
An Adaptive and Transferable Dialog
Management System for Social Aware Task

Execution

Antonio Capela1[], Samuel Mascarenhas1[], Pedro Santos1[], and Manuel
Lopes1[0000−0002−6238−8974]

INESC-ID, Instituto Superior Técnico, Lisboa, Portugal

Abstract. Efficient and acceptable A.I. agents need to interact and di-
alog with their users taking into account not just task efficiency but also
social preferences in the interaction. In this work we introduce an hier-
archical model for generating dialog in an A.I. performing tasks such as
delivering drinks in a bar or books in a library. At the base of the system
is a dialog management based on POMDP (Partially Observable Markov
Decision Process) models. This task specific component can by itself be
used to execute the task. We then introduce another level, and define
the interface between the levels, to be able to complement the dialog
generated to take into account the social preferences of interaction of
each particular user. We show how a particular parameterization of the
state allows to learn a personalised policy. We further show that with
our formalism a social policy learned for a particular user can then be
used in other similar tasks without requiring further learning. We present
several simulations showing how we can plan multiple tasks, learn social
policies and that those policies can be transferred.

Keywords: Social Aware Agents · Dialog Management · Adaptive Learn-
ing · User Adaptation · Task Transfer

1 Introduction

A Spoken dialog system (SDS) is a computer system allowing people achieve a
task by interacting with computers via spoken language to achieve their goals.
SDSs are an increasingly prominent part of our society, we see them in costumer
support, intelligent home appliances, automated personal assistants, and much
more. The relatively recent increase in popularity of SDS makes them a very
interesting topic to study.

With the current advances in AI the number of situations where we will
be interacting with autonomous agents is expected to rise in the future. One
example would be fully autonomous vehicles that provide taxi services. In this
situation, how should an autonomous taxi interact with passengers from a social
perspective? What happens when a person tries to abide by the same social
norms he or she would when interacting with a human cab driver but the system
is unable to reciprocate? In that case, the interaction will likely not be as pleasant

2 A. Capela et al.

when compared to an autonomous driver that is capable of understanding and
follow the same social conventions. These implicit conventions are described
in sociological theories of interaction such as the highly influential Politeness
theory [3]. This theory postulates that people use specific politeness strategies
when communicating with each other in order to maintain each others social and
moral standing, also referred to as the concept of ’face’ in the theory. Moreover,
rational agents, according to the theory, choose what they perceive to be the
most effective strategies to avoid losing their face. This choice is non-trivial as,
for instance, an overuse of the same strategy might come across as insincere and
neglectful of the other person.

With the rise of smart speakers like Amazon Alexa, we are currently wit-
nessing a renewed interest in spoken dialogue systems. The great progress made
in speech recognition and speech synthesis opens up the potential for such sys-
tems to engage with their users in novel ways that go beyond simple information
exchange. Moreover, the research fields of Intelligent Virtual Agents and Social
Robotics are also highly invested in developing dialogue systems with social ca-
pabilities. The main reason is that there are several benefits in having a dialogue
system that is capable of engaging in social dialogue with humans [1]. Not only
this type of dialogue can make the interaction feel more enjoyable but it also
can contribute to a greater feeling of trust in the system [2]. This is because
human-human communication is greatly affected by how well the interlocutors
are able to establish rapport with each other and studies have shown that the
same applies to human-agent communication [6, 4]. In fact, in scenarios that in-
volve the disclosure of sensitive information, such as a medical interview, people
can feel even more comfortable when interacting with a virtual agent that is
fully autonomous rather than one that is being operated by a human [5].

Initial strategies to model SDSs were based around creating a Finite State
Automaton (FSA)[8, 9], which can be represented as a graph where the nodes
represent prompts given by the machine and the links give the user’s possible
responses. In order to avoid errors in automatic speech recognition (ASR), the
possible responses must be very limited, and the resulting dialogues could be
very frustrating to the users. Different strategies appeared to deal with this but,
as shown by Williams and Young[10], most fall under the POMDP framework.

