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Abstract. This work improves intelligent tutoring systems by combin-
ing the benefits of online personalization of contents with methods that
have strong non-personalized long-term optimized policies.

Our hypothesis is that students are very diverse but they are not all com-
pletely different from each other. We will generalize previous algorithms
by creating a new approach that (1) creates profiles of students based on
historical data, (2) in real time is able to recognize the type of student
that is being encountered, (3) personalizes their experience taking into
account the information of similar students.

We perform several simulations to study the impact on teaching of the
amount of data, the diversity of students, and errors in the estimation
of parameters.

1 Introduction

In a perfect world students would have a learning experience perfectly person-
alized to their needs and interests. With so many student per class such person-
alization is very hard to achieve. With the help of Intelligent Tutoring Systems
(ITS)[7] this might be possible as each student can have a set of exercises pro-
posed and ordered according to their particular needs.

A great deal of work has considered how students learn [19] taking into
account the human-factors, psychology, classroom dynamics, memory, among
many other factors. A seminal work on this topic was the Knowledge Tracing
framework [10] which builds a detailed cognitive model of the student, of its
learning processes by considering a set of independent skills, the probability
of learning them and the probability of correct or wrong answer in exercises
that relies on those skills. Many recent extensions exist that try to improve
the estimation of the student knowledge and also on how to learn the learning
parameters of each student [6,18,12,1,5,13,11].

Researchers argue that if we know exactly how students learn then providing
teaching materials and experiences would be trivial. Unfortunately requiring an
accurate model of the students is too strong an assumption and might even be the
wrong approach. Firstly, having an accurate model is very difficult. The amount
of data required is too large, after acquiring the data of a particular student for
a particular learning problem the ITS is no longer needed as the student finished
the curriculum, and there are even computational problems in the identifiability
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of the parameters [2-4]. And, even if that was possible we would be assuming
that all the students are similar and several recent results already showed that
using the optimal policy for the average student is not good on average [14, 8]
and some degree of personalization is always needed.

Without personalized models, the main approach has been to consider an
approximate model of a population of students and compute an optimal policy
for that population [15,17]. This perspective assumes that students are clones
of each other in that they share almost all the learning parameters. On the
other side some researchers have considered that all students are different from
each other [8,9]. This snow-flake perspective considers that each student has
particular difficulties, learning parameters and initial knowledge. These methods
have a potential of high personalization but without a model they cannot do
long term planning and require too many interaction between the students and
the ITS, which is not possible in many applications. Also, instead of relying on
computational prohibitive methods such as POMDP [17] they rely on model-free
efficient methods such as multi-armed bandits [9].

Hypothesis The hypothesis followed in that students have differences but they
also share some similarities. If we can estimate in real time which type of students
profile a particular student belongs, it is possible to personalize the learning ex-
perience. We are thus in between assuming that all students are similar and that
all students are different. Challenges of this approach include accurately placing
students on their correct group and making sure that the model parameters for
each group of students are optimal.

2 Background

Formalization of a Learning Scenario In a typical ITS we have a set of skills
that we want to teach (sometimes also called knowledge components), a set of
activities - that can include exercises, reading materials, videos or any other -
that a teacher can choose from. For clarity we will use the following example
during this article. We consider a list of exercises/activities Al (Skilll); A2
(Skilll, Skill2); A3 (Skilll, Skill2, Skill3); B1 (Skill4); B2 (Skill4, Skill5); B3
(Skill4, Skill5, Skill6; C1 (Skill7); C2 (Skill7, Skill8) . Each of these exercises
requires different skills in order for the student to succeed in solving them. Since
there are typically too many activities to be explored it is expected to have
a previously defined ZPD, which connects different activities via dependence
relationships. Figure 1 shows the activity hierarchy used for the tests. An arrow
indicates a prerequisite relationship - A2 is only added to the ZPD when the
success rate in Al passes the expansion threshold. Connections without arrows
indicate activities without prerequisites between them which will be proposed
when the leftmost activity gets a reward value lesser than or equal to zero - if
the reward obtained for performing A3 is ever zero or less then the ZPD expands
to include B2, but the opposite cannot happen.
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There are some activities that are under a clear sequence of difficulty while
others cannot be directly compared. A student might succeed in exercises of type
A but not of type B while with another student the opposite may happen.

Fig. 1. Relationships between a series of different activities used for testing.

Knowledge Tracing (KT) [10] has been a popular approach to the student model.
The original work uses a typical HMM [16] whose hidden states are whether or
not the student has acquired a given skill. By solving exercises the students
might acquire the associated skill. Whether or not the skill is acquired can be
inferred by asking them to solve exercises and measuring the correctness of the
answer. It is assumed that once a student learns a skill it cannot be forgotten.

