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One of the basic skills for a robot autonomous grasping is to select the appropriate grasping point for
an object. Several recent works have shown that it is possible to learn grasping points from different
types of features extracted from a single image or from more complex 3D reconstructions. In the context
of learning through experience, this is very convenient, since it does not require a full reconstruction
of the object and implicitly incorporates kinematic constraints as the hand morphology. These learning
strategies usually require a large set of labeled examples which can be expensive to obtain. In this paper,
we address the problem of actively learning good grasping points to reduce the number of examples
needed by the robot. The proposed algorithm computes the probability of successfully grasping an object
at a given location represented by a feature vector. By autonomously exploring different feature values
on different objects, the systems learn where to grasp each of the objects. The algorithm combines
beta-binomial distributions and a non-parametric kernel approach to provide the full distribution for the
probability of grasping. This information allows to perform an active exploration that efficiently learns
good grasping points even among different objects. We tested our algorithm using a real humanoid robot
that acquired the examples by experimenting directly on the objects and, therefore, it deals better with
complex (anthropomorphic) hand-object interactions whose results are difficult to model, or predict. The
results show a smooth generalization even in the presence of very few data as is often the case in learning

through experience.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Grasping is a core skill to develop robotic applications in
flexible and dynamic manufacturing environments or in domestic
applications such as service robotics. The ability to grasp objects
involves several skills including motor control (planning, reaching)
and perception (grasping point selection, object reconstruction,
visual feedback). Due to the enormous variety of objects and
grasping strategies, grasping is still an open problem. In the past
years, standard techniques such as the one based on stability
[1-5] have been combined and complemented with learning and
adaptive strategies. In parallel, several insights from neuroscience
and human development have been incorporated to computational
models of infant grasp learning [6] and, more generally, on how
humans deal with grasping [7]. There is strong evidence suggesting
that humans easily determine, from their prior experience, what is
the better way of grasping and the appropriate grasping point - i.e.
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the relative location of the hand and the object and the way to close
the fingers around it - and can perform a grasp without any visual
control, but using only visual planning [8].

Within this context, a current common approach to the
grasping problem is to decouple, at least partially, the perception
and control problems. First, the robot decides where to grasp
the object based on the object perceived properties (e.g. visual
descriptors, 3D models). Next, a combined reaching and grasping
strategy tries to grasp the object at the previously selected
point. This scheme has been widely used in many of the latest
developed systems such as generic visual descriptors combined
with planning [9], 3D object centered representations and
reinforcement learning[10], 3D multi-modal features combined
with a set of predefined grasp strategies [11], single image visual
descriptors and visual servoing [ 12]. The independent treatment of
both problems allows to reduce the computational complexity of
the planning and learning algorithms.

This paper focuses on the perception step of the general
grasping architecture described above and addresses the problem
of where to grasp an object by actively learning visual descriptors
for good grasping points. Learning grasping points has been
approached mainly in two different ways. As a supervised learning
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problem that uses examples labeled by a user hand or experienced
by the robot itself. The latter approach, based on autonomously
acquired examples, is well suited for hands which cannot be easily
simulated or when the grasping result cannot be easily predicted
by an expert. The second approach is to use a reinforcement
learning algorithm to optimize the grasp which, in turn, implicitly
creates representations of good grasping points. A common
requirement of both approaches is the need for a large number of
training examples, which is a costly and time consuming process.

The paper proposes a method to actively select training
examples based on the knowledge accumulated by the robot to
efficiently learn grasping points. The main contributions of this
paper are: (a) a new algorithm to estimate the full posterior
of the grasping probability based on a set of (visual) features
extracted from the object and (b) an active exploration strategy
that reduces the amount of data required to learn where to grasp
a set of objects. On one hand, the algorithm combines a Bayesian
model of the probability of a grasp based on beta-binomial
distributions with a non-parametric kernel based approach [13].
Based on a set of examples, it estimates the grasp probability for
all potential grasping points. Its non-parametric approach makes
local approximations of the underlying grasping probability and is
able to capture highly non-linear dependences on the visual input
features. On the other hand, the algorithm estimates the posterior
predictive distribution instead of just the grasp probability. An
active learning strategy exploits this extra information, such as
the variance (or other measurements of information), to plan
new grasps. Such a strategy allows a great reduction in learning
time/samples necessary to converge to a good approximation of
the function.

We illustrate the performance of our method in two different
setups. First, we used a simulated one dimensional example
to evaluate the method with a known ground truth. Next, we
evaluated its performance on a grasping application using visual
features extracted from a single image. We applied the algorithm
to learning grasping points using Baltazar, a humanoid torso with
an anthropomorphic hand. We recorded a set of trials where the
robot tried to grasp different objects at several points. Based on this
training set, the robot successfully predicted grasping points for
new objects. On the other hand, the active strategy recovered the
batch grasping probabilities with less examples. To provide a more
systematic evaluation of our active learning approach, we also used
the Stanford synthetic object grasping point data database [9].

