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Abstract

We present the principles, current work and plans for
the EU-FP7 Project Semi Autonomous 3rd-Hand Robot. In
this project, we pursue a breakthrough in flexible manufac-
turing by developing a symbiotic robot assistant that acts
as a third hand of a human worker. It will be straightfor-
ward to instruct even by untrained workers and allow for
efficient knowledge transfer between tasks. We demonstrate
its efficiency in the collaborative assembly of furniture.

Approach
Current robots in real-world industrial applications are

either preprogrammed or teleoperated, with only few ex-
ceptions, lacking any autonomy at all. At the other extreme,
the field of artificial intelligence has so far been unable to
endow robots with full autonomy, and the prospect of fully-
autonomous robots is uncertain at best. We challenge the
current thinking in industry and academia on both the future
of robotics and artificial intelligence as well as on the nature
of the long-awaited robotic killer application by suggesting
that a promising alternative, achievable in the foreseeable
future, lies between these extremes.

The alternative we propose is semi-autonomous human-
robot collaboration. This new robotics paradigm is likely
to result in a class of robotic systems that are proactive, can
be programmed and commanded by instruction, are capa-
ble of skill self-assessment, and have an explicit model of
team behavior. These principles will allow a revolution in
the way humans and robots work together by changing the
usual way we program and interact with robots:

Instruction replaces Programming. Under frequent oc-
currences of new situations, it is not possible to program
each new task with abstract programming languages. In-
stead, intuitive programing methods must be devised. Our
instruction framework generalizes learning from demon-
stration, active learning, mutual adaptation, and human
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Figure 1. Interactive Learning Framework for extracting a high-
level task representation as well as reusable motor primitives from
a user demonstration. (a) Task Demonstration; (b) Interactive cor-
rection of the acquired knowledge using a GUI; (c) Automatically
detected key-frames of the demonstration; (d) Motor primitives
extracted from the demonstration.

guidance to allow a laypeople to command a robot to work
on collaborative tasks.

Knowledge Transfer enables Fast Task Switching. Al-
though new tasks will continually require new skills of the
robots, most will exhibit significant similarities. If such in-
variant properties are exploited, we can substantially im-
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prove the efficiency of task switching – significantly be-
yond what either instruction alone or standard general-
ization properties of the learning algorithms can achieve.
Hence, we must devise methods that at any state know what
they know as well as what knowledge needs to be acquired.

Semi-Autonomy replaces Teleoperation or Full Auton-
omy. Many products require a level of dexterity and pre-
cision that benefits greatly from collaboration between peo-
ple and robots. Here it is essential that the robot is able to
ask for help when its skills are not sufficient. Also, for fluid
interaction it will need to interpret the users’ needs and an-
ticipate their requests, either to act according to the opera-
tors’ intentions or to avoid unsafe situations.

Expected Results

Semi-autonomous robots go beyond teleoperated robots
in that they are trained to do their jobs without step-by-step
guidance. Instead of requiring an operator, these robots op-
erate proactively and blend their operation with that of their
human coworkers. The key idea is the combination of the
precision, force and speed of robots with the dexterity, rea-
soning and intelligence of humans. Rather than operating
independently, the robot becomes a semi-autonomous part
of a mixed human/robot assembly team, within which it in-
crementally learns to fulfill its role based on intuitive hu-
man instruction. We introduce instruction as the combi-
nation of demonstrations (both correct behavior and coun-
terexamples), guidance, self-adaptation, and active query-
ing in an interactive process. Human and robotic cowork-
ers can switch roles, and the robot can predict and adapt to
the human co-worker both at a low control level and at the
higher level of understanding preferences and limitations of
its collaborator.

Figure 2. The experimental platform setup consisting of two
KUKA lightweight arms, two DLR-HIT five-fingered hands, two
Kinect cameras, four CMOS sensor cameras, and a motion capture
system (the latter not visible in the picture).

Work progress
In the following we summarize the current status one

year into the project. A high-level overview of our inter-
active learning framework is presented in Figure 1 and in a
a video. It considers all factors that need to be taken into ac-

count to learn a complete description of a task in an intuitive
way efficient enough to reduce the programming effort and
to reuse learned skills. We are developing software tools
that allow easy programming and interaction with a robot
and simultaneously address the learning, programming and
execution problems. As we rely on learning methods, spe-
cial care is taken to ensure that such software tools are able
to provide the user information about learning progress and
uncertainty of the robot and its state during task execution.

Perception We developed a probabilistic, appearance-
based pose estimation (PAPE) method that integrates di-
verse feature types including edge orientations, depth and
color. This method is useful for realistic grasping / ma-
nipulation tasks involving textureless objects and imprecise
models. To estimate gaze and gather cues for human-robot
interaction, we implemented a face tracking system using
Regularized Landmark Mean-Shift (RLMS) [7] in combi-
nation with POSIT [3] for head pose estimation. Based on
head pose and fiducial points extracted by the face tracker,
we obtain a refined estimate of gaze. Together with hand
pose estimation and gesture recognition they will aid in
human-robot interaction.

Motor Primitives We address multiple challenges in the
acquisition of motor primitives and their application in co-
ordinated work. First, we plan robot motion in a way that
obeys high-level constraints learned from human demon-
stration (see videos of assembling a toolbox and a chair).
Secondly we consider how to generalize and execute motor
primitives in coordination with a human partner. We stud-
ied how to learn and validate interaction primitives for han-
dover of different parts during assembly tasks [5], to address
multiple interaction patters between the human coworker
and the robot assistant [4] using unlabeled data (see a
video). We developed new ways to generalize probabilis-
tic primitives during grasping using warping functions [2].

Segmentation of Trajectories of Multiple Objects An
assembly task can be interpreted as a sequence of manip-
ulations acts that change the constraints between pairs of
objects. We created several methods that build upon this
notion, one based on a generic CRF model that models
a conditional probability distribution between the motions
and postures of different objects [1], and a complementary
method where the segments result from clustering motor
primitives rather than relations between objects.

Acquiring High-Level Task Plans An assembly task is
a complex skill that includes both high-level planning and
low-level action execution. The high-level plans generalize
better among different objects and situations and are easier
to interpret by humans. To learn such plans we introduced
a new inverse reinforcement learning method that works in
the relational domain [6] (see a video illustrating transfer of
learned plans between objects).
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