A KT model for a given skill has four parameters: i) P(Lg) - the probability
that the student possesses a particular skill prior to the first opportunity to
apply it; ii) P(G) - the probability that the student will answer correctly to the
question if the skill is in the unlearned state; iii) P(S) - the probability that
the student will answer incorrectly if the skill is in the learned state; iv) P(T)
- the probability that the skill being learned transitions from the unlearned to
the learned state after an opportunity to apply it.

Corbett and Anderson calculate how likely it is that a student understands
a particular subject matter using the following formula:

P(Ly) = P(Ln-1levd) + (1 = P(Lp—levd)) x P(T) (1)

Where evd is the evidence consisting of the exercise proposed and if it was
solved correctly or not.

The main application of KT has been to track if a student has acquired
a given skill or not, while the problem of deciding what to present is always
considered with other methods.

ZPDES We will extend an approach based on multi-armed Bandits (MAB)
due to its reduced computational cost and limited requirements in terms of
student model. The ZPDES algorithm [9] is a tutoring model algorithm which
requires little information from the student and cognitive models by attempting
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to estimate student competence online via a reward function. The subjects being
taught are organized in skills, and the objective of this algorithm is to make sure
that the students learn every skill. As in a typical MAB approach, the quality of
each option (in this case each exercise) will increase if it gets a positive reward
and reduce if it gets a negative reward. The reward is computed calculating
the difference in amount of correct answers Cy, of the last d/2 samples and the
t t—d/2
previous d/2 samples as follows:r = > % - z:/ d_cif/Q
k=t—d/2 k=t—d

This allows to track if a given exercise is providing improvement in learning
or not. An exercise that is always solved correctly does not provide a learning
experience.

The following ZPDES parameters directly influence the number of time steps
and probability of knowing every skill that the students have at the end of the
ZPD: i) 8 and n values, determining the confidence in a new reward value for
wq  Pw, + nr ii) v parameter, which determines the exploration rate when
calculating the probability of selecting an activity to perform. iii) The d param-
eter, which determines the number of most recent answers used to calculate the
reward value from an activity, as well as the minimum amount of times that an
activity needs to be proposed before the ZPD can expand from it. iv) removal
threshold - the success rate that an activity needs to have before it can leave the
ZPD. v) expansion threshold - the success rate that an activity needs to have
before its dependent activities may join the ZPD.

Sitmulation of Student Populations Different profiles of students will correspond
to students that have different initial knowledge and different learning rates. We
implement this through two attributes called baselearn (bl) and baseinit (i),
with bl influencing the probability that the student has of learning skills and
bi influencing the probability of the student already knowing each skill before
solving an exercise containing said skill.

Students are modeled with a KT formalism [10] as follows. Given a skill
sk and a student st, the probability of the student learning that skill after
each exercise, assuming that the student didn’t know the skill before, is given
P(Tst) = b1bls+ba P(Tsy ), where bl is the student’s baselearn attribute, P(Ts)
is the skill’s transition probability, and b; and by are two factors that influ-
ence the weight of baselearng and P(Tsy), with by + by = 1. As a result from
tests created with the objective of determining the b; and by values to be used
while making sure that both the student’s learning speed and the skill’s learn-
ing difficulty are taken into consideration, the used values are b; = 0.55 and
by = 0.45. A similar equation was used to determine the student’s probabil-
ity of knowing the skill: P(Lost) = c1bis; + caP(Losk) In this case the values
used for ¢; and cy are 0.1 and 0.9 respectively, focusing on how well known
the skill’s domain is in general. Where P(Lgsk) is a skill specific probability
of initially knowing the skill. The probability of student st learning a skill
sk after performing an activity (or exercise) A which includes it is given by:
P(T) = (0.55 x baselearng; + 0.45 X P(Tsk)) X wspa Where wgr 4 is the weight
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that the skill has in the activity. This equation can be solved for baselearn as

shown by baselearn = P(T)_gégi(f*"“)w““‘ Thanks to the Baum-Welch algo-

A
rithm, it is possible to estimate the value of P(T), which can then be used to
recalculate the student’s baselearn attribute.

3 The GOZPDES Algorithm

Our new approach contains several components: i) a method to compare students
and detect to which group a particular student belongs; ii) a method to provide
teaching examples for a particular group. A preliminary step requires information
about previous students to create representative profiles of students and their
respective optimized teaching experience. The algorithm is summarized in Alg. 1.