The remainder of this paper is organized as follows. After
discussing related work in Sections 2 and 3 presents our approach
to grasp and the non parametric grasping point learning algorithm.
Active learning and grasp point selection are described in Section 4.
Section 5 describes the experimental setup with the real robot and
Section 6 presents the experimental results on simulated data and
on the real robot. Finally, in Section 7 we draw our conclusions and
comment on future developments.

2. Related work

Early works on robot grasping used the geometry of the
problem to model a stable grasp and control the robot to perform
it [1-5]. After this initial research, the focus shifted to the relation
between perception and action and several approaches tried
to extract visual information to plan grasping actions: based
on 2D information [14,15], approximating to known geometric
shapes [16] or using range information [17]. Other works
considered learning approaches to control the manipulator to the
desired grasping position based on visual servoing techniques [ 18]
or imitation [19]. Some approaches tried to learn a mixture of
perception and action. For instance, [20] learns to grasp simplified
superquadric shape approximations of objects. The work in [21]

learns an object classifier based on the 2D appearance and the
camera-robot calibration using Gaussian basis functions. Learning
how to approach and grasp an object using reinforcement learning
was used by Baier-Lowenstein [22].

The work in [23] implicitly used the concept of grasping points
to define areward function based on simple geometrical features of
the object. Based on this reward, two learning algorithms applied
at different spatial scales learned the appropriate controller to
grasp the object using reinforcement learning on a PUMA robot and
simple planar objects. As a by-product, the estimated Q -function,
approximated using B-splines, encodes the utility of a particular
grasping point. However, the reward function was based on simple
heuristics and rules.

Instead of relying on very precise geometric features, the work
in [9] proposed to learn correct grasping points directly from visual
features using supervised learning techniques. In that work, the
grasping point for a precision grip is computed as a function of the
object’s features extracted from a single image. The method uses a
logistic regression to estimate the probability of a successful grasp
at each potential image location. In order to recover the 3D location
of the point, this operation is repeated from different points of
view and the maximum likelihood grasping point is selected. The
method has been extended to work with partial views of the object
and range sensors [24].

Recently, other authors have exploited more sophisticated ob-
ject representations such as 3D object reconstructions. In [10],
objects and scenes are represented using early cognitive vision de-
scriptors. For an object, the likelihood of grasping it is approximated
over the whole object surface using a Gaussian process which also
includes information about the gripper orientation. In [11], geo-
metric constraints based on 3D features are combined with the ap-
pearance to hard wire an initial grasp which is then refined using
robotic attempts to grasp the object.

In addition to previous works, the few other methods that
address similar problems use only simulation. It is worth to
mention [6], which presents a computational model on infant
grasp learning. The method uses a Hebbian rule to learn the best
grasping point and hand orientation in a simulated environment
without considering the perceptual aspects of the problem. In [25],
objects are described through rough descriptors obtained from the
object bounding box. In simulation, the robot exhaustively tries all
the grasping points (approach vectors) and keeps the good ones
in a database. Unsupervised clustering of the objects provides a
compressed database which is used to categorize new objects. The
actual grasping is based on a 3D reconstruction of the bounding
box and is adjusted for new objects. Some methods bootstrap
the grasping learning problem using imitation or program by
demonstration [26]. The demonstration provides a kinematic
reconstruction of the hand during a grasp for a specific object. A
map between different human-robot hand morphologies is used
to allow replication of the same trajectory by the robot. Again, an
exhaustive simulated search optimizes the reaching direction to
apply the desired grasp on an object, thus learning a controller that
maximizes the probability of grasping.

Since all the previous methods need a substantial amount of
data, there has already been some research on active strategies
to take advantage of the active nature of a robot learning
through experience. In [27], active learning has been implemented
using heuristics based on geometric information. The grasping
probability was estimated with a nearest-neighbors approach on
the memorized experiences. The exploration strategy reduces
the difference between grasping classes probabilities. It suffers
from lack of exploration and may be trapped in zones, where
the real grasping probability is around 0.5. Recently, a two level
architecture combined active learning and reinforcement learning
to learn the grasping points and the corresponding policy for a
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single object [28] based on the object-centered representation
in [10]. Their active strategy is based on the bandit problem and,
similarly to our approach, they used a kernel based representation,
namely Gaussian processes, to approximate the reward of a set of
features and use them to select new samples.

This paper extends the beta-binomial regression algorithm
of [13], shows its relation to kernel regression and develops active
learning strategies for such a model. It shares ideas with the
works of [28,9]. Similarly with [9], we learn a grasping probability
and work on the feature space. This allows the use of negative
information, and further improve the sample efficiency, and to
generalize among objects in a transparent way. Our method allows
a better fit of the distribution and has an active learning approach.
In [28], the authors also present an active learning approach
but, as their grasping densities are learned for single objects, the
active exploration is based on a single object exploration and the
generalization among objects needs to be explicitly addressed.

