
Inverse Reinforcement Learning in Relational Domains
Thibaut Munzer

Inria, Bordeaux Sud-Ouest, France
thibaut.munzer@inria.fr

Bilal Piot
Univ. Lille-CRIStAL

(UMR 9189)-SequeL team
bilal.piot@univ-lille3.fr

Matthieu Geist
CentraleSupélec-MaLIS research group
UMI GeorgiaTech-CNRS (UMI 2958)

matthieu.geist@centralesupelec.fr

Olivier Pietquin
Univ. Lille-CRIStAL (UMR 9189)-SequeL team

Institut Universitaire de France (IUF)
olivier.pietquin@univ-lille1.fr

Manuel Lopes
Inria, Bordeaux Sud-Ouest, France

manuel.lopes@inria.fr

Abstract
In this work, we introduce the first approach to the
Inverse Reinforcement Learning (IRL) problem in
relational domains. IRL has been used to recover
a more compact representation of the expert pol-
icy leading to better generalization performances
among different contexts. On the other hand, rela-
tional learning allows representing problems with
a varying number of objects (potentially infinite),
thus provides more generalizable representations of
problems and skills. We show how these different
formalisms allow one to create a new IRL algo-
rithm for relational domains that can recover with
great efficiency rewards from expert data that have
strong generalization and transfer properties. We
evaluate our algorithm in representative tasks and
study the impact of diverse experimental conditions
such as : the number of demonstrations, knowledge
about the dynamics, transfer among varying dimen-
sions of a problem, and changing dynamics.

1 Introduction
Learning control strategies or behaviors from observations
is an intuitive way to learn complex skills [Schaal, 1999;
Argall et al., 2009; Khardon, 1999]. When learning from ob-
serving another agent, one can aim at learning directly the be-
havior or, instead, the criteria behind such behavior. The for-
mer approach is usually called Imitation Learning (IL) while
the latter is called Inverse Reinforcement Learning (IRL).

The main advantage of IRL is the robustness of the be-
havior induced. It can handle different initial states and
changes in world dynamics [Ng and Russell, 2000; Neu and
Szepesvári, 2009]. With IRL, an explanation of the behavior
is found, so the system can continue to learn online to fulfill
this explanation via an online Reinforcement Learning (RL)
algorithm. IRL also improves performance over learning the
policy if a change in the world dynamics occurs. Indeed, in
that case, the system will learn to adapt in order to achieve its
goal while continuing to follow the same behavior (via Imi-
tation Learning) would not. Being robust to dynamics mod-

ifications is an important property as, for instance, when a
system ages its dynamics changes (e.g., the brake of a car
will get worn).

IRL can also offer a more compact representation of the
behavior, modeled as a reward function. For instance, in a
blocks world domain, the task of building a tower with all
objects requires a non-trivial policy but can be described with
a simple reward [Džeroski et al., 2001]. This is useful when
the user has to be aware of the internal state of the system,
as a more compact representation is easier to understand for
a human operator. With active learning, the user has to cor-
rect/advise the system. So, he has to quickly be able to de-
termine what it should do. Human-machine collaboration is
another setting where the user has to take into account the
system and so, be informed of the internal state.

Another approach for generalizing to different problems
is to use representations that are more expressive. The
use of relational learning allows one to generalize between
worlds with different numbers of objects and agents. Learn-
ing to act from demonstrations in relational domains have
been a research problem for a long time [Segre and De-
Jong, 1985; Shavlik and DeJong, 1987; Khardon, 1999;
Yoon et al., 2002]. The use of relational representations is
attracting even more attention due to new algorithmic de-
velopments, new problems that are inherently relational and
the possibility of learning the representations from real-world
data, including robotic domains [Lang and Toussaint, 2010;
Lang et al., 2012].

Even though no approach to relational IRL has been pro-
posed, the use of relational representation to learn from
demonstrations have already been studied. Natarajan et al.
[2011] propose to use of gradient-tree boosting [Friedman,
2001] to achieve IL in relational domains.

In this work, the main contribution is to introduce the first
IRL algorithm for relational domains. For this we generalize
a previous approach for IRL, namely Cascaded Supervised
IRL (CSI) [Klein et al., 2013], to handle relational represen-
tations. Another contribution is to augment CSI with a reward
shaping step to boost performance. A third contribution is to
show that using data from different domain sizes can improve
transfer to unseen domain sizes.

