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Biomimetic Eye-Neck Coordination
Manuel Lopes, Alexandre Bernardino, José Santos-Victor, Kerstin Rosander and Claes von Hofsten

Abstract—We describe a method for coordinating eye and neck
motions in the control of a humanoid robotic head. Based on the
characteristics of human oculomotor behavior, we formulate the
target tracking problem in a state-space control framework and
show that suitable controller gains can be either manually tuned
with optimal control techniques or learned from bio-mechanical
data recorded from newborns subjects. The basic controller
relies on eye-neck proprioceptive feedback. In biological systems,
vestibular signals and target prediction compensate for external
motions and allow target tracking with low lag. We provide ways
to integrate inertial and prediction signals in the basic control
architecture, whenever these are available. We demonstrate the
ability of the method in replicating the behavior of subjects with
different ages and show results obtained through a real-time
implementation in a humanoid platform.

I. INTRODUCTION

There is an increasing interest in advanced human-robot
interfaces due to a growing need for “service robots”, designed
to perform a variety of tasks in human inhabited environ-
ments. Head and eye movements are particularly important for
human-humanoid interaction, because they constitute a highly
attended and communicative part of the human body. A key
issue for the acceptance of such systems by generic users lies
on the ability to generate human-like motions and postures. In
this paper we address the generation of human-like head-eye
movements in the control of a humanoid robot head.

Two types of ocular motions are predominant in the vi-
suomotor control system. Smooth-pursuit motions control the
eyes’ velocity to keep a moving target stable on the retina, but
their maximum velocities are limited to about 30 deg/sec [1].
Saccadic motions perform fast changes of the gaze direction
whenever the target moves quicker or when the focus of
attention has to be changed between interest points. In both
types of motions, the neck and the eyes move coordinately
to perform the task. Due to different bio-mechanical dynamic
characteristics, the eyes are quicker in achieving the goals set
by the neurological commands. In the control of saccades, eyes
rapidly achieve the target point. Then, the head moves slower
toward the target, while the eyes counter rotate to compensate
head motion [2]. Studies in the control of smooth pursuit in
infants show that head movements lag with respect to the eyes,
even with predictable target trajectories [3]. We propose a
model for head-eye coordination capable of generating and
explaining these two types of behaviors. The same type of
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controller, but with different gains, can be used for smooth-
pursuit and saccadic eye-head coordination.

In humans several stimuli and (neuro-)physiological sub-
systems contribute to coordinate eyes and neck motions: visual
information, acoustic cues, afferent and efferent copy signals,
the vestibular system, motion prediction, etc. The overall
system is of great complexity and we do not aim, in this
paper, to provide a neuro-biological compatible and complete
model. Instead we intend to model the behavior of biological
gaze control systems as observed by an external agent. For
the design of human-humanoid interfaces, it is the external
robot behavior that influences human perception, rather than
the driving internal models.

In newborns tracking capabilities develop very fast.
Neonates can follow small targets only with saccadic motions
but already exhibit smooth pursuit motions in the presence
of large moving objects. In the beginning these behaviors
are limited to very low angular speeds and no prediction
seems to be present [3]. In the first weeks of age, newborns
increase significantly the smooth pursuit gain and become
able to coordinate eyes and neck. The neck still moves much
less than the eyes but its gain increases with age. Interesting
to note is that around 3 months, the vestibulo-ocular reflex
(VOR) system is already fully functional, including inhibition
when both the target and the head are moving coordinately [4].
Without such inhibition the tracking quality would be reduced
due to the VOR operation (actuation of the eye in opposition
to head movements).

There are a few attempts to model and implement
biomimetic eye-head coordination systems in real robotic
systems. A mathematical model based on psychophysical
studies of head-free gaze saccades in human subjects is
presented in [5]. It models the coordination between eye
and head movements during rapid orienting gaze shifts for
targets presented in a two-dimensional frontal plane, under
both aligned and unaligned initial fixation conditions. Recent
work [6] has implemented that model in a 7 degree of
freedom anthropomorphic robot head that mimics the physical
dimensions, performance and functional abilities of humans.
The implemented model shows coherent behavior with respect
to the reported patterns of eye-head coordination in humans.
However the model has not been applied to the execution
of smooth-pursuit movements. In [7], a model of oculomotor
control includes the vestibular ocular reflex, the optokinetic
nystagmus, predictive control and feedback-error learning.
However, in that work, head-eye coordination was performed
with simple trajectory planning methods and no concern on
modeling human behavior.

