducibly inconsistent set (IIS). To perform this analysis, the application 
calls the Callable Library routine CPXiiswrite() to write the IIS to the file netex2.iis. 

Complete Program: netex2.c

The complete program, netex2.c, appears here or online in the standard distribution.

#include <ilcplex/cplex.h>



E X A M P L E :  N E T W O R K  T O  L P  T R A N S F O R M A T I O N

234 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

/* Import the declarations for the string functions */

#include <string.h>

#ifndef  CPX_PROTOTYPE_MIN
int
main (int argc, char **argv)
#else
int
main (argc, argv)
int  argc;
char **argv;
#endif
{
   /* Declare variables and arrays for retrieving problem data and
      solution information later on. */

   int       status = 0;
   CPXENVptr env = NULL;
   CPXNETptr net = NULL;
   CPXLPptr  lp  = NULL;

   /* Check command line */

   if ( argc != 2 ) {
      fprintf (stderr, “Usage: %s <network file>\n”, argv[0]);
      fprintf (stderr, “Exiting ...\n”);
      goto TERMINATE;
   }

   /* Initialize the CPLEX environment */

   env = CPXopenCPLEX (&status);

   /* If an error occurs, the status value indicates the reason for
      failure.  A call to CPXgeterrorstring will produce the text of
      the error message.  Note that CPXopenCPLEX produces no
      output, so the only way to see the cause of the error is to use
      CPXgeterrorstring.  For other CPLEX routines, the errors will
      be seen if the CPX_PARAM_SCRIND indicator is set to CPX_ON.  */

   if ( env == NULL ) {
      char  errmsg[1024];
      fprintf (stderr, “Could not open CPLEX environment.\n”);
      CPXgeterrorstring (env, status, errmsg);
      fprintf (stderr, “%s”, errmsg);
      goto TERMINATE;
   }

   /* Turn on output to the screen */

   status = CPXsetintparam (env, CPX_PARAM_SCRIND, CPX_ON);
   if ( status ) {
      fprintf (stderr, 



<functionhead>

I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 235

S
o

lvin
g

 N
etw

o
rk-F

lo
w

 
P

ro
b

lem
s

               “Failure to turn on screen indicator, error %d.\n”, status);
      goto TERMINATE;
   }

   /* Create the problem. */

   net = CPXNETcreateprob (env, &status, “netex2”);

   /* A returned pointer of NULL may mean that not enough memory
      was available or there was some other problem.  In the case of 
      failure, an error message will have been written to the error 
      channel from inside CPLEX.  In this example, the setting of
      the parameter CPX_PARAM_SCRIND causes the error message to
      appear on stdout.  */

   if ( net == NULL ) {
      fprintf (stderr, “Failed to create network object.\n”);
      goto TERMINATE;
   }

   /* Read network problem data from file
      with filename given as command line argument. */

   status = CPXNETreadcopyprob (env, net, argv[1]);

   if ( status ) {
      fprintf (stderr, “Failed to build network problem.\n”);
      goto TERMINATE;
   }

   /* Optimize the problem */

   status = CPXNETprimopt (env, net);
   if ( status ) {
      fprintf (stderr, “Failed to optimize network.\n”);
      goto TERMINATE;
   }

   /* Check network solution status */

   if ( CPXNETgetstat (env, net) == CPX_INFEASIBLE ) {

      /* Create LP object used for invoking infeasibility finder */

      lp = CPXcreateprob (env, &status, “netex2”);
      if ( lp == NULL ) {
         fprintf (stderr, “Failed to create LP object.\n”);
         goto TERMINATE;
      }

      /* Copy LP representation of network problem to lp object, along
         with the current basis available in the network object. */

      status = CPXcopynettolp (env, lp, net);
      if ( status ) {
         fprintf (stderr, “Failed to copy network as LP.\n”);
         goto TERMINATE;
      }



E X A M P L E :  N E T W O R K  T O  L P  T R A N S F O R M A T I O N

236 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

      /* Optimize the LP with primal to create an LP solution.  This
         optimization will start from the basis previously generated by
         CPXNETprimopt() as long as the advance indicator is switched
         on (its default).  */

      status = CPXsetintparam (env, CPX_PARAM_LPMETHOD, CPX_ALG_PRIMAL);
      if ( status ) {
         fprintf (stderr, 
                  “Failure to set LP method, error %d.\n”, status);
         goto TERMINATE;
      }
  
      status = CPXlpopt (env, lp);
      if ( status ) {
         fprintf (stderr, “Failed to optimize LP.\n”);
         goto TERMINATE;
      }

      /* Find IIS and write it to a file */

      status = CPXiiswrite (env, lp, “netex2.iis”);
      if ( status ) {
         fprintf (stderr, “Failed to find IIS or write IIS file\n”);
         goto TERMINATE;
      }

      printf (“IIS written to file netex2.iis\n”);
   }
   else {
      printf (“Network problem not proved to be infeasible\n”);
   }

TERMINATE:

   /* Free up the problem as allocated by CPXNETcreateprob, if necessary */

   if ( net != NULL ) {
      CPXNETfreeprob (env, &net);
      if ( status ) {
         fprintf (stderr, “CPXNETfreeprob failed, error code %d.\n”, status);
      }
   }

   /* Free up the problem as allocated by CPXcreateprob, if necessary */

   if ( lp != NULL ) {
      CPXfreeprob (env, &lp);
      if ( status ) {
         fprintf (stderr, “CPXfreeprob failed, error code %d.\n”, status);
      }
   }

   /* Free up the CPLEX environment, if necessary */

   if ( env != NULL ) {
      status = CPXcloseCPLEX (&env);



<functionhead>

I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 237

S
o

lvin
g

 N
etw

o
rk-F

lo
w

 
P

ro
b

lem
s

      /* Note that CPXcloseCPLEX produces no output,
         so the only way to see the cause of the error is to use
         CPXgeterrorstring.  For other CPLEX routines, the errors will
         be seen if the CPX_PARAM_SCRIND indicator is set to CPX_ON. */

      if ( status ) {
         char  errmsg[1024];
         fprintf (stderr, “Could not close CPLEX environment.\n”);
         CPXgeterrorstring (env, status, errmsg);
         fprintf (stderr, “%s”, errmsg);
      }
   }
     
   return (status);

}  /* END main */

Solving LPs with the Network Optimizer

If you tell ILOG CPLEX to apply the network optimizer to an LP problem—whether in the 
Interactive Optimizer with the command netopt or from the Callable Library with the 
routine CPXhybnetopt()—ILOG CPLEX performs a sequence of steps. It first searches 
for a part of the LP that conforms to network structure. Such a part is known as an embedded 
network. It then uses the network optimizer to solve that embedded network. Next, it uses 
the resulting basis to construct a starting basis for the full LP problem. Finally, it solves the 
LP problem with a simplex optimizer.

Network Extraction

The ILOG CPLEX network extractor searches an LP constraint matrix for a submatrix with 
the following characteristics:

◆ the coefficients of the submatrix are all 0 (zero), 1 (one), or -1 (minus one);

◆ each variable appears in at most two rows with at most one coefficent of +1 and at most 
one coefficient of -1.

ILOG CPLEX can perform different levels of extraction. The level it performs depends on 
the netfind parameter. 

◆ When the netfind parameter is set to 1 (one), ILOG CPLEX extracts only the obvious 
network; it uses no scaling; it scans rows in their natural order; it stops extraction as soon 
as no more rows can be added to the network found so far.

◆ When the netfind parameter is set to 2, the default setting, ILOG CPLEX also uses 
reflection scaling (that is, it multiplies rows by -1) in an attempt to extract a larger 
network.



S O L V I N G  L P S  W I T H  T H E  N E T W O R K  O P T I M I Z E R

238 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

◆ When the netfind parameter is set to 3, ILOG CPLEX uses general scaling, rescaling 
both rows and columns, in an attempt to extract a larger network.

In terms of total solution time expended, it may or may not be advantageous to extract the 
largest possible network. Characteristics of your problem will determine the tradeoff 
between network size and the number of simplex iterations required to finish solving the 
model after solving the embedded network.

To set the netfind parameter:

◆ In the Interactive Optimizer, use the command set network netfind i, substituting 
a value for i. 

◆ From the Callable Library, use the routine CPXsetintparam() with arguments to 
indicate the environment, the parameter CPX_PARAM_NETFIND, and a value. 

(This parameter is the same one that you use when you transform an LP model to a network-
flow model, as described in Solving LPs with the Network Optimizer on page 237.)

Even if your problem does not conform precisely to network conventions, the network 
optimizer may still be advantageous to use. When it is possible to transform the original 
statement of a linear program into network conventions by these algebraic operations:

◆ changing the signs of coefficients,

◆ multiplying constraints by constants,

◆ rescaling columns,

◆ adding or eliminating redundant relations,

then ILOG CPLEX will carry out such transformations automatically if you set the netfind 
parameter appropriately. 

Preprocessing and the Network Optimizer

If your LP problem includes network structures, there is a possibility that ILOG CPLEX 
preprocessing may eliminate those structures from your model. For that reason, you should 
consider turning off preprocessing before you invoke the network optimizer on an LP 
problem.



C H A P T E R

I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 239

S
o

lvin
g

 Q
u

ad
ratic 

P
ro

g
ram

m
in

g
 

7w

Solving Quadratic Programming Problems

This chapter tells you about solving convex quadratic programming problems (QPs) with 
the ILOG CPLEX Barrier Optimizer. (To use the ILOG CPLEX Barrier Optimizer in linear 
programs (LPs), see Solving LP Problems with the Barrier Optimizer on page 129.) 

This chapter contains sections on:

◆ Identifying Convex Quadratic Programming Problems

◆ Entering QPs

◆ Saving QP Problems

◆ Changing Problem Type in QPs

◆ Changing Quadratic Terms

◆ Optimizing QPs with the Barrier Optimizer

◆ Example: Creating a QP, Optimizing, Finding a Solution

◆ Example: Reading a QP from a File

To use the ILOG CPLEX Barrier Optimizer in application development, you must hold a 
special, optional, development license. If you call barrier routines from the ILOG CPLEX 
Callable Library in your applications, your end user must be licensed for runtime or derived 
work. For more information about ILOG CPLEX licensing, contact your ILOG CPLEX 
representative.



I D E N T I F Y I N G  C O N V E X  Q U A D R A T I C  P R O G R A M M I N G  P R O B L E M S

240 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

Identifying Convex Quadratic Programming Problems

Conventionally, a quadratic program (QP) is formulated this way:

Minimize 1/2 xTQx + cTx

subject to Ax ~ b

with these bounds l ≤ x ≤ u

where the relation ~ may be any combination of equal to, less than or equal to, greater than 
or equal to, or range constraints. As in other problem formulations, l indicates lower and u 
upper bounds. Q is a matrix of objective function coefficients. That is, the elements Qjj are 
the coefficients of the quadratic terms xj

2, and the elements Qij and Qji are summed together 
to be the coefficient of the term xixj. 

ILOG CPLEX distinguishes two kinds of Q matrices: 

◆ In a separable problem, only the diagonal terms of the matrix are defined.

◆ In a nonseparable problem, at least one off-diagonal term of the matrix is nonzero.

ILOG CPLEX optimizes only convex quadratic minimization problems or equivalently, only 
concave quadratic maximization problems, as illustrated in Figure 7.1. For convex QPs, Q 
must be positive semi-definite; that is, the term x’Qx ≥ 0 for all x, whether or not x is 
feasible. For concave maximization problems, the requirement is that Q must be negative 
semi-definite; that is, x’Qx ≤ 0 for all x. In a minimization problem, if Q is separable and 
positive semi-definite, then Q ≥ 0.

Figure 7.1 

Figure 7.1  Maximize a Concave Objective Function, Minimize a Convex Objective Function

In this chapter, we assume you have some familiarity with quadratic programming. For a 
more complete explanation of quadratic programming generally, we recommend you consult 
a text such as one of those listed in Further Reading on page 25 of the preface of this 
manual.



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 241

S
o

lvin
g

 Q
u

ad
ratic 

P
ro

g
ram

m
in

g
 

<functionhead>

Entering QPs

As you see in the problem formulation, ILOG CPLEX assumes there is an initial factor, 1/2. 
For example, if the term 10xj

2 appears in your problem, that is, if the actual coefficient of xj
2 

is 10, then you should enter the value 20.

You can enter data to define a QP by any of several different methods: 

◆ You can define the problem entirely using LP format or MPS format. (Understanding 
File Formats on page 264, explains these formats in greater detail.) Briefly, the 
ILOG CPLEX LP format includes extensions to support quadratic objective information, 
and an MPS file must include a QMATRIX section to support quadratic data.

● In the Interactive Optimizer, use the read command to read problems in from a 
formatted file, or use the enter command to enter problem data interactively. 

● For IloCplex, method importModel will seamlessly read a problem file containing 
QP into a Concert Technology model.

● From the Callable Library, use the routine CPXreadcopyprob() to read and copy 
problem data from a formatted file.

◆ You can define the linear part of the problem by any of the entry methods described in 
Put Data in the Problem Object on page 58, and then enter the quadratic terms from an 
auxiliary QP file (see page 265). The QP file format is documented in greater detail in 
the ILOG CPLEX Reference Manual.

Saving QP Problems

After you enter a QP problem, whether interactively or by reading a formatted file, you can 
then save the problem in a formatted file. The formats available to you are LP, MPS, and 
SAV. When you save a QP problem in one of these formats, the quadratic information will 
also be recorded in the formatted file.

In addition, you can save the quadratic part of a problem in a  QP file  (a formatted file with 
the extension .qp, as described on page 265). To do so:

◆ In the Interactive Optimizer, use the write command

◆ In the Callable Library, use the routine CPXqpwrite().

◆ Writing a QP format file is not supported by IloCplex.



C H A N G I N G  P R O B L E M  T Y P E  I N  Q P S

242 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

Changing Problem Type in QPs

When you enter a problem, ILOG CPLEX determines the problem type from the available 
information. If you enter quadratic information about a problem, whether interactively or by 
reading a formatted file, then ILOG CPLEX assumes that the problem type is qp for 
quadratic.

◆ In the Interactive Optimizer, if you are licensed to use the ILOG CPLEX Barrier 
Optimizer, then you will see additional change options. You can use the command 
change problem with its options to change a quadratic problem to these other types:

● zeroed_qp indicates that you want ILOG CPLEX to change the quadratic problem to 
an associated linear relaxation by assuming that the matrix Q is 0. 

When you change the problem type of a QP to zeroed_qp, then you can optimize the 
problem as an LP, using any of the ILOG CPLEX LP optimizers licensed to you 
(primal simplex, dual simplex, network, or barrier). This change in problem type to 
zeroed_qp retains the quadratic information about the problem, so once you have an 
LP solution to the relaxed LP version of the problem, you can then change the 
problem type back to qp and use the original Q matrix.

In fact, Diagnosing QP Infeasibility on page 246, shows you how to use this option to 
diagnose infeasibilities in QPs.

● lp indicates that you want ILOG CPLEX to treat the problem as an LP. This change 
in problem type, in contrast to zeroed_qp, drops the quadratic information about 
your problem.

● mip, if you are licensed to use the MIP optimizer, indicates that you want 
ILOG CPLEX to treat the problem as a MIP. This change in problem type, in contrast 
to zeroed_qp, drops the quadratic information about your problem.

◆ From the Callable Library, use the routine CPXchgprobtype() to change the problem 
type. The header file (that is, the include file) cplex.h contains a section titled Problem 
Types of the constants that define various problem types.

◆ IloCplex handles problem types transparently (provided your license supports the 
required problem types). When extracting a model with a quadratic objective function, it 
will automatically detect it as a QP and make the required adjustments of data structures. 
To solve a  zeroed_qp corresponding to an extracted QP, method solveZeroedQP() 
must be called instead of method solve(). With solveZeroedQP(), the optimizer to 
be used is controlled by setRootAlgorithm().



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 243

S
o

lvin
g

 Q
u

ad
ratic 

P
ro

g
ram

m
in

g
 

<functionhead>

Changing Quadratic Terms

ILOG CPLEX distinguishes between a quadratic algebraic term and a quadratic matrix 
coefficient. The quadratic algebraic terms are the coefficients that appear in the algebraic 
expression defined as part of the ILOG CPLEX LP format. The quadratic matrix coefficients 
appear in Q. The quadratic coefficient of an off-diagonal term must be distributed within the 
Q matrix, and it is always one-half the value of the quadratic algebraic term.

To clarify that terminology, consider this example:

Minimize a + b  + 1/2(a2 + 4ab + 7b2)

subject to a + b ≥ 10

with these bounds a ≥ 0 and b ≥ 0

The off-diagonal quadratic algebraic term in that example is 4, so the quadratic matrix Q is 

◆ In a QP, you can change the quadratic matrix coefficients in the Interactive Optimizer by 
using the command change qpterm. 

◆ From the Callable Library, use the routine CPXchgqpcoef() to change quadratic matrix 
coefficients.

◆ Concert Technology does not support direct editing of expressions other than linear 
expressions. Consequently, to change a quadratic objective function, you need to create 
an expression with the modified quadratic objective and use 
IloObjective::setExpr() to install this new expression in the model’s objective.

Changing an off-diagonal element changes the corresponding symmetric element as well. In 
other words, if a call to CPXchgqpcoef() changes Q(i, j) to a value, it also changes Q(j, i) 
to that same value.

To continue our example, if we want to change the off-diagonal quadratic term from 4 to 6, 
we would use this sequence of commands in the Interactive Optimizer: 

CPLEX> change qpterm

Change which quadratic term [‘variable’ ‘variable’]: 
a b

Present quadratic term of variable ‘a’, variable ‘b’ 
is 4.000000.

Change quadratic term of variable ‘a’, variable ‘b’ 
to what: 6.0

Quadratic term of variable ‘a’, variable ‘b’ changed 
to 6.000000.

1 2

2 7



O P T I M I Z I N G  Q P S  W I T H  T H E  B A R R I E R  O P T I M I Z E R

244 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

From the Callable Library, the CPXchgqpcoef() call to change the off-diagonal term from 
4 to 6 would change both of the off-diagonal matrix coefficients from 2 to 3. Thus, the 
indices would be 0 and 1, and the new matrix coefficient value would be 3.

If you have entered a linear problem without any quadratic terms, and you want to create 
quadratic terms, you must first change the problem type to QP. To do so, use the command 
change problem qp. This command will create an empty quadratic matrix with Q = 0.

When you change quadratic terms, there are still restrictions on the properties of the Q 
matrix. In a minimization problem, it must be convex, positive semi-definite. In a 
maximization problem, it must be concave, negative semi-definite. For example, if you 
change the sense of an objective function in a convex Q matrix from minimization to 
maximization, you will thus make the problem unsolvable. Likewise, in a convex Q matrix, 
if you make a term negative, you will thus make the problem unsolvable.

Optimizing QPs with the Barrier Optimizer

To use the ILOG CPLEX Barrier Optimizer in application development, you must hold a 
special, optional, development license. If you call barrier routines from the ILOG CPLEX 
Callable Library in your applications, your end user must be licensed for runtime or derived 
work. For more information about ILOG CPLEX licensing, contact your ILOG CPLEX 
representative.

To optimize a QP that you have entered or read:

◆ In the Interactive Optimizer, use the command baropt. 

◆ From the Callable Library, use the routine CPXbaropt(). 

◆ Method IloCplex::solve() will automatically invoke the barrier optimizer if the 
extracted model is a QP. The setting of root or node algorithm will be ignored.

For a QP, the ILOG CPLEX Barrier Optimizer generates a pure barrier solution. That is, the 
solution is not a basic solution. The barrier crossovers described in Barrier Simplex 
Crossover on page 131 do not apply to quadratic barrier optimizations.

The ILOG CPLEX Barrier Optimizer automatically preprocesses your quadratic problem, 
conducting presolution problem analysis and reductions appropriate for a QP. (It ignores the 
settings of the ILOG CPLEX parameters for preprocessing, presolver, and aggregator.)

Generally, the default parameter settings of the ILOG CPLEX Barrier Optimizer are 
appropriate for most QPs. In fact, for QPs, the ILOG CPLEX Barrier Optimizer uses only 
the default barrier algorithm (indicated in the Interactive Optimizer by 
set barrier algorithm 0 and from the Callable Library by the parameter 
CPX_PARAM_BARALG with the value 0). In other words, it does not use the other two 
algorithms discussed in the context of linear barrier optimization and listed in Table 4.13 on 
page 145.



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 245

S
o

lvin
g

 Q
u

ad
ratic 

P
ro

g
ram

m
in

g
 

<functionhead>

Understanding QP Solution Information

When the ILOG CPLEX Barrier Optimizer reaches a solution for a QP, it generates all the 
primal and dual information available for pure, nonbasis barrier solutions, as described in 
Understanding Solution Quality from the Barrier LP Optimizer on page 138. 

You can save QP solution information as VEC files with the extension .vec. 

◆ In the Interactive Optimizer, use the write command followed by a file name with the 
extension .vec. 

◆ From the Callable Library, use the routine CPXvecwrite().

To display information about a QP solution from the ILOG CPLEX Barrier Optimizer:

◆ In the Interactive Optimizer, there are several options:

● display solution quality provides information about the quality of a QP 
solution with respect to solution optimality. (Table 4.11 on page 138 lists and explains 
this information.)

● display problem variable shows the quadratic objective function coefficient of 
a specific variable.

● display problem qpvariables shows the names of quadratic variables.

● display problem constraint obj returns the complete linear and quadratic 
objective function.

◆ From the Callable Library, use the routine CPXsolution() to access the solution values 
and the routine CPXgetdblquality() to access information about the quality of the 
solution.

◆ From an IloCplex object, solution information can be queried as for any other problem 
type using the getValues() and similar methods. Also, method getQuality() works 
the same way for QPs as for any other problem type.

Tuning QP Performance

As we mentioned, the default settings of the parameters controlling the ILOG CPLEX 
Barrier Optimizer are appropriate for most QPs. However, if you need to experiment with 
those settings to tune performance for your particular problem, we recommend that you 
review Tuning Barrier Optimizer Performance on page 140, where we explain those 
parameters in the context of linear optimization.

Reminder: Since there is no basic solution after this kind of optimization, there is no 
objective range information. Also, since there is no basic solution, it is not possible to save 
an advanced basis for restarts. You cannot write .bin nor .txt files either.



E X A M P L E :  C R E A T I N G  A  Q P ,  O P T I M I Z I N G ,  F I N D I N G  A  S O L U T I O N

246 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

Diagnosing QP Infeasibility

If the ILOG CPLEX Barrier Optimizer reports that your QP is primal infeasible, then you 
can ask ILOG CPLEX to relax the QP to its linear version with the Q matrix set to 0. 

To change the problem type:

◆ In the Interactive Optimizer, use the command change problem zeroed_qp. 

◆ From the Callable Library, use the routine CPXchgprobtype()

You can then solve the relaxed linear version by means of a ILOG CPLEX simplex 
optimizer, such as primal simplex or dual simplex. Then you can apply the ILOG CPLEX 
infeasibility finder to that relaxed solution, with its associated, original QP information, to 
help you diagnose the source of the infeasibility. (Diagnosing LP Infeasibility on page 112 
explains how to use the ILOG CPLEX infeasibility finder following a simplex optimizer.)

Since IloCplex handles problem types transparently, the way to diagnose an infeasible 
model is slightly different. Since infeasibility does not depend on the objective function, you 
start by removing the objective extractable from the extracted model. This way, the model 
seen by the cplex object is an LP with a 0 objective and the LP IIS finder can be applied. To 
get the original model back, simply add the objective back to the model.

Example: Creating a QP, Optimizing, Finding a Solution 

This example shows you how to build and solve a QP. The problem being created and solved 
is: 

Example: iloqpex1.cpp

This example is almost identical to ilolpex1.cpp with only function populatebyrow to 
create the model. Also, this function differs only in the creation of the objective from its 

Maximize

x1 + 2x2 + 3x3 - 0.5 (33x1
2 + 22x2

2 + 11x3
2 - 12x1x2 - 23x2x3)

subject to

-x1 + x2 + x3 ≤ 20

x1 - 3x2 + x3 ≤ 30

with these bounds

0 ≤ x1 ≤ 40

0 ≤ x2 ≤ +∞
0 ≤ x3 ≤ +∞



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 247

S
o

lvin
g

 Q
u

ad
ratic 

P
ro

g
ram

m
in

g
 

<functionhead>

ilolpex1.cpp counterpart. Here the objective function is created and added to the model 
like this:

model.add(IloMaximize(env, x[0] + 2 * x[1] + 3 * x[2]
              - 0.5 * (33*x[0]*x[0] + 22*x[1]*x[1] + 11*x[2]*x[2]
                            - 12*x[0]*x[1] - 23*x[1]*x[2]) ));

In general, any expression built of basic operations +, -, *, / constant, and brackets ’()’ that 
amounts to a quadratic and optional linear term can be used for building QP objective 
function. Note that the expressions of the objective or any constraint of the model must not 
contain IloPiecewiselinear when a QP objective is specified, in order for IloCplex to 
be able to process the model.

Complete Program: iloqpex1.cpp

The complete program, iloqpex1.cpp, appears here or online in the standard distribution.

#include <ilcplex/ilocplex.h>
ILOSTLBEGIN

static void
   populatebyrow     (IloModel model, IloNumVarArray var, IloRangeArray con);

int
main (int argc, char **argv)
{
   IloEnv   env;
   try {
      IloModel model(env);
      IloNumVarArray var(env);
      IloRangeArray con(env);

      populatebyrow (model, var, con);

      IloCplex cplex(model);

      // Optimize the problem and obtain solution.
      if ( !cplex.solve() ) {
         env.error() << “Failed to optimize LP” << endl;
         throw(-1);
      }

      IloNumArray vals(env);
      env.out() << “Solution status = “ << cplex.getStatus() << endl;
      env.out() << “Solution value  = “ << cplex.getObjValue() << endl;
      cplex.getValues(vals, var);
      env.out() << “Values        = “ << vals << endl;
      cplex.getSlacks(vals, con);
      env.out() << “Slacks        = “ << vals << endl;
      cplex.getDuals(vals, con);
      env.out() << “Duals         = “ << vals << endl;
      cplex.getReducedCosts(vals, var);
      env.out() << “Reduced Costs = “ << vals << endl;

      cplex.exportModel(“qpex1.lp”);
   }



E X A M P L E :  C R E A T I N G  A  Q P ,  O P T I M I Z I N G ,  F I N D I N G  A  S O L U T I O N

248 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

   catch (IloException& e) {
      cerr << “Concert exception caught: “ << e << endl;
   }
   catch (...) {
      cerr << “Unknown exception caught” << endl;
   }

   env.end();

   return 0;
}  // END main

// To populate by row, we first create the variables, and then use them to
// create the range constraints and objective.  The model we create is:
//
//    Maximize
//     obj: x1 + 2 x2 + 3 x3
//            - 0.5 ( 33*x1*x1 + 22*x2*x2 + 11*x3*x3
//                             - 12*x1*x2 - 23*x2*x3 )
//    Subject To
//     c1: - x1 + x2 + x3 <= 20
//     c2: x1 - 3 x2 + x3 <= 30
//    Bounds
//     0 <= x1 <= 40
//    End

static void
populatebyrow (IloModel model, IloNumVarArray x, IloRangeArray c)
{
   IloEnv env = model.getEnv();

   x.add(IloNumVar(env, 0.0, 40.0));
   x.add(IloNumVar(env));
   x.add(IloNumVar(env));
   model.add(IloMaximize(env, x[0] + 2 * x[1] + 3 * x[2]
                            - 0.5 * (33*x[0]*x[0] + 22*x[1]*x[1] + 11*x[2]*x[2]
                                                  - 12*x[0]*x[1] - 
23*x[1]*x[2]) ));

   c.add( - x[0] +     x[1] + x[2] <= 20);
   c.add(   x[0] - 3 * x[1] + x[2] <= 30);
   model.add(c);

}  // END populatebyrow

Example: qpex1.c

In the routine setproblemdata(), there are parameters for qmatbeg, qmatcnt, 
qmatind, and qmatval to fill the quadratic coefficient matrix. The Callable Library routine 
CPXcopyquad() copies this data into the problem object created by the Callable Library 
routine CPXcreateprob().

In this example, the problem is a maximization, so we handle that fact by specifying the 
objective sense of CPX_MAX.



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 249

S
o

lvin
g

 Q
u

ad
ratic 

P
ro

g
ram

m
in

g
 

<functionhead>

The off-diagonal terms in the matrix Q are one-half the value of the terms x1x2, and x2x3 as 
they appear in the algebraic form of the example.

Instead of calling CPXlpopt() to find a solution as we do for the linear programming 
problem in lpex1.c, this time we call CPXbaropt() to optimize this quadratic 
programming problem.

Complete Program: qpex1.c

The complete program, qpex1.c, appears here or online in the standard distribution.

