Int J of Soc Robotics
DOI 10.1007/s12369-017-0400-4

@ CrossMark

Learning Legible Motion from Human-Robot Interactions

Baptiste Busch!-2

Accepted: 15 February 2017
© Springer Science+Business Media Dordrecht 2017

Abstract In collaborative tasks, displaying legible behavior
enables other members of the team to anticipate intentions
and to thus coordinate their actions accordingly. Behavior is
therefore considered to be legible when an observer is able to
quickly and correctly infer the intention of the agent gener-
ating the behavior. In previous work, legible robot behavior
has been generated by using model-based methods to opti-
mize task-specific models of legibility. In our work, we rather
use model-free reinforcement learning with a generic, task-
independent cost function. In the context of experiments
involving a joint task between (thirty) human subjects and
a humanoid robot, we show that: (1) legible behavior arises
when rewarding the efficiency of joint task completion during
human-robot interactions (2) behavior that has been opti-
mized for one subject is also more legible for other subjects
(3) the universal legibility of behavior is influenced by the
choice of the policy representation.
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1 Introduction

Humans exploit many non-verbal cues to efficiently coor-
dinate their actions in joint tasks [16]. By monitoring the
actions of others and inferring their intentions, a human can
predict and preemptively initiate the appropriate complemen-
tary actions without the need for verbal communication [2,
16,17]. Furthermore, it has been shown that humans uncon-
sciously change their behavior, for instance the speed of task
execution, to improve coordination [25].

The first contribution of this article is to show that robots
may learn to adapt their behavior so that it becomes more leg-
ible, based only on observations of actual interactions with
humans. We do so by proposing a generic task-independent
cost function, which is optimized with a model-free rein-
forcement learning algorithm (Fig. 1).

Since our approach does not require a model, it is applica-
ble to different tasks without modification. However, it does
require a training phase to learn to generate legible behavior,
and the resulting behavior generalizes to different tasks. A
novel task thus requires learning a new behavior. In contrast,
previous model-based methods [1,3,12,14,18,19] are able to
generate legible behavior on-the-fly, but require task-specific
models of legibility. A novel task thus requires the design of
a novel model by an expert.

Our approach is thus well suited for scenarios where not
all tasks are known in advance, and where similar tasks are
executed many times. In assembly lines where humans and
cobots work together for instance, the resulting behavior is
used thousands of times. The number of trials required to
learn the behavior (<100) may thus well be worth the invest-
ment, and could also be performed on-the-job.

One question that arose whilst performing the experiments
was whether robots learn to generate universally legible
behavior, or rather idiosyncratic behavior that a human learns
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Fig. 1 TIllustration of the button pressing experiment, where the robot
reaches for and presses a button. The human subject predicts which
button the robot will push, and is instructed to quickly press a button
of the same color when sufficiently confident about this prediction. By
rewarding the robot for fast and successful joint completion of the task,
which indirectly rewards how quickly the human recognizes the robot’s
intention and thus how quickly the human can start the complemen-
tary action, the robot learns to perform more legible motion. The three
example trajectories illustrate the concept of legible behavior: it enables
correct prediction of the intention early on in the trajectory

universal legibility

idiosyncratic legibility

Fig. 2 Distinction between universal and idiosyncratic legibility. The
left graph with trajectories has been adapted from [6]

to interpret. The difference between the two is illustrated in
Fig. 2. Even for cultures in which cycling is not widespread,
an arm spread out to the left is likely to convey the intention
that the cyclist will make a left turn. In contrast, the idiosyn-
cratic signals exchanged between members of a cycling team
during a race are not known to the general public (see Fig. 2,
right), and only understood amongst other riders with whom
these signals have been agreed upon beforehand.

Similarly, a robot may learn arbitrary but recognizable
variations of the movement, such as the loop in Fig 2 which
the human may learn to be predictive of moving to the left.
This idiosyncratic behavior will have to be relearned by other
humans working with the same robot. In universally legible
behavior on the other hand, the intention is already under-
stood during the first interaction(s).

The second contribution of this paper is to measure how
well the legibility of behavior that has been learned from
interactions with one subject transfer to other subjects, to
determine whether the learned behaviors are universally or
idiosyncratically legible.

The third contribution is to show how the representation of
the robot’s controller influences whether universal or idiosyn-
cratic legibility is achieved.
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This article is structured as follows. After presenting
related work in Sect. 2, we present four experiments1 on
the experimental setup illustrated in Figs. 1 and 3:

— Section 3. An experiment with nine users, where the robot
learns to be legible, using dynamical movement primi-
tives as a policy representations.

— Section 4. As above, but using a viapoint policy, which
is of much lower dimensionality.

— Section 5. Two experiments in which we study the trans-
ferability of legible robot behavior from one subject to
another, with a total of 16 subjects. Second experiment
gives some insight on the universal legibility of behav-
iors.

We conclude the article with Sect. 6.