In this paper we hope to achieve a machine capable of doing simple social
tasks taking in consideration the social context and social preferences of each
user. To do this the model will contain the usual POMDP model that is indif-
ferent to the social implications of the conversation, only focused on the user’s
goals, with an additional layer is built on top of it, that is responsible for adding
actions of social character, like greeting or thanking. This layer avoids using
the internal structure of the POMDP in order to be possible to transfer it to
a different problem where it would be able to perform without extra learning
necessary.

This approach differs from existing work because of the separation between
the task level planing, handled by a POMDP, and the social planing, handled
by a layer on top of that.

Dialog Management System for Social Aware Task Execution 3

Due to our contributed architectural choices and the defined interfaces be-
tween the different state representation, it is possible to use Reinforcement learn-
ing on the social layer to learn the social context and preferences of the user and
transfer the social policy between different tasks.

2 Computational Model

The proposed decision architecture, shown in Fig.1, is divided into two main
components. At the core, we have a model for the conversation that ignores
social context and its only focus is on completing the task at hand. The POMDP
model is used for this effect. This layer is obviously task specific and normally
all its parameters can be hand-tuned based on the task.

POMDP

RL

user

belief
POMDP action

action

 obs

 obs
 reward

Fig. 1. Architecture of the model. At the core we have a POMDP responsible to gen-
erate a task specific dialog. At the top layer we have an RL agent that learns social
policies that enhances the POMDP policy to take into account the social preferences
of the users. An interface between the two levels was develop to ensure that the RL
agent can learn and that its policy can be transferred to other tasks.

On top of that, we build a system that is responsible for adding the social in-
teractions to accommodate the user. This system will use reinforcement learning
to find the optimal policy, so we’ll refer to it as the RL layer. This component is
not task specific but is instead user specific. It will learn how each user prefers
its interactions.

A great challenge is to provide clear interfaces between the task and social
levels to ensure that: i) each component can work reliably; ii) the interface is
as simple as possible; iii) the system can adapt to each user; iv) user dependent
knowledge can be transferred.

4 A. Capela et al.

With these goals in mind we defined the following interface. The RL layer will
receive information about the change in belief of the POMDP because we want
to know if the last part of the dialog changed the belief about the task. It also
receives the optimal action proposed by the POMDP that the RL level can choose
to accept or to overwrite it with a social action. The reason for this is that if the
belief changed in the last interaction maybe the agent is in the middle of asking
some task specific information and so we should not interrupt the exchange
with social cues. For instance if the belief grew to increase the probability of
the task being acquiring a beer, we should not interrupt to compliment the bar
before asking if it is with or without alcohol. The RL layer will then observe the
response from the user and, if it kept the action from the POMDP, it will relay
it to the POMDP and update the belief.

We now go into more detail how these parts work.

2.1 Mathematical Models

POMDP - For Dialog Management A Partially Observable Markov Deci-
sion Process (POMDP) is a mathematical framework that can be used to model
sequential decision problems where there is only partial information of the state
of the environment. A POMDP is formally defined by the tuple (S,Am, T,R,O,Z, λ, b0),
where:

– S is the set of states
– Am is the set of action the agent may take
– T defines a transition probability p(s′|s, am)
– R defines the expected reward r(s, am)
– O is the set of observations
– Z defines the observation probability p(o|s′, am)
– λ is a geometric discount factor 0 ≤ λ ≤ 1
– b0(s) is the initial state distribution.

At each time step t, the environment is in some state s. The agent chooses
an action am that causes the environment to transition to state s′ with prob-
ability p(s′|s, am). Finally, the agent receives an observation o with probability
p(o|s′, am) and a reward r equal to r(s, am).