#include <ilcplex/cplex.h>
#include <stdlib.h>

/* Bring in the declarations for the string functions */

#include <string.h>

/* Include declaration for function at end of program */

#ifndef  CPX_PROTOTYPE_MIN

static int
   setproblemdata (char **probname_p, int *numcols_p, int *numrows_p, 
                   int *objsen_p, double **obj_p, double **rhs_p, 
                   char **sense_p, int **matbeg_p, int **matcnt_p, 
                   int **matind_p, double **matval_p, double **lb_p, 
                   double **ub_p, int **qmatbeg_p, int **qmatcnt_p, 
                   int **qmatind_p, double **qmatval_p);

static void
   free_and_null (char **ptr);
#else

static int
   setproblemdata ();

static void
   free_and_null ();

#endif

/* The problem we are optimizing will have 2 rows, 3 columns,
   6 nonzeros, and 7 nonzeros in the quadratic coefficient matrix. */

#define NUMROWS    2
#define NUMCOLS    3
#define NUMNZ      6
#define NUMQNZ     7

#ifndef  CPX_PROTOTYPE_MIN
int
main (void)
#else
int
main ()



E X A M P L E :  C R E A T I N G  A  Q P ,  O P T I M I Z I N G ,  F I N D I N G  A  S O L U T I O N

250 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

#endif
{
   /* Declare pointers for the variables and arrays that will contain
      the data which define the LP problem.  The setproblemdata() routine
      allocates space for the problem data.  */

   char     *probname = NULL;  
   int      numcols;
   int      numrows;
   int      objsen;
   double   *obj = NULL;
   double   *rhs = NULL;
   char     *sense = NULL;
   int      *matbeg = NULL;
   int      *matcnt = NULL;
   int      *matind = NULL;
   double   *matval = NULL;
   double   *lb = NULL;
   double   *ub = NULL;
   int      *qmatbeg = NULL;
   int      *qmatcnt = NULL;
   int      *qmatind = NULL;
   double   *qmatval = NULL;

   /* Declare and allocate space for the variables and arrays where we
      will store the optimization results including the status, objective
      value, variable values, dual values, row slacks and variable
      reduced costs. */

   int      solstat;
   double   objval;
   double   x[NUMCOLS];
   double   pi[NUMROWS];
   double   slack[NUMROWS];
   double   dj[NUMCOLS];

   CPXENVptr     env = NULL;
   CPXLPptr      lp = NULL;
   int           status;
   int           i, j;
   int           cur_numrows, cur_numcols;

   /* Initialize the CPLEX environment */

   env = CPXopenCPLEX (&status);

   /* If an error occurs, the status value indicates the reason for
      failure.  A call to CPXgeterrorstring will produce the text of
      the error message.  Note that CPXopenCPLEX produces no output,
      so the only way to see the cause of the error is to use
      CPXgeterrorstring.  For other CPLEX routines, the errors will
      be seen if the CPX_PARAM_SCRIND indicator is set to CPX_ON.  */

   if ( env == NULL ) {
   char  errmsg[1024];
      fprintf (stderr, “Could not open CPLEX environment.\n”);
      CPXgeterrorstring (env, status, errmsg);



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 251

S
o

lvin
g

 Q
u

ad
ratic 

P
ro

g
ram

m
in

g
 

<functionhead>

      fprintf (stderr, “%s”, errmsg);
      goto TERMINATE;
   }

   /* Turn on output to the screen */

   status = CPXsetintparam (env, CPX_PARAM_SCRIND, CPX_ON);
   if ( status ) {
      fprintf (stderr, 
               “Failure to turn on screen indicator, error %d.\n”, status);
      goto TERMINATE;
   }

   /* Fill in the data for the problem.  */

   status = setproblemdata (&probname, &numcols, &numrows, &objsen, &obj, 
                            &rhs, &sense, &matbeg, &matcnt, &matind,
                            &matval, &lb, &ub, &qmatbeg, &qmatcnt,
                            &qmatind, &qmatval);
   if ( status ) {
      fprintf (stderr, “Failed to build problem data arrays.\n”);
      goto TERMINATE;
   }

   /* Create the problem. */

   lp = CPXcreateprob (env, &status, probname);

   /* A returned pointer of NULL may mean that not enough memory
      was available or there was some other problem.  In the case of 
      failure, an error message will have been written to the error 
      channel from inside CPLEX.  In this example, the setting of
      the parameter CPX_PARAM_SCRIND causes the error message to
      appear on stdout.  */

   if ( lp == NULL ) {
      fprintf (stderr, “Failed to create problem.\n”);
      goto TERMINATE;
   }

   /* Now copy the LP part of the problem data into the lp */

   status = CPXcopylp (env, lp, numcols, numrows, objsen, obj, rhs, 
                       sense, matbeg, matcnt, matind, matval,
                       lb, ub, NULL);

   if ( status ) {
      fprintf (stderr, “Failed to copy problem data.\n”);
      goto TERMINATE;
   }

   status = CPXcopyquad (env, lp, qmatbeg, qmatcnt, qmatind, qmatval);
   if ( status ) {
      fprintf (stderr, “Failed to copy quadratic matrix.\n”);
      goto TERMINATE;
   }

   /* Optimize the problem and obtain solution. */



E X A M P L E :  C R E A T I N G  A  Q P ,  O P T I M I Z I N G ,  F I N D I N G  A  S O L U T I O N

252 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

   status = CPXbaropt (env, lp);
   if ( status ) {
      fprintf (stderr, “Failed to optimize QP.\n”);
      goto TERMINATE;
   }

   status = CPXsolution (env, lp, &solstat, &objval, x, pi, slack, dj);
   if ( status ) {
      fprintf (stderr, “Failed to obtain solution.\n”);
      goto TERMINATE;
   }

   /* Write the output to the screen. */

   printf (“\nSolution status = %d\n”, solstat);
   printf (“Solution value  = %f\n\n”, objval);

   /* The size of the problem should be obtained by asking CPLEX what
      the actual size is, rather than using what was passed to CPXcopylp.
      cur_numrows and cur_numcols store the current number of rows and
      columns, respectively.  */

   cur_numrows = CPXgetnumrows (env, lp);
   cur_numcols = CPXgetnumcols (env, lp);
   for (i = 0; i < cur_numrows; i++) {
      printf (“Row %d:  Slack = %10f  Pi = %10f\n”, i, slack[i], pi[i]);
   }

   for (j = 0; j < cur_numcols; j++) {
      printf (“Column %d:  Value = %10f  Reduced cost = %10f\n”,
              j, x[j], dj[j]);
   }

   /* Finally, write a copy of the problem to a file. */

   status = CPXwriteprob (env, lp, “qpex1.lp”, NULL);
   if ( status ) {
      fprintf (stderr, “Failed to write LP to disk.\n”);
      goto TERMINATE;
   }
   
TERMINATE:

   /* Free up the problem as allocated by CPXcreateprob, if necessary */

   if ( lp != NULL ) {
      status = CPXfreeprob (env, &lp);
      if ( status ) {
         fprintf (stderr, “CPXfreeprob failed, error code %d.\n”, status);
      }
   }

   /* Free up the CPLEX environment, if necessary */

   if ( env != NULL ) {
      status = CPXcloseCPLEX (&env);



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 253

S
o

lvin
g

 Q
u

ad
ratic 

P
ro

g
ram

m
in

g
 

<functionhead>

      /* Note that CPXcloseCPLEX produces no output,
         so the only way to see the cause of the error is to use
         CPXgeterrorstring.  For other CPLEX routines, the errors will
         be seen if the CPX_PARAM_SCRIND indicator is set to CPX_ON. */

      if ( status ) {
         char  errmsg[1024];
         fprintf (stderr, “Could not close CPLEX environment.\n”);
         CPXgeterrorstring (env, status, errmsg);
         fprintf (stderr, “%s”, errmsg);
      }
   }
     
   /* Free up the problem data arrays, if necessary. */

   free_and_null ((char **) &probname);
   free_and_null ((char **) &obj);
   free_and_null ((char **) &rhs);
   free_and_null ((char **) &sense);
   free_and_null ((char **) &matbeg);
   free_and_null ((char **) &matcnt);
   free_and_null ((char **) &matind);
   free_and_null ((char **) &matval);
   free_and_null ((char **) &lb);
   free_and_null ((char **) &ub);
   free_and_null ((char **) &qmatbeg);
   free_and_null ((char **) &qmatcnt);
   free_and_null ((char **) &qmatind);
   free_and_null ((char **) &qmatval);
     
   return (status);

}  /* END main */

/* This function fills in the data structures for the quadratic program:

      Maximize
       obj: x1 + 2 x2 + 3 x3
              - 0.5 ( 33x1*x1 + 22*x2*x2 + 11*x3*x3
                   -  12*x1*x2 - 23*x2*x3 )
      Subject To
       c1: - x1 + x2 + x3 <= 20
       c2: x1 - 3 x2 + x3 <= 30
      Bounds
       0 <= x1 <= 40
      End
 */

#ifndef  CPX_PROTOTYPE_MIN
static int
setproblemdata (char **probname_p, int *numcols_p, int *numrows_p, 
                int *objsen_p, double **obj_p, double **rhs_p, 
                char **sense_p, int **matbeg_p, int **matcnt_p, 
                int **matind_p, double **matval_p, double **lb_p, 
                double **ub_p, int **qmatbeg_p, int **qmatcnt_p, 



E X A M P L E :  C R E A T I N G  A  Q P ,  O P T I M I Z I N G ,  F I N D I N G  A  S O L U T I O N

254 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

                int **qmatind_p, double **qmatval_p)
#else
static int
setproblemdata (probname_p, numcols_p, numrows_p, objsen_p, obj_p, 
                rhs_p, sense_p, matbeg_p, matcnt_p, matind_p, matval_p, 
                lb_p, ub_p, qmatbeg_p, qmatcnt_p, qmatind_p, qmatval_p)
char    **probname_p;
int     *numcols_p;
int     *numrows_p;
int     *objsen_p;
double  **obj_p;
double  **rhs_p;
char    **sense_p;
int     **matbeg_p;
int     **matcnt_p;
int     **matind_p;
double  **matval_p;
double  **lb_p;
double  **ub_p;
int     **qmatbeg_p;
int     **qmatcnt_p;
int     **qmatind_p;
double  **qmatval_p;
#endif
{
   char     *zprobname = NULL;     /* Problem name <= 16 characters */        
   double   *zobj = NULL;
   double   *zrhs = NULL;
   char     *zsense = NULL;
   int      *zmatbeg = NULL;
   int      *zmatcnt = NULL;
   int      *zmatind = NULL;
   double   *zmatval = NULL;
   double   *zlb = NULL;
   double   *zub = NULL;
   int      *zqmatbeg = NULL;
   int      *zqmatcnt = NULL;
   int      *zqmatind = NULL;
   double   *zqmatval = NULL;
   int      status = 0;

   zprobname = (char *) malloc (16 * sizeof(char)); 
   zobj      = (double *) malloc (NUMCOLS * sizeof(double));
   zrhs      = (double *) malloc (NUMROWS * sizeof(double));
   zsense    = (char *) malloc (NUMROWS * sizeof(char)); 
   zmatbeg   = (int *) malloc (NUMCOLS * sizeof(int));   
   zmatcnt   = (int *) malloc (NUMCOLS * sizeof(int));   
   zmatind   = (int *) malloc (NUMNZ * sizeof(int));   
   zmatval   = (double *) malloc (NUMNZ * sizeof(double));
   zlb       = (double *) malloc (NUMCOLS * sizeof(double));
   zub       = (double *) malloc (NUMCOLS * sizeof(double));
   zqmatbeg  = (int *) malloc (NUMCOLS * sizeof(int)); 
   zqmatcnt  = (int *) malloc (NUMCOLS * sizeof(int)); 
   zqmatind  = (int *) malloc (NUMQNZ * sizeof(int)); 
   zqmatval  = (double *) malloc (NUMQNZ * sizeof(double)); 

   if ( zprobname == NULL || zobj     == NULL ||
        zrhs      == NULL || zsense   == NULL ||



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 255

S
o

lvin
g

 Q
u

ad
ratic 

P
ro

g
ram

m
in

g
 

<functionhead>

        zmatbeg   == NULL || zmatcnt  == NULL ||
        zmatind   == NULL || zmatval  == NULL ||
        zlb       == NULL || zub      == NULL ||
        zqmatbeg  == NULL || zqmatcnt == NULL ||
        zqmatind  == NULL || zqmatval == NULL  )  {
      status = 1;
      goto TERMINATE;
   }

   strcpy (zprobname, “example”);

   /* The code is formatted to make a visual correspondence 
      between the mathematical linear program and the specific data
      items.   */

     zobj[0]  = 1.0;   zobj[1]   = 2.0;   zobj[2] = 3.0;

   zmatbeg[0] = 0;     zmatbeg[1] = 2;    zmatbeg[2] = 4;
   zmatcnt[0] = 2;     zmatcnt[1] = 2;    zmatcnt[2] = 2;
      
   zmatind[0] = 0;     zmatind[2] = 0;    zmatind[4] = 0;     zsense[0] = ‘L’;
   zmatval[0] = -1.0;  zmatval[2] = 1.0;  zmatval[4] = 1.0;   zrhs[0]   = 20.0;

   zmatind[1] = 1;     zmatind[3] = 1;    zmatind[5] = 1;     zsense[1] = ‘L’;
   zmatval[1] = 1.0;   zmatval[3] = -3.0; zmatval[5] = 1.0;   zrhs[1]   = 30.0;

       zlb[0] = 0.0;       zlb[1] = 0.0;          zlb[2] = 0.0;
       zub[0] = 40.0;      zub[1] = CPX_INFBOUND; zub[2] = CPX_INFBOUND;

   /* Now set up the Q matrix.  Note that we set the values knowing that
    * we’re doing a maximization problem, so negative values go on 
    * the diagonal.  Also, the off diagonal terms are each repeated,
    * by taking the algebraic term and dividing by 2 */

   zqmatbeg[0] = 0;     zqmatbeg[1] = 2;     zqmatbeg[2] = 5;  
   zqmatcnt[0] = 2;     zqmatcnt[1] = 3;     zqmatcnt[2] = 2;

   /* Matrix is set up visually.  Note that the x1*x3 term is 0, and is
    * left out of the matrix.  */

   zqmatind[0] = 0;     zqmatind[2] = 0;     
   zqmatval[0] = -33.0; zqmatval[2] = 6.0;  

   zqmatind[1] = 1;     zqmatind[3] = 1;     zqmatind[5] = 1;
   zqmatval[1] = 6.0;   zqmatval[3] = -22.0; zqmatval[5] = 11.5;

                        zqmatind[4] = 2;     zqmatind[6] = 2;
                        zqmatval[4] = 11.5;  zqmatval[6] = -11.0; 

TERMINATE:

   if ( status ) {
      free_and_null ((char **) &zprobname);
      free_and_null ((char **) &zobj);
      free_and_null ((char **) &zrhs);
      free_and_null ((char **) &zsense);
      free_and_null ((char **) &zmatbeg);
      free_and_null ((char **) &zmatcnt);



E X A M P L E :  C R E A T I N G  A  Q P ,  O P T I M I Z I N G ,  F I N D I N G  A  S O L U T I O N

256 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

      free_and_null ((char **) &zmatind);
      free_and_null ((char **) &zmatval);
      free_and_null ((char **) &zlb);
      free_and_null ((char **) &zub);
      free_and_null ((char **) &zqmatbeg);
      free_and_null ((char **) &zqmatcnt);
      free_and_null ((char **) &zqmatind);
      free_and_null ((char **) &zqmatval);
   }
   else {
      *numcols_p   = NUMCOLS;
      *numrows_p   = NUMROWS;
      *objsen_p    = CPX_MAX;   /* The problem is maximization */
   
      *probname_p  = zprobname;
      *obj_p       = zobj;
      *rhs_p       = zrhs;
      *sense_p     = zsense;
      *matbeg_p    = zmatbeg;
      *matcnt_p    = zmatcnt;
      *matind_p    = zmatind;
      *matval_p    = zmatval;
      *lb_p        = zlb;
      *ub_p        = zub;
      *qmatbeg_p   = zqmatbeg;
      *qmatcnt_p   = zqmatcnt;
      *qmatind_p   = zqmatind;
      *qmatval_p   = zqmatval;
   }
   return (status);

}  /* END setproblemdata */

/* This simple routine frees up the pointer *ptr, and sets *ptr to NULL */

#ifndef  CPX_PROTOTYPE_MIN
static void
free_and_null (char **ptr)
#else
static void
free_and_null (ptr)
char  **ptr;
#endif
{
   if ( *ptr != NULL ) {
      free (*ptr);
      *ptr = NULL;
   }
} /* END free_and_null */  



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 257

S
o

lvin
g

 Q
u

ad
ratic 

P
ro

g
ram

m
in

g
 

<functionhead>

Example: Reading a QP from a File

This example shows you how to optimize a QP with routines from the ILOG CPLEX 
Callable Library when the problem data is stored in a file. The example derives from 
lpex2.c, described in the manual ILOG CPLEX Getting Started.

This example differs from lpex2.c in its command line. In qpex2.c, there is no need of a 
command-line argument to indicate which optimizer to call, as only the ILOG CPLEX 
Barrier Optimizer is used to solve QPs. In other words, this example always calls the routine 
CPXbaropt().

This example also differs in the way it shows a solution. Since no basis is available for the 
QP, this example calls the routine CPXgetx() to get a solution. It is, however, possible to 
call CPXsolution() to get a primal and dual solution to the problem.

Like other applications based on the ILOG CPLEX Callable Library, this one begins with 
calls to CPXopenCPLEX() to initialize the ILOG CPLEX environment and to 
CPXcreateprob() to create the problem object. Before it ends, it frees the problem object 
with a call to CPXfreeprob(), and it frees the environment with a call to 
CPXcloseCPLEX().

Complete Program: qpex2.c

The complete program, qpex2.c, appears here or online in the standard distribution.

#include <ilcplex/cplex.h>

/* Bring in the declarations for the string and character functions 
   and malloc */

#include <ctype.h>
#include <stdlib.h>
#include <string.h>

/* Include declarations for functions in this program */

#ifndef  CPX_PROTOTYPE_MIN

static void
   free_and_null (char **ptr),
   usage         (char *progname);

#else

static void
   free_and_null (),
   usage         ();

#endif

#ifndef  CPX_PROTOTYPE_MIN



E X A M P L E :  R E A D I N G  A  Q P  F R O M  A  F I L E

258 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

int
main (int argc, char *argv[])
#else
int
main (argc, argv)
int   argc;
char  *argv[];
#endif
{
   /* Declare and allocate space for the variables and arrays where we
      will store the optimization results including the status, objective
      value and variable values. */

   int      solstat;
   double   objval;
   double   *x = NULL;

   CPXENVptr     env = NULL;
   CPXLPptr      lp = NULL;
   int           status;
   int           j;
   int           cur_numcols;

   /* Check the command line arguments */

   if ( argc != 2 ) {
      usage (argv[0]);
      goto TERMINATE;
   }

   /* Initialize the CPLEX environment */

   env = CPXopenCPLEX (&status);

   /* If an error occurs, the status value indicates the reason for
      failure.  A call to CPXgeterrorstring will produce the text of
      the error message.  Note that CPXopenCPLEX produces no output,
      so the only way to see the cause of the error is to use
      CPXgeterrorstring.  For other CPLEX routines, the errors will
      be seen if the CPX_PARAM_SCRIND indicator is set to CPX_ON.  */

   if ( env == NULL ) {
   char  errmsg[1024];
      fprintf (stderr, “Could not open CPLEX environment.\n”);
      CPXgeterrorstring (env, status, errmsg);
      fprintf (stderr, “%s”, errmsg);
      goto TERMINATE;
   }

   /* Turn on output to the screen */

   status = CPXsetintparam (env, CPX_PARAM_SCRIND, CPX_ON);
   if ( status != 0 ) {
      fprintf (stderr, 
               “Failure to turn on screen indicator, error %d.\n”, status);
      goto TERMINATE;
   }



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 259

S
o

lvin
g

 Q
u

ad
ratic 

P
ro

g
ram

m
in

g
 

<functionhead>

   /* Create the problem, using the filename as the problem name */

   lp = CPXcreateprob (env, &status, argv[1]);

   /* A returned pointer of NULL may mean that not enough memory
      was available or there was some other problem.  In the case of 
      failure, an error message will have been written to the error 
      channel from inside CPLEX.  In this example, the setting of
      the parameter CPX_PARAM_SCRIND causes the error message to
      appear on stdout.  Note that most CPLEX routines return
      an error code to indicate the reason for failure.   */

   if ( lp == NULL ) {
      fprintf (stderr, “Failed to create LP.\n”);
      goto TERMINATE;
   }

   /* Now read the file, and copy the data into the created lp */

   status = CPXreadcopyprob (env, lp, argv[1], NULL);
   if ( status ) {
      fprintf (stderr, “Failed to read and copy the problem data.\n”);
      goto TERMINATE;
   }

   if ( CPXgetprobtype (env, lp) != CPXPROB_QP ) {
      fprintf (stderr, “File does not contain quadratic data.  Exiting.\n”);
      goto TERMINATE;
   }

   /* Optimize the problem and obtain solution. */

   status = CPXbaropt (env, lp);

   if ( status ) {
      fprintf (stderr, “Failed to optimize QP.\n”);
      goto TERMINATE;
   }

   solstat = CPXgetstat (env, lp);
   printf (“Solution status %d.\n”, solstat);

   status  = CPXgetobjval (env, lp, &objval);

   if ( status ) {
      fprintf (stderr,”Failed to obtain objective value.\n”);
      goto TERMINATE;
   }

   printf (“Objective value %.10g\n”, objval);

   /* The size of the problem should be obtained by asking CPLEX what
      the actual size is.  cur_numcols stores the current number
      of columns. */

   cur_numcols = CPXgetnumcols (env, lp);

   /* Allocate space for solution */



E X A M P L E :  R E A D I N G  A  Q P  F R O M  A  F I L E

260 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

   x     = (double *) malloc (cur_numcols*sizeof(double));

   if ( x == NULL ) {
      fprintf (stderr,”No memory for basis statuses.\n”);
      goto TERMINATE;
   }

   status = CPXgetx (env, lp, x, 0, cur_numcols-1);
   if ( status ) {
      fprintf (stderr, “Failed to obtain solution.\n”);
      goto TERMINATE;
   }

   /* Write out the solution */

   for (j = 0; j < cur_numcols; j++) {
      printf ( “Column %d:  Value = %17.10g\n”, j, x[j]);
   }

   
TERMINATE:

   /* Free up the basis and solution */

   free_and_null ((char **) &x);

   /* Free up the problem as allocated by CPXcreateprob, if necessary */

   if ( lp != NULL ) {
      status = CPXfreeprob (env, &lp);
      if ( status ) {
         fprintf (stderr, “CPXfreeprob failed, error code %d.\n”, status);
      }
   }

   /* Free up the CPLEX environment, if necessary */

   if ( env != NULL ) {
      status = CPXcloseCPLEX (&env);

      /* Note that CPXcloseCPLEX produces no output,
         so the only way to see the cause of the error is to use
         CPXgeterrorstring.  For other CPLEX routines, the errors will
         be seen if the CPX_PARAM_SCRIND indicator is set to CPX_ON. */

      if ( status ) {
      char  errmsg[1024];
         fprintf (stderr, “Could not close CPLEX environment.\n”);
         CPXgeterrorstring (env, status, errmsg);
         fprintf (stderr, “%s”, errmsg);
      }
   }
     
   return (status);

}  /* END main */



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 261

S
o

lvin
g

 Q
u

ad
ratic 

P
ro

g
ram

m
in

g
 

<functionhead>

/* This simple routine frees up the pointer *ptr, and sets *ptr to NULL */

#ifndef  CPX_PROTOTYPE_MIN
static void
free_and_null (char **ptr)
#else
static void
free_and_null (ptr)
char  **ptr;
#endif
{
   if ( *ptr != NULL ) {
      free (*ptr);
      *ptr = NULL;
   }
} /* END free_and_null */

#ifndef  CPX_PROTOTYPE_MIN
static void
usage (char *progname)
#else
static void
usage (progname)
char *progname;
#endif
{
   fprintf (stderr,”Usage: %s filename\n”, progname);
   fprintf (stderr,”   where filename is a file with extension \n”);
   fprintf (stderr,”      MPS, SAV, or LP (lower case is allowed)\n”);
   fprintf (stderr,”  This program uses the CPLEX Barrier optimizer\n”);
   fprintf (stderr,”    to optimize quadratic programs.\n”);
   fprintf (stderr,” Exiting...\n”);
} /* END usage */



E X A M P L E :  R E A D I N G  A  Q P  F R O M  A  F I L E

262 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L



C H A P T E R

I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 263

M
o

re A
b

o
u

t U
sin

g
 

IL
O

G
 C

P
L

E
X

8

More About Using ILOG CPLEX

This chapter provides information designed to help you master several important aspects of 
ILOG CPLEX. It includes sections on:

◆ Managing Input & Output

◆ Using Query Routines

◆ Using Callbacks

◆ Using Parallel Optimizers

Managing Input & Output

This section tells you about input to and output from ILOG CPLEX. It contains the 
following subsections:

◆ Understanding File Formats

◆ Managing Log Files: the Log File Parameter

◆ Handling Message Channels: the Output-Channel Parameter

◆ Handling Message Channels: Callable Library Routines

◆ Example: Using the Message Handler



M A N A G I N G  I N P U T  &  O U T P U T

264 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

Understanding File Formats 

The ILOG CPLEX Reference Manual documents the file formats that ILOG CPLEX 
supports. Here is a brief description of these file formats:

◆ BAS files are text files governed by MPS conventions (that is, they are not binary) for 
saving a problem basis. 

◆ BIN files are binary files. ILOG CPLEX uses this format when it writes solution files 
containing the binary representation of real numbers.

◆ DPE is the format ILOG CPLEX uses to write a problem in a binary SAV file after the 
objective of a problem has been perturbed for use with the dual simplex optimizer.

◆ DUA format, governed by MPS conventions, writes the dual formulation of a problem 
currently in memory so that the MPS file can later be read back in and the dual 
formulation can then be optimized explicitly. This file format is largely obsolete now 
since you can use the command set preprocessing dual in the Interactive 
Optimizer to tell ILOG CPLEX to solve the dual formulation of an LP automatically. 
(You no longer have to tell ILOG CPLEX to write the dual formulation to a DUA file 
and then tell ILOG CPLEX to read the file back in and solve it.)

◆ EMB is the format ILOG CPLEX uses to save an embedded network it extracts from a 
problem. EMB files are written in MPS format.

◆ IIS is the format ILOG CPLEX uses to represent irreducible inconsistent sets of 
constraints. Finding a Set of Irreducibly Inconsistent Constraints on page 116 and 
Example: Writing an IIS-Type File on page 118 explain more about these kinds of files.

◆ LP (Linear Programming) is a ILOG CPLEX-specific file formatted for entering 
problems in an algebraic, row-oriented form. In other words, LP format allows you to 
enter problems in terms of their constraints. When you enter problems interactively in 
the Interactive Optimizer, you are implicitly using LP format. ILOG CPLEX will also 
read in files in LP format. Working with LP Files on page 266 explains more fully how to 
use LP files with ILOG CPLEX.

◆ MIN format for representing minimum-cost network-flow problems was introduced by 
DIMACS in 1991. More information about DIMACS network file formats is available 
via anonymous ftp from ftp://dimacs.rutgers.edu/pub/netflow/general-
info/specs.tex.

◆ MPS (Mathematical Programming System) is an industry-standard, ASCII-text file 
format for mathematical programming problems. Besides the industry conventions, 
ILOG CPLEX also supports extensions to this format for ILOG CPLEX-specific cases, 
such as names of more than eight characters, blank space as delimiters between columns, 
etc. Working with MPS Files on page 267 in this manual explains more fully how to use 
MPS files with ILOG CPLEX.

◆ MST is a text format ILOG CPLEX uses to enter a starting solution for a MIP.



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 265

M
o

re A
b

o
u

t U
sin

g
 

IL
O

G
 C

P
L

E
X

<functionhead>

◆ NET is a ILOG CPLEX-specific ASCII format for network-flow problems. It is flexible 
and supports named nodes and arcs.

◆ ORD is a format available only if you are licensed to use the ILOG CPLEX MIP 
Optimizer. It is used to enter and to save priority orders for branching. It may contain 
branching instructions for individual variables. 

◆ PPE is the format ILOG CPLEX uses to write a problem in a binary SAV file after the 
bounds of a problem have been perturbed for use with the primal simplex optimizer.

◆ PRE is the format ILOG CPLEX uses to write a presolved, reduced problem formulation 
to a binary SAV file. Since a presolved problem has been reduced, it will not correspond 
to the original problem.

◆ QP is a format available only if you are licensed to use the ILOG CPLEX Barrier 
Optimizer. It contains the coefficients of nonzero coefficients in the Q matrix of a 
quadratic programming problem. You must enter the linear part of that quadratic 
programming problem first (by whichever means you choose).

◆ REW is a format to write a problem in MPS format with disguised row and column 
names. This format may be useful, for example, for problems that you consider highly 
proprietary.

◆ SAV is a ILOG CPLEX-specific binary format for reading and writing problems and 
their associated basis information. ILOG CPLEX includes the basis in a SAV file only if 
the problem currently in memory has been optimized and a basis exists. This format 
offers the advantage of being numerically accurate (to the same degree as your platform) 
in contrast to text file formats that may lose numerical accuracy. It also has the additional 
benefit of being efficient with respect to read and write time. However, since a SAV file 
is binary, you cannot read nor edit it with your favorite text editor.

◆ SOS is a format available only if you are licensed to use the ILOG CPLEX MIP 
Optimizer. It declares special ordered sets, the set branching order, and weights for each 
set member.

◆ TRE is a format available only if you are licensed to use the ILOG CPLEX MIP 
Optimizer. It saves information about progress through the branch & cut tree. It is a 
binary format.

◆ TXT files are ASCII-text files. ILOG CPLEX uses this format when it writes solution 
files in text.

◆ VEC is a format available only if you are licensed to use the ILOG CPLEX Barrier 
Optimizer. It saves the solution to a pure barrier optimization prior to crossover (that is, a 
nonbasis solution) that can later be read back in and used to initiate crossover. Using 
VEC File Format on page 134 explains how to use this file format.