With respect to the state-of-the-art, this paper contributes
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in the following points: (i) proposal of a basic eye-head coor-
dination scheme formulated with state-space methods suitable
for both saccadic and smooth pursuit movements (ii) a method
for learning of controller gains from human data recordings,
(iii) incorporation of inertial and prediction measurements as
additions to the basic controller (iv) operation under horizontal
and vertical displacements, and (v) easy implementation on
current humanoid robot technology.

The paper is organized as follows. Next section, Sec. II,
presents our basic controller model. Then, Section III explains
how its gains can be tuned either from optimal control
methods or learned from human subjects’ recordings. Section
IV extends the basic model with inertial measurements and
predictive tracking methods. In Section V we present the iCub
platform [8] used in our experiments and results obtained in
a real-time implementation. Finally, in Section VI we present
the conclusions and ideas for future work.

II. EYE-NECK COORDINATION CONTROLLER

In this section we present our controller. In accordance with
[6] we consider eye and head plant dynamics as pure inte-
grators. Both for the control of saccades and smooth-pursuit,
only one of the eyes’s measurements is considered. Since
saccades and smooth-pursuit are conjugate eye movements,
the information from one eye only is enough to drive the full
system.

A. Head-Eye State-Space Model

We adopt a parameterization for orientations in azimuth and
elevation angles, and so consider them as decoupled. Later, we
will relate these coordinates with the specific eye and neck
degrees of freedom. We explicitly represent the orientation of
gaze ~g and neck/head ~n in a fixed (body centered) reference
frame. The relative orientation of the eye with respect to the
head ~e is implicitly defined by the subtraction of the neck
orientation from the gaze orientation:

~e = ~g − ~n

In short we define our state vector as:

X =
[
~g
~n

]
For the control design, we use as input variables the eye

and neck azimuth and elevation velocities. We denote the
gaze, neck and eye angular velocities as ωg , ωn and ωe. For
the implementation on the robot we have to transform these
velocities to the actual joint level velocities.

Considering that eye and head plants respond as pure
integrators (angular position is the time integration of the
angular velocity commands) we use a zero-hold discretization
method with sampling period T and obtain the following state-
space model describing the dynamics of our system:

X(n+ 1) = X(n) +BdU(n)

= X(n) +
[
T T
0 T

] [
ωe(n)
ωn(n)

]
(1)

where n is the discrete time variable (t = nT ).

B. Controller Structure

We adopt the full-state feedback controller structure with
reference input presented in [9] and illustrated in Fig. 1. The

Fig. 1. Gaze feedback controller with reference input: general structure.

command input U is computed by multiplying a gain vector
K by the difference between the current state X and a desired
state depending on the reference command r:

U(n) = −K (X(n)−Nr(n)) (2)

The reference command is set at each time step to the mea-
sured orientation of the target, ~t in body centered coordinated.
In our problem, we are willing to control both the gaze and
the neck direction towards the target, so N =

[
1, 1

]T
.

This provides a frontal gaze behavior where the relative eye
angle tends to zero in steady state. However, by appropriately
tuning vector N other configurations can be achieved. For
instance, N =

[
1, 0.5

]T
will provide a solution where

half of the displacement is performed by the neck and the
remaining performed by the eyes.

Vector K sets the feedback interactions between gaze and
neck position to eye and neck velocities:

K =
[
kge kne

kgn knn

]
Inputs to the plant are then computed by:

ωe = kgee+ knen

ωn = knee+ knnn

Substituting (2) in (1) we obtain the controlled system
equations:

X(n+ 1) = X(n)−BdKX(n) +BdKNr(n) (3)

III. CONTROLLER DESIGN

The dynamical properties of the full control system can
be determined by its gain vector K. There are many control
design paradigms that allow the computation of suitable gains
for linear systems (see [9] for a review). In our case, we
want the full control system to match the characteristics of
human behavior. To do so we can either try to define some
appropriate constraints in the control system to follow human
characteristics, or use human recordings to learn the best
matching K. In the following part we will pursue the first
approach. The subsequent part will address learning from
human recordings.
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A. Optimal Control

We would like our controller to fulfill the following con-
straints:
• minimum gaze error
• eye dynamics faster than neck dynamics
• maintain target image in the center of the retina
• limited energy expenditure (control values).