The first section presents the Markov Decision Processes
(MDP) framework and its extension for relational data. A
second section reviews IRL in general and presents our con-
tributions : the augmented CSI algorithm and the generaliza-
tion to the relational domain. Finally, we present our results
and the conclusions in the two last sections.

2 Relational Learning for Markov Decision
Processes

2.1 Markov Decision Process
The proposed approach for learning by demonstrations relies
on the MDP framework. An MDP models the interactions
of an agent evolving in a dynamic environment. Formally, it
is a tuple MR = {S,A,R, P, γ} where S = {si}1≤i≤NS is
the state space, A = {ai}1≤i≤NA is the action space, R ∈
RS×A is the reward function, γ ∈]0, 1[is a discount factor
and P ∈ ∆S×A

S (∆S is the set of distributions over S) is the
Markovian dynamics which gives the probability, P (s′|s, a),
to reach s′ by choosing action a in state s. A deterministic
policy π ∈ AS maps each state to an action and defines the
behavior of the agent.

The quality function QπR ∈ RS×A for a given policy is
a measure of the performance of this policy and is defined
for each state-action couple (s, a) as the expected cumula-
tive discounted reward when starting in state s, performing
the action a and following the policy π afterwards. More
formally, QπR(s, a) = Eπs,a[

∑+∞
t=0 γ

tR(st, at)], where Eπs,a is
the expectation over the distribution of the admissible trajec-
tories (s0, a0, s1, π(s1), . . .) obtained by executing the policy
π starting from s0 = s and a0 = a. A policy π is said optimal
when :

∀π′ ∈ AS ,∀s ∈ S,QπR(s, π(s)) > Qπ
′

R (s, π′(s)). (1)

Moreover, the function called the optimal quality function,
noted Q∗R ∈ RS×A and defined as Q∗R = maxπ∈AS Q

π
R is

important as each optimal policy π∗ is greedy with respect to
it [Puterman, 1994]:

∀s ∈ S, π∗(s) ∈ argmax
a∈A

Q∗R(s, a). (2)

In addition, it is well known [Puterman, 1994] that the opti-
mal quality function satisfies the optimal Bellman equation:

Q∗R(s, a) = R(s, a) + γ
∑
s′∈S

P (s′|s, a) max
b∈A

Q∗R(s′, b). (3)

Equation (3) expresses a one-to-one relation between opti-
mal quality functions and their reward functions [Puterman,
1994].

2.2 Relational MDP
One can derive a relational MDP that generalizes the rein-
forcement learning formalism for high level representations
[Džeroski et al., 2001]. Solutions to the planning and learning
problems can be found in the literature [Kersting et al., 2004;
Lang and Toussaint, 2010]. Relational representations gen-
eralize the commonly used representations in MDPs and ma-
chine learning. Instead of representing data as attribute-value

pairs, it relies on first order logical formulas. Given all ob-
jects and a set of possible relations (or predicates), data is
represented by the set of logical rules that are true.

Under this representation the state of the environment is
the set of all atoms (grounded relations) that are true. The
state of the environment can change when relational actions
are applied. Actions have a different semantic than in finite
MDPs. A relational action is abstract and so its application
depends on choosing an object to apply it to, i.e., grounding
the action. For instance, the action take(object) can be applied
to different objects: take(cup) or take(box), and so leading to
different effects.

2.3 Example Domain : Blocks world
We present a simple example domain that is going to be used
to validate our approach. This is a classical domain that has
several interesting and challenging characteristics such as the
possibility of defining different tasks, the ease to visualize,
the possibility of defining problems with a changing number
of objects. Being a relational domain the blocks world can
be defined by a set of objects, a set of predicates and a set
of actions. The objects are the blocks and floor, a surface
where the blocks lie. There are six predicates: on(X,Y) (true
if object X is on object Y), clear(X) (true if X is a cube
and no object lies on him), cube(X), floor(X), red(X) and
blue(X).

The blocks world offers two abstract actions move(X,Y)
and wait(). The wait() abstract action is available in every
state and does not modify the state. The move(X,Y) ab-
stract action is defined with three rules that describe when the
actions can be applied and what becomes the next state: for
example, it can only be applied when both the block to grasp
and the target block have no object on top of them.