M A N A G I N G  I N P U T  &  O U T P U T

266 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

Working with LP Files

LP files are row-oriented so you can look at a problem as you enter it in a naturally and 
intuitively algebraic way. However, ILOG CPLEX represents a problem internally in a 
column-ordered format. This difference between the way ILOG CPLEX accepts a problem 
in LP format and the way it stores the problem internally may have an impact on memory 
use and on the order in which variables are displayed on screen or in files.

Memory Use and LP Files 

Whenever ILOG CPLEX reads a file in LP format, it converts from row-orientation to 
column-orientation. The conversion requires memory. On a platform with limited memory, 
if there is insufficient memory to read a given problem in LP format, there may still be 
sufficient memory to read the problem in MPS format. Generally, the ILOG CPLEX MPS 
file reader will load MPS format files more efficiently than will the LP reader loading LP 
format files.

Variable Order and LP Files 

As ILOG CPLEX reads an LP format file by rows, it adds columns as it encounters them in 
a row. This convention will have an impact on the order in which variables are named and 
displayed. For example, consider this problem: 

Since ILOG CPLEX reads the objective function as the first row, the two columns appearing 
there will become the first two variables. When the problem is displayed or rewritten into 
another LP file, the variables there will appear in a different order within each row. In this 
example, if you execute the command display problem all, you will see this: 

Maximize 2x2 + 3x3

subject to

-x1 + x2 + x3 ≤ 20

x1 - 3x2 + x3 ≤ 30

with these bounds

0 ≤ x1 ≤ 40

0 ≤ x2 ≤ +∞

0 ≤ x3 ≤ +∞

Maximize
 obj: 2 x2 + 3 x3
Subject To
 c1: x2 + x3 - x1 <= 20
 c2: - 3 x2 + x3 + x1 <= 30
Bounds
 0 <= x1 <= 40
 All other variables are >= 0.



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 267

M
o

re A
b

o
u

t U
sin

g
 

IL
O

G
 C

P
L

E
X

<functionhead>

That is, x1 appears at the end of each constraint in which it has a nonzero coefficient. This 
re-ordering does not affect the optimal value of the problem, but you may find it 
disconcerting when you first encounter it.

Working with MPS Files

The ILOG CPLEX MPS file reader is highly compatible with existing modeling systems. 
There is generally no need to modify existing problem files to use them with ILOG CPLEX. 
However, there are ILOG CPLEX-specific conventions that may be useful for you to know. 
This section explains those conventions, and the ILOG CPLEX Reference Manual 
documents MPS format more fully.

Free Rows in MPS Files

In an MPS file, ILOG CPLEX selects the first free row or N-type row as the objective 
function, and it discards all subsequent free rows unless it is instructed otherwise by an 
OBJNAME section in the file. To retain free rows in an MPS file, reformulate them as equality 
rows with an additional free variable. For example, replace the free row x + y by the 
equality row x + y - s = 0 where s is free. Generally, the ILOG CPLEX presolver will 
remove rows like that before optimization so they will have no impact on performance.

Ranged Rows in MPS Files

To handle ranged rows, ILOG CPLEX introduces a temporary range variable, creates 
appropriate bounds for this variable, and changes the sense of the row to an equality (that is, 
MPS type EQ). The added range variables will have the same name as the ranged row with 
the characters Rg prefixed. When ILOG CPLEX generates solution reports, it removes these 
temporary range variables from the constraint matrix.

Extra Rim Vectors in MPS Files

The MPS format allows multiple right-hand sides (RHS), multiple bounds, and multiple 
range vectors. It also allows extra free rows. Together, these features are known as extra rim 
vectors. By default, the ILOG CPLEX MPS reader selects the first RHS, bound, and range 
definitions that it finds. The first free row (that is, N-type row) becomes the objective 
function, and the remaining free rows are discarded. The extra rim data are also discarded.

Naming Conventions in MPS Files

ILOG CPLEX accepts any noncontrol-character within a name. However, ILOG CPLEX 
recognizes blanks (that is, space) as delimiters, so you must avoid them in names. You 
should also avoid $ (dollar sign) and * (asterisk) as characters in names because they 
normally indicate a comment within a data record.

Error Checking in MPS Files

Fairly common problems in MPS files include split vectors, unnamed columns, and 
duplicated names. ILOG CPLEX checks for these conditions and reports them. If repeated 
rows or columns occur in an MPS file, ILOG CPLEX reports an error and stops reading the 
file. You can then edit the MPS file to correct the source of the problem.



M A N A G I N G  I N P U T  &  O U T P U T

268 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

Saving Modified MPS Files

You may often want to save a modified MPS file for later use. To that end, ILOG CPLEX 
will write out a problem exactly as it appears in memory. All your revisions of that problem 
will appear in the new file. One potential area for confusion occurs when a maximization 
problem is saved. Since MPS conventionally represents all problems as minimizations, 
ILOG CPLEX reverses the sign of the objective-function coefficients when it writes a 
maximization problem to an MPS file. When you read and optimize this new problem, the 
values of the variables will be valid for the original model. However, since the problem has 
been converted from a maximization to the equivalent minimization, the objective, dual, and 
reduced-cost values will have reversed signs.

Converting File Formats

MPS, Mathematical Programming System, an industry-standard format based on ASCII-text 
has historically been restricted to a fixed format in which data fields were limited to eight 
characters and specific fields had to appear in specific columns on specific lines. 
ILOG CPLEX supports extensions to MPS that allow more descriptive names (that is, more 
than eight characters), greater accuracy for numerical data, and greater flexibility in data 
positions.

Most MPS files in fixed format conform to the ILOG CPLEX extensions and thus can be 
read by the ILOG CPLEX MPS reader without error. However, the ILOG CPLEX MPS 
reader will not accept the following conventions:

◆ blank space within a name;

◆ blank lines;

◆ missing fields (such as bound names and right-hand side names);

◆ extraneous, uncommented characters;

◆ blanks in lieu of repeated name fields, such as bound vector names and right-hand side 
names.

You can convert fixed-format MPS files that contain those conventions into acceptable 
ILOG CPLEX-extended MPS files. To do so, use the convert utility supplied in the 
standard distribution of ILOG CPLEX. The convert utility removes unreadable features 
from fixed-format MPS, REW, BAS, SOS, and ORD files. It runs from the operating system 
prompt of your platform. Here is the syntax of the convert utility:

convert -option inputfilename outputfilename 

Your command must include an input-file name and an output-file name; they must be 
different from each other. The options, summarized in Table 8.1, indicate the file type. You 



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 269

M
o

re A
b

o
u

t U
sin

g
 

IL
O

G
 C

P
L

E
X

<functionhead>

may specify only one option. If you do not specify an option, ILOG CPLEX attempts to 
deduce the file type from the extension in the file name. 

Managing Log Files: the Log File Parameter 

As ILOG CPLEX is working, it records messages to a log file. By default, it creates the log 
file in the directory where it is running, and it names the file cplex.log. If such a file 
already exists, ILOG CPLEX adds a line indicating the current time and date and then 
appends new information to the end of the existing file. That is, it does not overwrite the file, 
and it distinguishes different sessions within the log file. 

You can locate the log file where you like, and you can rename it. Some users, for example, 
like to create a specifically named log file for each session. Also you can close the log file in 
case you do not want ILOG CPLEX to record messages to its default log file.

The following sections show you the commands for creating, renaming, relocating, and 
closing a log file.

Creating, Renaming, Relocating Log Files 

◆ In the Interactive Optimizer, use the command set logfile filename, substituting 
the name you prefer for the log file. In other words, use this command to rename or 
relocate the default log file.

◆ From the Callable Library, first use the routine CPXfopen() to open the target file; then 
use the routine CPXsetlogfile(). The ILOG CPLEX Reference Manual documents 
both routines.

Closing Log Files

◆ If you do not want ILOG CPLEX to record messages in a log file, then you can close the 
log file from the Interactive Optimizer with the command set logfile *.

Table 8.1 Options for the convert Utility and Corresponding File Extensions

Option File type File extension

-m MPS (Mathematical Programming System) .mps

-r REV (MIPs revise file) .rev

-s SOS (Special Ordered Set) .sos

-b BAS (basis file according to MPS conventions) .bas

-o ORD (priority orders) .ord



M A N A G I N G  I N P U T  &  O U T P U T

270 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

◆ By default, routines from the Callable Library do not write to a log file. However, if you 
want to close a log file that you created by a call to CPXsetlogfile(), call 
CPXsetlogfile() again, and this time, pass a NULL pointer as its second argument.

Handling Message Channels: the Output-Channel Parameter

Besides the log-file parameter, ILOG CPLEX offers you output-channel parameters to give 
you finer control over when and where messages appear in the Interactive Optimizer. 
Output-channel parameters indicate whether output should or should not appear on screen. 
They also allow you to designate log files for message channels. The output-channel 
parameters do not affect the log-file parameter, so it is customary to use the command 
set logfile before the command set output channel value1 value2.

In the output-channel command, you can specify a channel: dialog, errors, logonly, 
results, and warnings. Table 8.2 summarizes the information carried over each channel. 

The option value2 lets you specify a file name to redirect output from a channel.

Also in that command, value1 allows you to turn on or off output to the screen. When 
value1 is y, output is directed to the screen; when its value is n, output is not directed to the 
screen. Table 8.3 summarizes which channels direct output to the screen by default. If a 
channel directs output to the screen by default, you can leave value1 blank to get the same 
effect as set output channel y. 

Table 8.2 Options for the Output-Channel Command

Channel Information

dialog messages related to interactive use; e.g., prompts, help messages, greetings

errors messages to inform user that operation could not be performed and why

logonly message to record only in file (not on screen) e.g., multiline messages

results information explicitly requested by user; state, change, progress information

warnings messages to inform user request was performed but unexpected condition 
may result

Table 8.3 Channels Directing Output to Screen or to a File

Channel Default value1 Meaning

dialog y blank directs output to screen but not to a file

errors y blank directs output to screen and to a file

logonly n blank directs output only to a file, not to screen



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 271

M
o

re A
b

o
u

t U
sin

g
 

IL
O

G
 C

P
L

E
X

<functionhead>

Handling Message Channels: Callable Library Routines

ILOG CPLEX defines several message channels for flexible control over message output:

◆ cpxresults for messages containing status and progress information;

◆ cpxerror for messages issued when a task cannot be completed;

◆ cpxwarning for messages issued when a nonfatal difficulty is encountered; or when an 
action taken may have side-effects; or when an assumption made may have side-effects;

◆ cpxlog for messages containing information that would not conventionally be displayed 
on screen but could be useful in a log file.

Output messages flow through message channels to destinations. Message channels are 
associated with destinations through their destination list. Messages from routines of the 
ILOG CPLEX Callable Library are assigned internally to one of those predefined channels. 
Those default channels are C pointers to ILOG CPLEX objects; they are initialized by 
CPXopenCPLEX(); they are not global variables. Your application accesses these objects by 
calling the routine CPXgetchannels(). You can use these predefined message channels for 
your own application messages. You can also define new channels. 

An application using routines from the ILOG CPLEX Callable Library produces no output 
messages unless the application specifies message handling instructions through one or 
more calls to the message handling routines of the Callable Library. In other words, the 
destination list of each channel is initially empty.

Messages from multiple channels may be sent to one destination. All predefined 
ILOG CPLEX channels can be directed to a single file by a call to CPXsetlogfile(). 
Similarly, all predefined ILOG CPLEX channels except cpxlog can be directed to the 
screen by CPX_PARAM_SCRIND. For a finer level of control, or to define destinations for 
application-specific messages, use the following message handling routines, all documented 
in the ILOG CPLEX Reference Manual:

◆ CPXmsg() sets logfile for predefined ILOG CPLEX channels;

◆ CPXflushchannel() flushes a channel to its associated destination;

◆ CPXdisconnectchannel() flushes a channel and clears its destination list;

results y blank directs output to screen and to a file

warnings y blank directs output to screen and to a file

Table 8.3 Channels Directing Output to Screen or to a File

Channel Default value1 Meaning



M A N A G I N G  I N P U T  &  O U T P U T

272 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

◆ CPXdelchannel() flushes a channel, clears its destination list, frees memory for that 
channel;

◆ CPXaddchannel() adds a channel;

◆ CPXaddfpdest() adds a destination file to the list of destinations associated with a 
channel;

◆ CPXdelfpdest() deletes a destination from the destination list of a channel;

◆ CPXaddfuncdest() adds a destination function to a channel;

◆ CPXdelfuncdest() deletes a destination function to a channel;

Once channel destinations are established, messages can be sent to multiple destinations by 
a single call to a message-handling routine.

Figure 8.1 

Figure 8.1  ILOG CPLEX Message Handling Routines

Example: Using the Message Handler

This example shows you how to use the ILOG CPLEX message handler from the Callable 
Library. It captures all messages generated by ILOG CPLEX and displays them on screen 
along with a label indicating which channel sent the message. It also creates a user channel 
to receive output generated by the program itself. The user channel accepts user-generated 
messages, displays them on screen with a label, and records them in a file without the label.

This example derives from lpex1.c, a program described in the ILOG CPLEX Getting 
Started manual. There are a few differences between the two examples:

◆ In this example, the function ourmsgfunc()—rather than the C functions printf() or 
fprintf(stderr, . . .)—manages all output. The program itself or CPXmsg() 
from the ILOG CPLEX Callable Library calls ourmsgfunc(). In fact, CPXmsg() is a 
replacement for printf(), allowing a message to appear in more than one place, for 
example, both on screen and in a file.

Only after you initialize the ILOG CPLEX environment by calling CPXopenCPLEX() 
can you call CPXmsg(). And only after you call CPXgetchannels() can you use the 

User-written

CPXmsg
CPXaddchannel

Channel(s)

CPXaddfpdest

CPXaddfuncdest

application Destination File(s)

Destination Function(s)
(CPXdelchannel)

(CPXdelfpdest)

(CPXdelfuncdest)



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 273

M
o

re A
b

o
u

t U
sin

g
 

IL
O

G
 C

P
L

E
X

<functionhead>

default ILOG CPLEX channels. Therefore, calls to ourmsgfunc() print directly any 
messages that occur before the program gets the address of cpxerror (a channel). After 
a call to CPXgetchannels() gets the address of cpxerror, and after a call to 
CPXaddfuncdest() associates the message function ourmsgfunc() with cpxerror, 
then error messages are generated by calls to CPXmsg().

After the TERMINATE: label, any error must be generated with care in case the error 
message function has not been set up properly. Thus, ourmsgfunc() is also called 
directly to generate any error messages there.

◆ A call to the ILOG CPLEX Callable Library routine CPXaddchannel() initializes the 
channel ourchannel. The C library routine fopen() opens the file lpex5.out to 
accept solution information. A call the ILOG CPLEX Callable Library routine 
CPXaddfpdest() associates that file with that channel. Solution information is also 
displayed on screen since ourmsgfunc() is associated with that new channel, too. Thus 
in the loops near the end of main(), when the solution is printed, only one call to 
CPXmsg() suffices to put the output both on screen and into the file. A call to 
CPXdelchannel() deletes ourchannel.

◆ Although CPXcloseCPLEX() will automatically delete file- and function-destinations 
for channels, we recommend that you call CPXdelfpdest() and CPXdelfuncdest() 
as the end of your programs.

Complete Program: lpex5.c

The complete program, lpex5.c, appears here or online in the standard distribution.

#include <ilcplex/cplex.h>

/* Bring in the declarations for the string functions */

#include <string.h>

/* Include declaration for function at end of program */

#ifndef  CPX_PROTOTYPE_MIN

static int
   populatebycolumn  (CPXENVptr env, CPXLPptr lp);

static void CPXPUBLIC
   ourmsgfunc     (void *handle, char *message);

#else

static int
   populatebycolumn ();

static void CPXPUBLIC
   ourmsgfunc     ();

#endif



M A N A G I N G  I N P U T  &  O U T P U T

274 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

/* The problem we are optimizing will have 2 rows, 3 columns 
   and 6 nonzeros.  */

#define NUMROWS    2
#define NUMCOLS    3
#define NUMNZ      6

#ifndef  CPX_PROTOTYPE_MIN
int
main (void)
#else
int
main ()
#endif
{
   char     probname[16];  /* Problem name is max 16 characters */

   /* Declare and allocate space for the variables and arrays where we
      will store the optimization results including the status, objective
      value, variable values, dual values, row slacks and variable
      reduced costs. */

   int      solstat;
   double   objval;
   double   x[NUMCOLS];
   double   pi[NUMROWS];
   double   slack[NUMROWS];
   double   dj[NUMCOLS];

   CPXENVptr     env = NULL;
   CPXLPptr      lp = NULL;
   int           status;
   int           i, j;
   int           cur_numrows, cur_numcols;
   char          errmsg[1024];

   CPXCHANNELptr  cpxerror   = NULL;
   CPXCHANNELptr  cpxwarning = NULL;
   CPXCHANNELptr  cpxresults = NULL;
   CPXCHANNELptr  ourchannel = NULL;

   char *errorlabel = "cpxerror";
   char *warnlabel  = "cpxwarning";
   char *reslabel   = "cpxresults";
   char *ourlabel   = "Our Channel";

   CPXFILEptr fpout  = NULL;

   /* Initialize the CPLEX environment */

   env = CPXopenCPLEX (&status);

   /* If an error occurs, the status value indicates the reason for
      failure.  A call to CPXgeterrorstring will produce the text of



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 275

M
o

re A
b

o
u

t U
sin

g
 

IL
O

G
 C

P
L

E
X

<functionhead>

      the error message.  Note that CPXopenCPLEX produces no output,
      so the only way to see the cause of the error is to use
      CPXgeterrorstring.  For other CPLEX routines, the errors will
      be seen if the CPX_PARAM_SCRIND indicator is set to CPX_ON.  */

   /* Since the message handler is yet to be set up, we’ll call our
      messaging function directly to print out any errors  */

   if ( env == NULL ) {
      /* The message argument for ourmsgfunc must not be a constant,
         so copy the mesage to a buffer. */
      strcpy (errmsg, "Could not open CPLEX environment.\n");
      ourmsgfunc ("Our Message", errmsg);
      goto TERMINATE;
   }

   /* Now get the standard channels.  If an error, just call our
      message function directly. */

   status = CPXgetchannels (env, &cpxresults, &cpxwarning, &cpxerror, NULL);
   if ( status ) {
      strcpy (errmsg, "Could not get standard channels.\n");
      ourmsgfunc ("Our Message", errmsg);
      CPXgeterrorstring (env, status, errmsg);
      ourmsgfunc ("Our Message", errmsg);
      goto TERMINATE;
   }

   /* Now set up the error channel first.  The label will be "cpxerror" */

   status = CPXaddfuncdest (env, cpxerror, errorlabel, ourmsgfunc);
   if ( status ) {
      strcpy (errmsg, "Could not set up error message handler.\n");
      ourmsgfunc ("Our Message", errmsg);
      CPXgeterrorstring (env, status, errmsg);
      ourmsgfunc ("Our Message", errmsg);
   }

   /* Now that we have the error message handler set up, all CPLEX
      generated errors will go through ourmsgfunc.  So we don’t have
      to use CPXgeterrorstring to determine the text of the message.
      We can also use CPXmsg to do any other printing.  */

   status = CPXaddfuncdest (env, cpxwarning, warnlabel, ourmsgfunc);
   if ( status ) {
      CPXmsg (cpxerror, "Failed to set up handler for cpxwarning.\n");
      goto TERMINATE;
   }

   status = CPXaddfuncdest (env, cpxresults, reslabel, ourmsgfunc);
   if ( status ) {
      CPXmsg (cpxerror, "Failed to set up handler for cpxresults.\n");
      goto TERMINATE;
   }
   
   /* Now turn on the iteration display. */

   status = CPXsetintparam (env, CPX_PARAM_SIMDISPLAY, 2);



M A N A G I N G  I N P U T  &  O U T P U T

276 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

   if ( status ) {
      CPXmsg (cpxerror, "Failed to turn on simplex display level.\n");
      goto TERMINATE;
   }

   /* Create the problem. */

   strcpy (probname, "example");
   lp = CPXcreateprob (env, &status, probname);

   /* A returned pointer of NULL may mean that not enough memory
      was available or there was some other problem.  In the case of 
      failure, an error message will have been written to the error 
      channel from inside CPLEX.  In this example, the setting of
      the parameter CPX_PARAM_SCRIND causes the error message to
      appear on stdout.  */

   if ( lp == NULL ) {
      CPXmsg (cpxerror, "Failed to create LP.\n");
      goto TERMINATE;
   }

   /* Now populate the problem with the data. */

   status = populatebycolumn (env, lp);

   if ( status ) {
      fprintf (stderr, "Failed to populate problem data.\n");
      goto TERMINATE;
   }

   /* Optimize the problem and obtain solution. */

   status = CPXlpopt (env, lp);
   if ( status ) {
      CPXmsg (cpxerror, "Failed to optimize LP.\n");
      goto TERMINATE;
   }

   status = CPXsolution (env, lp, &solstat, &objval, x, pi, slack, dj);
   if ( status ) {
      CPXmsg (cpxerror, "Failed to obtain solution.\n");
      goto TERMINATE;
   }

   /* Write the output to the screen.  We will also write it to a
      file as well by setting up a file destination and a function
      destination. */

   ourchannel = CPXaddchannel (env);
   if ( ourchannel == NULL ) {
      CPXmsg (cpxerror, "Failed to set up our private channel.\n");
      goto TERMINATE;
   }

   fpout = CPXfopen ("lpex5.msg", "w");
   if ( fpout == NULL ) {



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 277

M
o

re A
b

o
u

t U
sin

g
 

IL
O

G
 C

P
L

E
X

<functionhead>

      CPXmsg (cpxerror, "Failed to open lpex5.msg file for output.\n");
      goto TERMINATE;
   }
   status = CPXaddfpdest (env, ourchannel, fpout);
   if ( status ) {
      CPXmsg (cpxerror, "Failed to set up output file destination.\n");
      goto TERMINATE;
   }

   status = CPXaddfuncdest (env, ourchannel, ourlabel, ourmsgfunc);
   if ( status ) {
      CPXmsg (cpxerror, "Failed to set up our output function.\n");
      goto TERMINATE;
   }

   /* Now any message to channel ourchannel will go into the file 
      and into the file opened above. */

   CPXmsg (ourchannel, "\nSolution status = %d\n", solstat);
   CPXmsg (ourchannel, "Solution value  = %f\n\n", objval);

   /* The size of the problem should be obtained by asking CPLEX what
      the actual size is, rather than using sizes from when the problem
      was built.  cur_numrows and cur_numcols store the current number 
      of rows and columns, respectively.  */

   cur_numrows = CPXgetnumrows (env, lp);
   cur_numcols = CPXgetnumcols (env, lp);
   for (i = 0; i < cur_numrows; i++) {
      CPXmsg (ourchannel, "Row %d:  Slack = %10f  Pi = %10f\n", 
              i, slack[i], pi[i]);
   }

   for (j = 0; j < cur_numcols; j++) {
      CPXmsg (ourchannel, "Column %d:  Value = %10f  Reduced cost = %10f\n",
              j, x[j], dj[j]);
   }

   /* Finally, write a copy of the problem to a file. */

   status = CPXwriteprob (env, lp, "lpex5.lp", NULL);
   if ( status ) {
      CPXmsg (cpxerror, "Failed to write LP to disk.\n");
      goto TERMINATE;
   }
   
TERMINATE:

   /* First check if ourchannel is open */

   if ( ourchannel != NULL ) {
      int  chanstat;
      chanstat = CPXdelfuncdest (env, ourchannel, ourlabel, ourmsgfunc);
      if ( chanstat ) {
         strcpy (errmsg, "CPXdelfuncdest failed.\n");
         ourmsgfunc ("Our Message", errmsg); 
         if (!status)  status = chanstat;
      }



M A N A G I N G  I N P U T  &  O U T P U T

278 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

      if ( fpout != NULL ) {
         chanstat = CPXdelfpdest (env, ourchannel, fpout);
         if ( chanstat ) {
            strcpy (errmsg, "CPXdelfpdest failed.\n");
            ourmsgfunc ("Our Message", errmsg);
            if (!status)  status = chanstat;
         }
         CPXfclose (fpout);
      }

      CPXdelchannel (env, &ourchannel);
   }

   /* Free up the problem as allocated by CPXcreateprob, if necessary */

   if ( lp != NULL ) {
      status = CPXfreeprob (env, &lp);
      if ( status ) {
         strcpy (errmsg, "CPXfreeprob failed.\n");
         ourmsgfunc ("Our Message", errmsg);
      }
   }

   /* Now delete our function destinations from the 3 CPLEX channels. */
   if ( cpxresults != NULL ) {
      int  chanstat;
      chanstat = CPXdelfuncdest (env, cpxresults, reslabel, ourmsgfunc);
      if ( chanstat && !status ) {
         status = chanstat;
         strcpy (errmsg, "Failed to delete cpxresults function.\n");
         ourmsgfunc ("Our Message", errmsg);
      }
   }

   if ( cpxwarning != NULL ) {
      int  chanstat;
      chanstat = CPXdelfuncdest (env, cpxwarning, warnlabel, ourmsgfunc);
      if ( chanstat && !status ) {
         status = chanstat;
         strcpy (errmsg, "Failed to delete cpxwarning function.\n");
         ourmsgfunc ("Our Message", errmsg);
      }
   }

   if ( cpxerror != NULL ) {
      int  chanstat;
      chanstat = CPXdelfuncdest (env, cpxerror, errorlabel, ourmsgfunc);
      if ( chanstat && !status ) {
         status = chanstat;
         strcpy (errmsg, "Failed to delete cpxerror function.\n");
         ourmsgfunc ("Our Message", errmsg);
      }
   }

   /* Free up the CPLEX environment, if necessary */

   if ( env != NULL ) {
      status = CPXcloseCPLEX (&env);



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 279

M
o

re A
b

o
u

t U
sin

g
 

IL
O

G
 C

P
L

E
X

<functionhead>

      /* Note that CPXcloseCPLEX produces no output,
         so the only way to see the cause of the error is to use
         CPXgeterrorstring.  For other CPLEX routines, the errors will
         be seen if the CPX_PARAM_SCRIND indicator is set to CPX_ON. */

      if ( status ) {
         strcpy (errmsg, "Could not close CPLEX environment.\n");
         ourmsgfunc ("Our Message", errmsg);
         CPXgeterrorstring (env, status, errmsg);
         ourmsgfunc ("Our Message", errmsg);
      }
   }
     
   return (status);

}  /* END main */

/* This function builds by column the linear program:

      Maximize
       obj: x1 + 2 x2 + 3 x3
      Subject To
       c1: - x1 + x2 + x3 <= 20
       c2: x1 - 3 x2 + x3 <= 30
      Bounds
       0 <= x1 <= 40
      End
 */

#ifndef  CPX_PROTOTYPE_MIN
static int
populatebycolumn (CPXENVptr env, CPXLPptr lp)
#else
static int
populatebycolumn (env, lp)
CPXENVptr  env;
CPXLPptr   lp;
#endif
{
   int      status    = 0;
   double   obj[NUMCOLS];
   double   lb[NUMCOLS];
   double   ub[NUMCOLS];
   char     *colname[NUMCOLS];
   int      matbeg[NUMCOLS];
   int      matind[NUMNZ];
   double   matval[NUMNZ];
   double   rhs[NUMROWS];
   char     sense[NUMROWS];
   char     *rowname[NUMROWS];

   /* To build the problem by column, create the rows, and then 
      add the columns. */

   CPXchgobjsen (env, lp, CPX_MAX);  /* Problem is maximization */



M A N A G I N G  I N P U T  &  O U T P U T

280 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

   /* Now create the new rows.  First, populate the arrays. */

   rowname[0] = "c1";
   sense[0]   = ’L’;
   rhs[0]     = 20.0;

   rowname[1] = "c2";
   sense[1]   = ’L’;
   rhs[1]     = 30.0;

   status = CPXnewrows (env, lp, NUMROWS, rhs, sense, NULL, rowname);
   if ( status )   goto TERMINATE;

   /* Now add the new columns.  First, populate the arrays. */

       obj[0] = 1.0;      obj[1] = 2.0;           obj[2] = 3.0;

    matbeg[0] = 0;     matbeg[1] = 2;          matbeg[2] = 4;
      
    matind[0] = 0;     matind[2] = 0;          matind[4] = 0;
    matval[0] = -1.0;  matval[2] = 1.0;        matval[4] = 1.0;
 
    matind[1] = 1;     matind[3] = 1;          matind[5] = 1;
    matval[1] = 1.0;   matval[3] = -3.0;       matval[5] = 1.0;

        lb[0] = 0.0;       lb[1] = 0.0;           lb[2]  = 0.0;
        ub[0] = 40.0;      ub[1] = CPX_INFBOUND;  ub[2]  = CPX_INFBOUND;

   colname[0] = "x1"; colname[1] = "x2";      colname[2] = "x3";

   status = CPXaddcols (env, lp, NUMCOLS, NUMNZ, obj, matbeg, matind,
                        matval, lb, ub, colname);
   if ( status )  goto TERMINATE;

TERMINATE:

   return (status);

}  /* END populatebycolumn */

/* For our message functions, we will interpret the handle as a pointer
 * to a string, which will be the label for the channel.  We’ll put
 * angle brackets <> around the message so its clear what the function is
 * sending to us.  We’ll place the newlines that appear at the end of
 * a message after the > bracket.  The ’message’ argument must not be
 * a constant, since it is changed by this function.
 */

#ifndef  CPX_PROTOTYPE_MIN
static void CPXPUBLIC
ourmsgfunc (void *handle, char *message)
#else
static void CPXPUBLIC
ourmsgfunc (handle, message)
void  *handle;
char  *message;
#endif



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 281

M
o

re A
b

o
u

t U
sin

g
 

IL
O

G
 C

P
L

E
X

<functionhead>

{
   char  *label;
   int   lenstr;
   int   flag = 0;

   lenstr = strlen(message);
   if ( message[lenstr-1] == ’\n’ ) {
      message[lenstr-1] = ’\0’;
      flag = 1;
   }

   label = (char *) handle;
   printf ("%-15s: <%s>", label, message);
   if (flag) putchar(’\n’);

   /* If we clobbered the ’\n’, we need to put it back */

   if ( flag )  message[lenstr-1] = ’\n’;

} /* END ourmsgfunc */

Using Query Routines

This section tells you how to use query routines. It contains sections on:

◆ Using Surplus Arguments for Array Allocations

◆ Example: Using Query Routines

Using Surplus Arguments for Array Allocations

Most of the ILOG CPLEX query routines in the Callable Library require your application to 
allocate memory for one or more arrays that will contain the results of the query. In many 
cases, your application—the calling program—does not know the size of these arrays in 
advance. For example, in a call to CPXgetcols() requesting the matrix data for a range of 
columns, your application needs to pass the arrays cmatind and cmatval for 
ILOG CPLEX to populate with matrix coefficients and row indices. However, unless your 
application has carefully kept track of the number of nonzero columns (that is, the 
colnonzero counts) throughout the problem specification and, if applicable, throughout its 
modification, the actual length of these arrays remains unknown. 