2 Related work

In human-robot interaction, improving the human under-
standing of robot motion is a key feature. One way to achieve
this can be to imitate the human motion in the same task con-
text. The minimum jerk model [8] makes the assumption that
human hand motion can be mathematically retrieved, by min-
imizing the jerk in Cartesian space, during a grasping task.
On an industrial robot, however, trajectories generally follow
a trapezoidal joint velocity profile [4]. Research has shown
that predicting this type of motion is harder than a minimum
jerk profile [9].

For specific tasks, it is possible to manually define motion
that convey the desired intention. This can be made for dif-
ferent applications. For instance to facilitate handing over an
object [1,3,12,14,18,19], or to coordinate robot soccer play-
ers [15,20]. The concept of legibility has also been studied in
the context of safe navigation in the presence of humans [13].
Note that some researchers prefer to use the term “readabil-
ity” rather than “legibility” [24].

Most similar to our purposes is the work of Dragan et
al. [7]. They make a general-purpose definition of legibility:
how probable is a goal, given a partially observed trajectory?
Higher legibility implies that earlier in the trajectory it is
already possible to distinguish the final goal. To note that
legibility is different from predictability, clearly defined in
that paper, predictability: what is the most probable trajec-
tory, given knowledge of the goal? Although legibility and
predictability are general ideas, they are implemented as cost
functions that might not apply to all task contexts. It is a non-
trivial task to adapt this cost function to novel task contexts,
and especially to different (classes of) users. Robots are able

! The experiment in Sect. 3 was previously reported [21]. Those in
Sects. 4 and 5 are novel.
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Fig. 3 Button pressing experiment set-up with the Baxter robot, human
subject, and the two rows of buttons that they will press. The two pos-
sible targets corresponds to the “red” and “yellow” button on the box,
the two buttons on the /eft side of the subject. (Color figure online)

to generate legible behavior by optimizing the legibility mea-
sure off-line through functional gradient optimization [6].
Alternatively, they can also generate deceptive behavior [5].

Following the work in [5,6], Zhao et al. [26] perform a
human-robot experiment with Baxter torso-humanoid robot.
For a large number of possible targets their results prove that
a straight line pointing to the target is easier to predict than
a trajectory obtained via maximizing the legibility criterion.
Thus legibility seems to depend on the context of the task
(e.g. number and position of possible targets).

We investigate legibility as an emergent adaptive prop-
erty of interactions between people and robots. Rather than
defining legibility as an explicit property to be optimized, we
reward task efficiency. We apply model-free reinforcement
learning methods, where the robot iteratively improves its
legibility through trial-and-error interaction with a human.
This approach has the advantage that no assumptions about
the task or the human must be made, and the robot automat-
ically adapts its legibility to the user preferences during the
interaction. We evaluate our approach in several user studies
with Baxter robot.

3 Experiment A: Learning Legible Motion

The hypothesis underlying this first experiment is that
legibility of robot behavior needs not be defined and opti-
mized explicitly, but that it arises automatically if joint
task execution is penalized for not being efficient. To ver-
ify this hypothesis we have designeda joint human-robot
task, in which the robot’s behavior is optimized—through
model-free reinforcement learning—to minimize joint task
execution duration. In this work, we use the term “joint task”
to signify that both the robot and human must succeed at their

subtask in order for the overall task to succeed, and that these
subtasks depend on each other.

3.1 Methods

We now describe the experimental set-up, the policy repre-
sentation that was used to generate the robot motion, the cost
function that represents the task (fast joint task completion
without errors), and the reinforcement learning algorithm
used to iteratively optimize this cost function.

3.1.1 Experimental Set-up

In the joint human-robot task, depicted in Fig. 3, the robot
reaches for and presses one of two buttons. Subjects are given
two goals: Efficiency press the same button as you think the
robot will, as quickly as possible Robustness avoid making
mistakes, i.e. pressing a different button from the one the
robot will.

The nine subjects for this experiment are administrative
staff, PhD students in computer science, and under-grad stu-
dents of cognitive science.

The protocol of an experiment is as follows. The experi-
ment starts with a habituation phase of 32 trials where the
robot performs always the same trajectory for the same but-
ton. This phase allows the subject to get used to the robotic
motions, and practice the prediction and button pressing.
It also allows to validate that the improvement in the sub-
ject’s prediction is not only due to them learning the robot’s
motion. Further improvement after that habituation phase
will then only be explained by the robot being more legi-
ble. Preliminary results indicate that 32 trials are sufficient
for habituation [21].

After habituation, we start the optimization phase of 96
trials with the reinforcement learning algorithm presented in
Sect. 3.1.3. The two policies that generate trajectories for
the two different buttons are optimized in two independent
processes.

3.1.2 Task Representation: Cost Function

The cost function that the robot optimizes during the 96 trials
after the habituation phase consists of three components:

J = T;obol + ’stubjecl—i_ y(sbullons +a|d1N,lT| (1)
~——— ~—— —_— ——
Efficiency Robustness Energy

Efficiency: The time between the onset of the robot’s move-
ment (fp) and the pushing of the button by the human
(T utje) and the robot (7).