From an active learning for supervised regression point of
view, the proposed model addresses the problem of constrained
regression (since the probability should be within 0 and 1).
The most standard way to solve such a constrained regression
problem is to use logistic regression [29,30] which uses logits
of probabilities. Active strategies for this type of techniques
have been studied in [31] and pointed out a trade off between
computational cost for experimental design based techniques
and robustness issues that appear in more heuristic criteria. A
support vector machine version of the logistic regression, the
kernel logistic regression [32,33] uses the log-likelihood of the
binomial distribution as the loss function and provides directly
estimates of the probability. In this case, the typical active
approach uses margins as the main criterion and selects input
points that maximize them [34,35]. Active regression has also
been used in linear regression, e.g [36]. By computing directly
posterior distributions, the proposed method provides a natural
interpretation of the confidence of the regressed function at each
input point. Similar to Gaussian processes (see [37] and references
therein), the model allows to devise active strategies based on
the moments of the distribution, for example, the mean and the
corresponding covariance.

3. Grasp point learning

This section presents an algorithm to estimate the grasp
probability based on a set of examples. We assume that the robot
is able to control its hand to a selected position on the image
and then perform a reflex finger closure to grab the object. Thus,
along the paper, a grasping point represents the location of the
hand where the grasp action will take place for a fixed grasping
strategy. The actual definition of a grasping point depends on the
robot morphology. For instance, the grasping point description for
a simple two finger gripper is simply the contact point. When
dealing with a more complex anthropomorphic hand, the grasping
point can be characterized as the position of a certain part of the
hand or the wrist with respect to the object.

Although it is not required by the algorithm, we will also
assume that the training data is autonomously acquired by the
robot as follows. Given an object, the robot randomly (or actively,
see Section 4) selects a potential grasping point (an image pixel),
moves the hand to it and attempts to grasp the object. By repeating
the previous procedure, the robot collects a set of n examples.
We will refer to this set as the training dataset. Each example
contains the grasping point, represented by a set of features x € X,
extracted from the image, and the grasp result. The objective is to
use this training data to predict the result of grasping for a new
input feature x.

3.1. Beta-binomial model

For the time being, let us consider a single input point described
by the feature vector x;. From a total of m trials, there are S; positive
results and U; negative results, with m = S;+U;. Each of these trials
is a Bernoulli experiment. Let p; be the probability of a successful
trial. Then, p(S; | p;, m) is given by a binomial distribution of
parameters p; and m. Our objective is to estimate the posterior
distribution of p; given the examples, p(p; | X, Si, Uj).

The standard Bayesian approach to compute the posterior uses
the beta distribution,

a—1 1— B—1
Be (i, f) = B P
B(a, B)

as a prior, where B(«a, B) is the beta function. « and § are shape
parameters that can be interpreted as the number of success
and failed trials encoding our prior knowledge. The binomial and
beta distributions form a conjugate pair [38] and, therefore, the
posterior is also a beta distribution with updated parameters « +S;
and B + U;. Summarizing, the Bayes update gives the posterior

Be (p; o + S, B + U;) o Bin(S;; p, S; + Up)Be (p; a, B) . (2)

pe[0,1] (1)

3.2. Non-parametric smoothed beta distributions

We are now ready to introduce our algorithm to predict the
probability of success using samples taken at different places of the
input space X. We define the input space as X < R¢ and denote
input vectors as X. The observations at a particular input vector X;
are the number of successful and failed trials, y; = (S;, U;) € Ng.
We denote a set of input vectors as X, = {Xi,...,X,} and the
corresponding observations as Y, = {yi, ..., ¥a}. The objective
is to estimate the posterior p(p, | X, Xp, Yn) at an arbitrary point
X.. Formally, we are looking foramap f : X — B, where 8,4 is
the space of beta distributions parametrized by « and 8.

To predict the posterior probability at point X, we apply the
Bayes rule,

P« | Xe, Xn, Yn) o p(Yn | Pas Xs, Xo)P(Ds | X4, Xi1)

n
~ [ [pi | P X, x0P(D2), (3)
i=0

where the approximation of the last expression assumes that,
given the parameter p,, at X,, the results observed are independent
of each other. This simplification of the model is required to
derive the closed-form expression based on the beta-binomial
presented below. The prior distribution p(p, | X«, X;) is just a beta
with parameters o and Sy independent of the training data. For
instance, if we set both parameters to one, the prior becomes a
uniform distribution.

The likelihood term p(y; | p«, X+, X;) represents the likelihood of
the observations y;, given the input features x; and x,. and the suc-
cess rate p,. To model this dependency, we have to add some struc-
ture to the model, in particular, we assume that the probability is
smooth, given the feature space. Based on this extra structure, we
take a kernel based the non parametric approach [39] to extrapo-
late the parameter p,, of the binomial distribution from the features
of the training dataset to new ones. We define a kernel based dif-
fusion of the sufficient statistics (ay, and By,) of the beta posterior
of an input point X; in the database to a new input point X,.