Fortunately, the ILOG CPLEX query routines in the Callable Library contain a surplus 
argument that, when used in conjunction with the array length arguments, enables you first 
to call the query routine to determine the length of the required array. Then, when the length 
is known, your application can properly allocate these arrays. Afterwards, your application 
makes a second call to the query routine with the correct array lengths to obtain the 
requested data. 



U S I N G  Q U E R Y  R O U T I N E S

282 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

For example, consider a program that needs to call CPXgetcols() to access a range of 
columns. Here is the list of arguments for CPXgetcols(). 

The arrays cmatind and cmatval require one element for each nonzero matrix coefficient 
in the requested range of columns. The required length of these arrays, specified in 
cmatspace, remains unknown at the time of the query. Your application—the calling 
program—can determine the length of these arrays by first calling CPXgetcols() with a 
value of 0 for cmatspace. This call will return an error status of 
CPXERR_NEGATIVE_SURPLUS indicating a shortfall of the array length specified in 
cmatspace (in this case, 0); it will also return the actual number of matrix nonzeros in the 
requested range of columns. CPXgetcols() deposits this shortfall as a negative number in 
the integer pointed to by surplus_p. Your application can then negate this shortfall and 
allocate the arrays cmatind and cmatval sufficiently long to contain all the requested 
matrix elements.

The following sample of code shows you what we mean. The first call to CPXgetcols() 
passes a value of 0 for cmatspace in order to obtain the shortfall in cmatsz. The sample 

CPXgetcols (CPXENVptr env, 
            CPXLPptr lp, 
            int *nzcnt_p,
            int *cmatbeg, 
            int *cmatind, 
            double *cmatval,
            int cmatspace, 
            int *surplus_p,
            int begin, 
            int end);



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 283

M
o

re A
b

o
u

t U
sin

g
 

IL
O

G
 C

P
L

E
X

<functionhead>

then uses the shortfall to allocate the arrays cmatind and cmatval properly; then it calls 
CPXgetcols() again to obtain the actual matrix coefficients and row indices. 

That sample code (or your application) does not need to determine the length of the array 
cmatbeg. The array cmatbeg has one element for each column in the requested range. 
Since this length is known ahead of time, your application does not need to call a query 
routine to calculate it. More generally, query routines use surplus arguments in the way we 
just described only for the length of any array required to store problem data of unknown 
length. Problem data in this category includes nonzero matrix entries, row and column 
names, other problem data names, special ordered sets (SOS), priority orders, and MIP start 
information. 

Example: Using Query Routines

This example uses the ILOG CPLEX Callable Library query routine CPXgetcolname() to 
get the column names from a problem object. To do so, it applies the programming pattern 
we just described in Using Surplus Arguments for Array Allocations on page 281. It derives 
from the example lpex2.c, explained in the manual ILOG CPLEX Getting Started manual. 
This query-routine example differs from that simpler example in several ways:

◆ The example calls CPXgetcolname() twice after optimization: the first call determines 
how much space to allocate to hold the names; the second call gets the names and stores 
them in the arrays cur_colname and cur_colnamestore.

status = CPXgetcols (env, lp, &nzcnt, cmatbeg, NULL, NULL,
                     0, &cmatsz, 0, numcols - 1);
if ( status != CPXERR_NEGATIVE_SURPLUS ) {
   if ( status != 0 ) {
        CPXmsg (cpxerror, 
              “CPXgetcols for surplus failed, status = %d\n”, status);
         goto TERMINATE;
   }
      CPXmsg (cpxwarning, “All columns in range [%d, %d] are empty.\n”,
              0, (numcols - 1));
}
cmatsz   = -cmatsz;
cmatind  = (int *) malloc ((unsigned) (1 + cmatsz)*sizeof(int));
cmatval  = (double *) malloc ((unsigned) (1 + cmatsz)*sizeof(double));
if ( cmatind == NULL || cmatval == NULL ) {
   CPXmsg (cpxerror, “CPXgetcol mallocs failed\n”);
   status = 1;
   goto TERMINATE;
}
status = CPXgetcols (env, lp, &nzcnt, cmatbeg, cmatind, cmatval,
                     cmatsz, &surplus, 0, numcols - 1);
if ( status ) {
   CPXmsg (cpxerror, “CPXgetcols failed, status = %d\n”, status);
   goto TERMINATE;
}



U S I N G  Q U E R Y  R O U T I N E S

284 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

◆ When the example prints its answer, it uses the names as stored in cur_colname. If no 
names exist there, the example creates fake names.

This example assumes that the current problem has been read from a file by 
CPXreadcopyprob(). You can adapt the example to use other ILOG CPLEX query 
routines to get information about any problem read from a file.

Complete Program: ilolpex7.cpp

The complete program, ilolpex7.cpp, appears here or online in the standard distribution.

#include <ilcplex/ilocplex.h>
ILOSTLBEGIN

static void usage (const char *progname);

int
main (int argc, char **argv)
{
   IloEnv env;
   try {
      IloModel model(env);
      IloCplex cplex(env);

      if (( argc != 3 )                             ||
          ( strchr ("podthbn", argv[2][0]) == NULL )  ) {
         usage (argv[0]);
         throw(-1);
      }

      switch (argv[2][0]) {
         case ’o’:
            break;
         case ’p’:
            cplex.setRootAlgorithm(IloCplex::Primal);
            break;
         case ’d’:
            cplex.setRootAlgorithm(IloCplex::Dual);
            break;
         case ’b’:
            cplex.setRootAlgorithm(IloCplex::Barrier);
            cplex.setParam(IloCplex::BarCrossAlg, IloCplex::NoAlg);
            break;
         case ’h’:
            cplex.setRootAlgorithm(IloCplex::Barrier);
            break;
         case ’n’:
            cplex.setRootAlgorithm(IloCplex::NetworkDual);
            break;
         default:
            break;
      }



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 285

M
o

re A
b

o
u

t U
sin

g
 

IL
O

G
 C

P
L

E
X

<functionhead>

      IloObjective   obj;
      IloNumVarArray var(env);
      IloRangeArray  rng(env);
      cplex.importModel(model, argv[1], obj, var, rng);

      cplex.extract(model);
      if ( !cplex.solve() ) {
         env.error() << "Failed to optimize LP" << endl;
         throw(-1);
      }

      env.out() << "Solution status = " << cplex.getStatus() << endl;
      env.out() << "Solution value  = " << cplex.getObjValue() << endl;

      for (IloInt i = 0; i < var.getSize(); ++i) {
         if ( var[i].getName() ) env.out() << var[i].getName();
         else                    env.out() << "Fake" << i;
         env.out() << ": " << cplex.getValue(var[i]);
         try {  // basis may not exist
            env.out() << ’\t’ << cplex.getStatus(var[i]);
         } catch (...) {
         }
         env.out() << endl;
      }
   }
   catch (IloException& e) {
      cerr << "Concert exception caught: " << e << endl;
   }
   catch (...) {
      cerr << "Unknown exception caught" << endl;
   }

   env.end();
   return 0;
}  // END main

static void usage (const char *progname)
{
   cerr << "Usage: " << progname << " filename algorithm" << endl;
   cerr << "   where filename is a file with extension " << endl;
   cerr << "      MPS, SAV, or LP (lower case is allowed)" << endl;
   cerr << "   and algorithm is one of the letters" << endl;
   cerr << "      o          default" << endl;
   cerr << "      p          primal simplex" << endl;
   cerr << "      d          dual simplex" << endl;
   cerr << "      b          barrier" << endl;
   cerr << "      h          barrier with crossover" << endl;
   cerr << "      n          network simplex" << endl;
   cerr << " Exiting..." << endl;
} // END usage



U S I N G  Q U E R Y  R O U T I N E S

286 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

This example uses the ILOG CPLEX Callable Library query routine CPXgetcolname() to 
get the column names from a problem object. To do so, it applies the programming pattern 
we just described in Using Surplus Arguments for Array Allocations on page 281. It derives 
from the example lpex2.c, explained in the manual ILOG CPLEX Getting Started manual. 
This query-routine example differs from that simpler example in several ways:

◆ The example calls CPXgetcolname() twice after optimization: the first call determines 
how much space to allocate to hold the names; the second call gets the names and stores 
them in the arrays cur_colname and cur_colnamestore.

◆ When the example prints its answer, it uses the names as stored in cur_colname. If no 
names exist there, the example creates fake names.

This example assumes that the current problem has been read from a file by 
CPXreadcopyprob(). You can adapt the example to use other ILOG CPLEX query 
routines to get information about any problem read from a file.

Complete Program: lpex7.c

The complete program, lpex7.c, appears here or online in the standard distribution.

#include <ilcplex/cplex.h>

/* Bring in the declarations for the string and character functions 
   and malloc */

#include <ctype.h>
#include <stdlib.h>
#include <string.h>

/* Include declarations for functions in this program */

#ifndef  CPX_PROTOTYPE_MIN

static void
   free_and_null (char **ptr),
   usage         (char *progname);

#else

static void
   free_and_null (),
   usage         ();

#endif

#ifndef  CPX_PROTOTYPE_MIN
int
main (int argc, char *argv[])



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 287

M
o

re A
b

o
u

t U
sin

g
 

IL
O

G
 C

P
L

E
X

<functionhead>

#else
int
main (argc, argv)
int   argc;
char  *argv[];
#endif
{
   /* Declare and allocate space for the variables and arrays where we will
      store the optimization results including the status, objective value,
      variable values, and basis. */

   int      solstat;
   double   objval;
   double   *x     = NULL;
   int      *cstat = NULL;
   int      *rstat = NULL;

   CPXENVptr     env = NULL;
   CPXLPptr      lp = NULL;
   int           status = 0;
   int           j;
   int           cur_numrows, cur_numcols;
   char          **cur_colname = NULL;
   char          *cur_colnamestore = NULL;
   int           cur_colnamespace;
   int           surplus;
   int           method;

   char          *basismsg;

   /* Check the command line arguments */

   if (( argc != 3 )                           ||
       ( strchr ("podhbn", argv[2][0]) == NULL )   ) {
      usage (argv[0]);
      goto TERMINATE;
   }

   /* Initialize the CPLEX environment */

   env = CPXopenCPLEX (&status);

   /* If an error occurs, the status value indicates the reason for
      failure.  A call to CPXgeterrorstring will produce the text of
      the error message.  Note that CPXopenCPLEX produces no output,
      so the only way to see the cause of the error is to use
      CPXgeterrorstring.  For other CPLEX routines, the errors will
      be seen if the CPX_PARAM_SCRIND indicator is set to CPX_ON.  */

   if ( env == NULL ) {



U S I N G  Q U E R Y  R O U T I N E S

288 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

      char  errmsg[1024];
      fprintf (stderr, "Could not open CPLEX environment.\n");
      CPXgeterrorstring (env, status, errmsg);
      fprintf (stderr, "%s", errmsg);
      goto TERMINATE;
   }

   /* Turn on output to the screen */

   status = CPXsetintparam (env, CPX_PARAM_SCRIND, CPX_ON);
   if ( status ) {
      fprintf (stderr, 
               "Failure to turn on screen indicator, error %d.\n", status);
      goto TERMINATE;
   }

   /* Create the problem, using the filename as the problem name */

   lp = CPXcreateprob (env, &status, argv[1]);

   /* A returned pointer of NULL may mean that not enough memory
      was available or there was some other problem.  In the case of 
      failure, an error message will have been written to the error 
      channel from inside CPLEX.  In this example, the setting of
      the parameter CPX_PARAM_SCRIND causes the error message to
      appear on stdout.  Note that most CPLEX routines return
      an error code to indicate the reason for failure.   */

   if ( lp == NULL ) {
      fprintf (stderr, "Failed to create LP.\n");
      goto TERMINATE;
   }

   /* Now read the file, and copy the data into the created lp */

   status = CPXreadcopyprob (env, lp, argv[1], NULL);
   if ( status ) {
      fprintf (stderr, "Failed to read and copy the problem data.\n");
      goto TERMINATE;
   }

   /* Optimize the problem and obtain solution. */

   switch (argv[2][0]) {
      case ’o’:
         method = CPX_ALG_AUTOMATIC;
         break;
      case ’p’:
         method = CPX_ALG_PRIMAL;
         break;
      case ’d’:
         method = CPX_ALG_DUAL;
         break;



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 289

M
o

re A
b

o
u

t U
sin

g
 

IL
O

G
 C

P
L

E
X

<functionhead>

      case ’n’:
         method = CPX_ALG_NET;
         break;
      case ’h’:
         method = CPX_ALG_BARRIER;
         break;
      case ’b’:
         method = CPX_ALG_BARRIER;
         status = CPXsetintparam (env, CPX_PARAM_BARCROSSALG, CPX_ALG_NONE);
         if ( status ) {
            fprintf (stderr, 
                     "Failed to set the crossover method, error %d.\n", 
status);
            goto TERMINATE;
         }
         break;
      default:
         method = CPX_ALG_NONE;
         break;
   }

   status = CPXsetintparam (env, CPX_PARAM_LPMETHOD, method);
   if ( status ) {
      fprintf (stderr, 
               "Failed to set the optimization method, error %d.\n", status);
      goto TERMINATE;
   }
   
   status = CPXlpopt (env, lp);
   if ( status ) {
      fprintf (stderr, "Failed to optimize LP.\n");
      goto TERMINATE;
   }

   solstat = CPXgetstat (env, lp);
   status  = CPXgetobjval (env, lp, &objval);

   if ( status ) {
      fprintf (stderr,"Failed to obtain objective value.\n");
      goto TERMINATE;
   }

   printf ("Solution status %d.  Objective value %.10g\n", 
           solstat, objval);

   /* The size of the problem should be obtained by asking CPLEX what
      the actual size is.  cur_numrows and cur_numcols store the 
      current number of rows and columns, respectively.  */

   cur_numcols = CPXgetnumcols (env, lp);
   cur_numrows = CPXgetnumrows (env, lp);

   /* Allocate space for basis and solution */



U S I N G  Q U E R Y  R O U T I N E S

290 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

   cstat = (int *)    malloc (cur_numcols*sizeof(int));
   rstat = (int *)    malloc (cur_numrows*sizeof(int));
   x     = (double *) malloc (cur_numcols*sizeof(double));

   if ( cstat == NULL || rstat == NULL || x == NULL ) {
      fprintf (stderr,"No memory for basis statuses.\n");
      goto TERMINATE;
   }

   /* If CPXgetbase causes an error, we don’t want to see that error
      message on the screen.  So turn off the screen indicator for
      this call, and turn it back on afterwards.  */

   CPXsetintparam (env, CPX_PARAM_SCRIND, CPX_OFF);
   status = CPXgetbase (env, lp, cstat, rstat);
   CPXsetintparam (env, CPX_PARAM_SCRIND, CPX_ON);

   if ( status == CPXERR_NO_BASIS ) {
      printf ("No basis exists.\n");
      free_and_null ((char **) &cstat);
      free_and_null ((char **) &rstat);
   }
   else if ( status ) {
      fprintf (stderr,"Failed to get basis. error %d.\n", status);
      goto TERMINATE;
   }

   status = CPXgetx (env, lp, x, 0, cur_numcols-1);
   if ( status ) {
      fprintf (stderr, "Failed to obtain primal solution.\n");
      goto TERMINATE;
   }

   /* Now get the column names for the problem.  First we determine how
      much space is used to hold the names, and then do the allocation.
      Then we call CPXgetcolname() to get the actual names. */ 

   status = CPXgetcolname (env, lp, NULL, NULL, 0, &surplus, 0,
                           cur_numcols-1);

   if (( status != CPXERR_NEGATIVE_SURPLUS ) &&
       ( status != 0 )                         )  {
      fprintf (stderr, 
               "Could not determine amount of space for column names.\n");
      goto TERMINATE;
   }

   cur_colnamespace = - surplus;
   if ( cur_colnamespace > 0 ) {
      cur_colname      = (char **) malloc (sizeof(char *)*cur_numcols);
      cur_colnamestore = (char *)  malloc (cur_colnamespace);
      if ( cur_colname      == NULL ||



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 291

M
o

re A
b

o
u

t U
sin

g
 

IL
O

G
 C

P
L

E
X

<functionhead>

           cur_colnamestore == NULL   ) {
         fprintf (stderr, "Failed to get memory for column names.\n");
         status = -1;
         goto TERMINATE;
      }
      status = CPXgetcolname (env, lp, cur_colname, cur_colnamestore, 
                              cur_colnamespace, &surplus, 0, cur_numcols-1);
      if ( status ) {
         fprintf (stderr, "CPXgetcolname failed.\n");
         goto TERMINATE;
      }
   }
   else {
      printf ("No names associated with problem.  Using Fake names.\n");
   }

   /* Write out the solution */

   for (j = 0; j < cur_numcols; j++) {
      if ( cur_colnamespace > 0 ) {
         printf ("%-16s:  ", cur_colname[j]);
      }
      else {
         printf ("Fake%-6.6d      :  ", j);;
      }
      printf ("%17.10g", x[j]);
      if ( cstat != NULL ) {
         switch (cstat[j]) {
            case CPX_AT_LOWER:
               basismsg = "Nonbasic at lower bound";
               break;
            case CPX_BASIC:
               basismsg = "Basic";
               break;
            case CPX_AT_UPPER:
               basismsg = "Nonbasic at upper bound";
               break;
            case CPX_FREE_SUPER:
               basismsg = "Superbasic, or free variable at zero";
               break;
            default:
               basismsg = "Bad basis status";
               break;
         }
         printf ("  %s",basismsg);
      }
      printf ("\n");
   }

   
TERMINATE:



U S I N G  Q U E R Y  R O U T I N E S

292 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

   /* Free up the basis and solution */

   free_and_null ((char **) &cstat);
   free_and_null ((char **) &rstat);
   free_and_null ((char **) &x);
   free_and_null ((char **) &cur_colname);
   free_and_null ((char **) &cur_colnamestore);

   /* Free up the problem, if necessary */

   if ( lp != NULL ) {
      status = CPXfreeprob (env, &lp);
      if ( status ) {
         fprintf (stderr, "CPXfreeprob failed, error code %d.\n", status);
      }
   }

   /* Free up the CPLEX environment, if necessary */

   if ( env != NULL ) {
      status = CPXcloseCPLEX (&env);

      /* Note that CPXcloseCPLEX produces no output,
         so the only way to see the cause of the error is to use
         CPXgeterrorstring.  For other CPLEX routines, the errors will
         be seen if the CPX_PARAM_SCRIND indicator is set to CPX_ON. */

      if ( status ) {
         char  errmsg[1024];
         fprintf (stderr, "Could not close CPLEX environment.\n");
         CPXgeterrorstring (env, status, errmsg);
         fprintf (stderr, "%s", errmsg);
      }
   }
     
   return (status);

}  /* END main */

/* This simple routine frees up the pointer *ptr, and sets *ptr to NULL */

#ifndef  CPX_PROTOTYPE_MIN
static void
free_and_null (char **ptr)
#else
static void
free_and_null (ptr)
char  **ptr;
#endif
{



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 293

M
o

re A
b

o
u

t U
sin

g
 

IL
O

G
 C

P
L

E
X

<functionhead>

   if ( *ptr != NULL ) {
      free (*ptr);
      *ptr = NULL;
   }
} /* END free_and_null */ 

#ifndef  CPX_PROTOTYPE_MIN
static void
usage (char *progname)
#else
static void
usage (progname)
char *progname;
#endif
{
   fprintf (stderr,"Usage: %s filename algorithm\n", progname);
   fprintf (stderr,"   where filename is a file with extension \n");
   fprintf (stderr,"      MPS, SAV, or LP (lower case is allowed)\n");
   fprintf (stderr,"   and algorithm is one of the letters\n");
   fprintf (stderr,"      o          default\n");
   fprintf (stderr,"      p          primal simplex\n");
   fprintf (stderr,"      d          dual simplex\n");
   fprintf (stderr,"      n          network simplex\n");
   fprintf (stderr,"      b          barrier\n");
   fprintf (stderr,"      h          barrier with crossover\n");
   fprintf (stderr," Exiting...\n");
} /* END usage */

Using Callbacks

This section introduces the topic of callback routines, which allow you to closely monitor 
and guide the behavior of CPLEX optimizers. It includes information on:

◆ Diagnostic Callbacks

◆ Control Callbacks for IloCplex

CPLEX callbacks allow user code to be executed regularly during an optimization. There 
are two types of callbacks, diagnostic callbacks and control callbacks, which are discussed 
separately in the following sections. To use callbacks with CPLEX, you must first write the 
callback function, and then pass it to CPLEX. 



U S I N G  C A L L B A C K S

294 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

Diagnostic Callbacks

Diagnostic callbacks allow you to monitor an ongoing optimization, and optionally abort it. 
These callbacks are distinguished by the place where they are called during an optimization. 
There are 10 such places where diagnostic callbacks are called:

◆ The presolve callback is called regularly during presolve.

◆ The crossover callback is called regularly during crossover from a barrier solution to a 
SIMPLEX basis.

◆ The network callback is called regularly during the network simplex.

◆ The barrier callback is called at each iteration during the barrier algorithm.

◆ The primal callback is called at each iteration during the primal simplex algorithm.

◆ The dual callback is called at each iteration during the dual simplex algorithm.

◆ The MIP callback is called at each node during the branch & cut search.

◆ The probing callback is called regularly during probing.

◆ The fractional cut callback is called regularly during the separation for fractional cuts.

◆ The disjunctive cut callback is called regularly during the separation for disjunctive 
cuts.

Implementing Callbacks In CPLEX with Concert Technology 

With IloCplex, callbacks are accessed via a the IloCplex::Callback handle class. It 
points to an implementation object of a subclass of IloCplex::CallbackI. One such 
implementation class is provided for each type of callback. The implementation class 
provides the functions that can be used for the particular callback as protected member 
functions. To reflect the fact that some callbacks share part of their protected API, the 
callback classes are organized in a class hierarchy as shown by this diagram:



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 295

M
o

re A
b

o
u

t U
sin

g
 

IL
O

G
 C

P
L

E
X

<functionhead>

           IloCplex::CallbackI
              |
              +--- IloCplex::PresolveCallbackI
              |
              +--- IloCplex::CrossoverCallbackI
              |
              +--- IloCplex::NetworkCallbackI
              |
              +--- IloCplex::LPCallbackI
              |       |
              |       +--- IloCplex::BarrierCallbackI
              |       |
              |       +--- IloCplex::PrimalSimplexCallbackI
              |       |
              |       +--- IloCplex::DualSimplexCallbackI
              |
              +--- IloCplex::MIPCallbackI
                      |
                      +--- IloCplex::ProbingCallback
                      | 
                      +--- IloCplex::FractionalCutCallbackI
                      |
                      +--- IloCplex::DisjunctiveCutCallbackI

This means that, for example, all functions available for the MIP callback are also available 
for the probing, fractional cut, and disjunctive cut callbacks. In particular, the function to 
abort the current optimization is provided by the class IloCplex::CallbackI and is thus 
available to all callbacks.

There are two ways of implementing callbacks for IloCplex: a more complex way that 
exposes all the C++ implementation details, and a simplified way that uses macros to handle 
the C++ technicalities. We will first expose the more complex way and discuss the 
underlying design. To quickly implement your callback without details on the internal 
design, proceed directly to Writing Callbacks with Macros on page 296.

Writing Callback Classes by Hand

To implement your own callback for IloCplex, first select the callback class corresponding 
to the callback you want implemented. From it derive your own implementation class and 
overwrite the virtual method main(). This is where you implement the callback actions, 
using the protected member functions of the callback class from which you derived your 
callback or one of its base classes.

Next write a function that creates a new object of your implementation class using the 
environment operator new and returning it as an IloCplex::Callback handle object. 
Here is an example implementation of such a function:

IloCplex::Callback MyCallback(IloEnv env, IloInt num) {
return (new (env) MyCallbackI(num));
}



U S I N G  C A L L B A C K S

296 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

Once the implementation is completed, use it with IloCplex by calling cplex.use() with 
the handle object returned by your callback function. To remove a callback that is being used 
by a cplex object, call callback.end() on the IloCplex::Callback handle callback.

One object of a callback implementation class can be used with only one IloCplex object 
at a time. Thus, when you use a callback with more than one cplex object, a copy of the 
implementation object is created every time cplex.use() is called except for the first time. 
Method IloCplex::use() returns a handle to the callback object that has actually been 
installed to enable calling end() on it.

To construct the copies of the callback objects, class IloCplex::CallbackI defines 
another pure virtual method:

virtual IloCplex::CallbackI* IloCplex::CallbackI::makeClone() 

     const = 0;

which must be implemented for your callback class. This method will be called to create the 
copies needed for using a callback on different cplex objects or on one cplex object with a 
parallel optimizer.

In most cases you can avoid writing callback classes by hand, using supplied macros that 
make the process as easy as implementing a function. You must implement a callback by 
hand only if the callback manages internal data not passed as arguments, or if the callback 
requires eight or more parameters.

Writing Callbacks with Macros

Here is how to implement a callback using macros. First, determine which callback you 
want to implement and how many arguments to pass to the callback function. These two 
pieces of information determine the macro you need to use. 

For example, to implement a dual simplex callback with one parameter, the macro is 
ILODUALSIMPLEXCALLBACK1. Generally, for every callback type XXX and any number of 
parameters n from 0 to 7 there is a macro called ILOXXXCALLBACKn. The following table 
lists the callbacks and the corresponding macros and classes (where n is a placeholder for 
0..7):

Table 8.4 Callback Macros

Callback Macro Class

presolve ILOPRESOLVECALLBACKn IloCplex::PresolveCallbackI

LP ILOLPCALLBACKn IloCplex::LPCallbackI

primal 
simplex

ILOPRIMALSIMPLEXCALLBACKn IloCplex::PrimalSimpleXCallbackI

dual 
simplex

ILODUALSIMPLEXCALLBACKn IloCplex::DualSimpleXCallbackI



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 297

M
o

re A
b

o
u

t U
sin

g
 

IL
O

G
 C

P
L

E
X

<functionhead>

The protected member functions of the corresponding class and its base classes determine 
the functions that can be called for implementing your callback (see the ILOG CPLEX 
Reference Manual). 

Here is an example of how to implement a dual simplex callback with the name 
MyCallback that takes one parameter:

ILODUALSIMPLEXCALLBACK1(MyCallback, IloInt, num) {
  if ( getNiterations() == num ) abort();
}

This callback aborts the dual simplex algorithm at the numth iteration. It queries the current 
iteration number by calling function getNiterations(), which is a protected member 
function of class IloCplex::LPCallbackI.

To use this callback with an IloCplex object cplex, simply call:

IloCplex::Callback mycallback = cplex.use(MyCallback(env, 10));

The callback that is added to cplex is returned by the method use and stored in variable 
mycallback. This allows you to call mycallback.end()to remove the callback from 
cplex. If you do not intend accessing your callback, for example in order to delete it before 
ending the environment, you may safely leave out the declaration and initialization of 
variable mycallback.

Callback Interface

Two callback classes in the hierarchy need extra attention. The first is the base class 
IloCplex::CallbackI. Since there is no corresponding callback in CPLEX, this class 
cannot be used for implementing user callbacks. Instead, its purpose is to provide an 
interface common to all callback functions. This consists of the methods getModel(), 

barrier ILOBARRIERCALLBACKn IloCplex::BarrierCallbackI

crossover ILOCROSSOVERCALLBACKn IloCplex::CrossoverCallbackI

network ILONETWORKCALLBACKn IloCplex::NetworkCallbackI

MIP ILOMIPCALLBACKn IloCplex::MIPCallbackI

probing ILOPROBINGCALLBACKn IloCplex::ProbingCallbackI

fractional 
cut 

ILOFRACTIONALCUTCALLBACKn IloCplex::FractionalCutCallbackI

disjunctive 
cut

ILODISJUNCTIVECUTCALLBACKn IloCplex::DisjunctiveCutCallbackI

Table 8.4 Callback Macros (Continued)

Callback Macro Class



U S I N G  C A L L B A C K S

298 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

which returns the model that is extracted to the CPLEX object that is calling the callback, 
getEnv(), which returns the corresponding environment, and abort(), which aborts the 
current optimization. Further, methods getNrows() and getNcols() allow you to query 
the number of rows and columns of the current cplex LP matrix. These methods can be 
called from all callbacks. 