Robustness: Whether the subject pressed the correct button
(8puions = 0) or NOt (Spuuons = 1). ¥ 18 an arbitrary high
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cost, it was set to 20 in this experiment, expressing that
a failure is equivalent to a penalty of 20s in terms of
efficiency.

Energy: The sum over the jerk, i.e. the third derivative of the
joint positions (q,). at each time step i in the trajectory.
The time step A, used to calculate the derivatives was
arbitrary set to 0.2. The scaling factor « is chosen such
that the cost of the jerk is about 1/20 of the total cost in
the initial trajectories.

The joint task completion time depends mainly on how
fast the human is able to predict the intention of the robot
(proximate cause). But we use the total time because: (1) the
ultimate motivation behind our research is to make human—
robot interaction more efficient. (2) our set-up easily allows
us to determine the button pressing times, but not the exact
time at which the human predicts the robot’s intention.

3.1.3 Optimization Algorithm: Direct Policy Search

The robot uses direct policy search to optimize the cost func-
tion in (1). Direct policy search is a form of reinforcement
learning in which the search for the optimal policy is done
directly in the space of the parameters 6 of a parameterized
policy my, rather than using a value function. The specific
algorithm we use is PI®(Policy Improvement through Black-
Box optimization [22]). Since any model-free direct policy
search algorithm could be used to implement this optimiza-
tion (e.g. NES, CMA-ES or POWER [23]), the details of
PI®®’s implementation have been deferred to Appendix 1.

3.1.4 Policy Representation: Dynamical Movement
Primitive

The parameterized policy representation my used in this
experiment is a dynamical movement primitive (DMP) [10].
DMPs combine a feedback controller (a spring-damper sys-
tem with rest point g) with an open loop controller (a
function approximator f) to generate smooth goal-directed
movements, see (2). The so-called phase system is one at
the beginning of the movement and decays exponentially
towards 0. The phase variable s is essentially an alternative
1-dimensional representation of time .

X = a(B(g — X)) — Xp) +

feedback controller

st f (s1) 2
——

open loop controller

‘L’S‘[ = —0St phase system (3)

When integrated over time, DMPs generate trajectories
[x; x; X;1, which, for instance, are used as a desired joint angle
or desired end-effector coordinate. In our experiments, seven
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such systems are coupled to determine the 7 joint angles xt1 7
of the robot’s arm over time.

The function approximator f takes the movement phase
s as an input. In this paper, we use a radial basis function

network with B = 3 Gaussian basis functions:

B
f(s) =" gp(s1)0p RBFN €
b=1
(—(s - cb>2) .
gr(s) =exp| ——— Gaussian kernel (@)
207

The policy parameters 6 thus correspond to the weights of
the basis functions. Because there are seven joints with three
basis functions each, the dimensionality of 6 is 21. During
the optimization, variations in 6 lead to variations in the tra-
jectory towards the button.

DMPs are convenient for our experiments, as they ensure
convergence towards the goal g (i.e. the location of the but-
ton), whilst allowing the trajectory towards this goal to be
adapted by changing the parameters 6 of the radial basis func-
tion network used inside the DMP (for instance to improve
legibility). But our approach does not hinge on the use of
DMPs as a policy representation, and we refer to [10] for
details.

Please note that the same cost function, optimization algo-
rithm and policy representation have been used for a very
different task, i.e. the pick-and-place task described in [21].
Although the learned behavior for a task is specific to that
task, our algorithms for learning these behaviors are not task-
specific themselves.

3.2 Results

For illustration purposes, the top graph in Fig. 4 shows an
example experiment for one subject, visualizing both the val-
ues of the time it takes the subject to push the button (7 .)
and whether the same buttons are pushed. The transition from
the habituation to the optimization phases is depicted as a
dashed line.

The main results of Experiment A are summarized in the
two lower graphs in Fig. 4, which highlight statistics at impor-
tant transitions during learning: the start (trial 1-8), the last
trial of the habituation phase (25-32), and the first (33—40),
intermediate (81-88) and final (121-128) block of trials dur-
ing the optimization phase. We also measure the trajectory
completion at prediction time, i.e the relative amount of tra-
jectory (timewise) observed by the subject when it presses
the button. This measure is calculated using the formula
100(1 — W) The complete results are shown in
the left column of Fig 13 in Appendix 1.

The box plots show the average value of 7., over all nine
subjects and over blocks of eight trials. To allow comparison
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Fig. 4 Top Example experiment for one subject, where Ty is plot-
ted against the number of trials. Successful and failed trials are depicted
as circles and crosses respectively. Middle Average over all nine sub-
jects (u £ o) of the trajectory completion at prediction time, i.e,
the relative amount of trajectory (timewise) observed by the subject
when it pres%es the button. This value is calculated using the formula

100 (1 — M) Bottom Normalized Ty (see main text for
normalization method) averaged over all nine subjects and blocks of
eight trials; average number of failures, i.e. when different buttons were
pushed, averaged over all nine subjects and blocks of eight trials. The
lower two graphs show the values at certain key frames during learn-
ing; the complete results are presented in the left column of Fig. 13 in
Appendix 1

between subjects without introducing variance due to the nat-
ural overall differences in their button pressing time 7., W
normalized the results of each subject by their intrinsic time
after habituation, which is computed as the average of the
last eight values of T, in the habituation phase. Thus, the
normalized mean over the last eight trials of the habituation
phase is 100 for each subject by definition.