We can define multiple tasks in this domain but, to simplify
discussions, we will consider only two and model them with
rewards function: the first, called stack, is 1 when all blocks
are stacked and 0 otherwise, the second one, called unstack,
is 1 when all blocks are on the floor and 0 otherwise.

3 IRL in Relational Domains
IRL is a method that tries to find a reward function R̂ that
could explain the expert policy πE [Ng and Russell, 2000;
Russell, 1998]. More formally, an IRL algorithm receives
as inputs a set DE of expert sampled transitions DE =
(sk, ak = πE(sk), s′k)1≤k≤NE where sk ∈ S and s′k ∼
P (.|sk, ak) and some information about the world dynam-
ics, for instance a set of non-expert sampled transitions
DNE = (sl, al, s

′
l)1≤l≤NNE where sl ∈ S, al ∈ A, and

s′l ∼ P (.|sl, al). Then the algorithm outputs a reward R̂ for
which the observed expert actions are optimal.

Most of IRL algorithms can be encompassed in the uni-
fying trajectory matching framework defined by Neu and
Szepesvári [2009]. These algorithms find a reward function
such that trajectories following the optimal policy with re-
spect to this reward function become close to the observed
expert trajectories. Each step of the minimization thus re-
quires an MDP to be solved so as to generate trajectories.
These algorithms are for instance Policy Matching [Neu and
Szepesvári, 2007] minimizing directly the distance between

the obtained policy and the expert policy or Maximum En-
tropy IRL [Ziebart et al., 2008] minimizing the Kullback-
Leibler (KL) divergence between the distribution of trajecto-
ries. Those algorithms are incremental by nature and have to
solve several MDPs. On another hand, other IRL algorithms
such as Structured Classification for IRL (SCIRL) [Klein et
al., 2012] and Cascaded Supervised IRL (CSI) [Klein et al.,
2013] avoid resolving recursively MDPs.

In addition, most IRL algorithms are parametric and as-
sume a linear parameterization of the reward. However this
hypothesis do not hold for relational domains where states
are logical formulas. Yet, CSI can be made non-parametric
as we will demonstrate later. This, added to the fact that CSI
doesn’t need several MDPs to be solved, makes him a good
candidate for an IRL algorithm adapted to relational domains.
After presenting the original CSI algorithm, we show how it
can be improved by introducing an intermediate step. Then,
a relational version is developed.

3.1 CSI
The idea behind CSI is that it is hard to define an operator that
goes from demonstrations to a reward function. On the other
hand, one can define operators to go from demonstrations to
an optimal quality function and from an optimal quality func-
tion to the corresponding reward function. The second option
can be made computationally efficient because of the link be-
tween the score function of a multi-class classifier and an op-
timal quality function.

Indeed, given the data set DCE = (sk, ak)1≤k≤NE ex-
tracted fromDE , a classification algorithm outputs a decision
rule πC ∈ AS using sk as inputs and ak as labels. In the case
of a Score Based Classification (SBC) algorithm, the output
is a score function qC ∈ RS×A from which the decision rule
πC can be inferred :

∀s ∈ S, πC(s) ∈ argmax
a∈A

qC(s, a). (4)

A good classifier provides a policy πC which often chooses
the same action as πE , πC ≈ πE . Equation (4) is very similar
to equation (2) thus by rewriting the optimal Bellman equa-
tion (3), qC can be directly interpreted as an optimal quality
function Q∗RC for the reward RC defined as follows:

RC = qC(s, a)− γ
∑
s′∈S

P (s′|s, a) max
b∈A

qC(s′, b). (5)

Indeed, as qC verifies qC(s, a) = RC(s, a) +
γ
∑
s′∈S P (s′|s, a) maxb∈A qC(s′, b) and by the one to

one relation between optimal quality functions and rewards
this means that qC = Q∗RC . In addition, as πC is greedy with
respect to qC , πC is then optimal with respect to RC . Thus,
the expert policy πE is quasi-optimal for the reward RC as
πC ≈ πE .

However, RC can be computed exactly only if the dy-
namics P is provided. If not, we can still estimate RC by
regression. For this, we assume that we have a set DNE

of non-expert samples. So, we can easily construct a re-
gression data set DR = {(si, ai), r̂i}1≤i≤NRL from DE ∪
DNE = (si, ai, s

′
i)1≤i≤NE+NNE where r̂i = qC(si, ai) −

γmaxa∈A qC(s′i, a) is an unbiased estimate of RC(si, ai).
The output of the regression algorithm is an estimate R̂ of
the target reward RC .