These criteria can be formulated as the minimization of a
cost function J weighing the commanded values with weight
matrix R and weighing tracking error by matrix Q:

J =
∞∑

n=0

(
XTQX + UTRU

)
(4)

The entries of R will describe the extra energy expenditure
in the neck due to the larger inertia that it has to move.
By minimizing cost function J we will obtain a control
gain K providing the best trade-off between the constraints.
Such solution can be obtained by standard optimal control
techniques (LQR - see [9]) with proven stability guarantees

B. Controller Learning from Recordings

The controller design approach explained above requires
some manual tuning of the gain matrices Q and R in (4) to
achieve a reasonable human-like behavior. Given the availabil-
ity of human biomechanical signals it is, in principle, possible
to estimate controller gains that best approximate the acquired
data. With a time sequence of state variables we can estimate
the gain matrix K that best fits the data. This can be seen as an
inverse optimal control problem [10]. After some manipulation
Eq. 3 reduces to:

B+
d

(
Xn+1 −Xn

)
= K (Nr −Xn)

A least-squares approximation can be used to estimate K. B+
d

represents the pseudo-inverse of Bd. As it is not square it is
computed using the Moore-Penrose pseudo inverse.

It remains to know if the structure of the proposed con-
troller is flexible enough to provide good approximations to
the human motions. In Section V we will show that good
approximations to human behavior can be achieved using this
approach.

IV. ADDING VOR AND PREDICTION

Two important characteristics of the human oculomotor con-
trol system are the effective rejection of external disturbances
and the ability to control gaze without lag, whenever target
trajectories are regular. The first characteristic is provided
by the vestibulo-ocular reflex (VOR) while the latter exploits
target motion prediction. In this section we describe how the
basic feedback control model can be extended to incorporate
these two characteristics.

A. Inertial compensation (VOR)

The vestibulo-ocular reflex compensates involuntary head
motions by moving the eyes with a velocity opposite to
the measured disturbance. This can not be a simple reactive

behavior that couples head accelerations (measured by the
vestibular systems in the inner ear in humans) because in that
case a voluntary motion of the neck would be automatically
compensated by the eye. The system must be able to distin-
guish what accelerations are due to self controlled motions
from the ones that are externally driven.

In robots the vestibular information is gathered by an inertial
measurement unit (IMU) usually installed in a head fixed
reference frame, thus measuring the head velocity ωh. This
velocity can be decomposed in the neck self-generated motion
ωn and the independently generated body velocity ωb, taken
here as an external disturbance:

ωh = ωn + ωb

Therefore, a body motion velocity estimate can be obtained
by discounting the afferent signal (the motion command of
the previous time step) from the inertial sensor measurement:

ω̂b(n) = ωi(n)− ωn(n− 1)

A command velocity with opposite signal is then added to
the eyes control value, and the original control rule of (2)
becomes:

U(n) = −K (X(n)−Nr(n))−Dω̂b(n) (5)

Matrix D, in the present case, is the vector [1, 0]′, because we
are considering that all external disturbances are compensated
by the eyes (vestibulo-ocular reflex). Notwithstanding, this
formulation allows the implementation of head stabilization
by neck compensation of external disturbances (the vestibulo-
collic reflex [11]), if the values of vector D are appropriately
set. A diagram of the full control system with inertial com-
pensation is shown in Fig. 2.

B. Prediction

When target trajectories are regular, humans have an un-
matched ability to predict the short-term future locations of
the target and show an anticipatory behavior. In many cases
smooth pursuit movements show no lag between target and
gaze directions, which is an essential mechanism to keep the
image of the target stable on the retina. Here we describe how
our basic model can be extended with prediction mechanisms
and explore two control theoretical mechanism that provide
low steady state tracking error: integral control and predictive
control.