Algorithm 1: GOZPDES

Offline Phase of Profile Creation from Historical Data,
begin

Data: K skills to be learned

Data: Graph of activities

Data: N exercises from M students

Result: Cluster of M students into P profiles
Optimize Teaching parameters for each profile;
Result: Optimized parameters for each profile

Online Phase with New Student;

begin

new student;

0= Gaverage;

while exercises in ZPD do

if enough exercises to classify then
Estimate student parameters;
Select most similar profile;
0= eprofile

activity <—ZPDES(6);

propose activity;

observe answer and update ZPDES;

3.1 Measures of Similarity between Students

Being the goal of this work to provide algorithms that personalize education as
much as possible (all students are different) while simultaneously being able to
use data from similar situations, (students are similar) we need to have some
measures of similarity between students.
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One constraint on this measure of similarity between students is that it needs
to be data efficient. A trivial way would be to let the student go through the
whole learning process and then compare the evolution and results, but then
the knowledge learned about the student would not be needed anymore as the
student already went through the learning process.

We have 3 main options for comparing students: perform a pre-test to identify
the previous knowledge of the student; give an initial set of exercises and compare
the success and errors; or give an initial set of exercises but compare based on
learning parameters estimated from this initial and limited data. The first option
requires a specific assessment period while the other two do not consider such
different phase and can work while teaching. As we want to be data efficient we
prefer methods that do not require pre-tests.

There are more fundamental differences between the three approaches, the
first method compares previous knowledge, the second compares acquired knowl-
edge, but the last one compares the learning process itself. In the second metric
(based on success rates) we have a metric that compares students by measuring
the distance between two vectors. Each vector contains the percentage of success
in each type of exercise. The third metric (based on estimated parameters) uses
the percentage of success in each type of exercise but applies an EM algorithm
and then compares on the space of the estimated parameters. For our study we
used a variant of the EM algorithm to estimate the baselearn (bl) and baseinit
(bi) parameters.

The metric based on the parameters is expected to better compare the second
but might require too many data points to be useful. To test this, We made
several simulations to verify if similar students are classified as similar with each
of the methods. With an increasing number of students we noticed that as the
number of exercises increases comparing at the parameter level is able to do a
better distinctions than comparing directly on the success rate of the exercises.

3.2 Creation of Student profiles and Corresponding Teaching Policy

A profile of students is no more than a group of students that has very similar
learning parameters that results in very similar teaching policies. If students are
so similar that they will learn with the same sequence then they do not need to
be individualized and can be considered clones of each other.

These profiles can be created automatically using clustering methods on the
individual learning parameters. For each student in the dataset we can learn its
learning parameters. Then a clustering method is done on the learned parame-
ters. As the data is very sparse we do not learn all parameters in the typical BKT
scenario but consider only the baselearn attribute that influences the learning
rate.

Even in a small class of 30 students empirically we observe that there are
between 5 to 10 different groups of students. The teaching policy could be op-
timized in different ways. To ensure further personalization and to make it con-
sistent with the rest of the approach we will used ZPDES[9].
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3.3 Teaching Policy Optimization

Each group of students will have a set of parameters that represent their learn-
ing behavior. For each student, or group of students sharing the same learning
model, the optimal policy for teaching is different. This policy determines how
the GOZPDES algorithm will function for each group. Within each group the
parameters are chosen as the optimal values that minimize the average number
of time steps for that group’s student profile while maintaining the probability
of learning all skills above a certain threshold. Since the parameters are optimal
for the profile, then as long as the classification step is done correctly all students
will have approximately optimal parameters.

3.4 Online Identification of Student Profile

With all the previous components we are now ready to accomplish the goal
of our work. After a short number of exercises we will be able to identify to
which profile each particular student belongs and provide each one with the best
teaching strategy available.

Below are different conditions tested for deciding when to perform the baselearn
estimation. Note that in some methods such estimation is not made.

1. Avg params - A set of average parameters obtained from previous tests are
used from start to finish

2. A priori - A priori classification, performing a series of pre-tests and use
observations obtained from there to estimate baselearn before placing the
student into the ZPD. A time penalty is applied for this method to compen-
sate for the time taken in pre-tests

3. Al - Uses the observations obtained from activity Al (as shown in Figure
1) once the activity has been removed from the ZPD

4. A1/B1 - Uses the observations obtained from activities A1 and B1 once they
have both been removed from the ZPD

5. 20 steps - Uses the observations obtained after 20 time steps (a time step is
an attempt at solving an exercise, regardless of correctness)

6. 30 steps+ - Uses the observations obtained after 30 time steps, along with
artificially increasing the estimated value slightly

4 Results

Creation of Student Profiles from Data We performed several simulations to
evaluate if we can create the student profiles from historical data. To do a sys-
tematic study, we generated 1100 students with baselearn parameters uniformly
from 0.0 to 1.0. Then we let them go through the ITS until the termination
condition and the results they have in each exercise will serve as database for
the results.