A useful quantity to keep track is the probability distribution over the states,
known as the belief (b). This quantity can be updated according to equation
Eq. (1), where p(o′|am, bt) is a normalising constant.

bt+1(s′) = p(s′|o′, am, bt)

=
p(o′|s′, am, bt)p(s′|am, bt)

p(o′|am, bt)

=
p(o′|s′, a)

∑
s∈S p(s

′|am, bt, s)p(s|am, bt)
p(o′|am, bt)

=
p(o′|s′, a)

∑
s∈S p(s

′|s, am)bt(s)

p(o′|am, bt)

(1)

Dialog Management System for Social Aware Task Execution 5

The goal of the agent is to maximise the cumulative, infinite-horizon, dis-
counted reward Eq. (2):

Θ =

∞∑
t=0

λtrt (2)

The optimal policy, that is, the policy that will maximise the expected return,
will depend on the complete history of the dialog. However, the belief has a useful
property that it is the complete summary of the dialog history. Formally, given
an initial belief b0 and a history {a1, o1, a2, o2, ...}, the belief provides a sufficient
statistic. As a result, the policy can be seen as simply a mapping from belief
state to action π(b) ∈ Am.

Spoken Dialog System-POMDP In this section we show how a POMDP
is commonly used for generating Spoken Dialog Systems (SDS). We follow the
approach of Williams and Young[10] The properties of spoken dialog make it so
that, when represented as a POMDP, the state can be naturally separated into
three distinct components:

– User goal (g)
– User action (u)
– Dialog history (h)

As a result, the factored POMDP state will be defined as:

s = (g, u, h) (3)

With this in mind, we can expand the transition function and decompose it
into its three components:

p(s′|s, am) = p(g′, u′, h′|g, u, h, am)

= p(g′|g, u, h, am)p(u′|g′, g, u, h, am)p(h′|g′, u′, g, u, h, am)
(4)

We can then simplify this equation by taking some independence assump-
tions. For the first term, which refers to how the user goal changes at each step,
we’ll assume it only depends on the previous goal, the dialog history and the
machine’s action.

p(g′|g, u, h, am) = p(g′|g, h, am) (5)

The next term, how the user will act at each step, we assume to only depend
on the current goal, the dialog history an the machine’s action.

p(u′|g′, g, u, h, am) = p(u′|g′, h, am) (6)

For the last term, which captures relevant information about the history of
the dialog, this will only depend on the most recent variables, as well as the
previous dialog history.

6 A. Capela et al.

p(h′|g′, u′, g, u, h, am) = p(h′|g′, u′, h, am) (7)

Replacing Eq. (5), Eq. (6) and Eq. (7) into Eq. (4), we get:

p(s′|s, am) = p(g′|g, h, am)p(g′|g′, h, am)p(h′|g′, u′, h, am) (8)

As for the observation, this will only depend on the user’s action, so the
observation probabilities become:

p(o′|s, am) = p(o′|g, u, h, am)

= p(o′|u)
(9)

Combining Eq. (8) and Eq. (9) with Eq. (1), we get the equation for belief
updating for the SDS-POMDP:

b(g′, u′, h′) =

= k · p(o′|u′)
∑
h∈H

p(u′|s′, h, am) · p(h′|g′, u′, h, am)
∑
g∈G

p(g′|g, h, am)
∑
u∈U

b(g, u, h)

(10)

Overall, the SDS-POMDP framework makes it easier to model spoken dialog
systems when compared to the usual POMDP framework, and the assumptions
made allow more efficient algorithms.

RL - For User’s Personality Adaptation The RL layer runs on top of the
POMDP. Its task will be to choose between the action selected by the opti-
mal policy (πPOMDP) of the POMDP or a social action, e.g. saying hello. It is
composed of:

– The observed state s in which we will learn, composed of:

• the current POMDP belief b.
• the previous POMDP belief pb.
• the action selected using the optimal policy from the POMDP am.
• the previous action pa.

– A set of actions the agent can take, both the action from the POMDP and
the social actions: A = Am ∪Asocial

– a hidden state h that in unknown and includes the POMDP state (of which
the structure is known), as well as information on the user’s social pref-
erences. This could be information on whether the user is happy with the
conversation so far, if he feels that he has been treated fairly, and so on.

– A reward function r(h, a)
– A observation probability function p(o|h, a)

Dialog Management System for Social Aware Task Execution 7

As explained before this state guarantees that the agent can learn, but also
that it can transfer the learned knowledge about the user for another task.