Finally, the bottom graph in Fig. 4 shows the number of
prediction errors per block of eight, averaged over all sub-
jects.

3.3 Discussion

The main conclusion we derive from Fig. 4 is that optimizing
the robot’s motion leads to a substantial (20%) and signifi-
cant (p = 5¢=3, Wilcoxon signed-rank test) drop in 7eq.
i.e. the time it takes for the user to press the button, between
the end of the habituation phase (25-32) and the end of the
optimization (121-128). As T, is consistent throughout the
experiment, this drop in T, also induces a drop in the
trajectory completion at prediction time (from 70 to 50%).
This improved efficiency is not merely due to subjects sim-
ply guessing a button, because the number of mistakes does
not increase over time (p = 0.26, Wilcoxon signed-rank test
between end of habituation and end of optimization).

There is also a relatively small but significant (p = 0.001)
decrease of the prediction time during the habituation phase,
which indicates that the differences in the initial trajectories
before optimization already enable the subject to predict the
robot’s intention. The fact that T, is further improved by
20% during the optimization shows that the optimized tra-
jectories are more easily distinguishable, i.e. legible, than the
initial trajectories.

After the habituation phase, subject’s performance get
lowered (higher prediction time and higher number of mis-
predictions). This effect arises from the variance of the
parameters. As we do not model legibility, the robot can per-
form deceptive motions [5] while exploring the parameter
space of the trajectories. This type of motion, which leads to
higher cost under our cost function in 1, will slowly disap-
pear after some iterations. Only the most legible trajectories
remain, as confirmed by the drop in prediction time and the
low misprediction rate.

In summary, the optimization algorithm effectively
improves human-robot collaboration by producing motions
that are easier to predict by the subject. By penalizing errors
and the joint robot/human execution time, the robot learns
policies that enable the human to distinguish the robot’s
intentions earlier without more errors.

Although the answer to our initial question “Can a robot
learn to generate legible motion from user interactions?” is

@ Springer



Int J of Soc Robotics

0.1 0.3 0.5
X (m)

Side view

0.7 0.4 0.6
Y (m)
Top view

Fig. 5 Side and top view of generated trajectories after optimization
for a single subject. Black/dashed trajectory for button 1/2 respectively

positive, the resulting trajectories were nevertheless different
from those observed in [6]. As an example, Fig. 5 plots two
views of the robot’s trajectory. We clearly see a substantial
upward movement at the beginning of the trajectory for but-
ton 1. This is certainly not universally legible behavior, but
rather idiosyncratic behavior that the human subject learns
to interpret as the motion that will eventually move towards
button 1.

Further anecdotal evidence is that some subjects reported
being able to infer the intention of the robot from differences
in the sound produced by its motors. Differences in sound
arise due to the different velocity profiles of the trajectories
for the two buttons. This is clearly a very different type of
legibility from that studied in [5,6,26]. Although this can be
seen as another learned idiosyncrasy, it also suggests that leg-
ibility could be obtained by other means than only observing
spatial variations of trajectories. This idea is also highlighted
in Glasauer’s work [9] where they prove that minimum jerk
velocity profiles are more legible than trapezoidal joint veloc-
ity one. Combining those elements could lead to even more
legible trajectories.

For this reason, we designed a second experiment, dis-
cussed in the next section, which is aimed at avoiding such
idiosyncratic behavior, and measuring the effects on learning
legibility.

4 Experiment B: Learning Legible Motion with a
Less Expressive Policy

The overall experimental set-up is the same as in Experiment
A. Therefore, we only explain the differences, which are the
policy representation, and a slightly modified cost function.

4.1 Methods

To avoid the idiosyncratic behavior observed with the DMPs,
we designed a policy that allows for much less variations. The
DMPs were defined in joint space (7 joints) with three basis
functions that are varied per joint, leading to a policy that has
6 = 21 parameters. To reduce this number, the second policy
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Fig. 6 Viapoint policy representation. 7op the trajectory is generated
from the start S to the goal G (the location of the button), through a
viapoint whose distance to the line S—G is determined by the parameter
h. The rotation around the x-axis is determined by «

representation generates trajectories that pass through a via-
point, which itself is parameterized by only two parameters,
as visualized in Fig. 6.

The trajectories are generated from a start point S (initial
robot configuration) to an end point G (such that the button
is pushed), which are fixed throughout the experiment. The
height of the parabolic path is defined as a parameter 4. The
rotation around the x-axis, parallel to the ground, is defined as
the parameter «. We represent this rotation seen from above.
This policy constraints the generated trajectories for more
smoothness. We expect them to resemble the ones obtain in
Dragan’s work [7]. However we do not encode explicit infor-
mations about their legibility. Thus during the exploration of
the parameter space some of the generated trajectories might
be really deceptive. We call this policy the viapoint policy.