Bx, = K(x;, X*)ﬂxi (4)
where K : X x X = [0, 1]. Intuitively, when the kernel is a de-
creasing function of the distance between X; and X,, the diffusion
process keeps the same beta parameters for the same point and
decreases as the point is further in the feature space. As a result,
when all the kernels vanish, the prediction converges to the prior
Be(ayg, Bo). The likelihood function of each individual observation

Oy, = K(x;, x*)axp
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Fig. 1. Approximating a sinus varying p in a one dimensional input space. (a) Estimated mean. The 0-1 blue points are the observations generated from a Bernoulli
experiment, using the true p (blue line). Failures are represented by crosses and successes by circles. The red line with marks is the approximated mean computed from the

posterior. (b) Predicted posterior beta distributions for each point along x.

is modeled as

p(YI | D> Xses Xi) = Bin(s*i; D S*i + U*i) (5)

where the variables S,; = K(X, X;)S; and U,; = K(X,, X;)U; are the
number of successful and failed trials at point x,, given the exam-
ples observed at x;.

Finally, the predicted posterior probability at point X, can be
computed as

P(Ps | X Xn, Yn)

n
oc [ | Bin(Sai: P Sui + Usi)Be(ps: o, o) (6)
i=0
n n
= Be P*;Zs*i—FOlo,ZU*i-Fﬂo . (7)
i=1 i=1

Fig. 1 shows an example of the algorithm predictions for a one
dimensional feature space. The p; is a sinusoidal function of the
input x. The 1-0 observations are generated through a binomial
distribution based on the true p; at that point. Fig. 1(a) shows the
true function and the predicted mean. An important feature of
our algorithm is that it estimates the full posterior distribution at
each feature (see Fig. 1(b)). This is important because it provides
an associated notion of confidence, or uncertainty, about the
predicted probability. The figure also illustrates how the algorithm
tends to the prior distribution in the absence of measurements. In
the figure, this occurs for x < —1, where the predicted mean value
of 0.5 is due to the uniform prior.

When the number of trials per training point is one, it is
interesting to re-write our approximation of the mean using the
sufficient statistics of the beta distribution of Eq. (7),

n
D SiK (X, Xi) + o
_ =

p* == n ’ (8)
> KXy, Xi) + 00 + Bo

i=1

which has been simplified using the fact that S; + U; is one for
every point. The expression illustrates that the estimated mean
is basically equivalent to a kernel regression of the probability
for each input point. However, our method keeps two individual
accumulators to estimate virtual trials over the whole input space.
This extra information, together with the interpretation of Eqs. (7),
provides a beta distribution to model the probability at every input
point.

On the other hand, it is interesting to note that the extension
to the multi-class case is direct. One simply needs to accumulate
events for each class independently to compute the proportions.
For an M class problem, the probabilities estimated are

S{K(X*, X;) + o

M3

Il
-

jel,...,M—1 (9)

a1
*
|

. M ’
SIK (%, %) + ) 0
j=1

M:
L=

Il

_-
i
Il

where S{ is the number of cases for class j at input point x;. The
virtual counts define at each point a Dirichlet distribution with
parameters analogous to the binary case, whose mean corresponds
to Eq. (9). The probability of the last class is simply pyx = 1 —

M—1 . . .
> =1 Djs- The computational and memory cost increases with the
number of classes, since it is necessary to approximate the counts

for every class independently.

3.3. Kernel parameter selection

Besides the beta distribution encoding our prior knowledge
about the problem, the algorithm requires to set the parameters
0 that define the kernel K (-, -). We estimate these parameters
from the training data using a cross-validation approach. For each
point, we compute the posterior distribution p(p; | X;, Xn,—i, Yn,—i),
where X,, _;, Y, _; represent the input features and observations of
the dataset except x; and y; respectively. Then, we use a minimum
least square criterion' between the predicted mean p at each point
and the empirical one observed p = siiuf'

n 2

Lo(X..Y.) = 5 5)2 — a"(g)_ﬁ] 10
0 (Xn, Yn) ;(pz pi) Z[ai(9)+ﬂi(9) Di (10)

with Ol,‘(@) = Zj;éi k,}(O)SJ =+ Q, ,3,(9) = Zj;éi kU(Q)U] + ,30 and ﬁi

is the empirical approximation of parameter p,, given by Si‘S"iUi'

In our experiments, we used a Gaussian kernel with a diagonal
covariance matrix, that is, with independent bandwidths for each
dimension of the features. The function was minimized using the
active set method [40] and positive constraints for the kernel
bandwidths. Other constrained optimization methods such as the
interior point provide similar results.

1 we also minimized the pseudo-likelihood cross validation function, but the
results were worse than using the least square one.
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Fig. 2. Value of an input point according to its predicted « and S. Darker points have a smaller value for learning. (a) Variance. (b) Expected improvement.