The update of the beliefs (b and pb) are dependent on the type of action a. If
the action was social, both beliefs remain the same. If the action was not social,
then b is updated using Eq. (10), and pb is set to b. Also, pa is set to the previous
action, unless the last action terminated the dialog, in which case pa indicates
that this is the beginning of a new dialog.

In order to have the RL layer not depend on the underlying POMDP struc-
ture, so that it can be transferred to another problem, instead of taking the
belief directly, only the total variation (TV) between the current and the previ-
ous belief, calculated according to Eq. (11), will be used to create the optimal
policy for the RL layer.

TV (bt+1, bt) =
1

2

∑
s∈S
|bt+1(s)− bt(s)| (11)

An identifier (id) will also be used for as information on the last action. It will
store the last social action that was performed (or whether it is the beginning
of the conversation), and in the case of the last action being non-social, whether
it is the same as the last non-social action or not. These two elements will be
converted to a numerical vector (φ(s)). The first component of the vector will
be the total variation referred above and the rest will be a one-hot encoding of
the id.

We can then create a policy using this encoding, by taking the inner product
with a parameter vector wa for each social action plus one for keeping the
optimal POMDP action, and then normalising using the softmax function, like
in Eq. (12). The elements of the final vector give the probability of selecting the
corresponding action.

π(s, a) =
e−wa·φ(s)∑

a′∈A e
−wa′ ·φ(s) (12)

To find the parameters that optimise the policy, we use the evolution strategy
CMA-ES [7]. The function to optimise is the sum of the rewards received over
n-steps, and the optimisation occurs over the parameters wa.

3 Experiments

In the experiments we show the two main capabilities of our system. First that
the system is able to learn how to use social actions to increase how well the user
enjoys the interaction. We consider different user profiles and see how well it can
adapt to each profile. Second we want to show that with our architecture we
are able to transfer the knowledge about the user from one scenario to another.
If an user enjoys a certain type of social interaction in one scenario we can use
such preference to bootstrap the social actions in a new (related) scenario.

8 A. Capela et al.

pb

b

am

pa

h

o r

a

id TV

pb ′

b ′

a′m

pa′

h ′

o′ r′

a′

id ′ TV ′

PO
M

D
P

PO
M

D
P

s s′

(s) (s′)

Timestep t Timestep t+1

Fig. 2. Structure of the RL layer. Each arrow indicates that the variable is directly
dependent on the other. The dashed boxes represent the observed state s and the
numerical representation of the state φ(s). o is the observed response by the user, a is
the action selected by the RL, r is the reward received. The other variables are explain
in the text.

3.1 Scenarios

We consider two different scenarios to validate our claims and contributions. We
need two scenarios to test the transfer and also to see how well the architecture
we have is agnostic to the specific details of each task. In the following, we make
a simple description of the POMDP structure of these scenarios:

Scenario 1: Bar In the first scenario, we have a costumer going to a bar and
asking for a drink. He can want a bottle of water, or a glass of beer of brand 1 or
brand 2. The agent (acting as the barman) can ask the costumer what he wants
to drink, ask him to specify the brand of beer he wants or give the costumer
one of the three options, ending the dialog. At each time step, the agent has a
probability perr of misunderstanding the client and observing a different random
action. For this POMDP, whenever the agent chooses to ask the costumer what
he wants or to specify he receives a small negative reward (-1). When giving
one of the drinks, if the drink corresponds to the costumer desired drink, then
the agent receives a positive reward (10), otherwise, it receives a large negative
reward (-100).

Scenario 2: Library In the second scenario, we have a user who goes to a library
with the intention to request one of two books. The library however only has
book 2, as a result, if the reader asks for book 1 then the agent (the librarian)
must inform that there is no such book in the library, at which point the reader
changes its mind and want book 2. Like in scenario 1, there is a probability

Dialog Management System for Social Aware Task Execution 9

of misunderstanding perr. As for the POMDP reward, the agent gets a small
negative reward for asking what the reader wants (-1). If the agent gives book 2,
but the reader still wants book 1, then it receives a large negative reward (-100).
If the agent gives book 2 and the reader wants it, then it gets a positive reward
(5) that is larger (10) if the reader wanted book 2 from the beginning .