The LP Callback

The second special callback class is IloCplex::LPCallbackI. If you create an LP 
callback and use it with an IloCplex object, this callback will be used for all of the barrier, 
dual simplex, and primal simplex callbacks. In other words, implementing and using one LP 
callback is equivalent to writing and using these three callbacks independently.

Example: Deriving the Primal Simplex Callback

This example demonstrates the use of the primal simplex callback to print logging 
information at each iteration. It is a modification of example ilolpex1.cpp, so we will 
restrict our discussion to the differences. The following code: 

defines the callback MyCallback without parameters with the code enclosed in the outer 
{}.  

The callback prints the iteration number to cout. Then, depending on whether the current 
solution is feasible or not, it prints the objective value or infeasibility measure to cout. The 
functions getNiterations(), isFeasible(), getObjValue(), and 
getInfeasibility() are member functions provided in the callback’s base class 
IloCplex::PrimalSimplexCallbackI. See the ILOG CPLEX Reference Manual for the 
complete list of methods provided for each callback class. 

Note: No manipulation of the model or, more precisely, any extracted modeling object is 
allowed during the execution of a callback. If you want to use your callback with a parallel 
optimizer, no modification is allowed of any array or expression not local to the callback 
function itself (that is, constructed and end()ed in it). The only exception is the 
modification of array elements. For example, x[i] = 0 would be permissible, whereas 
x.add(0) would not unless x is a local array of the callback. To avoid any problems when 
changing from a sequential optimizer to a parallel one, it is advisable to always observe 
this restriction.

ILOPRIMALSIMPLEXCALLBACKI0(MyCallback) {
  cout << "Iteration " << getNiterations() << ": ";
    if ( isFeasible() ) {
    cout << "Objective = " << getObjValue() << endl;
  } 
  else {
    cout << "Infeasibility measure = " << getInfeasibility() << endl;
  } 
}



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 299

M
o

re A
b

o
u

t U
sin

g
 

IL
O

G
 C

P
L

E
X

<functionhead>

Here is how the macro ILOPRIMALSIMPLEXCALLBACK0 is expanded:

The 0 in the macro indicates that 0 parameters are passed to the constructor of the callback. 
For callbacks requiring up to 7 parameters similar macros are defined where the 0 is 
replaced by the number of parameters, ranging from 1 through 7. For an example of this 
using the cut callback, see Example: Controlling Cuts on page 312. If you need more than 7 
parameters, you will need to derive your callback class yourself without the help of a macro. 

After the callback MyCallback is defined, it can be used with the line:

cplex.use(MyCallback(env));

Function MyCallback creates an instance of the implementation class MyCallbackI. A 
handle to this implementation object is passed to cplex method use().  

If your application defines more than one primal simplex callback object (possibly with 
different subclasses), only the last one passed to CPLEX with the use method is actually 
used during primal simplex. On the other hand, IloCplex can handle one callback for each 
callback class at the same time. For example a primal simplex callback and a MIP callback 
can be used at the same time.

Complete Program: ilolpex4.cpp

The complete program, ilolpex4.cpp, appears here or online in the standard distribution.

#include <ilcplex/ilocplex.h>
ILOSTLBEGIN

ILOPRIMALSIMPLEXCALLBACK0(MyCallback) {
  cout << "Iteration " << getNiterations() << ": ";
  if ( isFeasible() ) {
     cout << "Objective = " << getObjValue() << endl;
  } else {
     cout << "Infeasibility measure = " << getInfeasibility() << endl;

class MyCallbackI : public IloCplex::PrimalSimplexCallbackI {
  void main();
  IloCplex::CallbackI* makeClone() const {
    return (new (getEnv()) MyCallbackI(*this));
  }
};
IloCplex::Callback MyCallback(IloEnv env) {
  return (IloCplex::Callback(new (env) MyCallbackI()));
}
void MyCallbackI::main() {
  cout << "Iteration " << getNiterations() << ": ";
  if ( isFeasible() ) {
    cout << "Objective = " << getObjValue() << endl;
  } 
  else {
     cout << "Infeasibility measure = " << getInfeasibility() << endl;
  }
}



U S I N G  C A L L B A C K S

300 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

  }
}

static void
   populatebycolumn (IloModel model, IloNumVarArray var, IloRangeArray rng);

int
main (int argc, char **argv)
{
   IloEnv env;
   try {
      IloModel model(env, "example");

      IloNumVarArray var(env);
      IloRangeArray  rng(env);
      populatebycolumn (model, var, rng);

      IloCplex cplex(model);
      cplex.setOut(env.getNullStream());
      cplex.setRootAlgorithm(IloCplex::Primal);
      cplex.use(MyCallback(env));
      cplex.solve();

      cplex.out() << "Solution status = " << cplex.getStatus() << endl;
      cplex.out() << "Solution value  = " << cplex.getObjValue() << endl;

      IloNumArray vals(env);
      cplex.getValues(vals, var);
      env.out() << "Values        = " << vals << endl;
      cplex.getSlacks(vals, rng);
      env.out() << "Slacks        = " << vals << endl;
      cplex.getDuals(vals, rng);
      env.out() << "Duals         = " << vals << endl;
      cplex.getReducedCosts(vals, var);
      env.out() << "Reduced Costs = " << vals << endl;

      cplex.exportModel("lpex4.lp");
   }
   catch (IloException& e) {
      cerr << "Concert exception caught: " << e << endl;
   }
   catch (...) {
      cerr << "Unknown exception caught" << endl;
   }

   env.end();
   return 0;
}  // END main

// To populate by column, we first create the rows, and then add the
// columns.



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 301

M
o

re A
b

o
u

t U
sin

g
 

IL
O

G
 C

P
L

E
X

<functionhead>

static void
populatebycolumn (IloModel model, IloNumVarArray x, IloRangeArray c)
{
   IloEnv env = model.getEnv();

   IloObjective obj = IloMaximize(env);
   c.add(IloRange(env, -IloInfinity, 20.0));
   c.add(IloRange(env, -IloInfinity, 30.0));

   x.add(IloNumVar(obj(1.0) + c[0](-1.0) + c[1]( 1.0), 35.0, 40.0));
   x.add(obj(2.0) + c[0]( 1.0) + c[1](-3.0));
   x.add(obj(3.0) + c[0]( 1.0) + c[1]( 1.0));

   model.add(obj);
   model.add(c);

}  // END populatebycolumn

Implementing Callbacks in the Callable C Library

ILOG CPLEX optimization routines in the Callable Library incorporate a callback facility to 
allow your application to transfer control temporarily from ILOG CPLEX to the calling 
application. Using callbacks, your application can implement interrupt capability, for 
example, or create displays of optimization progress. Once control is transferred back to a 
function in the calling application, the calling application can retrieve specific information 
about the current optimization from the routine CPXgetcallbackinfo(). Optionally, the 
calling application can then tell ILOG CPLEX to discontinue optimization.

To implement and use a callback in your application, you must first write the callback 
function and then tell ILOG CPLEX about it. For more information about the ILOG CPLEX 
Callable Library routines for callbacks, see the ILOG CPLEX Reference Manual.

Setting Callbacks

In the Callable Library, control callbacks are grouped into two groups: LP callbacks and 
MIP callbacks. For each group, one callback function can be set, by calling functions 
CPXsetlpcallbackfunc() and CPXsetmipcallbackfunc(), respectively. The 
function CPXsetlpcallbackfunc() is called for callbacks 1 through 6, while the function 
CPXsetmipcallbackfunc() is called for callbacks 7 through 10. You can distinguish 
between the actual callbacks by querying the parameter wherefrom which is passed to the 
callback function as parameter by CPLEX. 

Callbacks for LPs and for MIPs

ILOG CPLEX will evaluate two user-defined callback functions, one during the solution of 
LP problems and one during the solution of MIP problems (if you are licensed to use the 
MIP optimizer). ILOG CPLEX calls the LP callback once per iteration during the solution of 
an LP problem and periodically during the presolve of LP and MIP preprocessing. 



U S I N G  C A L L B A C K S

302 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

ILOG CPLEX calls the MIP callback once before each subproblem is solved in the branch 
& cut process. 

Every user-defined callback must have these arguments:

◆ env, a pointer to the ILOG CPLEX environment;

◆ cbdata, a pointer to ILOG CPLEX internal data structures needed by 
CPXgetcallbackinfo();

◆ wherefrom, indicates which optimizer is calling the callback;

◆ cbhandle, a pointer supplied when your application calls CPXsetlpcallbackfunc() 
or CPXsetmipcallbackfunc() (so that the callback has access to private user data).

The arguments wherefrom and cbhandle should be used only in calls to 
CPXgetcallbackinfo(). 

Return Values for Callbacks

A user-written callback should return a nonzero value if the user wishes to stop the 
optimization and a value of zero otherwise.

For LP problems, if the callback returns a nonzero value, the solution process will terminate. 
If the process was not terminated during the presolve process, the status returned by the 
function IloCplex::getStatus or the routines CPXsolution() or CPXgetstat() will 
be one of the values in Table 8.5. 

For both LP and MIP problems, if the LP callback returns a nonzero value during presolve 
preprocessing, the optimizer will return the value CPXERR_PRESLV_ABORT, and no solution 
information will be available.

Table 8.5 Status of nonzero callbacks for LPs

Value Symbolic constant Meaning

12 CPX_ABORT_FEAS aborted in Phase II (simplex)

13 CPX_ABORT_INFEAS aborted in Phase I (simplex)

14 CPX_ABORT_DUAL_INFEAS primal feasible, dual infeasible (barrier)

15 CPX_ABORT_PRIM_INFEAS primal infeasible, dual feasible (barrier)

16 CPX_ABORT_PRIM_DUAL_INFEAS primal and dual both infeasible (barrier)

17 CPX_ABORT_PRIM_DUAL_FEAS primal and dual both feasible (barrier)

18 CPX_ABORT_CROSSOVER aborted in crossover (barrier)



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 303

M
o

re A
b

o
u

t U
sin

g
 

IL
O

G
 C

P
L

E
X

<functionhead>

For MIP problems, if the callback returns a nonzero value, the solution process will 
terminate and the status returned by IloCplex::getStatus() or CPXgetstat() will be 
one of the values in Table 8.6. 

Interaction Between Callbacks and CPLEX Parallel Optimizers

When you use callback routines, and invoke the parallel version of CPLEX optimizers, you 
need to be aware that the CPLEX environment passed to the callback routine corresponds to 
an individual CPLEX thread rather than to the original environment created.  CPLEX frees 
this environment when finished with the thread.  This does not affect most uses of the 
callback function.  However, keep in mind that CPLEX associates problem objects, 
parameter settings, and message channels with the environment that specifies them.  CPLEX 
therefore frees these items when it removes that environment; if the callback uses routines 
like CPXcreateprob, CPXcloneprob or CPXgetchannels, those objects remain 
allocated only as long as the associated environment does. Similarly, setting parameters with 
routines like CPXsetintparam affects settings only within the thread.  So, applications that 
access CPLEX objects in the callback should use the original environment you created by if 
they need to access these objects outside the scope of the callback function. 

Example: Using Callbacks

This example shows you how to use callbacks effectively with routines from the 
ILOG CPLEX Callable Library. It is based on lpex1.c, a program described in the manual 
Getting Started with ILOG CPLEX. This example about callbacks differs from that simpler 
one in several ways:

◆ To make the output more interesting, this example optimizes a slightly different linear 
program.

◆ The ILOG CPLEX screen indicator (that is, the parameter CPX_PARAM_SCRIND) is not 
turned on. Only the callback function produces output. Consequently, this program calls 
CPXgeterrorstring() to determine any error messages and then prints them. After 
the TERMINATE: label, the program uses separate status variables so that if an error 

Table 8.6 Status of nonzero callbacks for MIPs

Value Symbolic constant Meaning

113 CPXMIP_ABORT_FEAS current solution integer feasible

114 CPXMIP_ABORT_INFEAS no integer feasible solution found



U S I N G  C A L L B A C K S

304 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

occurred earlier, its error status will not be lost or destroyed by freeing the problem 
object and closing the ILOG CPLEX environment. Table 8.7 summarizes those status 
variables. 

◆ The function mycallback() at the end of the program is called by the optimizer. This 
function tests whether the primal simplex optimizer has been called. If so, then a call to 
CPXgetcallbackinfo() gets the following information:

● iteration count;

● feasibility indicator;

● sum of infeasibilities (if infeasible);

● objective value (if feasible).

The function then prints these values to indicate progress.

◆ Before the program calls CPXlpopt(), the default optimizer from the ILOG CPLEX 
Callable Library, it sets the callback function by calling CPXsetlpcallbackfunc(). It 
unsets the callback immediately after optimization.

This callback function offers a model for graphic user interfaces that display optimization 
progress as well as those GUIs that allow a user to interrupt and stop optimization. If you 
want to provide your end-user a facility like that to interrupt and stop optimization, then you 
should make mycallback() return a nonzero value to indicate the end-user interrupt.

Complete Program: lpex4.c

The complete program, lpex4.c, appears here or online in the standard distribution.

#include <ilcplex/cplex.h>

/* Bring in the declarations for the string functions */

#include <string.h>

/* Include declaration for function at end of program */

#ifndef  CPX_PROTOTYPE_MIN

static int
   populatebycolumn  (CPXENVptr env, CPXLPptr lp);

static int CPXPUBLIC

Table 8.7 Status Variables in lpex4.c

Variable Represents status returned by this routine

frstatus CPXfreeprob()

clstatus CPXcloseCPLEX()



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 305

M
o

re A
b

o
u

t U
sin

g
 

IL
O

G
 C

P
L

E
X

<functionhead>

   mycallback (CPXENVptr env, void *cbdata, int wherefrom, 
               void *cbhandle);

#else

static int
   populatebycolumn ();

static int CPXPUBLIC
   mycallback ();

#endif

/* The problem we are optimizing will have 2 rows, 3 columns 
   and 6 nonzeros.  */

#define NUMROWS    2
#define NUMCOLS    3
#define NUMNZ      6

#ifndef  CPX_PROTOTYPE_MIN
int
main (void)
#else
int
main ()
#endif
{
   char     probname[16];  /* Problem name is max 16 characters */

   /* Declare and allocate space for the variables and arrays where we
      will store the optimization results including the status, objective
      value, variable values, dual values, row slacks and variable
      reduced costs. */

   int      solstat;
   double   objval;
   double   x[NUMCOLS];
   double   pi[NUMROWS];
   double   slack[NUMROWS];
   double   dj[NUMCOLS];

   CPXENVptr     env = NULL;
   CPXLPptr      lp = NULL;
   int           status;
   int           i, j;
   int           cur_numrows, cur_numcols;

   /* Initialize the CPLEX environment */



U S I N G  C A L L B A C K S

306 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

   env = CPXopenCPLEX (&status);

   /* If an error occurs, the status value indicates the reason for
      failure.  The error message will be printed at the end of the
      program. */

   if ( env == NULL ) {
      fprintf (stderr, “Could not open CPLEX environment.\n”);
      goto TERMINATE;
   }

   /* Turn *off* output to the screen since we’ll be producing it
      via the callback function.  This also means we won’t see any
      CPLEX generated errors, but we’ll handle that at the end of
      the program. */

   status = CPXsetintparam (env, CPX_PARAM_SCRIND, CPX_OFF);
   if ( status ) {
      fprintf (stderr, 
               “Failure to turn off screen indicator, error %d.\n”, status);
      goto TERMINATE;
   }

   /* Create the problem. */

   strcpy (probname, “example”);
   lp = CPXcreateprob (env, &status, probname);

   /* A returned pointer of NULL may mean that not enough memory
      was available or there was some other problem.  In the case of 
      failure, an error message will have been written to the error 
      channel from inside CPLEX.  In this example, we wouldn’t see
      an error message from CPXcreateprob since we turned off the 
      CPX_PARAM_SCRIND parameter above.  The only way to see this message
      would be to use the CPLEX message handler, but that clutters up
      the simplicity of this example, which has a point of illustrating
      the CPLEX callback functionality.   */

   if ( lp == NULL ) {
      fprintf (stderr, “Failed to create LP.\n”);
      goto TERMINATE;
   }

   /* Now populate the problem with the data. */

   status = populatebycolumn (env, lp);

   if ( status ) {
      fprintf (stderr, “Failed to populate problem data.\n”);
      goto TERMINATE;
   }



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 307

M
o

re A
b

o
u

t U
sin

g
 

IL
O

G
 C

P
L

E
X

<functionhead>

   status = CPXsetlpcallbackfunc (env, mycallback, NULL);
   if ( status ) {
      fprintf (stderr, “Failed to set callback function.\n”);
      goto TERMINATE;
   }

   /* Optimize the problem and obtain solution. */

   status = CPXsetintparam (env, CPX_PARAM_LPMETHOD, CPX_ALG_PRIMAL);
   if ( status ) {
      fprintf (stderr, 
               “Failed to set the optimization method, error %d.\n”, status);
      goto TERMINATE;
   }

   status = CPXlpopt (env, lp);
   if ( status ) {
      fprintf (stderr, “Failed to optimize LP.\n”);
      goto TERMINATE;
   }

   /* Turn off the callback function.  This isn’t strictly necessary,
      but is good practice.  Note that the cast in front of NULL
      is only necessary for some compilers.   */

#ifndef CPX_PROTOTYPE_MIN
   status = CPXsetlpcallbackfunc (env,
              (int (CPXPUBLIC *)(CPXENVptr, void *, int, void *)) NULL, NULL);
#else
   status = CPXsetlpcallbackfunc (env, (int (CPXPUBLIC *)()) NULL, NULL);
#endif
   if ( status ) {
      fprintf (stderr, “Failed to turn off callback function.\n”);
      goto TERMINATE;
   }

   status = CPXsolution (env, lp, &solstat, &objval, x, pi, slack, dj);
   if ( status ) {
      fprintf (stderr, “Failed to obtain solution.\n”);
      goto TERMINATE;
   }

   /* Write the output to the screen. */

   printf (“\nSolution status = %d\n”, solstat);
   printf (“Solution value  = %f\n\n”, objval);

   /* The size of the problem should be obtained by asking CPLEX what
      the actual size is, rather than using sizes from when the problem
      was built.  cur_numrows and cur_numcols store the current number 
      of rows and columns, respectively.  */



U S I N G  C A L L B A C K S

308 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

   cur_numrows = CPXgetnumrows (env, lp);
   cur_numcols = CPXgetnumcols (env, lp);
   for (i = 0; i < cur_numrows; i++) {
      printf (“Row %d:  Slack = %10f  Pi = %10f\n”, i, slack[i], pi[i]);
   }

   for (j = 0; j < cur_numcols; j++) {
      printf (“Column %d:  Value = %10f  Reduced cost = %10f\n”,
              j, x[j], dj[j]);
   }

   /* Finally, write a copy of the problem to a file. */

   status = CPXwriteprob (env, lp, “lpex4.lp”, NULL);
   if ( status ) {
      fprintf (stderr, “Failed to write LP to disk.\n”);
      goto TERMINATE;
   }
   
TERMINATE:

   /* Free up the problem as allocated by CPXcreateprob, if necessary */

   if ( lp != NULL ) {
      int  frstatus;
      frstatus = CPXfreeprob (env, &lp);
      if ( frstatus ) {
         fprintf (stderr, “CPXfreeprob failed, error code %d.\n”, frstatus);
         if (( !status ) && frstatus )  status = frstatus;
      }
   }

   /* Free up the CPLEX environment, if necessary */

   if ( env != NULL ) {
      int  clstatus;
      clstatus = CPXcloseCPLEX (&env);

      if ( clstatus ) {
         fprintf (stderr, “CPXcloseCPLEX failed, error code %d.\n”, clstatus);
         if (( !status ) && clstatus )  status = clstatus;
      }
   }

   if ( status ) {
      char  errmsg[1024];

      /* Note that since we have turned off the CPLEX screen indicator,
         we’ll need to print the error message ourselves. */

      CPXgeterrorstring (env, status, errmsg);
      fprintf (stderr, “%s”, errmsg);



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 309

M
o

re A
b

o
u

t U
sin

g
 

IL
O

G
 C

P
L

E
X

<functionhead>

   }
     
   return (status);

}  /* END main */

/* This function builds by column the linear program:

      Maximize
       obj: x1 + 2 x2 + 3 x3
      Subject To
       c1: - x1 + x2 + x3 <= 20
       c2: x1 - 3 x2 + x3 <= 30
      Bounds
       35 <= x1 <= 40
      End
 */

#ifndef  CPX_PROTOTYPE_MIN
static int
populatebycolumn (CPXENVptr env, CPXLPptr lp)
#else
static int
populatebycolumn (env, lp)
CPXENVptr  env;
CPXLPptr   lp;
#endif
{
   int      status    = 0;
   double   obj[NUMCOLS];
   double   lb[NUMCOLS];
   double   ub[NUMCOLS];
   char     *colname[NUMCOLS];
   int      matbeg[NUMCOLS];
   int      matind[NUMNZ];
   double   matval[NUMNZ];
   double   rhs[NUMROWS];
   char     sense[NUMROWS];
   char     *rowname[NUMROWS];

   /* To build the problem by column, create the rows, and then 
      add the columns. */

   CPXchgobjsen (env, lp, CPX_MAX);  /* Problem is maximization */

   /* Now create the new rows.  First, populate the arrays. */

   rowname[0] = “c1”;
   sense[0]   = ‘L’;
   rhs[0]     = 20.0;



U S I N G  C A L L B A C K S

310 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

   rowname[1] = “c2”;
   sense[1]   = ‘L’;
   rhs[1]     = 30.0;

   status = CPXnewrows (env, lp, NUMROWS, rhs, sense, NULL, rowname);
   if ( status )   goto TERMINATE;

   /* Now add the new columns.  First, populate the arrays. */

       obj[0] = 1.0;      obj[1] = 2.0;           obj[2] = 3.0;

    matbeg[0] = 0;     matbeg[1] = 2;          matbeg[2] = 4;
      
    matind[0] = 0;     matind[2] = 0;          matind[4] = 0;
    matval[0] = -1.0;  matval[2] = 1.0;        matval[4] = 1.0;
 
    matind[1] = 1;     matind[3] = 1;          matind[5] = 1;
    matval[1] = 1.0;   matval[3] = -3.0;       matval[5] = 1.0;

        lb[0] = 35.0;      lb[1] = 0.0;           lb[2]  = 0.0;
        ub[0] = 40.0;      ub[1] = CPX_INFBOUND;  ub[2]  = CPX_INFBOUND;

   colname[0] = “x1”; colname[1] = “x2”;      colname[2] = “x3”;

   status = CPXaddcols (env, lp, NUMCOLS, NUMNZ, obj, matbeg, matind,
                        matval, lb, ub, colname);
   if ( status )  goto TERMINATE;

TERMINATE:

   return (status);

}  /* END populatebycolumn */

/* The callback function will print out the Phase of the simplex method,
   the sum of infeasibilities if in Phase 1, or the objective if in Phase 2.
   If any of our requests fails, we’ll return an indication to abort.
 */

#ifndef  CPX_PROTOTYPE_MIN
static int CPXPUBLIC
mycallback (CPXENVptr env, void *cbdata, int wherefrom, void *cbhandle)
#else
static int CPXPUBLIC
mycallback (env, cbdata, wherefrom, cbhandle)
CPXENVptr  env;
void       *cbdata;
int        wherefrom;
void       *cbhandle;
#endif
{
   int    status = 0;



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 311

M
o

re A
b

o
u

t U
sin

g
 

IL
O

G
 C

P
L

E
X

<functionhead>

   int    phase  = -1;
   double suminf_or_objective;
   int    itcnt = -1;

   if ( wherefrom == CPX_CALLBACK_PRIMAL ) {
      status = CPXgetcallbackinfo (env, cbdata, wherefrom, 
                                   CPX_CALLBACK_INFO_ITCOUNT, &itcnt);
      if ( status )  goto TERMINATE;

      status = CPXgetcallbackinfo (env, cbdata, wherefrom, 
                                   CPX_CALLBACK_INFO_PRIMAL_FEAS, &phase);
      if ( status )  goto TERMINATE;

      if ( phase == 0 ) {
         status = CPXgetcallbackinfo (env, cbdata, wherefrom,
                                      CPX_CALLBACK_INFO_PRIMAL_INFMEAS,
                                      &suminf_or_objective);
         if ( status )  goto TERMINATE;

         printf (“Iteration %d: Infeasibility measure = %f\n”, 
                  itcnt, suminf_or_objective);
      }
      else {
         status = CPXgetcallbackinfo (env, cbdata, wherefrom,
                                      CPX_CALLBACK_INFO_PRIMAL_OBJ,
                                      &suminf_or_objective);
         if ( status )  goto TERMINATE;

         printf (“Iteration %d: Objective = %f\n”, 
                  itcnt, suminf_or_objective);
      }

   }

TERMINATE:

   return (status);

} /* END mycallback */

Control Callbacks for IloCplex

Control callbacks allow you to control the branch & cut search during the optimization of 
MIP problems. The following control callbacks are available for IloCplex:

◆ The node callback allows you to query and optionally overwrite the next node CPLEX 
will process during a branch & cut search.

◆ The solve callback allows you to specify and configure the optimizer option to be used 
for solving the LP at each individual node.



U S I N G  C A L L B A C K S

312 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

◆ The cut callback allows you to add problem-specific cuts at each node.

◆ The heuristic callback allows you to implement a heuristic that tries to generate a new 
incumbent from the solution of the LP relaxation at each node.

◆ The branch callback allows you to query and optionally overwrite the way CPLEX 
will branch at each node. 

These callbacks are implemented as an extension of the diagnostic callback class hierarchy. 
This extension is shown below along with the macro names for each of the control callbacks 
(see Diagnostic Callbacks on page 294 for a discussion of how macros and callback 
implementation classes relate).

Similar to class IloCplex::CallbackI, class IloCplex::ControlCallbackI is not 
provided for deriving user callback classes, but for defining the common interface for its 
derived classes. This interface provides methods for querying information about the current 
node, such as current bounds or solution information for the current node. See class 
IloCplex::ControlCallbackI in the ILOG CPLEX Reference Manual for more 
information. 

Example: Controlling Cuts

This example shows how to use the cut callback in the context of solving the noswot model. 
This is a relatively small model from the MIPLIB 3.0 test-set, consisting only of 128 
variables. This model is very hard to solve by itself, in fact until the release of CPLEX 6.5 it 
appeared to be unsolvable even after days of computation. 

While it is now solvable directly, the computation time is in the order of several hours on 
state-of-the-art computers. However, cuts can be derived, the addition of which make the 
problem solvable in a matter of minutes or seconds. These cuts are:

x21 - x22 <= 0
x22 - x23 <= 0
x23 - x24 <= 0
2.08*x11 + 2.98*x21 + 3.47*x31 + 2.24*x41 + 2.08*x51 +
0.25*w11 + 0.25*w21 + 0.25*w31 + 0.25*w41 + 0.25*w51 <= 20.25

IloCplex::MIPCallbackI
   |
   +--- IloCplex::NodeCallbackI
   |
   +--- IloCplex::ControlCallbackI
           |
           +--- IloCplex::BranchCallbackI
           |
           +--- IloCplex::CutCallbackI
           |
           +--- IloCplex::HeuristicCallbackI
           |
           +--- IloCplex::SolveCallbackI

ILOMIPCALLBACKn

ILONODECALLBACKn

ILOBRANCHCALLBACKn

ILOCUTCALLBACKn

ILOHEURISTICCALLBACKn

ILOSOLVECALLBACKn



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 313

M
o

re A
b

o
u

t U
sin

g
 

IL
O

G
 C

P
L

E
X

<functionhead>

2.08*x12 + 2.98*x22 + 3.47*x32 + 2.24*x42 + 2.08*x52 +
0.25*w12 + 0.25*w22 + 0.25*w32 + 0.25*w42 + 0.25*w52 <= 20.25
2.08*x13 + 2.98*x23 + 3.47*x33 + 2.24*x43 + 2.08*x53 +
0.25*w13 + 0.25*w23 + 0.25*w33 + 0.25*w43 + 0.25*w53 <= 20.25
2.08*x14 + 2.98*x24 + 3.47*x34 + 2.24*x44 + 2.08*x54 +
0.25*w14 + 0.25*w24 + 0.25*w34 + 0.25*w44 + 0.25*w54 <= 20.25
2.08*x15 + 2.98*x25 + 3.47*x35 + 2.24*x45 + 2.08*x55 +
0.25*w15 + 0.25*w25 + 0.25*w35 + 0.25*w45 + 0.25*w55 <= 16.25

These cuts have been derived after interpreting the model as a resource allocation model on 
five machines with scheduling, horizon constraints and transaction times. The first tree cuts 
break symmetries among the machines, while the others capture minimum bounds on 
transaction costs. See “MIP: Theory and Practice —Closing the Gap” for more on how 
these cuts have been found. 

Of course the best way to solve the noswot model with these cuts is to simply add the cuts to 
the model before calling the optimizer. However, for demonstration purposes, we will add 
the cuts, using a cut callback, only when they are violated at a node. This cut callback takes 
a list of cuts as parameter and adds individual cuts whenever they are violated with the 
current LP solution. Notice, that adding cuts does not change the extracted model, but 
affects only the internal problem representation of the CPLEX object. 