Reward Shaping augmented CSI
Regression implies projecting the data onto an hypothesis
space. Given this hypothesis space some reward functions
are easy to represent while other are hard or impossible due
to the so-called inductive bias. There is a one-to-many re-
lation between the space of demonstrations and the space of
quality functions and a one-to-one relation between the space
of quality functions and the one of reward functions. This
means that there are many optimal candidates for the score
based classification step among which one could choose the
one that will be projected with the smallest error in the hy-
pothesis space during regression.

To improve the quality of its regression step, we propose to
introduce an intermediate Reward Shaping (RS) step to CSI.
Reward shaping is a technique aiming at modifying the re-
ward shape while keeping the same optimal policy. [Ng et
al., 1999] proved that ∀R ∈ RS×A,∀t ∈ RS , qt(s, a) =
Q∗R(s, a) + t(s) and Q∗R(s, a) share the same optimal poli-
cies and one can interchangeably use qt or Q∗R (or their
corresponding reward function) to represent a behavior or a
task. Although RS is traditionally used to guide reinforce-
ment learning, here we propose to use it to shape the reward
so that it can be more efficiently projected onto the chosen
hypothesis space.

In this context the purpose of RS is to find a function
t∗ ∈ RS such that the expected error of the regression step is
minimal. If one can define a criterion c over the reward val-
ues that represent the expected regression error (even heuris-
tically), an optimization problem can be written:

t∗ = argmin
t

J(t),

J(t) = c([q′C(si, ai)− γmax
a∈A

q′C(s′i, a)](si,ai,s′i)∈DE∪DNE).

where q′C(s, a) = qC(s, a) + t(s). The criterion c can vary
substantially. For example, if the regression model is sparse
the `1-norm can be used. On the other hand, if the hypothesis
space is composed of regression trees the entropy of the set
of reward values is a candidate: a low entropy implies a few
numbers of values which heuristically leads to a better repre-
sentation with a decision tree that can only represent a finite
number of values.

As only a finite number of values of t change the value of
c (those for which the state is present in DE or DNE), t can
be treated as a vector and standard black-box optimization
tools can be used. We propose to use a simplified version of
CMA-ES [Hansen et al., 2003].

Figure 1 summarizes the CSI method augmented with RS.
It consists in a first step of score-based classification 1© with
the set DE as input which outputs a score function qC . RS
2© is then used to produce q′C(s, a) = qC(s, a) + t∗(s) which

corresponds to an easier reward function to learn. From the
set DR constructed from DE , DNE and q′C , it is possible to
compute an estimate R̂ of the reward function RC via regres-
sion 3©. Theoretical guarantees on the quality of the reward
function learned via CSI are provided by Klein et al. [2013]
with respect to the errors of the classification step and the re-
gression step.

Figure 1: Sketch of the proposed method : CSI with reward
shaping. See text for explanations.

3.2 Lifting to the relational setting
As stated earlier most algorithms for IRL in the literature rely
on a parametric (propositional) representation of the MDP
state. However, an IRL algorithm have to be non-parametric
in order to be used in relational domains. We show here that
CSI can be made non-parametric by using different super-
vised learners (step 1© and 3©) than Klein et al. [2013]

Relational SBC
[Natarajan et al., 2011] have developed an algorithm to real-
ize SBC in relational domains, Tree Boosted Relational Imi-
tation Learning (TBRIL). Their algorithm is an adaptation of
the gradient boosting method [Friedman, 2001] where stan-
dard decision trees have been replaced with TILDE, a rela-
tional decision trees learner (see next section). They use their
method to learn a policy on relational domains from expert
demonstrations but TBRIL can be more broadly used for any
SBC problem in relational domains. We use TBRIL 1 as a
relational SBC 1©.

Relational regression
TILDE [Blockeel and De Raedt, 1998] is an algorithm de-
signed to do classification and regression over relational data.
It is a decision tree learner similar to C4.5 [Quinlan, 1993]. It
follows the principle of top down induction of decision trees
where the dataset is recursively and greedily split by build-
ing a tree according to a criterion until all data points in one
subset share the same label. The change made to handle re-
lational data is to have first order logic tests in each node.
These tests are logical formula of one atom with free vari-
ables. TILDE can be used for regression if one allows leaves
to contain real numbers. To be able to represent complex
functions we allows TILDE to use the count aggregator as of-
ten done in the relational learning literature [De Raedt, 2008].