1) Integral Control: Linear control theory shows that the
number of integrators in the feedback loop of a system
determines the classes of signals that can be tracked with zero
steady-state error [9]. For instance a system with one integrator
in the loop is able to asymptotically converge to a step-input,
and a system with two integrators is able to converge to a
ramp input. In our setting, the eye and neck plants have one
integrator each. They are therefore able to match the target
orientation when it is still. If it moves with a constant velocity
then we have to add an additional integrator to the feedback
loop of each plant. At first sight, having to change the control
structure just to be able to track a single type of movement
may seem a bit limiting. However many classes of motions
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Fig. 2. Block diagram of the eye-head coordination controller with VOR.

can be locally approximated by almost constant velocity (low
acceleration) trajectories, thus integral control will improve
tracking in such cases.

Integral control requires the accumulation of the gaze error
along time:

i(n) = i(n− 1) + (g(n)− r(n))

The controller output is then computed as:

ωe = kgee+ knen+ kiei

ωn = knee+ knnn+ kini

Gains kie and kin are manually tuned to avoid overshoot in
the response.

2) Predictive Tracking: While the previous approach re-
quires changing the structure of the controller, in predictive
tracking we just change the value of the reference orientation
to some point in the future. The prediction horizon (how much
in the future we predict) depends on the time the system takes
to respond to commands, taking into account its latencies,
delays and dynamical time constants. No prediction would be
required, if the system converges instantaneously to the desired
set-points, but, in practice, every causal plant has some kind of
delay. Predictive tracking addresses this problem by looking
ahead in time and controlling the plant to converge to the
future position of the target.

There is a vast literature about trajectory estimation and
prediction methods (see [12] for a survey). Most of them
have parameterized models of typical trajectories and, given
the input data, estimate the parameters. Common models are
constant velocity, constant acceleration, circular, curvilinear
[12], ballistic [13] and periodic [14]. There are methods that
run many models in parallel and choose the best fit, at each
time windows, or fuse the outputs of several of them according
to their likelihoods [15]. To illustrate the application of this
methodology in our architecture, we employ a simple constant

acceleration model for target motion: pt(n+ 1)
vt(n+ 1)
at(n+ 1)

 =

 1 T T 2/2
0 1 T
0 0 1

 pt(n)
vt(n)
at(n)

+η(n) (6)

where pt, vt and at are the coordinates (azimuth or elevation)
of, respectively, the estimated target angular positions, veloc-
ities and accelerations. Noise vector η is assumed Gaussian.
The observation measurement is also assumed to be corrupted
with white noise:

~tn = pt(n) + ξ(n) (7)

For this model, standard linear Kalman filtering techniques
[15] are employed to estimate the target state and predict
its future values in time. The set-point orientation introduced
as reference in the controller is no longer the current target
prediction ~t but a prediction ph

t (n), where h is the prediction
horizon.

V. RESULTS

In this section we present results illustrating the perfor-
mance of the proposed methods. We have performed experi-
ments on a real humanoid robot head with controllers either
tuned by optimal control methods or learned from human data
recordings.

We have used the iCub humanoid robotic head [8], with six
degrees of freedom. The head can be positioned with arbitrary
orientation through the activation of tilt, pan and swing joints.
Eyes have independent pan and a common tilt. The head’s
mechanical characteristics were designed in order to replicate
the typical motions exhibited by young children.

Tests were performed at the BABYLAB of the Uppsala Uni-
versity Department of Psychology, where several devices for
generating and measuring precise target and body motions are
available. Figure 3 shows the robot prepared for experiments
with the BABYLAB setups. One of the setups consists in a
board where a hidden motorized arm with a magnet is able to
produce arbitrary motions of a visible target. We call this setup
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the “magnetic board”. The second setup is based on a chair
inside a cylinder. It has the capability of rotating the chair, the
cylinder or both simultaneously, with several periodic motions.
This setup generates precise angular speeds and has been
extensively used for evaluating infants oculomotor behavior.
Chair motions allow the stimulation of the vestibular systems
and the verification of VOR performance. We call this setup
the “moving drum”.