Using a standard k-means for different numbers of classes we can see in
Table 1 the obtained results. We can see that for any number of clusters the



8 F. Azeiteiro and M. Lopes

obtained means are very uniformly spread along the real distribution of data.
Also, with the results we will see in the next section small differences in the
estimation have little impact on the parameters of the policy, so in our case 3 to
5 student profiles would be ideal.

Table 1. Obtained clusters when running K-means for the estimated baselearn values
with k = 3, 5, 7 or 9.

Num clusters| cl c2 c3 c4 ch cb c7 c8 c9
3 0.2061|0.5296|0.8491| - - - - - -
5 0.0942(0.3045|0.4913|0.6912|0.9425| - - - -
7 0.0558(0.2031{0.3369{0.4721|0.6127{0.7571{0.9589| - -
9 0.0545(0.1922]0.3081|0.3964|0.4787|0.5794(0.6878|0.8147|0.9773

GOZPDES Online grouping and Teaching using ZPDES This test measures the
average number of time steps and probability of knowing all skills for all the
conditions described. Depending on the condition, after a student is classified
according to a given profile it will start using the optimal parameters for that
profile, before that the average parameters are used. Detailed results are shown
in Table 2 while results summarizing the main conclusions can be seen in Figs. 2
and 3.

Table 2. Average number of time steps and probability of knowing all skills, starting
with default parameters and updating them dynamically at certain points through
the model’s execution. The conditions tested are performing the estimation after a
certain number of time steps, a priori classification, after A1 has been removed from the
ZPD, after both Al and B1 are removed from the ZPD, using the average parameters
throughout and the time taken if the classification had been perfect while ensuring a
97% probability of learning all skills.

Condition/Profile | Po.1 | Po.2 | Po.s | Po.a | Pos | Pos | Por | Pos | Po.s

20 steps time 283.9]210.1|177.4|150.6|137.7|123.0{116.4|107.7|102.5
20 steps %skills 98.5198.2(97.1]96.2|95.8|93.3|91.1|90.5|86.5
A priori time 341.6|255.0|199.0|178.2(154.8|144.7|126.7{118.1|109.7
A priori %skills 99.3197.5(92.5|97.3|90.6 | 86.6|98.4|93.8|91.6
Al time 285.0(216.2|182.4|157.0|141.2{125.7({116.9(106.3|101.0
A1 %skills 98.5198.1[96.8196.0|94.5]92.9|88.4|88.5|86.1
A1/B1 time 285.0(223.4|181.0|162.4|143.7|130.4/120.3|114.5/107.0
A1/B1 %skills 99.0 198.096.9|95.1|92.5|89.2|86.5|85.0|81.7

Avg params time [284.2|211.8]181.2|157.5{140.6/129.6{120.2|114.3/108.7
Avg params %skills| 98.0 [ 97.9 | 96.8 | 95.9 | 91.4 | 89.2 | 84.2 | 81.8 | 77.1
30 steps+ time 282.5(208.6(173.9(147.4|130.9({117.2{109.0{101.9{ 95.3
30 steps+%skills 97.5198.5|97.4|97.7(95.9|96.8|94.1]91.5|90.9
Optimal time 271.9(202.9(160.7|133.5{116.9({105.0| 89.5 | 81.9 | 76.0
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In order to obtain a better idea of how these methods behave on average,
the mean and standard deviation for the average number of time steps and
probability of learning all skills for each method was plotted using the values
obtained for every student profile. Out of the conditions tested, the best one in
terms of time and probability of learning is doing online classification after 30
time steps (the 30 steps—+ condition).

The results, visible in Figure 2, show that in terms of learning quality the
”304” condition has both a higher mean and lower standard deviation on average
than every other method, as well as showing that the average parameters have
the lowest mean and highest standard deviation value. This proves that treating
all students equally leads to a suboptimal learning experience for most students.
It is worth mentioning that every method ensured an average probability of
knowing all skills of at least 90%, which is lower than the 97% threshold. This
was expected since that threshold was defined for perfect classification of student
profiles as opposed to this case’s occasionally wrong classification of students
which only use approximately optimal parameters as a natural approach of the
grouping paradigm.