The cost function for the viapoint policy is the same as
in Eq. 1, except that the penalty on the jerk is now in task
space, not joint space. As before, the optimization of this
cost function takes place within space of the policy param-
eters 6, which is now of dimensionality 2 (instead of 21 as
with the DMP). We again use nine subjects. To avoid any
habituation effect from the first experiment we have chosen
new participants.

4.2 Results

The main results of Experiment B are summarized in Fig. 7,
which has the same format as Fig. 4. The complete results
for this experiment are shown in the right column of Fig. 13
in Appendix 1. Figure 13 allows for a direct comparison of
Experiment A and B.

4.3 Discussion

We again observe a drop of the prediction time during opti-
mization. Similarly to Experiment A this also creates a drop
in the trajectory completion at prediction time (from 80
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Fig. 7 Top Average over all nine subjects (u = o) of the trajectory
completion at prediction time, i.e, the relative amount of trajectory
(timewise) observed by the subject when it presses the button. This value

mhm subject

is calculated using the formula 100 (1 — ). Bottom Normal-
ized Ty, averaged over all nine subjects an({ blocks of eight trials;
average number of failures, i.e. when different buttons were pushed,
averaged over all nine subjects and blocks of eight trials. The lower two
graphs show the values at certain key frames during learning; the com-
plete results are presented in the right column of Fig. 13 in Appendix 1

to 60%). The number of prediction errors increases during
the optimization process before stabilizing at the end. The
average number of errors is still sufficiently low, and not
significantly different compared to the end of habituation
(p = 0.73), to prove that the subjects are not simply guess-
ing the next target. The decrease in prediction time during the
habituation is significant (p = 0.005) as well as the decrease
after the optimization (p = 2.1e¢7).

Qualitatively, these are thus the same results as in Experi-
ment A. As for the DMPs, we represent in Fig. 8 two views of
the trajectories. As expected, this policy produces smoother
trajectories to the targets. In this case, the trajectories look
like what we would expect from a legible behavior, i.e an
exaggeration on the right for the right target and on the oppo-
site side for the left one.

The higher variance at the end of the optimization com-
pared to Experiment A suggests not all subjects obtain such

0.4

0.0|

0.1 0.3 0.5 0.7 0.4 0.6 0.8
X (m) Y (m)
Side view Top view

Fig. 8 Side and top view of generated trajectories after optimization
for a single subject. Black/dashed trajectory for button 1/2 respectively

0.1 0.3 0.5 0.7 0.4 0.6 0.8

X (m) Y (m)
Side view Top view

Fig. 9 Side and top view of generated trajectories after optimization
for a single subject. Black/dashed trajectory for button 1/2 respectively.
The generated trajectory seems more deceptive when looking at the top
view. Yet trajectories are distinguishable in term of height as represented
by Ah in side view

legible behaviors. In Fig. 9 we represent another example of
optimized trajectories. The trajectories seen from above (top
view) look rather deceptive.

One hypothesis is that by constraining the trajectories to
resemble legible behavior we increase the number of local
minima of the optimization. Consider that the global min-
ima is achieved when the trajectories meet what we expect
a legible motion to be. Because of the sampling in the
parameter space that solution might not be found during the
optimization. Moreover subjects might learn a deceptive or
idiosyncratic motion as they do with the DMP policy. Thus
most of them decrease their prediction time at the end of the
optimization. However the ones with the biggest drop obtain
trajectories similar to those represented in Fig. 8.

The experiment in the next section will investigate how
well trajectories generated by the two different optimized
policies (DMP and viapoint) transfer to novel users.

5 Experiment C and D: Transferability of
Legibility

Experiment A and B verify that robots are able to improve the
legibility of their behavior from interactions with humans.
We now present two experiments in which we investigate
whether the adaptations that have been learned during inter-
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Table 1 Illustration of one random sequence for experiment D

Run 1 2 3 4 5 6 7 8 9 10
Targets R R B R B B B R B R
Types DM P, S S DM P, VP VP DM P, VP DM P, VP

A complete run comprises a repetition of four such random sequences. This makes a total of 40 trials

actions with one subject also improve the legibility for other
subjects. The first experiment (Experiment C) uses the same
protocol as A and B, but starts with trajectories that have
been previously optimized. The second experiment (Exper-
iment D) does not involve optimization, but rather presents
several previously optimized trajectories in a random order.
Experiment C is aimed at determining whether humans
can learn to interpret the idiosyncratic motions of robots,
whereas D aims at which type of trajectories enable humans
to immediately recognize intentions, without the need to
learn how to interpret them.

5.1 Methods

Experiment C Do subjects learn quicker when starting with
policies that have been optimized previously with another
subject? To analyze this, we ran the same experimental proto-
col with the habituation and optimization phase as described
in Sect. 3.1, with four novel subjects each for both policy
parameterizations (DMP and viapoint policy). In contrast to
the optimizations described previously, the initial trajecto-
ries are now trajectories that have been previously optimized
for other subjects. The initial trajectories were not chosen
randomly but correspond to the most legible ones for each
parameterization, i.e. the ones that lead to the biggest drop
in term of prediction time.