Relational CSI
We propose the Relational CSI algorithm (RCSI). We make
three modifications to CSI : (i) use TBRIL as the SBC step
1©, (ii) add an intermediate RS step 2© to improve the perfor-

mance and (iii) use TILDE for regression step 3©.
1It should be noted that we did not use their implementation, so

there are differences. In particular we do not learn a list of trees for
each relational action but one list of trees for all relational actions.

TILDE is a decision tree based regressor and therefore we
choose the criteria c of the RS step to be the entropy.

4 Experiments
To validate the proposed approach, experiments have been
run to (i) confirm RCSI can learn a relational reward from
demonstrations, (ii) study the influence of the different pa-
rameters and (iii) show that IRL outperforms classification
based imitation learning when dealing with transfer and
changes in dynamics.

4.1 Experimental setup
To test RCSI quantitatively we use the following setup. From
a target reward R∗, we compute an optimal policy π∗. The
algorithm is given, as expert demonstrations, Nexpert trajec-
tories starting from a random state and ending when the (first)
wait action is selected. As random demonstrations, the al-
gorithm is given Nrandom one-step trajectories starting from
random states. The optimal policy π̂ corresponding to the
learned reward R̂ is then computed. As proposed by Klein
et al. [2013], the expert dataset is added to the random one
to ensure that it contains important (state, action, next-state)
triplets such as (goal-state, wait, goal-state). Each experiment
is repeated 100 times and results are averaged.

To sample the random dataset we use the following distri-
bution, Pstate : we first draw uniformly from the different
relational spatial configurations and then, for each one, uni-
formly from the possible groundings.

The main parameters are set as follows: 10 trees of maxi-
mum depth 4 are learned by TBRIL during the SBC step 1©
and the reward is learned with a tree of depth 4, which acts as
a regularization parameter.

Performance measure
To evaluate the proposed solution we define a performance
measure, the Mean Value Ratio (MVR), that measures the
ratio between the expected cumulative discounted reward ob-
tain following the learned policy (optimal policy derived from
the learned reward) and following the expert one.

MVR(R̂) =
1

1000

1000∑
i=0

Qπ̂R∗(si, π̂(si))

Qπ
∗
R∗(si, π

∗(si))
, si ∼ Pstate

Comparison to TBRIL
TBRIL and RCSI have very different goals, different assump-
tions, and thus should not be compared directly. However, as
we propose the first algorithm for IRL in relational domains,
we have no baseline to compare to. TBRIL is an algorithm
that has been developed to do imitation learning in relational
domains and so it can inform us on what to expect from im-
itation in relational domains and act as a baseline. Latter we
will show the advantages of estimating the reward using IRL.

4.2 Sensibility to dataset sizes
Figure 2 shows the results of using RCSI to learn the stack
and unstack reward of the blocks world domain. RCSI is able
of learning the reward with enough expert and random train-
ing points. This graph also shows that the RS step 2© always
increases the performance of the algorithm.

The setting Nrandom = 300 and Nexpert = 15 gives good
results and so we will use it in the following experiments.

Figure 2: Performance for different amounts of training data
on the stack (Top) and unstack (Bottom) task. Error bars rep-
resent standard errors.

4.3 Transfer performance

The main claim of relational learning is the ability of trans-
ferring among domain sizes. Fig. 3 shows the performance
while varying the number of blocks between training and test-
ing. For the stack reward, the graphs show almost no loss of
performances due to a changing number of blocks. On the
other hand, for the unstack reward, results are clearly worse
when using 4, 5 or 6 blocks for training. By looking at the
learned rewards, we have observed that, in most cases, one of
the two following rewards is learned : one where the value is
high when the number of clear is 4, 5, or 6 (depending on the
number of blocks in the training set) and a second where high
rewards are given when the pattern on(X,Y)∧block(Y) can-
not be matched. Both solutions are correct for a given domain
size, as long as the number of blocks is the same. However,
if we change the number of blocks, an ambiguity appears and
only the second one stays correct. Yet, there is no reason to
prefer one over the other. Moreover, for both possible rewards
the expert demonstrations would be similar so the system has
to choose between them based on hidden hypotheses.