Social components In any of the scenarios the agent can choose to include in
the dialog not only the task relevant queries as described before, but also social
components. For instance, greetings, e.g. hello/goodbye, or thanking. Including
smalltalk is also important in some contexts but it is left for future work.

3.2 Clients personalities

To show how well we can adapt to different personalities we will create 2 different
clients: a social (that likes interactions that use standard politeness formulas)
and an anti-social (that just cares about the task efficiency).

We model this by the use of different reward functions for the RL layer. To
have the reward be analogous something like tipping or a survey at the end, the
reward will be zero if the action of the RL layer is not terminal, that is, it does
not cause the conversation to restart. In both scenarios, a positive reward (1.)
will be awarded if the agent perform the action that is expected of him, and a
negative reward (-1.) if he fails (by giving the wrong drink or the wrong book).
The difference between the two costumers is that the social costumer will recieve
an extra positive reward (.5) if at the beginning of the conversation the agent
said hello, while the anti-social is indifferent to this.

Sample conversations for both scenarios and clients can be seen in section 5.

Check Learning Capability Four different policies, one for each combination of
scenario and client personality, are learned using the method referred in 2.1. πB,S

corresponds to the policy learned on the bar scenario with the social client, πL,A

corresponds to the policy learned on the library scenario with the anti-social
client, etc.

As can be seen in Fig. 3, the method used for optimisation is capable of
improving the initial policy, created with random parameters. Due to the ran-
domness of the observations (agent has a chance to misunderstanding what the
user was saying), the received reward can be different from the expected reward.
This helps explain the noise that can be seen in the objective function.

Check Transfer Capability To check the transferability of the policies, that is, if
a social policy learned in one scenario will perform well in another, a series of
simulations were performed on each scenario for all policies referred above. The
results can be seen in table 1. As can be seen, policies trained with the same client
profile perform very similarly, which means that even though a policy is trained
in a different scenario, it achieves a performance close to the performance of the
optimal policy trained in that scenario. We can conclude that for this example,
the policy learned in one scenario transfers well to the other scenario.

10 A. Capela et al.

0 10 20 30 40 50

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Trials

N
or

m
al

iz
ed

 r
ew

ar
d

πB,S
πB,A
πL,S
πL,A

Fig. 3. Average reward of the µ best solutions with the number of trials during the
training. The rewards are normalised so that the maximum of each one is 1.

It can also be observed that the policies learned from one client perform worse
on the other client than the policies learned on that client. This is evidence that
the optimal policy for both personalities is different.

Table 1. Estimated normalised average rewards and its standard deviation, for every
policy in each scenario. In each row, the values are normalised such that the reward
for the social policy trained in the respective Scenario/Client is 1. We can clearly see
that our mechanism for transfer works as social policies learned in one task can be
executed in a different task and achieve a high success if the social profile of the user
is the same.

Scenario/Client πB,S πB,A πL,S πL,A

Bar/Social 1.0 ± 0.0 0.784 ± 0.003 0.995 ± 0.004 0.787 ± 0.003
Bar/Anti-social 0.767 ± 0.003 1.0 ± 0.0 0.771 ± 0.004 1.014 ± 0.005
Library/Social 1.005 ± 0.004 0.810 ± 0.003 1.0 ± 0.0 0.810 ± 0.003
Library/Anti-social 0.758 ± 0.003 0.997 ± 0.004 0.756 ± 0.003 1.0 ± 0.0

4 Conclusions

We have defined a model that separates the social and task planning into two
components. The task planning is formally modelled as a POMDP that has
been shown to be a framework appropriate for planning in SDSs. In particular,
a variation on the POMDP referred to as SDS-POMDP is used, that takes
advantage of the properties of SDS to achieve more efficient results. The social
planning comes from a layer on top of the POMDP that will receive information
about the change in belief of the POMDP and the optimal action proposed by
the POMDP. Since the belief is not used directly, and instead only the observed

Dialog Management System for Social Aware Task Execution 11

change in belief is used, the policies created are independent of the underlying
POMDP structure. RL is then used to learn a policy that selects whether to
override the POMDP action with a social action or to accept such action.