Experiment D The aim of this experiment is to determine if
subjects can immediately recognize the intention of the robot
from trajectories optimized for other subjects. Therefore, we
use neither a habituation nor optimization phases for one
particular trajectory, but rather present different previously
optimized trajectories only a few times. A limited number of
presentations is necessary, because the human may learn to
interpret potential idiosyncrasies of the movements, which
we want to avoid in this experiment.
For both buttons, five types of trajectories are presented:

— trajectories generated by two optimized DMP policies
(from Experiment A) that lead to the largest reduction in
T .- We refer to them as DMP1 and DMP».

— as above but with two viapoint policies (from Experi-
ment B) noted VP and VP;.

— straight line minimum-jerk trajectories (S) with end-
effector pointing toward the button, as a baseline.
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The order of the buttons (denoted R and B) and trajectory
types is random within a sequence of 10 trials. The sequence
is repeated four times which lead to a complete run compris-
ing 40 trials. An example of a random sequence is presented
in Table 1. The work of Zhao et al. [26] shows that straight
line minimum-jerk trajectories, with end-effector pointing
toward the target, are the most legible for a high number of
possible targets. By comparing the DMPs and the viapoint
based trajectories to this kind of straight lines, we hypoth-
esize that for the two-target case scenario the other types
of trajectories convey more informations and thus are more
legible. For this experiment, 8 novel subjects were used.

5.2 Results

The results of Experiment C are plotted in Fig. 10. Whereas
previous experiments showed smaller improvements during
habituation (7 and 10% for DMP and viapoint respectively)
and large improvements during optimization (a further 20
and 20%), we here see the inverse. The improvement during
habituation is now 37 and 43% (both p < 17°), whereas
during optimization they are small and not significant (p =
0.47 and p = 0.52). The complete results of Experiment C
are shown in Fig. 14 in Appendix 1.

The results of Experiment D are summarized in Fig. 11.
The top graph, depicts T, for all types of trajectories. Each
bar represents the average over all users and buttons. Dif-
ferences between buttons were not significant (p > 0.33,
Wilcoxon signed-rank test), and thus pooled. Differences
between the DMP and the two other type of trajectories are
significant (p < 0.03, Welch’s 7-test). However the differ-
ence between the viapoint policy and the straight line is not
significant (p = 0.21). The bottom graph depicts the same
results for the number of errors. The differences between
the viapoint policy and the two other type of trajectories is
significant (p < 0.03, Welch’s ¢-test). However there is no
significant difference between the DMP and the straight lines
(p=0.33)

5.3 Discussion

The results in Fig. 10 suggest that subjects can quickly learn
to recognize the intentions of the robot from trajectories opti-
mized for another subject, for both the DMP and the viapoint
policy. Because the improvement in 7, during habituation
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Fig. 10 Box plots for the normalized prediction times, when starting
with previously optimized trajectories from the beginning, averaged
over all subjects, and blocks of eight trials. (Top) DMP based trajecto-
ries. (Bottom) viapoint trajectories

is much more pronounced than during Experiment A and B,
we deduce that these trajectories are indeed more legible.
From a comparison between T, of Experiment A and B
and their equivalent in Experiment C we observe some inter-
esting behaviors. First the difference in 7. for the DMP on
the first eight trials is significant (p < 0.03, Mann—Whitney
U test) with T, being lower for Experiment A. We also note
that the subject’s predictions happen at 70% of the trajectory
in Experiment A and 90% in Experiment C and that this
difference is significant (p < 0.03, Mann—Whitney U test).
Initial trajectories for Experiment A are close to straight line
to the target (learned by demonstration). According to the
definition of legibility this suggests that optimized trajecto-
ries might be less legible when shown to novel users without
habituation. However humans adapt very quickly and by the
end of the habituation the optimal time is reached and does
not vary throughout the optimization. Moreover at the end
of the habituation the prediction is performed at 50% of the
robot trajectory when subject are shown optimized trajecto-
ries compared to 60% with the straight lines. We then deduce
that optimized trajectories are more legible. This is however a

Experiment D
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Fig. 11 Times (fop graph) and prediction errors (bottom graph) for
the three type of trajectories

contradiction with the fact that they started as less legible. As
stated, the definition of legibility from Dragan et al. [7], can-
not handle such contradictions because it does not account
for the possibility of habituation. At the end of the optimiza-
tion phase the difference between Experiments A and C is
not significant neither in term of time (p = 0.42) nor in term
of trajectory completion at prediction time (p = 0.08).