One way to counter this phenomenon is to use a varying
number of blocks during learning. These results are shown
in the last column of Fig. 3 where a reward learned with a
dataset mixing demonstrations with 4 and 5 blocks success-
fully transfers over to 6-block problems. One can also ob-
serve that learning the reward does not perform better than
directly learning the policy. This results would be surprising
in a propositional domain and shows how relational represen-
tations allow to easily transfer among tasks. The advantage
of IRL is shown in the following experiments.

Figure 3: Performance of RCSI (and TBRIL) when different
number of blocks are used for training and testing the stack
(Top) and unstack (Bottom) task.

4.4 Online learning
One interesting feature of IRL over IL is to endow the system
with online learning abilities. To showcase this feature, the
optimal policy of the learned reward is no more computed
exactly (with value iteration) but learned online by interacting
with the system using the Q-Learning algorithm [Watkins,
1989]. We define an epoch as 1000 interactions. The RCSI
algorithm first learns the corresponding quality function, so
we can use the results of the SBC step 1© to bootstrap the
Q-Learning. Results are shown in Fig. 4. There are more
efficient RL algorithms in the literature that we could have
used. However, this is the proof of concept, not the better
way to do online learning from the learned reward.

Figure 4: Performance of RCSI (and TBRIL) when the opti-
mal policy is learned online.

4.5 Dynamics change
Learning the reward rather than directly the policy of the ex-
pert leads to a more robust behavior in particular when large
modifications of the dynamics of the environment occur. To
evaluate this ability, the dynamics of the blocks world is mod-
ified after 50 epochs. One of the blocks is made unmovable
so in order to build a tower one have to stack them on top
of this fixed block. The results are shown in Fig. 5. As ex-
pected, in this setup, learning the reward allows recovering a
satisfying policy even after changes in the dynamics. TBRIL
output, on the other hand, cannot learn from interaction and
performance stays low.

Moreover, we display results of the algorithm when setting
the maximum depth of the reward tree to be 2 in order to
increase the regularization factor. It is done as a naive way to
obtain a more general representation of the reward. It leads
to better performance when the dynamics change; the learned
reward transfers better to the new setting.

Figure 5: Performance of RCSI (and TBRIL) when dynamics
is changed.

4.6 Big scale
It is important for an IRL algorithm to scale with the number
of states. Most tasks of object manipulation are highly com-
binatorial, and the blocks world domain is no exception: for 5
blocks there are 501 states whereas for 15 blocks the number
of states increases to 6.6 × 1013. We evaluate RCSI in a 15
blocks world (usingNrandom = 1000). We use an alternative
performance measure that is computationally more efficient,
the Optimal Actions Count (OAC):

OAC(R̂) =
1

1000

1000∑
i=0

1∀â∈argmaxaQ
πE
R̂

(si,a),â∈πE(si)
,

which is the percentage of states for which all the optimal ac-
tions for the learned reward are optimal actions for the expert.

The results are shown in Fig. 6. On a 15 blocks world
learning a quality function for the stack reward requires rep-
resenting a very complex function, this explains that the per-
formance for TBRIL is around 0.8; as a consequence RCSI
performance is no more than 0.85. When the performance
is not good enough, setting the maximum depth to 2 is too
naive and prunes important features of the reward leading to
low performance. For the reward unstack, optimal quality
functions are trivial so TBRIL performs perfectly and RCSI
performance is around 0.85.

However, the performance can be improved by learning in
a small domain and rely on the transfer ability of relational
representations to scale to 15 blocks world. As shown in Fig.
6, the reward learned from a mixed 4 and 5 blocks world,
scales very well to a 15 block world. If maximum depth is set
to 2 OAC is more than 0.98 for stack and unstack rewards.

Even if our goal is to learn a reward, it is also important
to be able to find the corresponding optimal policy. We can
do this using the prost2 planner as described by [Keller and
Helmert, 2013], we search a plan in a 15 block world for
the rewards learned in a mixed 4 and 5 blocks world with
RCSI (maximum depth set to 2). We consider a plan to be
successful if a goal state is reached and stayed in for at least

2http://prost.informatik.uni-freiburg.de

Figure 6: OAC of RCSI (and TBRIL) when testing in a 15
blocks world.