Table 1
Different active learning criteria for Be(p; «, 8).
Criterion 1)
Random cte
Entropy logB(a, B) — (@ — DY() — (B — DY (B) +
(o + ﬂﬁ— )y (a+p)
. o
Variance @R hiD

Expected improvement

f (@i, Var (pi))

4. Active learning

This section addresses the problem of actively selecting the
input points based on the current knowledge. We will focus on
the pool based case where there is a set of unlabeled points X, =
{Xo1, - . . , Xom} to choose from. The general active learning selection
equation we will use is

X, = arg max I (X;),
X,'EXO

(11)

where I (X) is a measure of the improvement in the regression after
trying the point x.

We will consider two different cases. In the first one, the
objective is to improve the approximation of the function over
all the input space. The second one considers the situation where
some parts of the space are more important than the others.
For instance, consider the case where a robot learns to grasp
objects and, therefore, its main interest is to discover areas with
a high probability of a successful grasp. In this situation, it is
sensible to focus the exploration first on those parts of the input
space which are, according to the previous data, more likely to
have a high probability. This is in essence, an exploration-versus-
exploitation problem where we want to explore as much as
possible by converging to the true distribution but, due to the lack
of resources, also give priority to those parts of the feature space
which may have a high probability rate (or any other criteria).
Table 1 summarizes some of the most common criteria and the
corresponding expressions for a beta distribution.

Random selection allows to converge, in the infinity, to the
desired distribution but it can be very inefficient. With our learning
method, we have not only access to the grasp probability but
also the confidence on its estimate. Using such information, it is
possible to make more informed exploration. Fig. 2(a) shows the
variance of a beta distribution with different parameters « and 8.
In this case, a low variance indicates that we are certain about the
parameter p even if the outcome of the action will be uncertain. In
a nutshell, the variance strategy selects features with the lowest
sum « + B. On the other hand, the entropy of a beta distribution is
based on the digamma function y (-). Entropy has a similar behavior

ﬁv.-n-mng o

grasping

Move to
field of vies Close hand

Fig. 3. Experimental protocol used during the experiments.

as the variance, but for a fixed number of trials favors those parts
of the space with equal @ and g, i.e. with a probability close to 0.5.

An alternative approach is to select points that allow you to
quickly discover those regions that match a particular criterion
e.g., high probability of success. This can be achieved using the
idea of Expected Improvement (EI) suggested by Mockus [41] in its
original form and with other flavors by Oudeyer et al. and Kapoor
etal.[42,43].In our case, we want to favor the exploration of points
that can provide a high probability and, at the same time, take into
account the uncertainty provided by the predictions. We propose
the following criteria

I(p;) = p;iVar (p;) (12)
I(p)) = |pi — 0.5|Var (p;). (13)

The previous expressions combine two components to favor the
exploration of those areas where the probability is close to what
we expect, for instance, a high probability of success or where the
uncertainty is big (Eq. (12)) or when is close to the extreme values
(Eq.(13)).Fig. 2(b) shows the value function for Eq. (12). As aresult,
the exploration proceeds by first selecting points with probability
slightly over the prior with a small number of samples, then points
with a small number of samples and finally all the others. Note that
this method is still able to explore all the (available) feature space.
A point with high probability is selected only a number of times
before its uncertainty is reduced to a level that favors exploration
to points with little evidence.

5. Experimental setup

5.1. Robot

We used Baltazar, a humanoid torso composed of a binocular
head and an arm-hand [44]. The anthropomorphic robot arm and
hand have 6° and 4° of freedom, respectively. In the experiments,
the robot followed the protocol depicted in Fig. 3. It consists of five
different steps. First, the robot selects a grasping point and moves
the hand to the field of view using an open loop control. Then,
it switches to a closed-loop control to position the hand to the
selected point in the image. When the object is reached, it performs
a preprogrammed closure phase of the hand fingers. Finally, the
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cov. diag([d sd]) 8 scalesx6 skew
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Fig. 4. Experimental setup. The left image shows Baltazar, the humanoid torso robot used in the experiments. The right table shows a summary of the filters which are

shown in the bottom right figure.
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Fig. 5. The posterior over the parameter p after 60 queries. Each column provides the posterior for the corresponding input point x. The points were selected based on

(a) entropy, (b) variance, (c) the El and (d) randomly.

robot raises the arm and the grasp is evaluated. If the object does
not fall during the motion, the grasp is considered a success and a
failure otherwise. Fig. 4 shows Baltazar performing the last phase
of the protocol after grasping a bat.

Based on the previous protocol, we implemented a controller to
reach the object from the top until contact is made, which triggers
the hand closure phase. Contact detection is necessary due to the
depth ambiguity in an image. The hand orientation was fixed and
did not consider the object. Finally, to ease the tracking of the robot
hand, we used the ARToolKit tracker [45]. We place a marker on the
robot hand that actually defines the correct grasping point in terms
of the relative position of this hand point and the object. With
calibrated cameras, the ARToolkit tracker provides 3D information,
but we use only the image position.