This callback is implemented with the code:

ILOCUTCALLBACK3(CtCallback, IloExprArray, lhs, IloNumArray, rhs, IloNum, eps) { 
  IloInt n = lhs.getSize();
  for (IloInt i = 0; i < n; ++i) {
    IloNum xrhs = rhs[i];
    if ( xrhs < IloInfinity && getValue(lhs[i]) > xrhs + eps ) {
      IloRange cut;
      try {
        cut = (lhs[i] <= xrhs);
        add(cut).end();
        rhs[i] = IloInfinity;
      }
      catch (...) {
        cut.end();
        throw;
      }
    }
  }
}

This defines the class CtCallbackI as a derived class of IloCplex::CutCallbackI and 
provides the implementation for its virtual methods main() and makeClone().  It also 
implements a function CtCallback that creates an instance of CtCallbackI and returns 
an IloCplex::Callback handle for it.

As indicated by the 3 in the macro name, the constructor of IloCtCallbackI takes three 
parameters, called lhs, rhs, and eps. The constructor stores them as private members to 
have direct access to them in the callback function, implemented as method main. Notice 



U S I N G  C A L L B A C K S

314 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

the comma (,) between  the type and the argument object in the macro invocation. Here is 
how the macro expands: 

class IloCtCallbackI : public IloCplex::FractionalCutCallbackI {
  IloExprArray lhs;
  IloNumArray  rhs;
  IloNum       eps;
public:
  IloCplex::CallbackI* makeClone() const {
    return (new (getEnv()) IloCtCallbackI(*this));
  }
  IloCtCallbackI(IloExprArray xlhs, IloNumArray xrhs, IloNum xeps)
    : lhs(xlhs), rhs(xrhs), eps(xeps)
  {}
  void main();
};

IloCplex::Callback IloCtCallback(IloEnv env,
                                 IloExprArray lhs,
                                 IloNumArray rhs,
                                 IloNum eps) {
  return (IloCplex::Callback(new (env) IloCtCallbackI(lhs, rhs, eps)));
}

void IloCtCallbackI::main() {
  ...
}

where the actual implementation code has been substituted with “...”. Similar macros are 
provided for other numbers of parameters ranging from 0 through 7 for all callback classes. 

The first parameter lhs is an array of expressions, and the parameter rhs is an array of 
values. These parameters are the left-hand side and right-hand side values of cuts of the form 
lhs <= rhs to be tested for violation and potentially added. The third parameter eps gives 
a tolerance by which a cut must at least be violated in order to be added to the problem being  
solved.

The implementation of this example cut callback looks for cuts that are violated by the 
current LP solution of the node where the callback is  invoked. We loop over the potential 
cuts, checking each for violation by querying the value of the lhs expression with respect to 
the current solution. This is done by calling getValue with this expression as a  parameter. 
This is tested for violation of more than the tolerance parameter eps with the corresponding 
right-hand side value. 

Tip: A numerical tolerance is always a wise thing to consider when dealing with any non-
trivial model, to avoid certain logical inconsistencies that could otherwise occur due to 
numerical roundoff. Here we use the standard CPLEX simplex feasibility tolerance for this 
purpose, to insure some consistency with the way CPLEX is treating the rest of the model.



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 315

M
o

re A
b

o
u

t U
sin

g
 

IL
O

G
 C

P
L

E
X

<functionhead>

If a violation is detected, the callback creates an IloRange object to represent the cut: 
lhs[i] <= rhs[i]. It is added to the LP by calling  method add(). Adding a cut to 
CPLEX, unlike extracting a model, only copies the cut into the CPLEX data structures, 
without maintaining a  notification link between the two. Thus, after a cut has been added,  it 
can be deleted by calling its method end(). In fact, it should be deleted, as otherwise the 
memory used for the cut could not be reclaimed.  For convenience, method add() returns 
the cut that has been added, and thus we can call end() directly on the returned IloRange 
object.

It is important that all resources that have been allocated during a callback are freed again 
before leaving the callback--even in the case of an exception. Here exceptions could be 
thrown when creating the cut itself or when trying to add it, for example, due to memory 
exhaustion. Thus, we enclose these operations in a try block and catch all exceptions that 
may occur. In the case of an exception, we delete the cut by calling cut.end() and re-
throw whatever exception was caught. Re-throwing the exception can be omitted if you 
want to continue the optimization without the cut.

After the cut has been added, we set the rhs value to IloInfinity to avoid checking this 
cut for violation at the next invocation of the callback. Note that we did not simply remove 
the ith element of arrays rhs and lhs, because this is not supported if the cut callback is 
invoked from a parallel optimizer. However, changing array elements is allowed.

Also, for the potential use of the callback in parallel, the variable xrhs ensures that we are 
using the same value when checking for violation of the cut as when adding the cut. 
Otherwise, another thread may have set the rhs value to IloInfinity just between the 
two actions, and a useless cut would be added. CPLEX would actually handle this correctly, 
as it handles adding the same cut from different threads.

Function makeCuts() generates the arrays rhs and lhs to be passed to the cut callback. It 
first declares the array of variables to be used for defining the cuts. Since the environment is 
not passed to the constructor of that array, an array of 0-variable handles is created. In the 
following loop, these variable handles are initialized to the correct variables in the noswot 
model which are passed to this function as parameter vars. The identification of the 
variables is done by querying variables names. Once all the variables have been assigned, 
they are used to create the lhs expressions and rhs values of the cuts.

The cut callback is created and passed to CPLEX in the line:

cplex.use(CtCallback(env, lhs, rhs, cplex.getParam(IloCplex::EpRHS)));

The function CtCallback constructs an instance of our callback class CtCallbackI and 
returns an IloCplex::Callback handle object for it. This is directly passed to function 
cplex.use.

We should point out that IloCplex provides an easier way to manage such cuts in a case 
like this, where all cuts can be easily enumerated before starting the optimization. Calling 
the methods cplex.addCut() and cplex.addCuts() allows you to copy the cuts to 



U S I N G  C A L L B A C K S

316 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

IloCplex before the optimization. Thus, instead of creating and using the callback, we 
could have written:

cplex.addCuts(makeCuts(var));

as shown in example iloadmipex7.cpp in the distribution. During branch & cut, CPLEX 
will consider adding individual cuts to its representation of the model only if they are 
violated by a node LP solution in about the same way this example handles them. Whether 
this or adding the cuts directly to the model gives better performance when solving the 
model depends on the individual problem.

Complete Program: iloadmipex5.cpp

The complete program, iloadmipex5.cpp, appears here or online in the standard 
distribution.

#include <ilcplex/ilocplex.h>
ILOSTLBEGIN

ILOCUTCALLBACK3(CtCallback, IloExprArray, lhs, IloNumArray, rhs, IloNum, eps) {
  IloInt n = lhs.getSize();
  for (IloInt i = 0; i < n; ++i) {
    IloNum xrhs = rhs[i];
    if ( xrhs < IloInfinity  &&  getValue(lhs[i]) > xrhs + eps ) {
      IloRange cut;
      try {
        cut = (lhs[i] <= xrhs);
        add(cut).end();
        rhs[i] = IloInfinity;
      }
      catch (...) {
        cut.end();
        throw;
      }
    }
  }
}

void
makeCuts(const IloNumVarArray vars, IloExprArray lhs, IloNumArray rhs) {
  IloNumVar x11, x12, x13, x14, x15;
  IloNumVar x21, x22, x23, x24, x25;
  IloNumVar x31, x32, x33, x34, x35;
  IloNumVar x41, x42, x43, x44, x45;
  IloNumVar x51, x52, x53, x54, x55;
  IloNumVar w11, w12, w13, w14, w15;
  IloNumVar w21, w22, w23, w24, w25;
  IloNumVar w31, w32, w33, w34, w35;
  IloNumVar w41, w42, w43, w44, w45;
  IloNumVar w51, w52, w53, w54, w55;
  IloInt num = vars.getSize();

  for (IloInt i = 0; i < num; ++i) {



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 317

M
o

re A
b

o
u

t U
sin

g
 

IL
O

G
 C

P
L

E
X

<functionhead>

     if      ( strcmp(vars[i].getName(), "X11") == 0 ) x11 = vars[i];
     else if ( strcmp(vars[i].getName(), "X12") == 0 ) x12 = vars[i];
     else if ( strcmp(vars[i].getName(), "X13") == 0 ) x13 = vars[i];
     else if ( strcmp(vars[i].getName(), "X14") == 0 ) x14 = vars[i];
     else if ( strcmp(vars[i].getName(), "X15") == 0 ) x15 = vars[i];
     else if ( strcmp(vars[i].getName(), "X21") == 0 ) x21 = vars[i];
     else if ( strcmp(vars[i].getName(), "X22") == 0 ) x22 = vars[i];
     else if ( strcmp(vars[i].getName(), "X23") == 0 ) x23 = vars[i];
     else if ( strcmp(vars[i].getName(), "X24") == 0 ) x24 = vars[i];
     else if ( strcmp(vars[i].getName(), "X25") == 0 ) x25 = vars[i];
     else if ( strcmp(vars[i].getName(), "X31") == 0 ) x31 = vars[i];
     else if ( strcmp(vars[i].getName(), "X32") == 0 ) x32 = vars[i];
     else if ( strcmp(vars[i].getName(), "X33") == 0 ) x33 = vars[i];
     else if ( strcmp(vars[i].getName(), "X34") == 0 ) x34 = vars[i];
     else if ( strcmp(vars[i].getName(), "X35") == 0 ) x35 = vars[i];
     else if ( strcmp(vars[i].getName(), "X41") == 0 ) x41 = vars[i];
     else if ( strcmp(vars[i].getName(), "X42") == 0 ) x42 = vars[i];
     else if ( strcmp(vars[i].getName(), "X43") == 0 ) x43 = vars[i];
     else if ( strcmp(vars[i].getName(), "X44") == 0 ) x44 = vars[i];
     else if ( strcmp(vars[i].getName(), "X45") == 0 ) x45 = vars[i];
     else if ( strcmp(vars[i].getName(), "X51") == 0 ) x51 = vars[i];
     else if ( strcmp(vars[i].getName(), "X52") == 0 ) x52 = vars[i];
     else if ( strcmp(vars[i].getName(), "X53") == 0 ) x53 = vars[i];
     else if ( strcmp(vars[i].getName(), "X54") == 0 ) x54 = vars[i];
     else if ( strcmp(vars[i].getName(), "X55") == 0 ) x55 = vars[i];
     else if ( strcmp(vars[i].getName(), "W11") == 0 ) w11 = vars[i];
     else if ( strcmp(vars[i].getName(), "W12") == 0 ) w12 = vars[i];
     else if ( strcmp(vars[i].getName(), "W13") == 0 ) w13 = vars[i];
     else if ( strcmp(vars[i].getName(), "W14") == 0 ) w14 = vars[i];
     else if ( strcmp(vars[i].getName(), "W15") == 0 ) w15 = vars[i];
     else if ( strcmp(vars[i].getName(), "W21") == 0 ) w21 = vars[i];
     else if ( strcmp(vars[i].getName(), "W22") == 0 ) w22 = vars[i];
     else if ( strcmp(vars[i].getName(), "W23") == 0 ) w23 = vars[i];
     else if ( strcmp(vars[i].getName(), "W24") == 0 ) w24 = vars[i];
     else if ( strcmp(vars[i].getName(), "W25") == 0 ) w25 = vars[i];
     else if ( strcmp(vars[i].getName(), "W31") == 0 ) w31 = vars[i];
     else if ( strcmp(vars[i].getName(), "W32") == 0 ) w32 = vars[i];
     else if ( strcmp(vars[i].getName(), "W33") == 0 ) w33 = vars[i];
     else if ( strcmp(vars[i].getName(), "W34") == 0 ) w34 = vars[i];
     else if ( strcmp(vars[i].getName(), "W35") == 0 ) w35 = vars[i];
     else if ( strcmp(vars[i].getName(), "W41") == 0 ) w41 = vars[i];
     else if ( strcmp(vars[i].getName(), "W42") == 0 ) w42 = vars[i];
     else if ( strcmp(vars[i].getName(), "W43") == 0 ) w43 = vars[i];
     else if ( strcmp(vars[i].getName(), "W44") == 0 ) w44 = vars[i];
     else if ( strcmp(vars[i].getName(), "W45") == 0 ) w45 = vars[i];
     else if ( strcmp(vars[i].getName(), "W51") == 0 ) w51 = vars[i];
     else if ( strcmp(vars[i].getName(), "W52") == 0 ) w52 = vars[i];
     else if ( strcmp(vars[i].getName(), "W53") == 0 ) w53 = vars[i];
     else if ( strcmp(vars[i].getName(), "W54") == 0 ) w54 = vars[i];
     else if ( strcmp(vars[i].getName(), "W55") == 0 ) w55 = vars[i];
  }
  lhs.add(x21 - x22);  rhs.add(0.0);



U S I N G  C A L L B A C K S

318 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

  lhs.add(x22 - x23);  rhs.add(0.0);
  lhs.add(x23 - x24);  rhs.add(0.0);
  lhs.add(2.08*x11 + 2.98*x21 + 3.47*x31 + 2.24*x41 + 2.08*x51 +
          0.25*w11 + 0.25*w21 + 0.25*w31 + 0.25*w41 + 0.25*w51);  
rhs.add(20.25);
  lhs.add(2.08*x12 + 2.98*x22 + 3.47*x32 + 2.24*x42 + 2.08*x52 +
          0.25*w12 + 0.25*w22 + 0.25*w32 + 0.25*w42 + 0.25*w52);  
rhs.add(20.25);
  lhs.add(2.08*x13 + 2.98*x23 + 3.47*x33 + 2.24*x43 + 2.08*x53 +
          0.25*w13 + 0.25*w23 + 0.25*w33 + 0.25*w43 + 0.25*w53);  
rhs.add(20.25);
  lhs.add(2.08*x14 + 2.98*x24 + 3.47*x34 + 2.24*x44 + 2.08*x54 +
          0.25*w14 + 0.25*w24 + 0.25*w34 + 0.25*w44 + 0.25*w54);  
rhs.add(20.25);
  lhs.add(2.08*x15 + 2.98*x25 + 3.47*x35 + 2.24*x45 + 2.08*x55 +
          0.25*w15 + 0.25*w25 + 0.25*w35 + 0.25*w45 + 0.25*w55);  
rhs.add(16.25);
}

int
main(int argc, char** argv)
{
  IloEnv env;
  try {
    IloModel m;
    IloCplex cplex(env);

    IloObjective   obj;
    IloNumVarArray var(env);
    IloRangeArray  con(env);

    env.out() << "reading ../../../examples/data/noswot.mps" << endl;
    cplex.importModel(m, "../../../examples/data/noswot.mps", obj, var, con);

    env.out() << "constructing cut callback ..." << endl;
    
    IloExprArray lhs(env);
    IloNumArray  rhs(env);
    makeCuts(var, lhs, rhs);
    cplex.use(CtCallback(env, lhs, rhs, cplex.getParam(IloCplex::EpRHS)));

    env.out() << "extracting model ..." << endl;
    cplex.extract(m);

    env.out() << "solving model ...\n";
    cplex.solve();
    env.out() << "solution status is " << cplex.getStatus() << endl;
    env.out() << "solution value  is " << cplex.getObjValue() << endl;
  }
  catch (IloException& ex) {
    cerr << "Error: " << ex << endl;
  }
  env.end();
  return 0;



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 319

M
o

re A
b

o
u

t U
sin

g
 

IL
O

G
 C

P
L

E
X

<functionhead>

}

Using Parallel Optimizers

This section tells you how to use ILOG CPLEX parallel optimizers. It includes sections on:

◆ Parallel Libraries

◆ Threads

◆ Nondeterminism

◆ Clock Settings and Time Measurement

◆ Using Parallel Optimizers in the Interactive Optimizer

◆ Using Parallel Optimizers in the CPLEX Component Libraries

◆ Parallel MIP Optimizer

◆ Parallel Barrier Optimizer

◆ Parallel Simplex Optimizer

There are three specialized ILOG CPLEX optimizers—Parallel Simplex, Parallel MIP, and 
Parallel Barrier—implemented to run on hardware platforms with parallel processors. These 
parallel optimizers, like other ILOG CPLEX optimizers, are available in the Interactive 
Optimizer and in the Component Libraries, if you hold a ILOG CPLEX Parallel license. The 
parallel license allows you to use the parallel implementation of the ILOG CPLEX 
optimizers for which you already hold a license. For example, if you are licensed to use the 
ILOG CPLEX Interactive Optimizer, the MIP Optimizer, and the parallel optimizers, then 
Parallel Simplex and Parallel MIP will both be available to you (if they have been 
implemented on your parallel platform). If you then add a license for the ILOG CPLEX 
Barrier Optimizer, the Parallel Barrier Optimizer will automatically be available to you as 
well.

For Windows users, or for LINUX users, no special procedures are needed to compile and 
link your program to the parallel libraries. For other UNIX platforms, separate parallel 
versions of the libraries and Interactive Optimizer are provided for your use. Table 8.8 
summarizes these details. Additional compiler/linker flags may be needed when compiling 
your program to use parallel CPLEX. Consult the makefile that is provided in the CPLEX 
distribution for your computer platform, and if there is a line marked "For parallel" use the 
information there as a guide.



U S I N G  P A R A L L E L  O P T I M I Z E R S

320 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

Parallel Libraries

Generally, you use ILOG CPLEX parallel optimizers just as you use ILOG CPLEX serial 
optimizers. They are available through the Interactive Optimizer and through methods and 
routines of the Callable Library.

To access the parallel optimizers from routines of the Component Libraries, you need to link 
to the parallel library. Table 8.8 summarize the names of the serial and parallel libraries for 
UNIX platforms. 

Threads 

The ILOG CPLEX parallel optimizers are licensed for a specific maximum number of 
threads (that is, the number processors applied to a given problem). The number of threads 
that ILOG CPLEX actually uses during a parallel optimization is the smaller of:

◆ the number of threads made available by the operating system;

◆ the number of threads indicated by the licensed values of the thread-limit parameters. 
Table 8.9 summarizes the values of those thread-limit parameters. 

The notion of the number of threads used when running a parallel CPLEX optimizer is 
entirely separate from the limit on licensed uses. A typical CPLEX license permits one 
licensed use, that is a single concurrent execution on one licensed computer. If the license 
also contains the parallel option with a thread limit of, say, four (on a machine with at least 
four processors), that one concurrent execution of CPLEX can employ any number of 
parallel threads to increase performance, up to that limit of 4. A license with the parallel 
option, that additionally has a limit larger than one on the number of licensed uses, can 

Table 8.8 ILOG CPLEX Serial and Parallel Libraries for UNIX Platforms

Most Unix platforms Serial Library Parallel Library

Interactive Optimizer cplex parcplex

Component Libraries libcplex.a libparcplex.a

Table 8.9 Thread-Limit Parameters

Interactive Commands
Concert Technology 
Enumeration Value

Callable Library Parameter

set simplex limits threads IloCplex::SimThreads CPX_PARAM_SIMTHREADS

set barrier limits threads IloCplex::BarThreads CPX_PARAM_BARTHREADS

set mip limits threads IloCplex::MIPThreads CPX_PARAM_MIPTHREADS

set mip limits strongthreads IloCplex::StrongThreadLim CPX_PARAM_STRONGTHREADLIM



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 321

M
o

re A
b

o
u

t U
sin

g
 

IL
O

G
 C

P
L

E
X

<functionhead>

support that many simultaneous executions of CPLEX, each with the licensed maximum 
number of parallel threads. In such a case, the operating system will manage any contention 
for processors. 

The number of parallel threads used by a CPLEX optimizer is controlled by operating 
system environment variables and/or CPLEX parameter settings, up to the limits found in 
the CPLEX license on the machine. This is discussed in more detail in the sections that 
follow.

Threads and Platform Considerations

Ordinarily, your operating system will make available to ILOG CPLEX as many threads as 
there are processors on your machine. In some cases, you can override this behavior through 
operating-system environment variables. 

◆ DEC only: The default number of threads is the number of processors on the machine. 
You can override this default by setting the operating system environment variable 
MP_THREAD_COUNT before you call ILOG CPLEX.

◆ SGI only: The default number of threads is the smaller of 8 or the number of processors 
on the machine. You can override this default by setting the operating system 
environment variable MPC_NUM_THREADS before you call ILOG CPLEX.

Those environment variables can be used to establish an upper limit on thread count, subject 
to the limit of your ILOG CPLEX parallel license.

Individual ILOG CPLEX optimizers, such as the ILOG CPLEX Barrier Optimizer, may be 
affected by other platform considerations. See the various parallel optimizers (MIP on 
page 325, nested on page 328, barrier on page 329, or simplex on page 330) for details that 
cover those considerations.

Example: Threads and Licensing

For example, let’s assume you use ILOG CPLEX to optimize MIP models on an eight-
processor machine, and you have purchased a ILOG CPLEX license for four parallel 
threads. Then you can use the Interactive Optimizer command 
set mip limit threads i, substituting values 1 through 4 for i. Even if you set an 
operating system environment variable to 6, you will not be able to set 
mip limit threads higher than 4 because you are licensed for a maximum of four 
threads. In contrast, if you set an operating system environment variable to 2, then you can 
set mip limit threads only as large as 2, and any MIP optimization you carry out will 
be limited to two processors because of the setting of the operating system environment 
variable.

Threads and Performance Considerations

If you set the number of threads to a value greater than the number of processors, 
performance will usually degrade. If you set the number of threads to a value less than the 
number of processors, the remaining processors will be available for other jobs on your 



U S I N G  P A R A L L E L  O P T I M I Z E R S

322 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

platform. Simultaneously running multiple parallel jobs with a total number of threads 
exceeding the number of processors may impair the performance of each individual process 
as its threads compete with one another. 

If you set an operating system environment variable to a greater value than you actually use 
within ILOG CPLEX with a limit threads parameter, your operating system may create 
idle threads that still consume system resources. If you know in advance how many threads 
you want to use, we recommend that you set the operating system environment variable to 
that number before you start ILOG CPLEX.

The benefit of applying more threads to optimizing a specific problem varies depending on the 
optimizer you use and the characteristics of the problem. You should experiment to assess 
performance improvements and degradation when you apply more or fewer processors. For 
example, when you optimize an LP relaxation, there may be little or no benefit in applying 
more than four processors to the task. In contrast, if you use 16 processors during the MIP 
phase of an optimization, you may improve solution speed by a factor of 20. In such a case, 
you should set the parameters simplex limit threads and mip limit threads to 
different values in order to use your computing resources efficiently.

Another key consideration in setting optimizer and global thread limits is your management 
of overall system load.

Nondeterminism

Among the ILOG CPLEX parallel optimizers, only parallel simplex follows a deterministic 
algorithm, producing the same number of iterations and the same solution path when you 
apply it to the same problem more than once. In contrast, the parallel barrier and parallel 
MIP optimizers are nondeterministic: repeated solutions of a model using exactly the same 
settings can produce different solution paths and, in the case of the parallel MIP optimizer, 
very different solution times and results.

The basic algorithm in the ILOG CPLEX Parallel MIP Optimizer is branch & cut. The 
primary source of parallelism in branch & cut is the solution of the LP subproblems at the 
individual nodes of the search tree. These subproblems can be distributed over available 
processors to be carried out in parallel. The individual solution paths for these subproblems 
will, in fact, be deterministic, but the speed at which their solutions occur can vary slightly. 
These variations lead to nodes being taken from and replaced in the branch & cut tree in 
different order, and this reordering leads to nondeterminism about many other quantities that 
control the optimization. This nondeterminism is unavoidable in such a context, and its 
effects can result in some cases in very different solution paths.

Clock Settings and Time Measurement

The clock-type parameter determines how ILOG CPLEX measures computation time. For 
most nonparallel processing purposes, CPU time, the default type, is appropriate. It reports 
how much time the CPU was actually employed to complete an operation. This value is 



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 323

M
o

re A
b

o
u

t U
sin

g
 

IL
O

G
 C

P
L

E
X

<functionhead>

highly system dependent. On some parallel systems, it may measure aggregate CPU time, 
that is, the sum of time used by all processors, or on others, it may report the CPU time of 
only one process. In short, it may give you a misleading indication of parallel speed.

The alternative type, wall-clock time, is usually more appropriate for parallel computing 
because it measures the total physical time elapsed after an operation begins. When multiple 
processes are active, and when parallel optimizers are active, wall-clock time can be much 
different from CPU time.

You can choose the type of clock setting, in the:

◆ Interactive Optimizer, with the command set clocktype i. 

◆ Concert Technology Library, use the method IloCplex::setParam(ClockType, i). 

◆ Callable Library, use the routine CPXsetintparam(env, CPX_PARAM_CLOCKTYPE, 
i). 

Replace the i with the value 1 to specify CPU time or 2 to specify wall-clock time. 

Using Parallel Optimizers in the Interactive Optimizer

1. If necessary for your platform, set any operating system environment variable needed for 
parallel operation. See Threads on page 320 and platform considerations for the various 
parallel optimizers (MIP on page 325, nested on page 328, barrier on page 329, or 
simplex on page 330) for details.

2. Start the parallel implementation of the ILOG CPLEX Interactive Optimizer with the 
command parcplex (or cplex on machines where a separate executable is not needed) 
at the operating system prompt.

3. Set the thread-limit, as explained in Threads on page 320. 

4. Enter and populate your problem object as usual.

5. Call the parallel optimizer with the appropriate command: 

Using Parallel Optimizers in the CPLEX Component Libraries

1. Link your application to the parallel implementation of the ILOG CPLEX Component 
Libraries. See Table 8.8 on page 320 for the library name, which varies according to 
platform.

2. Create your ILOG CPLEX environment and initialize a problem object in the usual way. 

Parallel MIP Optimizer mipopt

Parallel Barrier Optimizer baropt

Parallel Simplex Optimizer primopt or tranopt



U S I N G  P A R A L L E L  O P T I M I Z E R S

324 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

See Initialize the ILOG CPLEX Environment on page 57 and Instantiate the Problem 
Object on page 58 for details.

3. Within your application, set the appropriate CPLEX parameter from Table 8.9 to specify 
the number of threads.

4. Enter and populate your problem object in the usual way, as in Put Data in the Problem 
Object on page 58.

5. Call the parallel optimizer with the appropriate method or routine: 

Parallel MIP Optimizer

The CPLEX  Parallel MIP Optimizer is quite robust with respect to parallelism, so it 
achieves remarkable speedups on a wide variety of models—particularly difficult ones that 
process a large number of nodes in the branch & cut search tree while proving optimality. 
The parallel MIP optimizer provides several different opportunities for applying multiple 
processors to the solution of a problem. 

◆ Parallelism can be applied to the root relaxation using either parallel barrier optimizer or 
(on platforms where it is available) parallel simplex optimizer, depending on the setting 
of the start-algorithm parameter. Parallelism here is controlled by the barrier (or simplex) 
thread-limit parameter. 

◆ Once the root relaxation has been solved, you can process nodes in the branch & cut tree 
in parallel by setting the MIP thread-limit parameter to a value greater than 1. 

● In the Interactive Optimizer, use the command set mip limits threads. 

● When using the Component Libraries, set the parameter IloCplex::MipThreads or 
CPX_PARAM_MIPTHREADS.

◆ Alternatively, you can process one node at a time but apply multiple processors to the 
solution of each node by setting the MIP thread-limit to 1 (one) and choosing either 
parallel simplex or parallel barrier for the subalgorithm. 

Optimizer Concert Technology Library Callable Library

Parallel MIP Optimizer IloCplex::solve() CPXmipopt()

Parallel Barrier Optimizer IloCplex::Barrier or 
IloCplex::BarrierPrimal or 
IloCplex::BarrierDual

CPXbaropt() or 
CPXhybbaropt()

Parallel Simplex 
Optimizer

IloCplex::Primal or 
IloCplex::Dual

CPXprimopt() or 
CPXdualopt()



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 325

M
o

re A
b

o
u

t U
sin

g
 

IL
O

G
 C

P
L

E
X

<functionhead>

◆ A third alternative, using strong branching as the variable selection strategy, is to process 
one node at a time but apply multiple processors to strong branching variable selection, 
by setting the MIP thread-limit to 1 (one) and the strong branching thread-limit to a 
value greater than one.

The following sections discuss details and tradeoffs associated with these options. 

Platform Considerations

The parallel MIP optimizer is available on all the parallel platforms that ILOG CPLEX 
supports.

Memory Considerations and the Parallel MIP Optimizer

Before the parallel MIP optimizer invokes parallel processing, it makes separate, internal 
copies of the initial problem. The individual processors use these copies during computation, 
so each of them requires an amount of memory roughly equal to the original model after it is 
presolved.

Output from the Parallel MIP Optimizer

The parallel MIP optimizer generates slightly different output from the serial MIP optimizer 
(described in Termination on page 166 and Post-Solution Information in a MIP on 
page 167). The following paragraphs explain those differences.

Timing Statistics from the Parallel MIP Optimizer

We explained that you can control the amount of information that ILOG CPLEX displays 
and records in its log files. 

To make ILOG CPLEX record elapsed time for the MIP optimizer:

◆ In the Interactive Optimizer, use the command set mip display i, where i is 1, 2, 
3, 4, or 5. 

◆ When using the CPLEX Component Libraries, set the parameter 
IloCplex::MIPDisplay or CPX_PARAM_MIPDISPLAY to one of these same values 
1 - 5.

In the parallel MIP optimizer, these elapsed times are always wall-clock times, regardless of 
the clock-type parameter.