Analysis of the results shows that while the a priori classification does have
the highest mean number of time steps, with the 304 condition having the lowest
one, the standard deviation is quite high for every method. This happens because
there is a very large difference between the average number of time steps that
a low baselearn student takes to go through the algorithm in comparison to a
high baselearn student, ranging from approximately 280 to 100 in Table 2.

v ] [ | I
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100

75

o 70
A1/B1 30¢ 20 steps A priari Avg Al/B1 30+ 20 steps A priori Avg

a) Time b) Learning Quality

Fig. 2. Mean and standard deviation for the average number of time steps and proba-
bility of knowing all skills for each reestimation condition. The ”30+” conditions yields
the lowest mean number of time steps, along with the highest mean and lowest standard
deviation in probability of learning all skills.

When grouping all students together, the time differences between the dif-
ferent methods are not statistically significant. For the learning quality the only
difference that is statistically different is the condition 30+ being better than the
avg condition (one-tailed t-test, p = 0.035). This proves that an online classifi-
cation of student is not only possible but also provide gains in learning without
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Fig. 3. Comparison between the time and probability of knowing all skills in terms of
mean and standard deviation for three conditions. Our method (”30+”) guarantees a
faster learning and more efficient for all student levels.

any cost in terms of learning time. Also, doing an a-priori classification does not
seem to provide enough benefit for the extra cost paid.

Impact on each type of student We do not want any potential gains for one type
of student being dependent on leaving others behind. We summarize the results
in Figure 3 where we show the time it takes to learn all the skills and for a fixed
time how much will they learn.

Although the probability of knowing all skills are all very similar for low
baselearn students, our method ”30+” clearly has the highest probability and
lowest standard deviation for the students classified as ” Medium”. For the high
baselearn group, however, the a priori method shows a higher average proba-
bility of knowing all skills. This happens due to the fact that faster learning
students spend less time in the ZPD, meaning that the relative number of time
steps that they are using the optimal parameters obtained by methods which
require a certain number of time steps for their condition to trigger is greater
than for slower students. This would also be the case for a system that treats
all students differently, as it would require a much greater number of observa-
tions than those used by the online grouping estimation conditions which were
attempted, meaning that it would not learn the optimal model parameters in
time for them to be useful.

The improvement in terms of the average probability of knowing all skills by
the end of the model’s execution in comparison to using the average parameters
from start to finish - the ” Avg” values for this figure - are statistically significant
for "High” baselearn for both the ”30+” (one-tailed t-test, p = 0.004) and a
priori (one-tailed t-test, p = 0.005) methods, along with for the ”30+” online
grouping estimation condition for " Medium” baselearn classifications (one-tailed
t-test, p = 0.043).

In terms of the average number of time steps to go through the exercises,
the results, also shown in Figure 3, show that both the mean and standard
deviation decrease for all methods as the average baselearn that the students
were classified as having increases. The standard deviation for low baselearn
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students remains quite high, as even with this separation of students there is a
large difference between the average number of time steps between students with
baselearn values of, for example, 0.1 and 0.3 (approximately 280 to 180 time
steps according to Table 2). No improvement in terms of mean was found to be
statistically significant between methods on the same student type (for example,
the 304+ method does not have a statistically significant improvement on the
average number of time steps in comparison to the a priori method when com-
paring exclusively either the low, medium or high baselearn students). However,
every method’s transition to a better student type shows statistically significant
improvements in comparison to the results on the previous students. The ob-
tained p-values for the one-tailed t-tests were the following: 304 low to medium:
p = 0.027; 30+ medium to high: p = 0.018; A priori low to medium: p = 0.034; A
priori medium to high: p = 0.010; Avg low to medium: p = 0.0029; Avg medium
to high: p = 0.016.

5 Conclusions and Future Work

In this work we merge the advantages of approaches that provide optimal long-
term teaching policies to students (but need to rely on considering all students
as clones) with approaches that are fast to adapt to particular student charac-
teristics (but cannot do long-term planning). We also wanted to see if the use of
historical data of student could allows us to merge these approaches.

Our results showed that, given sufficient data, we can classify student in less
than 30% of the time that they take to go through all the curriculum and then
provide an optimal teaching experience after that. We also showed that teaching
to the average model, or doing an a-priori test are worse strategies. Our results
are stronger when we consider low, medium, and high learning rate students and
see that the greater gains are obtained for the high learning rate students, but
no group of student loses for being in this systems. For all student they either
learn more and faster or are no worse than the standard approach of considering
them all equal.

This work was made in simulation to ensure that we could control all the
parameters of the process. Knowledge Tracing systems have been used very much
in the research and in the real world to the point that we already trust that it
is a good model for real students. Considering our results we expect that our
system will provide greater gains when used in more heterogeneous classes but
without any cost when the classes are homogeneous. Another important aspect
is that this system is an extension of the ZPDES system that does not need prior
information, but with our new system prior information can be used.
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