5.2. Computer vision features

Each pixel in the image is a potential grasping point described
by a set of features. The main constraint required by our algorithm
is that, these features must capture enough object information so
as to make p smooth. In our case, the selected features are generic
filters applied directly to the saturation channel of the image. In
this way, features are general, do not include any a priori object
knowledge and are robust to different illumination conditions.
In addition to this, they are robust, fast and easy to extract. We
use the bank of 151 filters shown in Fig. 4. It is worth to point
out that results are highly dependent on the input features. For
the evaluation of active strategies, we have selected single image
features that do not require to have multiple viewpoints of the
object or an a priori learned model. Although they contain less
information than more sophisticated ones, they served to evaluate

the advantages of the method to directly transfer information
between different objects and, as the experimental results suggest,
to actively learn grasp points with less examples.

6. Experimental results

This section evaluates the proposed regression method and
the active exploration strategies. We present two different
evaluations. The first one is a simple 1 dimensional case that
shows how the different criteria proposed in Section 4 explore the
input space. The second case is an application to grasping point
learning, where a robot learns from experimentation which are
the correct points to grasp different objects. We provide results
using a synthetic dataset and real data obtained with a humanoid
robot. This example works on a 151 dimensional feature space and
shows that our algorithm can deal with such high-dimensionality.
We study the ability of the algorithm to learn the grasp probability
and the gain of an active approach to discover good grasping points
compared to random exploration.

6.1. One dimensional simulation example

This section provides some experimental evidence of the
behavior of the different criteria of Table 1 on a simple mono-
dimensional simulated example. We consider that the parameter
varies according to p = (1 + sin(cx))/2 where c is a constant. The
input spaceis X = [—1, 1].

Fig. 5 shows the posterior of p after 60 queries. The random
exploration provides worse results than any of the active
strategies. As expected, the entropy focus more on the uncertain
outcome regions and, consequently, it has more peaked posterior
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Fig.7. Evolution of the learning of the grasp probability (right) including controller
parameters (left).

on the areas around 0.5. The EI criteria used in this figure is EI (x) =
|px — 0.5|var (pyx) which favors exploration when p is far from 0.5
and has high variance. The queries, therefore, concentrate along
the peaks. Finally, the variance has a more homogeneous precision
along the whole space.

Fig. 6 shows the evolution of the error with the number of
queries. The curves correspond to the average over 20 trials.
The figure shows how the error reduces faster for any of the
active approaches. The variance provides the best results at the
beginning. The entropy criterion equals the variance with enough
number of samples. It is important to note that the EI criterion is
not designed for a good approximation of the function, but only of
those areas where the exploration focus on. Fig. 5 shows that in the
peaks of the function, the EI criteria is better than the variance at
the expense of a worse approximation in the other regions.

6.2. Including free parameters for controller selection

We now evaluate the algorithm in a more complex simulated
model where, in addition to the input features, there also exist
other free parameters that can be optimized based on the input
features. This case arises, for instance, when there are some
parameters controlling the grasping behavior. For learning, the
database contains examples of input features together with the
free parameters. However, when exploiting the learned model,

only the input features are fixed while the free parameters have
to be selected based on the training examples. This is done by
recovering a function of the free parameters conditioned on the
input features and optimizing according to some criterion, e.g the
probability of success,

Xp = arg max p(yi|x, p). (14)
X,p

We now compare the active learning in a three-dimensional
input feature X = (x1, X2, x3)7 representing the object features
and a one dimensional free parameter p corresponding to a
continuous parameter describing the action. The probability of
success depends on x and p. For a given X, it attains its maximum
value at atan(x;/x,) and decreases following a Gaussian function.
The other dimension is noise. Since we have a single parameter,
each input feature x provides a one dimensional function of the
free parameter p for the grasping probability similar to the ones
depicted in Fig. 5. The active learning must, therefore, optimize
over a set of functions one per input feature to obtain the best p.
This is done by randomly sampling the free parameter.

The results are shown in Fig. 7, comparing the active learning
of both the input features and the free parameter using a random
strategy and an active learning one based on the variance. The
figure shows the mean and variance over 10 different runs. The
left figure shows the number of successful grasps using the learned
model equation (14) as a function of epochs, where each epoch
corresponds to 10 new training examples. The results show that
in this case, the variance provides a better result than the EI, while
the latter is almost identical to a random strategy. The right figure
shows the prediction error of the grasping probabilities over the
whole space. Again, the variance provides a better result than the EI
which is close to random. We would like to remark that the active
learning criteria do not exploit explicitly the control parameter
and, therefore, we expect that the gain of active strategies will
improve by selecting p using the predicted probabilities.