4 time steps during the first 40 time steps. 10 plans starting
from random states are computed to evaluate a learned reward
function and results are averaged over 10 reward learned. For
both stack and unstack, the plans are successful in more than
95% of the cases.

We emphasize the strong transfer properties of mixing re-
lational representations and IRL that allowed us to learn a
reward in a small world and having such reward valid at
an extremely high-dimension problem. The policy can then
be found using approximated search methods [Keller and
Helmert, 2013; Lang and Toussaint, 2010].

4.7 Reward learned
Learning the reward often offers a better interpretation of the
behavior of the expert. Due to its compactness it is possible
to visualize the reasons behind the behavior of the expert. In
Fig. 7 we display the reward learned on a stack task as a tree
using the prolog language. We can see that the best thing to
do is to get to a state where all the blocks are stacked (there
is only one clear predicate true) and wait. In any case, it it is
better not to put blocks on the floor and especially when all
the blocks are stacked.

Figure 7: Reward learned with RCSI on 5 blocks world.

5 Conclusions
In this paper, we have presented the first approach to IRL for
relational domains. We have shown how the IRL algorithm
CSI can be generalized to the relational domain. The results
indicate that it is possible to learn a relational reward that ex-
plains the expert behavior. From it, a policy that matches the
expert behavior can be computed. Besides generalizing the
classification and regression steps in CSI, we have introduced
a reward shaping step so as to reduce the regression error. Fi-
nally, we have proposed a new trans-dimensional perspective
on data collection where we increase robustness to transfer
over domain size by including in the training set demonstra-
tions with different number of objects.

IRL has the advantage of more compact explanations of
behaviors and increased robustness to changes in the environ-
ment dynamics. The use of relational representations allows
learning policies and rewards for changing number of objects
in a given domain. This shows one great strength of rela-
tional representations, and such results would not be possible
in propositional or factored domains even with special fea-
ture design. Moreover, when the dynamics changes, we can
see the interest of inferring the reward that allows the system
to re-evaluate the expected behavior in the new conditions.

In the future, we plan to apply these algorithms to more
complex problems and considering the generalization of other
IRL algorithms. Interesting generalizations are the active and
interactive settings [Lopes et al., 2009], multi-agent domains
[Natarajan et al., 2010] and consider the problem of simulta-
neously learn the symbolic representation and the task.

Acknowledgments
This work was (partially) funded by the EU under grant
agreement FP7-ICT-2013-10-610878 (3rdHand) and by the
Inria-Paristech Flowers Team. We thank Marc Toussaint, Sri-
raam Natarajan and Kristian Kerstin for comments on this
work.

References
[Argall et al., 2009] Brenna D Argall, Sonia Chernova, Manuela

Veloso, and Brett Browning. A survey of robot learning from
demonstration. Robotics and autonomous systems, 57(5):469–
483, 2009.

[Blockeel and De Raedt, 1998] Hendrik Blockeel and Luc
De Raedt. Top-down induction of first-order logical deci-
sion trees. Artificial intelligence, 101(1):285–297, 1998.

[De Raedt, 2008] Luc De Raedt. Logical and relational learning.
Springer Science & Business Media, 2008.

[Džeroski et al., 2001] Sašo Džeroski, Luc De Raedt, and Kurt
Driessens. Relational reinforcement learning. Machine learning,
43(1-2):7–52, 2001.

[Friedman, 2001] Jerome H Friedman. Greedy function approx-
imation: a gradient boosting machine. Annals of statistics,
29(5):1189–1232, 2001.

[Hansen et al., 2003] Nikolaus Hansen, Sibylle Müller, and Petros
Koumoutsakos. Reducing the time complexity of the derandom-
ized evolution strategy with covariance matrix adaptation (cma-
es). Evolutionary Computation, 11(1):1–18, 2003.

[Keller and Helmert, 2013] Thomas Keller and Malte Helmert.
Trial-based heuristic tree search for finite horizon mdps. In
ICAPS, pages 135–143, 2013.

[Kersting et al., 2004] Kristian Kersting, Martijn Van Otterlo, and
Luc De Raedt. Bellman goes relational. In ICML, page 59, 2004.

[Khardon, 1999] Roni Khardon. Learning action strategies for
planning domains. Artificial Intelligence, 113(1):125–148, 1999.