Fig. 3. The iCub Robot Head in BABYLAB (Uppsala 2007-2008). In the
top figures, we can see the “magnetic board” setup, where arbitrary motions
in a 2D plane can be applied to a target attached to a ferromagnetic material.
In the bottom figures we show the “drum setup” that can perform coordinated
target and body motions.

The first set of experiments demonstrate the tracking capa-
bilities of the empirically tuned controller gains using optimal
(LQR) design. The parameters used were:

Q =

[
1 0

0 10

]
R =

[
1

100 0

0 10

]
(8)

resulting in the following gain matrix:

K =

[
7.8 −0.91

0.0069 0.97

]
R is chosen to minimize energy. As the eyes have less inertia,
they cost less energy and so the weight for the neck has to
be larger. Q is tuned to improve tracking reliability. As the
eyes are faster it is better to weight more the eye tracking
error, forcing them to move faster, with less expenditure of
energy. It is interesting to note that the feedback gain from
gaze error to neck velocity is very low, in accordance to the
psychophysics results in [5].

Figure 4 show the system’s performance when tracking a
circular motion in the “magnetic board” (2D plane), eliciting
both azimuth and elevation movements. The initial period
of the experiment corresponds to a saccade at 5 sec due to
system startup. It is visible that gaze has faster dynamics than
the neck, exhibiting the typical human behavior. When the
system reaches steady state, the tracking error decreases to
zero (during the period 10-15 sec target and gaze directions
are identical). The saccade has a slow response because the set

of controller gains were tuned for smooth-pursuit behavior. In
practice, different sets of gains should be used for different
types of motions. After that period, the experiment corre-
sponds to a circular motion with constant angular velocity,
eliciting sinusoidal smooth-pursuit motions. Notice that neck
lags the gaze direction and has smaller gain. This is also
typical in human behavior. However, steady state error is not
driven to zero because no prediction mechanisms were used
at this stage.

Fig. 4. Tracking a circle. A target, initially at position (0, 0) (azimuth,
elevation) moves suddenly (at time 5 sec) to a point in the path of a circular
trajectory with diameter 25. At time 15 the target starts moving along the
circular trajectory with an angular velocity of about 0.1cycles/sec. The plot
in the top of the figure shows the reconstruction of the target (blue) and gaze
(red) headings (plot units in degrees). The middle and bottom plots show,
respectively, the time evolution of azimuth and elevation angles of the target
(blue) neck (red) and gaze (red).

The following experiments test the performance of the
two proposed techniques for prediction: integral control and
predictive tracking. In the first test, a target with a triangular
wave motion profile is put in front of the robot. Tracking
performance is shown in Figure 5. It is noticeable that in the
constant velocity periods, the error decreases. A residual error
remains for two reasons. First the duration of the ramp is
not long enough to allow the error further decrease. Secondly,
there is a computational delay that makes the robot perceive an
error smaller that in reality. In fact, the error in the retinal plane
was very close to zero but due to the computational delay,
in reality the target is already ahead of the position where
the image was acquired. Since the plots were obtained with
an external motion capture measurement system, this delay is
noticeable.

In Figure 6 we show results using the predictive tracking
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Fig. 5. Integral control. A target with triangular trajectory (piecewise constant
velocity is tracked by the robot). During the constant velocity segments the
tracking error is reduced via the integral effect.

Fig. 6. Predictive tracking. Plots in the top row show values computed
by the robot perception. In the bottom row orientations were measured with
an external motion capture device. Left: no prediction. Right: 3 steps ahead
prediction. Note: Time scales are not aligned.

method with a constant acceleration model and a sinusoidal
target motion with a period of 5 sec. We compare the situations
without prediction and when the prediction horizon is 1, 2, and
3 time steps. Figure 6 shows the results obtained both from an
external measuring device (motion capture) and from a robot’s
perception point of view, i.e. the target orientation in the fixed
reference frame is computed by composing the target orien-
tation in the eye frame with the current eye orientation. Such
computations introduce noise in the measurement due to some
lack of synchronism in image and head angles’ measurements
which is reflected in the control for large prediction horizons
(prediction involves differentiation which amplifies noise). By
computing the phase of the signals’ Fourier transforms we
were able to estimate the average delay in tracking. The values
are shown in Table I.