In addition to evaluating the active learning approach in a
more complex setup, this section shows that the proposed method
goes beyond simply selecting the grasping point. It can also
incorporate information about other variables and can be used to
select parameters of a controller. We note, however, that the direct
extension of this approach to high-dimension controllers will not
be very robust or efficient.

6.3. Learning of grasping probabilities

We now present the results of learning grasping points using
the proposed model and study the benefits of an active point
selection. The general scheme for this problem is the following.
Objects are represented using the visual features of Section 5,
thus reducing our problem to a regression problem on a 151
dimensional space. In order to speed up exploration, we bootstrap
the learning with an initial labeled dataset. It contained four
negative examples (all in the background) and a single positive
one. They were equal for all the exploration strategies. From
this initial dataset, only one new grasping point can be tried for
each new image of an object available to the robot. The object
is always placed in the same position with respect to the robot
and, consequently, it is centered in the image with a non-cluttered
background. For each image pixel, the corresponding unlabeled
feature is computed to create a set of potential grasping points.
The best point according to the selection criterion is tried by the
robot and stored in the dataset with the corresponding result. Note
that each time the set of unlabeled points is different due to the
different location of the same object and illumination conditions.

We compare the criteria of Section 4, variance and EI strategies,
with a Gaussian random sampling around the image center. For
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Fig. 8. Martini glass from the Stanford synthetic object grasping point data. Top row—(a) Martini glass, (b) true grasping points, (c) estimated grasping probability and
(d) point with p; > 0.5. Bottom row shows examples from a different point-of-view. Cross symbol (+) shows the best, and correct, grasping point. The correct grasping
points for views (a), (e) and (f) are always located in the central tube joining the top and the bottom of the glass. Learning was done using the EI strategy. The lighter the

color, the highest the probability of a successful grasp.

Table 2
Grasping point predictions for the Martini glass.

Graspable Non-graspable
EI 16/18 23
var 12/18 2/3
rnd 1/18 3/3

a fair comparison, the random sampling exploits the fact that the
object is always in the center of the image.?

6.3.1. Simulated data

We first tested the active strategies on the Stanford synthetic
object grasping point dataset [9]. This simplifies the comparison
among strategies, since with a real robot it is impossible to repeat
exactly the same experiment and the ground truth is not available.
The dataset is composed by a set of labeled images for simulated
objects obtained from different points of view. The labels indicate
if the image point is a grasping point, or not, for a gripper. Fig. 8(a)
and (b) show a martini glass and its corresponding annotated
image.

We now compare the results of the different exploration
techniques. For each image, a sample was selected according to the
selected strategy (random, variance or EI). Each sample is added
to the training set and used for prediction at the next image. The
procedure is repeated through the 21 images 24 times (epochs),
which makes 504 actively selected points. By looping through
different images, we also tested the algorithm and the exploration
strategies ability to generalize between different points of view.

Table 2 shows that the EI found the correct grasping in 16
of the 18 images containing a graspable object. This higher ratio
of success of the active exploration in relation to the one for
variance and random shows that this approach is able to get more
meaningful information with less amount of data. For images not
containing graspable objects, results are similar among the EI and
variance.

These results confirm the empirical evidence found on the one
dimensional example. The El is able to find the best grasping points
faster and has a better approximation of the function for points
graspable with higher probability. Although the price to pay is a
worst approximation of the function for low probability grasping
points, Fig. 8(c, f, h) show that the predicted good and bad grasping
points actually match the ground truth (i.e. the central part of the
glass as shown in Fig. 8(b)).

2A pure random strategy produced worse results, since a lot of sampling occurred
out of the object.

The same analysis was performed with other objects in the
database. Similar results were obtained for the pencil, the stapler
and the coffee mug. However, the model learned for the cereal
bowl failed to learn positive examples. The main reason is the
texture of the object (a spiral from the center to the outside) that
produced very similar features all along the object and were not
able to detect the edge of the bowl.?

6.3.2. Real robot

Finally, we provide results of active learning with data acquired
directly with a robot and the objects in the training database (see
Fig.9). This robot has a more complex hand geometry that results in
more complex hand-object relations. For each strategy, the robot
was presented with the same object several times and tried to
grasp it in the selected grasping point.

Fig. 10(a) shows the differences between the EI and random
exploration strategy for a box after 20 actively explored grasps.
Since no ground truth is available, we used the results of the batch
learning as a baseline for the active approach. The EI strategy
explored more of those areas with high grasping probability. As a
result, these areas have been correctly identified and are similar
to the ones in the batch solution. This is done at the price of
having a poorer approximation in those areas with a low grasping
probability. The random strategy on the other hand, detected
better the low probability grasping points but its estimate for good
grasping points is worse.