[Klein et al., 2012] Edouard Klein, Matthieu Geist, Bilal Piot, and
Olivier Pietquin. Inverse reinforcement learning through struc-
tured classification. In NIPS, pages 1007–1015, 2012.

[Klein et al., 2013] Edouard Klein, Bilal Piot, Matthieu Geist, and
Olivier Pietquin. A cascaded supervised learning approach to in-
verse reinforcement learning. In Machine Learning and Knowl-
edge Discovery in Databases (ECML/PKDD’13), pages 1–16,
2013.

[Lang and Toussaint, 2010] Tobias Lang and Marc Toussaint. Plan-
ning with noisy probabilistic relational rules. Journal of Artificial
Intelligence Research, 39(1):1–49, 2010.

[Lang et al., 2012] Tobias Lang, Marc Toussaint, and Kristian Ker-
sting. Exploration in relational domains for model-based re-
inforcement learning. Journal of Machine Learning Research,
13(1):3725–3768, 2012.

[Lopes et al., 2009] Manuel Lopes, Francisco S. Melo, and Luis
Montesano. Active learning for reward estimation in inverse re-
inforcement learning. In Machine Learning and Knowledge Dis-
covery in Databases (ECML/PKDD’09), 2009.

[Natarajan et al., 2010] S. Natarajan, G. Kunapuli, K. Judah,
P. Tadepalli, K. Kersting, and J. Shavlik. Multi-agent inverse
reinforcement learning. In Machine Learning and Applications
(ICMLA), 2010 Ninth International Conference on, pages 395–
400, Dec 2010.

[Natarajan et al., 2011] Sriraam Natarajan, Saket Joshi, Prasad
Tadepalli, Kristian Kersting, and Jude Shavlik. Imitation learning
in relational domains: A functional-gradient boosting approach.
In IJCAI, pages 1414–1420, 2011.

[Neu and Szepesvári, 2007] Gergely Neu and Csaba Szepesvári.
Apprenticeship learning using inverse reinforcement learning and
gradient methods. In UAI, pages 295–302, 2007.

[Neu and Szepesvári, 2009] Gergely Neu and Csaba Szepesvári.
Training parsers by inverse reinforcement learning. Machine
learning, 77(2-3):303–337, 2009.

[Ng and Russell, 2000] Andrew Y Ng and Stuart J Russell. Algo-
rithms for inverse reinforcement learning. In ICML, pages 663–
670, 2000.

[Ng et al., 1999] Andrew Y Ng, Daishi Harada, and Stuart Russell.
Policy invariance under reward transformations: Theory and ap-
plication to reward shaping. In ICML, pages 278–287, 1999.

[Puterman, 1994] Martin L Puterman. Markov Decision Processes:
Discrete Stochastic Dynamic Programming. John Wiley & Sons,
1994.

[Quinlan, 1993] J Ross Quinlan. C4. 5: Programs for Machine
Learning. Morgan Kaufmann, 1993.

[Russell, 1998] Stuart Russell. Learning agents for uncertain envi-
ronments. In Proc. of COLT, pages 101–103, 1998.

[Schaal, 1999] Stefan Schaal. Is imitation learning the route to
humanoid robots? Trends in cognitive sciences, 3(6):233–242,
1999.

[Segre and DeJong, 1985] Alberto Segre and Gerald F DeJong.
Explanation-based manipulator learning: Acquisition of planning
ability through observation. In Proc. of ICRA, pages 555–560,
1985.

[Shavlik and DeJong, 1987] Jude W Shavlik and Gerald F DeJong.
Bagger: an ebl system that extends and generalizes explanations.
In Proc. of AAAI, pages 516–520, 1987.

[Watkins, 1989] Christopher J C H Watkins. Learning from delayed
rewards. PhD thesis, University of Cambridge England, 1989.

[Yoon et al., 2002] Sungwook Yoon, Alan Fern, and Robert Givan.
Inductive policy selection for first-order mdps. In Proc. of UAI,
pages 568–576, 2002.

[Ziebart et al., 2008] Brian D Ziebart, Andrew L Maas, J Andrew
Bagnell, and Anind K Dey. Maximum entropy inverse reinforce-
ment learning. In Proc. of of AAAI, pages 1433–1438, 2008.