For the viapoint policy the situation is the exact oppo-
site. During the first eight trials the difference in 7. is not
significant (p = 0.23) neither is the difference in term of tra-
jectory completion (p = 0.41). Thus optimized trajectories
are at least as legible as straight lines without habituation.
However at the end of the optimization there is a significant
difference in term of time (p < 0.03) and therefore in term
of trajectory completion trajectory with a drop of almost 10%
(from 50 to 40%) . The trajectories selected for Experiment C
were the most legible one, i.e. the one that lead to the greatest
drop in the subject’s prediction time between habituation and
optimization. This observation supports the hypothesis that
the optimization of Experiment B have some local minima.

Are the viapoint trajectories more legible than the DMPs?
For the DMP based trajectories, when looking at trials 8-
16, the difference, in term of prediction time, between the
straight lines of the habituation phase of Experiment A and
the already optimized trajectories of Experiment C are not
significant(p < 0.03). This means that after 8 trials of habit-
uation subjects were able to perform similarly to those who
observed straight lines to the target. But by the trials 16—
24 they perform significantly better. For the viapoint policy
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it is sufficient to wait for the trials 8—6 to see a significant
improvement in the prediction time. Thus we can conclude
that the viapoint policy requires less habituation trials to per-
form better than the two other type of trajectories.

Between DMP and viapoint policies we note, at the end
of the optimization, a difference in term of trajectory com-
pletion (50% with the DMP trajectories versus 40% with the
viapoint ones). However this difference can be explained by
the fact that T, is slightly different between the two poli-
cies. In fact, in term only of prediction time, both DMP and
viapoint policies perform similarly (they both converge to
3.55s). Therefore, a direct comparison between them in term
of prediction time might not be suitable as the subject’s pre-
diction time depends also on the speed of the movement of
the robot.

The results in Fig. 11 are in accordance with the obser-
vations made in Experiment C. In term of prediction time
all trajectories perform similarly. We recall that 7., differs
between the DMP and the viapoint policies. Thus compar-
ing them only on time might be biased. However there is no
ambiguity when looking at errors. The number of errors for
the DMP policy is similar to that of the straight trajectory,
but the number of errors for the viapoint policy is far lower.
This means that subjects are able to recognize the intention of
the robot from the viapoint policy much more robustly than
from the two other policies. Because subjects are able to do
so immediately without habituation or previous training, this
indicates that the viapoint policy is more legible than the two
other policies.

From those results we conclude that reusing optimized
trajectory on novel subjects allows for a faster learning of
the robot’s sense of legibility. Even with DMP based tra-
jectories, where the robot’s motion can be considered as
idiosyncratic, subject were able to recognize faster the robot’s
intention. Moreover only the habituation phase is sufficient
to reach the performances of the initial subjects for whom
trajectories have been optimized. After habituation, no fur-
ther improvement is achieved. The legibility of previously
optimized trajectories could not be further increased by fur-
ther optimization with another user. Another conclusion is
that the viapoint policy is significantly more legible than the
two other type of trajectories as it requires less habituation
and leads to a lower error rate when presented without habit-
uation.

6 Conclusion

In this article we studied how legibility can be obtained in a
model-free approach. As any particular task will require dif-
ferent properties of motion, we want to achieve such results
without any task-specific model of legibility. To such end
we take an approach where we define a task-independent
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cost function that rewards efficiency (joint execution time),
robustness (task errors), and energy (jerk). These measures
can be readily defined for any task. To optimize such cost
function through experiment we rely on a model-free opti-
mization algorithm, PI®®, to efficiently optimize this cost
function through trial-and-error interaction of the robot with
the human.

In several human-robot experiments, we showed that
indeed, for different types of motions, robots are able to
improve their behavior allowing humans to better read the
robots’ intentions early and robustly. Our results show that
people, even after being habituated to robotic motions, can
still substantially improve their prediction times if the robot
optimizes its motions.

A second conclusion is that, when optimizing with policies
that have a high-dimensional parameter vector (which leads
to a lot of variance in the types of motions it can generate,
such as with the DMP), it is most likely that idiosyncratic
behavior arises. Novel subjects can infer the intention of
the robot from its behavior, but this requires an extended
phase of interaction with the robot. These interactions are
necessary for the novel subject to get to know the spe-
cific idiosyncrasies the robot has learned with the previous
subject.

Furthermore, the robot is still able to learn legible behav-
ior, even if we actively suppress idiosyncratic behavior by
allowing only stereotypical curved minimum jerk move-
ments. Already during first interactions, novel subjects are
able to read such behavior more efficiently and robustly than
when using the DMP policy. This indicates that this behavior
is immediately and more generally legible.

Are the generated viapoint trajectories universally legible,
i.e. across different robots or human cultures? Without any
habituation, in term only of prediction time, they perform
similarly to straight lines to the target. Although prediction
time is a good indicator of legibility, there might be other
factors that explain its variation. When working with real
humans we also have to consider that some psychological
effects can interfere with our expectations. For example, at
the beginning of the task some subjects might wait for more
confidence instead of trying to guess and potentially mak-
ing mistakes. Moreover in all our experiment our subject’s
share similar background and culture. Would the gener-
ated behavior be still legible for people from other cultural
background?

In general, we expect that the transition from idiosyncratic
to universally legible behavior may not always be that well
defined.