ILOG CPLEX prints a summary of timing statistics specific to the parallel MIP optimizer at 
the end of optimization. You can see typical timing statistics in the following sample run. 



U S I N G  P A R A L L E L  O P T I M I Z E R S

326 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

The summary at the end of the sample tells us that 0.79 seconds were spent in CPU time (since 
the clock-type parameter was the default) in the sequential phase, mainly in preprocessing by 
the presolver and in solving the initial linear-programming relaxation. The parallel part of this 
sample run took 0.48 seconds of real time (that is, elapsed time for that phase).

Other parts of the sample report indicate that the processors spent an average of 0.00 
seconds of real time spinning (that is, waiting for work while there were too few active 

Problem ’fixnet6.mps’ read.
Read time =    0.04 sec.
CPLEX> o
Tried aggregator 1 time.
MIP Presolve modified 308 coefficients.
Aggregator did 1 substitutions.
Reduced MIP has 477 rows, 877 columns, and 1754 nonzeros.
Presolve time =    0.02 sec.
Clique table members: 2
MIP emphasis: optimality
Root relaxation solution time =    0.04 sec.

        Nodes                                         Cuts/
   Node  Left     Objective  IInf  Best Integer     Best Node    ItCnt     Gap

      0     0     3192.0420    12                   3192.0420      305
                  3263.9220    19                   Cuts:  36      341
                  3393.0917    17                   Cuts:  24      403
                  3444.9996    19                Flowcuts:  9      439
                  3479.7206    24                Flowcuts:  6      470
                  3489.7893    21                Flowcuts:  3      482
                  3500.4789    24                Flowcuts:  4      494
                  3502.0646    26                Flowcuts:  4      499
                  3526.8260    20                Flowcuts:  2      502
                  3527.0669    19                Flowcuts:  1      504
                  3527.2559    22                Flowcuts:  1      506
                  3527.6402    24                Flowcuts:  1      508
                  3529.7853    18                Flowcuts:  1      515
*     0+    0     4116.0000     0     4116.0000     3529.7853      515   14.24%
*    40+   24     4077.0000     0     4077.0000     3808.7017     1191    6.58%
*    46    23     3983.0000     0     3983.0000     3854.2312     1198    3.23%

Sequential (before b&b):
  CPU      time             =    0.79
Parallel b&b, 4 threads:
  Real     time             =    0.48
  Critical time (total)     =    0.00
  Spin     time (average)   =    0.00
                              -------
Total (sequential+parallel) =    1.27 sec.

Cover cuts applied:  1
Flow cuts applied:  43
Gomory fractional cuts applied: 8

Integer optimal solution:  Objective =    3.9830000000e+03
Solution time =    1.65 sec.  Iterations = 1415  Nodes = 74



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 327

M
o

re A
b

o
u

t U
sin

g
 

IL
O

G
 C

P
L

E
X

<functionhead>

nodes available). The real critical time was a total of 0.00 seconds, time spent by individual 
processors in updating global, shared information. Since only one processor can access the 
critical region at any instant in time, the amount of time spent in this region really is crucial: 
any other processor that tries to access this region must wait, thus sitting idle, and this idle 
time is counted separately from the spin time.

Logs from the Parallel MIP Optimizer

There is also a difference in the way logging occurs in the parallel MIP optimizer. When this 
optimizer is called, it makes a number of copies of the problem. These copies are known as 
clones. The parallel MIP optimizer creates as many clones as there are threads available to it. 
When the optimizer exits, these clones and all their paraphernalia are discarded.

If a log file is active when the clones are created, then ILOG CPLEX creates a clone log file 
for each clone. The clone log files are named cloneK.log, where K is the index of the 
clone, ranging from 0 (zero) to the number of threads minus one. Since the clones are 
created at each call to the parallel MIP optimizer and discarded when it exits, the clone logs 
are opened at each call and closed at each exit. (The clone log files are not removed when 
the clones themselves are discarded.)

The clone logs contain information normally recorded in the ordinary log file (by default, 
cplex.log) but inconvenient to send through the normal log channel. The information 
likely to be of most interest to you are special messages, such as error messages, that result 
from calls to the LP optimizers called for the subproblems.

Nested Parallelism

If a ILOG CPLEX parallel LP optimizer (for example, parallel simplex or parallel barrier) is 
available along with the parallel MIP optimizer, then you have the option to choose the 
strategy for solving the MIP model in parallel in different ways:

◆ Make the branch & cut parallel.

If you want to make the branching parallel, then you should set the thread-limit 
parameter for the subproblem optimizer to 1 (one). For example:

● In the Interactive Optimizer, use the command set barrier limit threads 1 or 
set simplex limit threads 1. 

● When using the CPLEX Component Libraries, set the parameters 
IloCplex::BarThreads / CPX_PARAM_BARTHREADS or 
IloCplex::SimThreads / CPX_PARAM_SIMTHREADS to 1 (one).

◆ Make the solution of subproblems parallel.

If you want all the parallelism to occur in solutions of the subproblems, not at the 
branching level, then you should set the MIP thread-limit parameter to 1 (one). For 
example:

● In the Interactive Optimizer use the command set mip limit threads 1. 



U S I N G  P A R A L L E L  O P T I M I Z E R S

328 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

● When using the CPLEX Component Libraries, set the parameter 
IloCplex::MipThreads or CPX_PARAM_MIPTHREADS to 1 (one).

◆ make the strong branching variable selection parallel;

If you want the strong branching variable selection to occur in parallel, you should set 
the MIP thread-limit parameter to 1 (one) and the strong branching thread-limit 
parameter to a value greater than one. For example:

● In the Interactive Optimizer, use the commands set mip limits threads 1 and 
set mip limits strongthreads 2. 

● When using the CPLEX Component Libraries, set the parameter 
IloCplex::MipThreads / CPX_PARAM_MIPTHREADS to 1 (one) and to set the 
parameter IloCplex::StrongThreadLim / CPX_PARAM_STRONGTHREADLIM to a 
value greater than one. 

◆ make both branch  & bound and subproblem solutions parallel by nesting.

On systems that support nested parallelism, you can make both the branch & cut and the 
subproblem solutions work in parallel by setting the thread-limit parameters for both 
optimizers (MIP for the branch & cut, barrier or simplex for the subproblems) to values 
greater than one. For example, on a six-processor system, If the MIP thread-limit were 
set to 3, and the barrier thread-limit were set to 2, then three subproblems could be 
solved simultaneously, each using two processors.

Nested Parallelism Platform Considerations

Nested parallelism is not supported on DEC, HP, nor SGI parallel platforms. Consequently, 
on these platforms, you cannot call parallel optimizers from within other parallel optimizers. 
In particular, you cannot call the ILOG CPLEX Parallel Simplex or ILOG CPLEX Parallel 
Barrier Optimizer from within the ILOG CPLEX Parallel MIP Optimizer. 

For example, if you invoke the MIP optimizer and you have set the MIP thread-limit 
parameter to use more than one thread, when you call the simplex optimizer on MIP 
subproblems, it will use the serial, sequential algorithm. To use the parallel simplex 
optimizer or the parallel barrier optimizer on MIP subproblems, you must set the MIP 
thread-limit to 1 (one). That is, you must make it serial, sequential (not parallel).

MIP First Rule and its Exceptions

Since the parallelism available in the parallel MIP optimizer is normally applicable to a very 
large class of problems, and since it normally benefits them greatly, it will more often be 
best to use the parallel MIP optimizer, rather than parallel simplex or parallel barrier 
optimizers on the subproblems. We call this rule of thumb, “MIP first.”

One exception to this MIP-first rule occurs in problems with an extremely large aspect ratio 
(that is, the number of columns divided by number of rows) where the memory requirements 
of the parallel MIP optimizer exceed available resources.



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 329

M
o

re A
b

o
u

t U
sin

g
 

IL
O

G
 C

P
L

E
X

<functionhead>

Another exception, again for problems with a large aspect ratio, occurs for any problem that 
generates relatively few active nodes during a MIP optimization.

Finally, large aspect problems that spend a large fraction of the total solution time searching 
for the first incumbent may be good candidates for the parallel simplex optimizer (rather 
than MIP first).

Parallel Barrier Optimizer

The ILOG CPLEX Parallel Barrier Optimizer achieves significant speedups over its serial 
counterpart (the ILOG CPLEX Barrier Optimizer described in Solving LP Problems with the 
Barrier Optimizer on page 129, and in Chapter 7, Solving Quadratic Programming 
Problems) on a wide variety of classes of problems. Consequently, the parallel barrier 
optimizer will be the best LP choice on a parallel computer more frequently than on a single-
processor. For that reason, you should be careful not to apply performance data or 
experience based on serial optimizers when you are choosing which optimizer to use on a 
parallel platform.

If you decide to use the parallel barrier optimizer on the subproblems of a MIP, see also other 
special considerations about nested parallelism in Nested Parallelism on page 327.

Platform Considerations

On Hewlett-Packard (HP) only, the default number of threads used by the ILOG CPLEX 
Parallel Barrier Optimizer is the number of processors on the computer. You can override 
this default by resetting the operating system environment variable 
MP_NUMBER_OF_THREADS before you start ILOG CPLEX.

On Sun only, you must set the UNIX environment variable PARALLEL to a number. This 
number will be the overriding maximum for the number of threads, subject to licensing 
limits, as explained on page 319. The default behavior of the ILOG CPLEX Parallel Barrier 
Optimizer without this environment variable is to use only one thread.

Parallel Simplex Optimizer

In the ILOG CPLEX implementation of the Parallel Simplex Optimizer, the column-based 
work occurs in parallel. Consequently, a significant gain in speed may occur in the dual 
simplex optimization(tranopt / IloCplex::Dual / CPXdualopt()). 

Occasionally, in the primal simplex optimizer if the primal gradient parameter is set to 
steepest-edge pricing and the aspect ratio (that is, the number of columns divided by the 
number of rows) is relatively large (for example, 10 or more), then good speedups may 
occur with the parallel optimizer here, too. Larger problems with a somewhat smaller aspect 
ratio may also benefit from parallel simplex optimization. Since it is difficult to predict 
where the breakpoint will be, we encourage you to experiment.



U S I N G  P A R A L L E L  O P T I M I Z E R S

330 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

If you decide to use the parallel simplex optimizer on the subproblems of a MIP, see other 
special considerations about nested parallelism in Nested Parallelism on page 327.

Platform Considerations

The parallel simplex optimizer is available only on DEC and SGI parallel systems.



A P P E N D I X

I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 331

A

Interactive Optimizer Commands

The following table lists Interactive Optimizer commands, their primary options, and pages 
in this manual on which usage examples can be found. 

Command Options Example

add

baropt page 96, 
page 133 

baropt dualopt page 133

baropt primopt page 133

baropt stop page 133

change bounds

change coefficient

change delete

change name

change objective



332 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

change problem type page 155, 
page 168, 
page 242, 
page 242, 
page 246

change rhs

change qpterm page 243

change sense max page 224

change type page 155

display iis page 116

display problem all

display problem binaries page 154

display problem bounds

display problem constraints page 245

display problem generals page 154

display problem histogram page 132

display problem integers page 154

display problem names

display problem qpvariables page 245

display problem semi-continuous

display problem sos

display problem stats page 93, 
page 154

display problem variable page 245

display sensitivity

display settings

display settings all

display settings changed

Command Options Example



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 333

display solution basis

display solution bestbound

display solution dual

display solution kappa page 109

display solution objective

display solution quality page 113, 
page 138, 
page 245

display solution reduced

display solution slacks

display solution variables

enter

help

mipopt page 156

netopt page 96, 
page 222

optimize page 96

primopt page 96

quit

read filename type page 102, 
page 222, 
page 132

set advance yes page 102, 
page 224

set barrier page 133

set barrier algorithm i page 137, 
page 145, 
page 244

set barrier colnonzeros i page 142, 
page 146

Command Options Example



334 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

set barrier convergetol i page 147

set barrier crossover i

set barrier display i page 133, 
page 135, 
page 146

set barrier limits corrections i page 145

set barrier limits growth i

set barrier limits iterations 0 page 132

set barrier limits objrange i page 148

set barrier limits varupper i page 147

set barrier ordering i page 143

set barrier startalg i page 144

set clocktype i

set defaults

set logfile filename

set lpsolver i

set mip cuts class -1 page 160, 
page 185

set mip display 2 page 171

set mip emphasis

set mip interval 100 page 171

set mip limits aggforcut i

set mip limits cutsfactor page 161

set mip limits cutpasses i

set mip limits gomorycand i

set mip limits gomorypass i

set mip limits nodes page 166

Command Options Example



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 335

set mip limits solutions page 166

set mip limits strongcand i

set mip limits strongit i

set mip limits treememory page 182, 
page 183

set mip ordtype i

set mip strategy backtrack page 158, 
page 176

set mip strategy bbinterval page 158

set mip strategy branch i page 158

set mip strategy crossover i page 188

set mip strategy file i

set mip strategy heuristicfreq page 163, 
page 176

set mip strategy mipstart 1 page 165

set mip strategy nodeselect i page 158, 
page 177

set mip strategy order i page 163

set mip strategy presolvenode

set mip strategy probe page 175

set mip strategy startalgorithm page 187

set mip strategy subalgorithm i page 186, 
page 187, 
page 188 

set mip strategy variableselect i page 158, 
page 176, 
page 178

set mip tolerances absmipgap 3.0 page 179

set mip tolerances integrality i

Command Options Example



336 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

set mip tolerances lowercutoff n page 157, 
page 180

set mip tolerances mipgap 0.01 page 179

set mip tolerances objdifference n page 157, 
page 179

set mip tolerances relobjdifference n page 157, 
page 180

set mip tolerances uppercutoff n page 157, 
page 180

set network display i page 223

set network iterations i page 224

set network netfind i page 238

set network pricing i page 224

set network tolerances feasibility i page 223

set network tolerances optimality i

set output logonly y page 114, 
page 116

set output channel v1 v2

set preprocessing aggregator 2 page 98, 
page 108,  
page 164

set preprocessing boundstrength page 164

set preprocessing coeffreduce page 164, 
page 189

set preprocessing dependency 1 page 98, 
page 141

set preprocessing dual 1 page 100, 
page 143

set preprocessing fill i page 98

set preprocessing linear i

Command Options Example



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 337

set preprocessing numpass i

set preprocessing presolve i page 98, 
page 100, 
page 108, 
page 164

set preprocessing reduce i page 98, 
page 112

set preprocessing relax page 164

set read constraints i j

set read datacheck i

set read nonzeroes i j

set read qpnonzeroes i j

set read reverse i

set read scale i page 105

set read variables i j

set simplex basisinterval i

set simplex crash i page 106

set simplex dgradient i page 104, 
page 105

set simplex display i

set simplex iisfind i

set simplex limits iterations i

set simplex limits lowerobj i

set simplex limits perturbation i page 110

set simplex limits singularity i page 109

set simplex limits upperobj

set simplex perturbation 1 i page 110

set simplex pgradient i page 104

Command Options Example



M A N A G I N G  P A R A M E T E R S  I N  T H E  I N T E R A C T I V E  O P T I M I Z E R

338 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

Managing Parameters in the Interactive Optimizer

To see the current value of a parameter that interests you in the Interactive Optimizer, use the 
command display settings. The command display settings changed lists only 
those parameters whose values are not the default value. The command 
display settings all lists all parameters and their values.

To change the value of a parameter in the Interactive Optimizer, use the command set 
followed by options to indicate the parameter and the value you want it to assume.

The ILOG CPLEX Reference Manual documents the name of each parameter and its options 
in the Interactive Optimizer.

set simplex pricing

set simplex refactor i page 105, 
page 107

set simplex tolerances feasibility n page 114

set simplex tolerances markowitz n page 111

set simplex tolerances optimality n page 114

set simplex xxxstart

set timelimit page 166

set workdir directory

set workmem filesize page 166, 
page 185

tranopt page 96

write filename type page 98, 
page 109, 
page 118, 
page 186, 
page 132, 
page 241 

xecute command page 118 

Command Options Example



S A V I N G  A  P A R A M E T E R  S P E C I F I C A T I O N  F I L E

I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 339

Saving a Parameter Specification File 

You can tell the ILOG CPLEX Interactive Optimizer to read customized parameter settings 
from a parameter specification file. By default, ILOG CPLEX expects a parameter 
specification file to be named cplex.par, and it looks for that file in the directory where it 
is executing. However, you can rename the file, and you can tell ILOG CPLEX to look for it 
in another directory by setting the system environment variable CPLEXPARFILE to the full 
path name (including a new name, a new location) of your parameter specification file. You 
set that environment variable in the customary way for your platform. For example, on a 
Unix platform, you might use a shell command to set the environment variable, or on a 
personal computer running NT, you might click on the System icon in the control panel, then 
select the environment tab from the available system properties tabs.

During initialization in the Interactive Optimizer, ILOG CPLEX locates any available 
parameter specification file (by checking the current execution directory for cplex.par 
and by checking the environment variable CPLEXPARFILE) and reads that file. As it opens 
the file, ILOG CPLEX displays the message “Initial parameter values are being read from 
cplex.par” (or from the parameter specification file you specified). As ILOG CPLEX 
displays that message on the screen, it also writes the message to the log file. If 
ILOG CPLEX cannot open the file, it displays no message, records no note in the log file, 
and uses default parameter settings.

You can use a parameter specification file to change any parameter or parameters accessible 
by the set command in the Interactive Optimizer. The parameter types, names, and options 
are those used by the set command in the Interactive Optimizer.

To create a parameter specification file, you can use either of these alternatives:

◆ Use an ordinary text editor to create a file where each line observes the following syntax:

parameter-name option value

◆ Use the command display settings in the Interactive Optimizer to generate a list of 
current parameter settings. Those settings will be recorded in the log file. You can then 
edit the log file to create your parameter specification file.

display settings changed lists parameters different from the default.

display settings all lists all parameters.

Each entry on a line must be separated by at least one space or tab. Blank lines in a 
parameter specification file are acceptable; there are no provisions for comments in the file. 
You may abbreviate parameter names to unique character sequences, as you do in the set 
command. 

As ILOG CPLEX reads a parameter specification file, if the parameter name and value are 
valid, ILOG CPLEX sets the parameter and writes a message about it to the screen and to 



S A V I N G  A  P A R A M E T E R  S P E C I F I C A T I O N  F I L E

340 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

the log file. If ILOG CPLEX encounters a repeated parameter, it uses the last value 
specified. ILOG CPLEX terminates under the following conditions:

◆ if it encounters a parameter that is unknown;

◆ if it encounters a parameter that is not unique;

◆ if the parameter is correctly specified but the value is missing, invalid, or out of range.

Here is an example of a parameter specification file that resets the limits on the size of 
problem reads and opens a log file named problem.log. 

read constraints    50
read variables     100
read nonzeros      500
logfile            problem.log



I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 341

I N D E X

Index

A

absolute objective difference 179
absolute optimality tolerance 178, 179
accessing

basis information 39
current parameter value 36, 71
default parameter value 70
dual values 39
maximum parameter value 70
minimum parameter value 70
objective function value 39
parameters in Interactive Optimizer 338
reduced costs 39
slack values 39
solution quality 41
solution values 39

add member function
IloModel class 32, 41

advanced basis
in networks 97
reading 102
saving 101
starting from 101, 224
starting parameter 102

aggregator
applying more than once 99
barrier preprocessing 141
preprocessing 98
use of substitution 98

algorithm
choosing in LP 35
choosing node in MIP 36
choosing root in MIP 35
controlling in IloCplex 36
pricing 103

application
and Concert Technology 28
creating with Concert Technology 29
development steps 29

arc 220
architecture 55
arguments

null pointers 64
optional 64

array
creating multi-dimensional 46
extensible 32
using for I/O 47

aspect ratio 328, 329

B

backtrack
in branching strategy 158
parameter 176

barrier log file
example 136

barrier optimizer
algorithm 130, 244



342 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

I N D E X

algorithms and infeasibility 148
barrier display parameter 145
barrier growth parameter 147
centering corrections 145
column nonzeros parameter 142, 146
correction limit parameter 145
corrections limit 145
displaying solution 245
displaying solutions 245
growth parameter 147
infeasibility analysis 148
license 244
linear 129 to 149
log file 135
numerical difficulties and 146
out-of-core barrier 141
parallel 329
performance tuning 140
preprocessing 141
primal-dual 96, 97, 100
quadratic 239 to 261
row-ordering algorithms 142
simplex optimizer and 131
solution quality 138
solving LP problems 129
starting-point heuristics 143
unbounded optimal face and 147
unbounded problems 147
uses 130
working storage allocation 141

BAS file format 102, 264
basis

accessing information 39
condition number 109, 114
crossover algorithms 131
current 57
file formats to save 264, 265
previous optimal 59
removing objects from 42
saving best so far 110
unstable optimal 113
see also advanced basis 25

bibliography 25
BIN file format 264
bound

violation 114
branch & bound

terminology 156
branch & bound algorithm

memory problems and 181
priority order 162
special ordered sets (SOS) 168
storing tree nodes 182
tree subproblems 187

branch & cut
algorithm 156
parameters 158
tree 156

branching
direction 158

C

call by value 60
Callable Library

categories of routines 56
core 56
debugging and 90
description 17
linear optimizers 96
parallel optimizers 323
parameters 70
using 55 to 84
see also individual CPXxxx routines 25

callback
graphic user interface and 304
resetting to null 37, 71
using status variables 304

changing
limit on barrier corrections 145
maximization to minimization 225
minimization to maximization 224
pricing algorithm 224
problem type

network to LP 233
qp 242, 244
to mip 155
zeroed_qp 242, 244

quadratic coefficients 243
variable type 43



I N D E X

I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 343

channel
example 272

character string
length requirements 65

check.c CPLEX file 66
Cholesky factor

barrier iteration 130
barrier log file and 137
barrier performance and 140

choosing
algorithm in LP 35
node algorithm in MIP 36
root algorithm in MIP 35

clique cuts
defined 159

cloneK.log 327
clones 327

log files 327
threads and 327

closing
application 59, 226
environment 59, 226
log files 269

column
dense 146
density 142
growth parameter 225
index number 64
name 64
nonzeros parameter 142, 146
referencing 64

columnwise modeling 46, 73
complementarity 130, 147

convergence tolerance 146
Component Libraries

defined 18
Concert Technology Library

accessing parameter values 36
application development steps 29
creating application 29
description 17
design 28
error handling 43
solving problem with 28
using 27 to 53

writing programs with 27
see also individual Iloxxx routines 25

constraint
accessing slack values 39
cumulative 119, 120
cuts as 159
modeling linear 33
removing from basis 42
representing with IloRange 31
violation 115

continuous relaxation 155, 156
conventions

character strings 65
in parameter specification file 339
naming 267
notation 22
numbering 93, 266
numbering rows, columns 93

convert CPLEX utility 268
converting

error code to string 225
file formats 268
network-flow model to LP 231
network-flow problem to LP 233

convex quadratic programming see quadratic programming 
25

copying
variable types in MIP 62
variable types in QP 62

correction limit parameter 145
cover cuts 159

defined 159
CPLEX

Component Libraries 18
core 56
licensing 28
parameters 36

cplex library 320
cplex object

creating 34
notifying changes to 41

cplex.h header file 68, 70, 92, 242
cplex.log file

changing name 135
clone logs 327



344 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

I N D E X

default name 103, 269
cplex.par parameter specification file 339
CPLEXPARFILE environment variable 339
CPX_ABORT_CROSSOVER symbolic constant 302
CPX_ABORT_DUAL_INFEAS symbolic constant 302
CPX_ABORT_FEAS symbolic constant 302
CPX_ABORT_INFEAS symbolic constant 302
CPX_ABORT_PRIM_DUAL_FEAS symbolic constant 302
CPX_ABORT_PRIM_DUAL_INFEAS symbolic constant 

302
CPX_ABORT_PRIM_INFEAS symbolic constant 302
CPX_ALG_DUAL symbolic constant 134
CPX_ALG_PRIMAL symbolic constant 134
CPX_DPRIIND_AUTO symbolic constant 105
CPX_DPRIIND_FULL symbolic constant 105
CPX_DPRIIND_FULLSTEEP symbolic constant 105
CPX_DPRIIND_STEEP symbolic constant 105
CPX_DPRIIND_STEEPQSTART symbolic constant 105
CPX_NODEALG_BARRIER symbolic constant 186
CPX_NODEALG_DUAL symbolic constant 186
CPX_NODEALG_PRIMAL symbolic constant 188
CPX_PARAM_ADVIND parameter 102
CPX_PARAM_AGGFILL parameter 99
CPX_PARAM_AGGIND parameter 99, 164
CPX_PARAM_BARALG parameter 138, 145, 148, 244
CPX_PARAM_BARCOLNZ parameter 142, 146
CPX_PARAM_BARDISPLAY parameter 135, 146
CPX_PARAM_BAREPCOMP parameter 147
CPX_PARAM_BARMAXCOR parameter 145
CPX_PARAM_BAROBJRNG parameter 148
CPX_PARAM_BAROOC parameter 141
CPX_PARAM_BARORDER parameter 143
CPX_PARAM_BARSTARTALG parameter 144
CPX_PARAM_BARTHREADS parameter 320, 327
CPX_PARAM_BARVARUP parameter 147
CPX_PARAM_BBINTERVAL parameter 158
CPX_PARAM_BNDSTRENIND parameter 164
CPX_PARAM_BRDIR parameter 158
CPX_PARAM_BTTOL parameter 158
CPX_PARAM_CLIQUES parameter 160, 185
CPX_PARAM_CLOCKTYPE parameter 70, 323
CPX_PARAM_COEREDIND parameter 164
CPX_PARAM_COLGROWTH parameter 62, 225
CPX_PARAM_COVERS parameter 160, 185
CPX_PARAM_CRAIND parameter 106

CPX_PARAM_CUTLO parameter 157, 180, 181
CPX_PARAM_CUTSFACTOR parameter 161
CPX_PARAM_CUTUP parameter 157, 180, 181
CPX_PARAM_DEPIND parameter 100, 142
CPX_PARAM_DISJCUTS parameter 160
CPX_PARAM_DPRIIND parameter 104
CPX_PARAM_EPAGAP parameter 179
CPX_PARAM_EPGAP parameter 179
CPX_PARAM_EPMRK parameter 111
CPX_PARAM_EPOPT parameter 115
CPX_PARAM_EPPER parameter 111
CPX_PARAM_EPRHS parameter 114
CPX_PARAM_FLOWCOVERS parameter 161, 185
CPX_PARAM_FLOWPATHS parameter 161
CPX_PARAM_FRACCUTS parameter 161
CPX_PARAM_GUBCOVERS parameter 161, 185
CPX_PARAM_HEURFREQ parameter 163, 176
CPX_PARAM_IISIND parameter 116
CPX_PARAM_IMPLBD parameter 161, 185
CPX_PARAM_INTSOLLIM parameter 166
CPX_PARAM_MIPDISPLAY parameter 171, 173
CPX_PARAM_MIPHYBALG parameter 188
CPX_PARAM_MIPINTERVAL parameter 171
CPX_PARAM_MIPORDIND parameter 163
CPX_PARAM_MIPORDTYPE parameter 163
CPX_PARAM_MIPSTART parameter 165
CPX_PARAM_MIPTHREADS parameter 320, 324, 328
CPX_PARAM_MIRCUTS parameter 161
CPX_PARAM_NETEPOPT parameter 223
CPX_PARAM_NETEPRHS parameter 223
CPX_PARAM_NETFIND parameter 238
CPX_PARAM_NODEFILEIND parameter 166
CPX_PARAM_NODELIM parameter 166
CPX_PARAM_NODESEL parameter 158
CPX_PARAM_NZGROWTH parameter 62
CPX_PARAM_OBDIF parameter 157
CPX_PARAM_OBJDIF parameter 180
CPX_PARAM_PERIND parameter 111
CPX_PARAM_PERLIM parameter 111
CPX_PARAM_PPRIIND parameter 104
CPX_PARAM_PRECOMPRESS parameter 100
CPX_PARAM_PREIND parameter 98, 108, 164
CPX_PARAM_PROBE parameter 175
CPX_PARAM_REDUCE parameter 113
CPX_PARAM_REINV parameter 106, 107



I N D E X

I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 345

CPX_PARAM_RELAXPREIND parameter 164
CPX_PARAM_RELOBJDIF parameter 157, 180
CPX_PARAM_ROWGROWTH parameter 62, 225
CPX_PARAM_SCAIND parameter 105
CPX_PARAM_SCRIND parameter 66, 92, 109, 123, 225, 

271, 303
CPX_PARAM_SIMTHREADS parameter 320, 327
CPX_PARAM_SINGLIM parameter 110
CPX_PARAM_STARTALG parameter 187
CPX_PARAM_STRONGCANDLIM parameter 178
CPX_PARAM_STRONGITLIM parameter 178
CPX_PARAM_STRONGTHREADLIM parameter 320, 328
CPX_PARAM_SUBALG parameter 186, 188
CPX_PARAM_TILIM parameter 166
CPX_PARAM_TRELIM parameter 166, 182
CPX_PARAM_VARSEL parameter 158, 176, 178
CPX_PARAM_WORKDIR 184
CPX_PARAM_WORKMEM parameter 141, 166, 183, 185
CPX_PPRIIND_AUTO symbolic constant 104
CPX_PPRIIND_DEVEX symbolic constant 104
CPX_PPRIIND_FULL symbolic constant 104
CPX_PPRIIND_PARTIAL symbolic constant 104
CPX_PPRIIND_STEEP symbolic constant 104
CPX_PPRIIND_STEEPQSTART symbolic constant 104, 