TABLE I
AVERAGE DELAYS IN TRACKING A SINUSOID FOR DIFFERENT PREDICTION

HORIZONS.

Prediction horizon Average delay
0 112 ms

1 step (67 ms) 96 ms
2 steps (133 ms) 70 ms
3 steps (200ms) 52 ms

The delay decreases steadily when the prediction horizon
increases but for prediction horizons bigger that 3, noise
degrades significantly the control signal. To address this issue,
a better synchronization in the control architecture must be
achieved. Again, due to the computational delay, the mea-
surements with the external motion capture device show an
additional lag (around 100 ms).

A. VOR

To evaluate the implemented VOR in the compensation of
external motions we have performed experiments where the
body was moved with a sinusoidal motion profile and the target
was static. Figure 7 shows results of the tracking system with
and without VOR compensation. The values shown in the plot
are written in a body (moving) centered reference frame. The
tracking error reduces significantly (about 8 dB) when VOR
is active.

Fig. 7. VOR compensation. Tracking a static target from a rotating platform.

B. Human-data matching

The BABYLAB of the Uppsala University investigates how
smooth pursuit and visual-vestibular interactions develop in
young infants [4]. For that research several data sets were ac-
quired, with the trajectories of targets, eyes and head recorded
along time. In some cases the targets are moving; in other
cases the infant’s body is rotated and the target is still; on
other cases both the target and the chair are moving. We have
used some of these recordings, with static body, to learn the
gains of our biomimetic controller for smooth-pursuit motions,
using the methodology explained in Section III-B. In Figure 8
we can observe temporal plots of babies of different ages (2,
4, and 7 weeks) tracking a sinusoidal target, and the values
predicted by the learned controller.

We also show the overall motion decomposition into eye
and neck motions, as performed by the babies and by our
model. It is visible that the controller reasonably matches
babies performance, despite the noise and irregularities in
babies signals. This shows that our controller has enough
structure to represent the behavior of human tracking. The
approximation quality increases with babies age, mainly be-
cause baby tracking becomes more regular (less noisy). Table
II quantitatively presents the error between the model and the
newborn data.
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Fig. 8. Matching between model and infant data at 2, 4 and 7 weeks. For each
age we show the tracking behavior of infant and model, and the distribution
between eyes and neck.

TABLE II
ROOT-MEAN-SQUARE TRACKING ERROR WITH AGE. UNITS ARE DEGREES.

Age (months) Infant-to-Target Model-to-Target Model-to-Infant
2 12.15 6.01 8.61
4 12.19 5.73 7.74
7 9.95 5.60 5.74

VI. CONCLUSIONS

In this work we presented a control architecture for coordi-
nating the eye and neck motions of an anthropomorphic robot
head during generic tracking tasks. This architecture consists
in a basic controller capable of generating human-like eye-
head coordinated motions either with optimal control theoretic
methods or by learning the behavior of humans from biometric
recordings. We show experiments where the the parameters of
our controller are learned with data from children with 2, 4 and
7 weeks of age. The behavior of our controller reliably matches
the behavior of 7 week old infants. For younger ages the
approximation is less precise, mostly because infants tracking
is more irregular. We note that 10 weeks is when children’s
tracking ability becomes very reliable.

We were able to track targets with generic trajectories
in the 3D space. The control is performed in decoupled
elevation and azimuth coordinates, that are then mapped to
the joint level motions using the robot kinematics Jacobian.
The basic controller performs eye-head coordination with
pure proprioceptive feedback. To improve tracking accuracy,
additional layers add vestibular and predictive capabilities to
the system. This incremental and modular approach allows
the implementation of limited forms of eye-head coordination
even in robots lacking inertial sensors or predictive abilities.

In the future we plan to improve our system to take into
account additional aspects of human oculomotor control that
were not addressed here at a neurologically plausible level. For
instance we use retinal error for controlling both saccadic and
smooth-pursuit motions whereas it is know that smooth pursuit
is controlled by retinal slip. Also we will research prediction
methodologies that adapt to the input signal characteristics.
We have shown methods based on motion models for constant
velocity and constant acceleration targets, but humans are
able to track predictively a much wider range of motions. In
particular we are targeting methods for detecting and modeling
general periodic motions.
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