Acknowledgements This work was supported by national funds
through Fundag@o para a Ciéncia e a Tecnologia (FCT) with reference
UID/CEC/50021/2013 and by the EU FP7-ICT project 3rdHand under
grant agreement no 610878.



Int J of Soc Robotics

Appenndix 1: Policy Improvement through Black-
Box Optimization

Policy improvement is a form of model-free reinforcement
learning, where the parameters 6 of a parameterized pol-
icy mp are optimized through trial-and-error interaction with
the environment. The optimization algorithm we use is PI®®,
short for “Policy Improvement through Black-Box optimiza-
tion” [23]. It optimizes the parameters 6 with a two-step
iterative procedure. The first step is to locally explore the
policy parameter space by sampling K parameter vectors
0y from the Gaussian distribution (6, ¥), to execute the
policy with each 6y, and to determine the cost J; of each exe-
cution. This exploration step is visualized in Fig. 12, where
N (0, ) is represented as the large (blue) circle, and the
samples Ji=1..10 are small (blue) dots.

N S
0 5 10 15 0 12 14 18 18
8, cote ()

o

Fig. 12 Tllustration of the PI®Palgorithm on a simple cost function
J (@) = ||0]| (without policies). Left iterative updating of the param-
eters, where the exploratory samples for the first iteration are shown.
Right mapping the costs Ji to weights Py for the first iteration. The
algorithmic parameters are K = 10, 2 = 0.7

The second step is to update the policy parameters 6. Here,
the costs Ji are converted into weights Py with

—h(Jg —min(J))
Pr=e max(J)fmin(J))

(6)
where low-cost samples thus have higher weights. For the
samples in Fig. 12, this mapping is visualized (to the right).
The weights are also represented in the left figure as filled
(green) circles, where a larger circle implies a higher weights.
The parameters 6 are then updated with reward-weighted
averaging

K
0 <« ZPka @)
k=1

Furthermore, exploration is decreased after each iteration
¥ <« AX with a decay factor 0 < A < 1. The updated
policy and exploration parameters (red circle in Fig. 12) are
then used for the next exploration/update step in the iteration.

In the optimization experiments described in this article,
the parameters of PI®®are K = 8 (trials per update), ¥ =
5T (initial exploration magnitude) and A = 0.9 (exploration
decay).

Despite its simplicity, PI®®is able to learn robot skills effi-
ciently and robustly [22]. Alternatively, algorithms such as
PI2, PoWER, NES, PGPE, or CMA-ES could be used, see
[11,23] for an overview and comparisons.

Appendix 2: Complete results for Experiment A and
B

See Fig. 13.
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Experiment A (DMP)
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Fig. 13 Results for Experiment A (left column) and B (right column).
The start of the optimization phase is indicated by the vertical dashed
line. (Top row) Average (1 £ o) of the robot button pushing time (7} po.)-
It varies little for the DMP policy (left) and even less for the viapoint
policy (right). For the latter this is to be expected, as the duration of
pressing the button is not dependent on the parameters of the policy
in which exploration and optimization takes place. (Second row) Aver-
age (u % o) of the subject button pushing time Tyeq, Over all nine
subjects. Variance is quite high because some subjects push quickly
overall, whereas others are more careful. (Third row) Again the aver-
age subject button time, but this time normalized with respect to the
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Experiment B (viapoint)

Number of trials
20 40 60 80 100 120

hab:tuat:on optimization
phasephase

Number of trials

average value of T during the last eight trials of the habituation for
each subject. This reduces the variance caused by the overall differences
between subjects. For this graph, the results of the experiment in the
opposite column has been added as a dashed line to facilitate compar-
ison between experiments A and B. (Fourth row) Average (1 £ o) of
the trajectory completion at prediction time, i.e, the relative amount of
trajectory (timewise) observed by the subject when it presses the but-

Trobot — subject

ton. This value is calculated using the formula 100(1 —
(Bottom) Number of times the incorrect button was pushed, averagedS
over blocks of eight trials and all nine subjects
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Appendix 3: Complete results for Experiment C

See Fig. 14.
Experiment C (DMP) Experiment C (viapoint)
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Fig. 14 Results for Experiment C with DMP (left column) and viapoint
(right column) policies pre-optimized. The start of the optimization
phase is indicated by the vertical dashed line. (Top row) Average (u=+o)
of the subject button pushing time 7., Over all nine subjects. (Second
row) Again the average subject button time, but this time normalized
with respect to the average value of 7. during the last eight trials
of the habituation for each subject. For this graph, the results of the
experiment in the opposite column has been added as a dashed line to

Number of trials

facilitate comparison between experiments DMP and viapoint policies.
(Third row) Average (i £ o) of the trajectory completion at prediction
time, i.e, the relative amount of trajectory (timewise) observed by the

subject when it presses the button. This value is calculated using the
formula 100 (1 — T’”b"’;fhﬂ:‘b’“’) (Bottom) Number of times the incor-
rect button was pushed, averaged over blocks of eight trials and all nine

subjects
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