105
CPX_SEMICONT 170
CPX_SEMIINT 170
CPXaddchannel routine 61, 272
CPXaddcols routine 58, 62, 87
CPXaddfpdest routine 68, 272, 273
CPXaddfuncdest routine 67, 272, 273
CPXaddrows routine 58, 62, 74, 87
CPXALG_BARRIER symbolic constant 188
CPXALG_BARRIER_NO_CROSSOVER symbolic constant 

188
CPXALG_DUAL symbolic constant 188
CPXALG_DUAL_BARRIER symbolic constant 188
CPXALG_NETWORK symbolic constant 188
CPXbaropt routine 133, 134, 244, 249, 257
CPXCHANNELptr data type 61
CPXCHARptr data type 68
CPXcheckaddcols routine 66
CPXcheckaddrows routine 66
CPXcheckchgcoeflist routine 66
CPXcheckcopyctype routine 66

CPXcheckcopylp routine 66
CPXcheckcopylpwnames routine 66
CPXcheckcopyqsep routine 66
CPXcheckcopyquad routine 66
CPXcheckcopysos routine 66
CPXcheckvals routine 66
CPXchgcoeflist routine 58, 87
CPXchgprobtype routine 168, 191, 242, 246
CPXchgqpcoef routine 243, 244
CPXcloseCPLEX routine 59, 123, 201, 226, 257, 273, 

304
CPXcopybase routine 123
CPXcopycttype routine 170
CPXcopyctype routine 62, 91, 153, 190
CPXcopylp routine 58, 86
CPXcopynettolp routine 231
CPXcopyorder routine 170, 207
CPXcopyqsep routine 62
CPXcopyquad routine 62, 248
CPXcopysetintparam routine 171
CPXcopysos routine 170, 207
CPXcreateprob 303
CPXcreateprob routine 58, 61, 74, 123, 190, 201, 248, 

257
CPXdelchannel routine 272, 273
CPXdelfpdest routine 68, 272, 273
CPXdelfuncdest routine 272, 273
CPXdisconnectchannel routine 271
CPXdisplayiis routine 117
CPXdualopt routine 86, 96, 329
CPXENVptr data type 61
CPXERR_NEGATIVE_SURPLUS symbolic constant 282
cpxerror message channel 271, 273
CPXfclose routine 68
CPXFILEptr data type 68
CPXfindiis routine 117
CPXflushchannel routine 271
CPXfopen routine 68, 269
CPXfputs routine 68
CPXfree routine 68
CPXfreeprob routine 59, 123, 201, 257, 304
CPXgetcallbackinfo routine 67, 301, 302, 304
CPXgetchannels routine 61, 271, 272, 273
CPXgetcolindex routine 64
CPXgetcolname routine 283, 286



346 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

I N D E X

CPXgetcols routine 281, 282, 283
CPXgetctype routine 154
CPXgetdblparam routine 64, 71
CPXgetdblquality routine 109, 115, 138, 245
CPXgeterrorstring routine 225, 303
CPXgetintparam routine 64, 71
CPXgetintquality routine 138
CPXgetmipobjval routine 190, 201
CPXgetmipslack routine 190
CPXgetmipx routine 190, 201
CPXgetnumcols routine 63
CPXgetrowindex routine 64
CPXgetrowname routine 63
CPXgetsos routine 154
CPXgetstat routine 190, 201, 302
CPXgetstrparam routine 64, 71
CPXgetx routine 60, 61, 257
CPXhybbaropt routine 96, 131, 133, 134
CPXhybnetopt routine 86, 96, 237
CPXiiswrite routine 117, 233
CPXinfodblparam routine 64, 70
CPXinfointparam routine 64, 70
CPXinfostrparam routine 64, 70, 71
cpxlog message channel 271
CPXlpopt routine 74, 96, 304
CPXLPptr data type 61
CPXmalloc routine 68
CPXmbasewrite routine 102
CPXmemcpy routine 68
CPXMIP_ABORT_FEAS symbolic constant 303
CPXMIP_ABORT_INFEAS symbolic constant 303
CPXmipopt routine 190, 201
CPXmpsread routine 68
CPXmsg routine 58, 67, 271, 272, 273
CPXmsgstr routine 68
CPXmstwrite routine 166
CPXNETaddarcs routine 225
CPXNETaddnodes routine 225
CPXNETcheckcopynet routine 66
CPXNETchgobjsen routine 225
CPXNETcreateprob routine 61, 225
CPXNETdelnodes routine 225
CPXNETfreeprob routine 226
CPXNETprimopt routine 225, 233
CPXNETptr data type 61

CPXNETsolution routine 225
CPXnewcols routine 58, 74, 87
CPXnewrows routine 58, 87
CPXopenCPLEX routine 57, 61, 71, 74, 123, 224, 257, 

271, 272
CPXordwrite routine 207
CPXprimopt routine 69, 86, 96, 191
CPXPROB_FIXED symbolic constant 191
CPXPUBLIC symbolic constant 67
CPXPUBVARARGS symbolic constant 67
CPXqpwrite routine 241
CPXreadcopybase routine 102
CPXreadcopymipstart routine 154
CPXreadcopyorder routine 154
CPXreadcopyprob routine 58, 154, 241, 284, 286
CPXreadcopysos routine 154
CPXrealloc routine 68
cpxresults message channel 271
CPXsavwrite routine 90
CPXsetdblparam routine 64, 71, 102, 161, 179, 185
CPXsetdefaults routine 71
CPXsetintparam routine 64, 71, 92, 102, 123, 138, 

165, 173, 185, 187, 188, 225, 238, 323
CPXsetlogfile routine 66, 68, 92, 135, 269, 270, 271
CPXsetlpcallbackfunc routine 67, 302, 304
CPXsetmipcallbackfunc routine 67, 302
CPXsetstrparam routine 64, 71
CPXsolution routine 74, 191, 245, 302
CPXsoswrite routine 207
CPXstrcpy routine 68
CPXstrlen routine 68
CPXtreewrite routine 167
CPXvecwrite routine 245
CPXVOIDptr data type 68
cpxwarning message channel 271
CPXwriteprob routine 74, 90, 100, 110, 207
CPXwritesol routine 65
crash parameter 106
creating

application with Concert Technology 29
CPLEX environment 224
log file 269
network flow problem object 225
parameter specification file 339
problem object 58



I N D E X

I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 347

crossover
file format 134
how to 133
infeasibility finder and 116
irreducibly inconsistent set (IIS) and 149
options 134
verifying barrier solutions 144

cumulative constraint 119, 120
cuts 159

adding 160
clique 159
cover 159
disjunctive 159
flow cover 159
flow path 160
Gomory fractional 160
GUB cover 160
implied bound 160
memory problems and 185
MIR 160
recorded in MIP node log file 172
re-optimizing 160
what are 159

D

data
entering 58

data types
special 61

debugging
Callable Library and 90
diagnostic routines and 66
heap 93
Interactive Optimizer and 90
return values and 92

defined 56
degeneracy 110

dual 186
deleting

model objects 42
dense column 142
dependency checker 100
destroying

CPLEX environment 59

nodes 225
problem object 59

detecting redundant constraints 100
devex pricing 104
diagnosing

infeasibility in QPs 246
network infeasibility 233

diagnostic routine 66
log file and 66
message channels and 66
redirecting output from 66

DIMACS 264
dimensions, checking 93
disjunctive cuts 159
displaying

barrier information 133, 135
barrier log file 136
barrier solution quality 138
basis condition 109
bound infeasibilities 114
column-nonzeros parameter 146
histogram 132
infeasibilities on screen 114, 116, 117
messages 272
MIP information 325
MIP information periodically 173
MIP node file 171
MIP progress reports 171
MIP solution information 167
MIPs 154
network objective values 222
network solution information 224
network solution on screen 225
optimization progress 304
parameter settings 338, 339
problem dimensions 93
problem statistics 93
QP solution information 245
reduced-cost infeasibilities 114
simplex solution quality 140
solution quality 113
solutions on screen 273
variables 266

DPE file format 186, 264
DUA file format 264



348 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

I N D E X

dual feasibility 130
dual formulation 100
dual residual 114
dual simplex optimizer

command 96
perturbing objective function 110
routine 96
selecting 96
stalling 110
see also simplex 25

dual variable
solution data 39

duality gap 130

E

EMB file format 264
end member function

IloEnv class 30
enter Interactive Optimizer command 153
entering 153

data in QPs 241
LPs for barrier optimizer 132
mixed integer programs (MIPs) 153
network arcs 225
network data 225
network data from file 233
network nodes 225

enumeration
Algorithm 35
BasisStatus 40
BoolParam 36
IntParam 36
NumParam 36
Quality 41
Status 37, 38
String Param 36

environment
initializing 57
multithreaded 58
parameter specification file 339
releasing 59
variable 339

environment object
constructing 30

error checking
diagnostic routines for 66
MPS file format 267
problem dimensions 93

error handling
in Concert Technology Library 43

example
barrier log file 136
columnwise modeling 46, 73
contents of IIS file 118
creating multi-dimensional arrays 46
FORTRAN 68
LP with advanced starting basis 121
message handler 272
MIP node log file 172
MIP optimization 189
MIP problem from file 199
MIP with SOS and priority orders 205
network optimization 221
optimizing QP 246
output channels 272
output from infeasibility finder 117
parameter specification file 340
reading QP from file 257
rowwise modeling 45, 72
using arrays for I/O 47

exception
querying 92

exportModel member function
IloCplex class 100, 110

expression
building 31
linear 31
piecewise linear 31

external variables 60
extra rim vectors 267

F

feasibility
analysis and barrier optimizer 148
dual 106, 130
network flows and 221
primal 130
progress toward 111, 221



I N D E X

I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 349

tolerance 114
file format

converting 268
described 264
example of quadratic program 257
numerically accurate 265

file reading routine
defined 57

file writing routine
defined 57

fill parameter 99
flow cover cuts

defined 159
flow path cuts

defined 160
FORTRAN 69, 93
fractional cuts

defined 160
free row 267

G

generalized upper bound (GUB) 160
see also GUB 25

getBoundSA member function
IloCplex class 40

getCplexStatus member function
IloCplex class 40

getDefault member function
IloCplex class 36

getDual member function
IloCplex class 39

getDuals member function
IloCplex class 39

getIIS member function
IloCplex class 40, 117

getMax member function
IloCplex class 36

getMessage member function
IloException class 92

getMin member function
IloCplex class 36

getNodeAlgorithm member function
IloCplex class 36

getObjSA member function

IloCplex class 40
getObjValue member function

IloCplex class 39
getParam member function

IloCplex class 36
getQuality member function

IloCplex class 41, 109, 138, 245
getReducedCost member function

IloCplex class 39
getReducedCosts member function

IloCplex class 39
getRHSSA member function

IloCplex class 40
getRootAlgorithm member function

IloCplex class 36
getSlack member function

IloCplex class 39
getSlacks member function

IloCplex class 39
getStatus member function

IloCplex class 37
IloCplex::Exception class 92

getStatuses member function
IloCplex class 39, 121

getting
see accessing 25

getValue member function
IloCplex class 39

getValues member function
IloCplex class 39, 245

global variables 60
Gomory fractional cuts

defined 160
gradient parameter

performance and 103
primal simplex optimizer 329

graphic user interface (GUI) 304
GUB

constraint 160
cover cuts 160

H

head 220
header file 92



350 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

I N D E X

heap, debugging 93
heuristics

starting point 143

I

IIS file format 264
ill-conditioned

basis 115
factors in 115
problem 113

ILM
see ILOG License Manager (ILM) 25

IloAdd template class 48
IloAlgorithm::Exception class 44
IloAlgorithm::Status enumeration 37
IloAnd class 34
IloArray template class 33
IloConversion class 30, 33, 43
IloCplex

objects in user application 28
IloCplex class

exportModel member function 100, 110
getBoundSA member function 40
getCplexStatus member function 40
getDefault member function 36
getDual member function 39
getDuals member function 39
getIIS member function 40, 117
getMax member function 36
getMin member function 36
getNodeAlgorithm member function 36
getObjSA member function 40
getObjValue member function 39
getParam member function 36
getQuality member function 41, 109, 138, 245
getReducedCost member function 39
getReducedCosts member function 39
getRHSSA member function 40
getRootAlgorithm member function 36
getSlack member function 39
getSlacks member function 39
getStatus member function 37
getStatuses member function 39, 121
getValue member function 39

getValues member function 39, 245
importModel member function 102, 241
setDefaults member function 37
setParam member function 37, 102, 179
setRootAlgorithm member function 35, 86, 96, 133
solve member function 35, 37, 38, 40, 41, 42, 49, 96, 

244
solveZeroedQP member function 242

IloCplex::AdvInd parameter 102
IloCplex::AggFill 99
IloCplex::AggInd 99
IloCplex::Algorithm enumeration 35
IloCplex::BarAlg 145, 148
IloCplex::BarColNz 142, 146
IloCplex::BarEpComp 147
IloCplex::BarMaxCor 145
IloCplex::BarObjRng 148
IloCplex::BarOrder 143
IloCplex::Barrier 133
IloCplex::BarrierDual 133
IloCplex::BarrierPrimal 96, 133
IloCplex::BarStartAlg 144
IloCplex::BarVarUp 147
IloCplex::BasisStatus enumeration 40
IloCplex::BoolParam enumeration 36
IloCplex::CraInd 106
IloCplex::DepInd 100, 142
IloCplex::DPriInd 104
IloCplex::Dual 96
IloCplex::EpMrk 111
IloCplex::EpOpt 115
IloCplex::EpPer 111
IloCplex::EpRHS 114
IloCplex::Exception class 44, 92

getStatus member function 92
IloCplex::exportModel 100
IloCplex::IISInd 116
IloCplex::IntParam enumeration 36
IloCplex::Kappa 109
IloCplex::NetworkDual 96
IloCplex::NumParam enumeration 36
IloCplex::PerInd 111
IloCplex::PerLim 111
IloCplex::PPriInd 104
IloCplex::PreCompress 100



I N D E X

I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 351

IloCplex::PreInd 98, 108
IloCplex::Primal 96
IloCplex::Quality enumeration 41
IloCplex::Reduce 99, 113
IloCplex::ReInv 106, 107
IloCplex::ScaInd 105
IloCplex::SingLim 110
IloCplex::Status enumeration 38
IloCplex::StringParam enumeration 36
IloEnv class 30

end member function 30
IloException class

getMessage member function 92
IloExpr class 31
ILOG License Manager (ILM)

CPLEX and 28
IloMaximize function 32
IloMinimize function 32, 48
IloModel class 31, 32

add member function 32, 41
remove member function 32, 41

IloNumArray class 32
IloNumVar class 30, 33
IloNumVarArray class 31
IloObjective class 31, 33, 48

setExpr member function 243
iloqpex1.cpp example

example
iloqpex1.cpp 246

IloRange class 31, 33
IloSemiContVar class 33
IloSolution class 34
IloSOS1 class 34
IloSOS2 class 34
implied bound cuts

defined 160
importModel member function

IloCplex class 102, 241
include file 92
inconsistent constraints 116
incumbent

node 157
solution 157

index number 64
infeasibility

barrier optimizer and 148
diagnosing in network flows 233
diagnosing in QPs 246
displaying on screen 114
dual 138, 144, 148
during preprocessing 116
maximum bound 114
maximum reduced-cost 114
network flow 221
network optimizer and 233
norms 137
primal 138, 144, 148
ratio in barrier log file 137
reports 112
scaling and 113
unscaled 113

infeasibility finder 116, 149
crossover and 116
multiple IISs 117
network-flows and 233
preprocessing and 121
sample output 117
setting time limit on 120

infeasible problem
analyzing 40

initializing
CPLEX environment 224
problem object 58, 225

input operator 32
instantiating

CPLEX environment 224
problem object 58, 225

Interactive Optimizer
accessing parameters in 338
commands 331 to 338
customized parameter settings 339
debugging and 90
description 17
experimenting with optimizers 88
improving application performance 90
setting parameters 338
testing code in 86

irreducibly inconsistent constraints 116
irreducibly inconsistent set (IIS) 117

algorithms 120



352 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

I N D E X

example, cumulative constraint 119
example, network 233
file format for 264
network flows and 233
sample file 118

K

knapsack constraint 159, 160

L

libcplex.a 320
libparcplex.a 320
license

barrier optimizer (linear) 129
barrier optimizer (quadratic) 239
CPLEX 28
mixed integer programming (MIP) 152
parallel 319
threads and 321

limiting
network iterations 224
strong branching candidate list 178
strong branching iterations 178

linear expression 31
Linear Programming (LP) problem

see LP 25
linear relaxation

MIPs 155
network flow and 233
QPs 246

log file
barrier optimizer 135
barrier, example 136
Cholesky factor in 137
clones and 327
closing 269
contents 103, 138
creating 269
default 269
description 269
diagnostic routines and 66
iteration 108
MIPs 171

naming 269
network 223
node 171
parallel MIP optimizer and 327
parameter 269
parameter specifications and 339
records IISs 117
records infeasibilities 114
records infeasibility information 116
records singularities 109
relocating 269
renaming 269

LP
barrier optimizer 129
choosing algorithm 35
memory use and 266
network optimizer 219
problem formulation 18, 130
solving 95 to 149
solving with IloCplex 35

LP file format
defined 264
entering barrier problem 132
IISs and 118
QPs and 241
row, column order 266
special considerations 266

M

managing
log file 269

Markowitz tolerance 110, 111
maximal cliques

recorded in MIP node log file 172
maximization

concave QPs 240
lower cutoff parameter 180
network flow and 224
see also optimization

maximum bound infeasibility 114
maximum dual residual 115
maximum reduced-cost infeasibility 114
maximum row residual 115
memory leaks 30



I N D E X

I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 353

memory management 103, 107, 181
paging 107
refactoring frequency and 108
virtual 107

message channel
diagnostic routines and 66

message handler (example) 272
MIN file format 264
minimal covers

recorded in MIP node log file 172
minimization

convex QPs 240
network flow and 224
see also optimization
upper cutoff parameter 180

MIP 151 to 217
branch & bound algorithm 156
changing problem type 155
changing variable type 155
choosing node algorithm 36
choosing root algorithm 35
continuous relaxation of 155
displaying 154
memory problems and 181
optimizer 151
parallelism and 328
problem formulation 152
progress reports 170
relaxation algorithm 187
solution information 167
solving with IloCplex 35
subproblem algorithm 187
subproblems 186
supplying first integer solution 165
terminating optimization 166

MIP optimizer
parallel 324
solution information 167

MIR
cuts 160

Mixed Integer Programming (MIP) problem
see MIP 25

model
adding objects 41
adding submodels 32

deleting objects 42
extracting 34
notifying changes to cplex object 41
removing objects 41
solving 28, 33, 35
solving with IloCplex 49

modeling
columnwise 46, 73
objects 28
rowwise 45, 72

MP_NUMBER_OF_THREADS 329
MPS file format

BAS files and 264
CPLEX extensions 267
defined 264
DUA format 264
entering barrier problem 132
proprietary information in 265
reference row values 170
REW 265
saving basis 264
saving dual 264
saving embedded network 264
saving modifications 268
saving QP 241
weights 170

MST file format 264
multithreaded application

needs licensed processes 58
needs multiple environments 58

N

namespace conflicts 60
naming

arcs in network flow 225
conventions 267
log file 269
node file 184
nodes in network flow 225

nested parallelism 327
NET file format 225, 265
network

converting to LP model 231
embedded 237



354 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

I N D E X

infeasibility in 221
modeling variables 220
problem formulation 220, 221

network extractor 237
Network Flow problem

see network 25
network object 220
network optimizer 97, 219 to 238

column growth parameter 225
command 96
file format to save extracted network 264
preprocessing and 99, 238
problem formulation 221
routine 96
row growth parameter 225
turn off preprocessing 99, 238

nexample.net 222
node

demand 221
from 220
head 220
sink 221
source 221
supply 221
tail 220
to 220
transshipment 221

node file 182
cpx name convention 184
limiting size of 185

node log 170
node selection

parameter in branching strategy 158
node selection strategy

best estimate 185
depth-first search 185

nondeterminism 322
nonseparable 240
notation 22
notation in this manual 22
notifying

changes to cplex object 41
numbering conventions

C 93
Fortran 93

row, column order 266
numerical difficulties 108, 146

barrier growth parameter 147
basis condition number and 109
complementarity 146
convergence tolerance 146
dense columns removed 146
infeasibility and 111
sensitivity 109
unbounded optimal face 147
unbounded variables 147

numerical variable 33

O

objective coefficients
crash parameter and 106
modified in log file 222
network flows and 222
priority and 163

objective difference
absolute 179
relative 179

objective function 33
accessing value 39
changing sense 225
free row as 267
in log file 222
in MPS file format 268
maximization 268
maximize 32
minimize 32
network flows and 220
representing with IloObjective 31
sign reversal in 268

objective value
in log file 222
network flows and 220
object range parameter 148
unbounded 148

operator << 32
operator >> 32
optimality

basis condition number and 109
cutoff parameters 180



I N D E X

I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 355

duality and 186
infeasibility ration 138
normalized error and 140
singularities and 110
tolerance 113, 114, 115, 178

absolute 179
relative 178

tolerance, absolute 178
tolerance, relative 178

optimization
interrupting 304
stopping 166, 304

optimization problem
defining with modeling objects 28
representing with IloModel 31

optimization routine 56
optimizer

barrier (linear) 129 to 149
barrier (quadratic) 239 to 261
choosing 35
commands to invoke 96
differences between Barrier, simplex 131
dual simplex 97
MIP 151, 156
network 97, 219 to 238
parallel 319 to 330
primal simplex 97
primal-dual barrier 97
routines to call 96

optimizing
cuts 160

ORD file format 170, 265
out-of-core barrier 141
output

channel parameter 270
debugging and 92
redirecting 270

output operator 32

P

PARALLEL 329
parallel

library 320
license 319, 320

measuring time 323
nested optimizers 327
optimizers 319 to 330
platform 330
speed 323
threads 320

parameter
accessing current value 36, 71
accessing default value 70
accessing maximum value 70
accessing minimum value 70
advanced starting 102
algorithmic 140
barrier corrections 145
barrier growth 147
barrier starting algorithm 148
Callable Library and 70
controlling branch & cut strategy 158
crash 106
customized 339
fill 99
gradient 103
iisfind 120
log file 269
mipstart 165
netfind 237
node file storage 185
object range 147
optimality cutoff 180
output channel 270
perturbation limit 111
preprocessing 99
preprocessing aggregator 99
preprocessing dependency 141
preprocessing fill 98
refactoring frequency 106
saving 102
screen indicator 225
setting 37, 71, 338
setting all defaults 37, 71
specification file 339
symbolic constants as 70
tree memory 182
working memory 182

parameter routine



356 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

I N D E X

defined 57
parameter specification file 339, 340

creating 339
example 340
syntax in 339

parameters
customized 339

parcplex 320, 323
perturbing

file format to save perturbed problem 264, 265
objective function 110
variable bounds 110

piecewise linear expression 31
populating problem object 58, 225
portability 67
PPE file format 265
PRE file format 132, 265
preprocessing

aggregator parameter 99
barrier optimizer 141
dense columns removed 146
dependency parameter 141
fill parameter 98, 99
IIS files and 120
infeasibility detected in 116
infeasibility finder and 121
memory management and 108
MIPs 164
network optimizer and 99, 238
starting-point heuristics and 143
switching from primal to dual 100
to save file 100
to turn off 98
to turn on dependency checker 100
when to use 98

presolve compression parameter 100
presolver 98

barrier preprocessing 141
file format to save reduced problem 265
preprocessing 98
to turn off 98

pricing algorithms 224
primal feasibility 130
primal infeasibility 246
primal simplex optimizer 97

command 96
perturbing variable bounds 110
routine 96
stalling 110
see also simplex 25

primal variables 106
primal-degenerate problem 97
primal-dual barrier optimizer

see barrier optimizer 25
priority 163

branching strategy 158
derived from set members 170
file format for orders 265
order 162, 169, 170
special ordered sets (SOSs) and 169

probing parameter 175
problem

analyzing infeasible 40
solving with Concert Technology Library 28

problem formulation
barrier 130
dual 130, 132
explicitly solving dual 100
ill-conditioned 113
infeasibility reports 112
linear 18
network 221
network-flow 220
primal 130, 132
removing dense columns 142
switching from network to LP 231, 233

problem modification routine
defined 56

problem object
creating 58
destroying 59
freeing 59
initializing 58
instantiating 58
network 220
populating 58, 225

problem query routine
defined 56

problem type
changing from network to LP 233



I N D E X

I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 357

changing to MIP 155
changing to mip 155
changing to qp 242, 244
changing to zeroed_qp 242, 244
detecting MIPs 155

Q

QP
example 246, 257
problem formulation 240
solution example 257
solving 239 to 261

QP file format 241, 265
quadratic coefficient

changing 243
Quadratic Programming (QP) problem

see QP 25
query routine 283, 286

R

ranged row 267
reading

advanced basis 102
advanced basis from file 102
fixed MIP 156
MIP problem data 199
MIP problem data from file 153
MIP starter information 165
MIP tree from TRE file 166
network data from file 233
perturbed problem from DPE file 186
preprocessed problem from SAV file 132
problem data for QPs 241
problem data from file 132
problem data from VEC file 134
QP problem data from file 257
relaxed MIP 156
SOS problem data 155
start values from MST file 165

redirecting
diagnostic routines 66
log file output 270
oputput 92

screen output 270
reduced costs

accessing 39
reduced-cost pricing 104
redundance, detecting 100
redundant constraints, detecting 100
reference row values 170
reflection scaling 237
relative objective difference 179
relative optimality tolerance 178
relaxation 155

algorithm applied to 187
continuous 156
continuous of MIPs 155
fixed MIP 155, 156
LP in branch & cut 156
of MIP problem 156

relocating
log file 269

remove member function
IloModel class 32, 41

renaming
log file 269

residual
dual 114
maximum dual 115
maximum row 115
row 114

return value 63
debugging with 92
routines to access parameters 70

REW file format 265
RHS

see right-hand side 25
right-hand side (RHS)

file formats for 267
rim vectors 267
root relaxation 324
row

growth parameter 225
index number 64
name 64
referencing 64
residual 114

row-ordering algorithms 142



358 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

I N D E X

approximate minimum degree (AMD) 142
approximate minimum fill (AMF) 142
automatic 142
nested dissection (ND) 142

rowwise modeling 45, 72

S

SAV file format 102, 132, 241, 265
saving

advanced basis 101
best factorable basis 110
DPE file 186
MIP tree 166
parameter specification file 102, 339
parameters 102
perturbed problem 186
preprocessed file 100
preprocessed problem 100
SAV file 186
TRE file 167

scaling 113, 115
alternative methods of 105
definition 105
in network extraction 237
infeasibility and 113
singularities and 110

semi-continuous variable 33, 170
sensitivity analysis

barrier optimizer 131
MIPs 155, 167
performing 40

separable 240
set Interactive Optimizer command 338
setDefaults member function

IloCplex class 37
setExpr member function

IloObjective class 243
setParam member function

IloCplex class 37, 102, 179
setRootAlgorithm member function

IloCplex class 35, 86, 96, 133
setting

all default parameters 37, 71
callbacks to null 37, 71

customized parameters 339
parameter specification file 339
parameters 37, 71, 338
see also changing 25

simplex
dual 97
optimizer 131
primal 97
see also dual simplex optimizer 25
see also primal simplex optimizer 25

simplex optimizer
parallel 329

singularity 109
slack variable

accessing values 39
slack variables 106
solution

accessing quality information 41
barrier 245
basic infeasible primal 112
basis 131
binary files for 264
complementary 130
differences between barrier, simplex 131
example QP 257
feasible in MIPs 165
file format for nonbasis 265
incumbent 157
infeasible basis 148
midface 131
nonbasis 131
pure barrier 244
quality 138, 144, 155, 245
supplying first integer in MIPs 165
text file for 265
unbounded dual 112
verifying 144

solution value
accessing 39

solve member function
IloCplex class 35, 37, 38, 40, 41, 42, 49, 96, 244

solveZeroedQP member function
IloCplex class 242

solving
model 35



I N D E X

I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L 359

SOS
branching priority 169
file format for 265
in branching strategy 158
type 1 34
type 2 34
using 168
weights in 170

SOS file format 169, 265
Special Ordered Set (SOS)

see SOS 25
stalling 110
static variables 60
status variables, using 304
steepest-edge pricing 104, 182, 186
strong branching 177
surplus argument 281
symbolic constants 63, 70

T

tail 220
terminating

barrier iterations 132
because of singularities 110
because of stalling 111
because of time limit 120
MIP optimization 166
network optimizer iterations 224

threads 320
clones 327
example 321
licenses 321
parallel optimizers 320
performance and 321
platform considerations 321

thread-safe 60
tolerance

absolute optimality 179
feasibility 114, 223
Markowitz 110, 111
optimality 114, 115, 223
relative optimality 178

TRE file format 167, 182, 265
TXT file format 265

U

unbounded optimal face 131, 147
utility routine

defined 56

V

variable
accessing dual 39
changing type 30, 43
external 60
global 60
in expressions 31
numerical 33
order 266
removing from basis 42
representing with IloNumVar 30
semi-continuous 33, 170
static 60
type 153

variable selection
parameter in branching strategy 158

variable selection strategy
strong branching 177, 185

VEC file format 134, 245, 265
vectors, rim 267
violation

bound 114
constraint 115



360 I L O G  C P L E X  7 . 5  —  U S E R ’ S  M A N U A L

I N D E X