In addition to this, we show the accumulated reward, i.e. the
number of successful grasps achieved during learning (see
Fig. 10(b)). As mentioned before, the EI strategy implements
a trade-off between exploration and exploitation. The higher
number of successful grasps for the EI strategy reinforces the idea
that the El is correctly focusing on the part of the image which are,
potentially, good grasping points. Similar results were obtained for
the other objects in the training database where the EI criterion
detected good grasping points faster than random exploration.

Finally, we present some results of the prediction capabilities
of the model after a batch learning with a total of 550 trials
over the objects in the training set of Fig. 9. First, we estimated
the optimum kernel parameters for this dataset using an active
set method and the cost function defined in Section 3.3. We
initialized the kernel bandwidths with random values. The number
of iterations until convergence was around one hundred. Very
similar results were obtained from different initializations, in

3 The features were mainly designed to detect edges and separate the object from
the background.
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Fig. 10. Active learning for the box object in the training database. (a) (Top) Batch result used as ground truth. (Bottom) The grasping probabilities estimated after 20 samples
using random exploration (left) and the EI (right). (b) Number of successful trials during active learning of the box using random and EI strategies.

Table 3
Grasping probability predicted by the algorithm and the empirical observation
(results for 5 trials on test objects).

# Object Grasping success (%)
Predicted (%) Observed (%)

1 Bat 82 80
2 Can 64 0
3 Salt shaker 82 0
4 Tea box 2 86 100
5 Pencil box 84 80
6 Plastic cup 80 80
7 Basket 50 80
8 Tea box 1 87 100
9 Ball 91 80

terms of the set of selected filters and the corresponding weights.
With slight variations, the number of kernel bandwidths different
from zero was 12 in average, thus substantially reducing from the
initial 151.

Then, using our beta regression model, we experimented to
grasp several new objects at the point with highest predicted
probability. Fig. 11 shows the test objects and Table 3 summarizes
the results by showing the prediction and the empirical grasping
probabilities over 5 trials. The point predicted for objects 4, 5, 6,
8 and 9 was always located in a similar part of the object and
was a good location to perform the grasp (see Fig. 12(a) for the
predictions of two images of the same ball). The same happened
with the bat (object 1) which is a much bigger object, but whose
grasping point was correctly predicted where the hand best fits it
(see Fig. 12(a) and (b)).

When objects are very different (in the feature space), the
algorithm gives just the prior information. This can be seen on
the basket case (object 7) where the posterior of the best grasping
point being basically the prior (see Fig. 12(b)). However, the
method was able to reject many negative points based on prior
experience which allows the robot to grasp in a point which, in
this particular case, allowed grasping the basket.

The prediction for objects 2 and 3 in Table 3 was wrong, since
the robot could not grasp the objects at the selected points. For the
salt shaker (Fig. 12(b)), the variance of the posterior was low which
indicates that it is close to some objects in the training dataset.
This indicates that the local used features were not able to reflect
important information that affected the grasp: the rigidity of the

material and the conic shape which make the object slide from the
hand. This was true also for the can, but here the posterior was
much more uncertain, reflecting the fact that the object is not very
well represented in the database.

7. Conclusions

This paper introduces an algorithm to compute the posterior
of the smoothly varying parameter (in a compact feature space)
of a Bernoulli distribution from samples of binomial distributions
taken at different places of the feature space. The method allows
to model prior knowledge through the parameters oy and Sy of
a beta distribution. The rest of the parameters, and the kernel
bandwidths are automatically selected based on the training data
through the minimization of a least square loss function. Based on
the predicted distributions, we also discussed and proposed active
exploration strategies to efficiently explore the feature space.
The method can be applied generally in any situation where we
have a success/failure situation depending on a feature space. For
instance, predicting if a given transmission will be successful or
not depending on atmospheric conditions, or in which regions of a
feature space a given image recognition algorithm works.

We evaluated the method in a learning by exploration robot
scenario. The experimental results confirm those obtained in
simple simulations. For the single image visual features used to
described the object, they showed how active learning strategies
greatly reduce the amount of data required for prediction.
By favoring expected positive examples, the algorithm rapidly
discovers good grasping points and provides an anytime learning
algorithm for grasping. Since the quality of a grasping point
depends on the features used, future work will study the benefits
of the proposed active framework for more complex features such
as 3D or global object descriptors. The proposed method can
directly deal with motion controller parameters such as the hand
orientation and allow for a fast tuning based on the object features.

Also, we are currently studying connections with multi-arm
bandit algorithms for planning optimal exploration strategies
as used in [28], but exploiting the beta-binomial model. This
model has already been successfully applied to learn policies from
demonstrations [46] and to learn user preferences [47]. We plan to
explore the active strategy in these tasks where the positive reward
is scarce and exploration is difficult without a good initialization.
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Fig. 12. Prediction for some of the test objects. The triangle and the asterisk indicate respectively the maximum predicted p and the best grasping point taken into account
the control error. (a) Prediction for the ball at two different images. (b) Predictions for the bat and the basket.

The smoothing properties of the kernel are a way to transfer
information from both positive and negative examples.
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