This approach allows for the social policy to not depend on the underlying
structure of the POMDP, and as a result, the social policy learned in a particular
scenario can be transferred to another.

We trained the RL layer on two different simulated scenarios with two differ-
ent user personalities, and found that it was capable of learning the policies that
optimise the rewards. We then simulated the policies on scenarios different from
the one they were trained in and found that the learned policies still performed
well.

In this work, social interactions were fairly minimal. More complex inter-
actions like smalltalk could be added and would be interesting to see to what
extent this would be transferable between tasks. It would also be of interest to
see how the model would perform on real users and not just simulations, but for
that the necessary empirical data would need to be gathered.

5 Appendix

Sample conversations for both scenarios from section 5. In parentheses are the
observed user actions. Due to the change of misunderstanding the client (dictated
by perr), the system repeats some questions to assure that it understands the
users intentions.

Bar scenario with anti-social client.
The system follows policy πB,A.

s: What would you like?

u: I’d like a beer please.(beer)

s: We have brand1 and brand2.

Which would you prefer?

u: Brand1 please.(Brand1)

s: We have brand1 and brand2.

Which would you prefer?

u: Brand1 please.(Brand1)

s: Here is your beer. Enjoy.

Library scenario with social client. The
system follows policy πL,S .
s: Hello!

u: Hello.(hello)

s: What would you like?

u: I would like to order book1(book1)

s: What would you like?

u: I would like to order book1(book1)

s: Sorry, we don’t have that

book.

u: I would like to order book2(book2)

s: Here is book2

Acknowledgements

This work was partially by the FCT grants FCT: UID/CEC/50021/2019 and
PTDC/CCI-COM/30787/2017.

References

1. André, E., Pelachaud, C.: Interacting with embodied conversational agents. In:
Speech technology, pp. 123–149. Springer (2010)

12 A. Capela et al.

2. Bickmore, T., Cassell, J.: Relational agents: a model and implementation of build-
ing user trust. In: Proceedings of the SIGCHI conference on Human factors in
computing systems. pp. 396–403. ACM (2001)

3. Brown, P., Levinson, S.C.: Politeness: Some universals in language usage, vol. 4.
Cambridge university press (1987)

4. Cassell, J., Gill, A.J., Tepper, P.A.: Coordination in conversation and rapport.
In: Proceedings of the workshop on Embodied Language Processing. pp. 41–50.
Association for Computational Linguistics (2007)

5. Gratch, J., Lucas, G.M., King, A.A., Morency, L.P.: It’s only a com-
puter: The impact of human-agent interaction in clinical interviews. In:
Proceedings of the 2014 International Conference on Autonomous Agents
and Multi-agent Systems. pp. 85–92. AAMAS ’14, International Founda-
tion for Autonomous Agents and Multiagent Systems, Richland, SC (2014),
http://dl.acm.org/citation.cfm?id=2615731.2615748

6. Gratch, J., Wang, N., Gerten, J., Fast, E., Duffy, R.: Creating rapport with vir-
tual agents. In: International workshop on intelligent virtual agents. pp. 125–138.
Springer (2007)

7. Hansen, N., Ostermeier, A.: Convergence properties of evolution strategies with
the derandomized covariance matrix adaptation: The (=. Eufit 97, 650–654 (1997)

8. McTear, M.F.: Modelling spoken dialogues with state transition diagrams: experi-
ences with the cslu toolkit. In: Fifth International Conference on Spoken Language
Processing (1998)

9. Sutton, S., Novick, D.G., Cole, R., Vermeulen, P., de Villiers, J., Schalkwyk, J.,
Fanty, M.: Building 10,000 spoken dialogue systems. In: Proceeding of Fourth In-
ternational Conference on Spoken Language Processing. ICSLP’96. vol. 2, pp. 709–
712. IEEE (1996)

10. Williams, J.D., Young, S.: Partially observable markov decision processes for spo-
ken dialog systems. Computer Speech & Language 21(2), 393–422 (2007)

