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In this article we propose a computational model that describes how observed behavior can influence
an observer’s own behavior, including the acquisition of new task descriptions. The sources of influ-
ence on our model’s behavior are: beliefs about the world’s possible states and actions causing tran-
sitions between them; baseline preferences for certain actions; a variable tendency to infer and share
goals in observed behavior; and a variable tendency to act efficiently to reach rewarding states. Act-
ing on these premises, our model is able to replicate key empirical studies of social learning in chil-
dren and chimpanzees. We demonstrate how a simple artificial system can account for a variety of
biological social transfer phenomena, such as goal-inference and over-imitation, by taking into
account action constraints and incomplete knowledge about the world dynamics.
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1 Introduction

The behavior of other individuals is a crucial source of
information for social animals and particularly for
young children. On a physical level, there are two
sources of information available when observing an
individual act: the motor patterns the individual per-
forms and the outcome of the actions. Another infor-
mation source is the intention behind the behavior,
which may be inferred from the actor’s choices among
possible actions. Knowledge of how the world works
and expectations about others’ normal behavior are
usually necessary for extracting useful information from
such observations. Different social learning processes
exploit these different information sources to different
degrees (Call & Carpenter, 2002).

Two broad categories of social learning, focusing
on different kinds of information, are emulation and
imitation (Call & Carpenter, 2002; Whiten, Horner,

Litchfield, & Marshall-Pescini, 2004). In emulation,
the observer learns about results and changes that can
be accomplished in the environment, and sets about to
replicate such states and changes, not necessarily pay-
ing heed to the specific observed motor patterns. In
imitation, the observer copies the specific motor pat-
terns and consequent results that are jointly inferred to
have been part of the behavior intention. Because imi-
tation, unlike mimicry, is defined as goal-directed, not
every part of an action sequence is necessarily copied;
for example, one would not generally copy a cough
when repeating a spoken sentence.

Young children and apes are able to both imitate
and emulate, but utilize the different strategies to differ-
ent extents (Tennie, Call, & Tomasello, 2006; Want &
Harris, 2002; Whiten et al., 2004). Tasks where more
than one action can achieve the same effect can be
used to confirm that subjects do imitate specific motor
patterns. For example, chimpanzees and 2-year-old
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children copy a demonstrator’s choice of a push or
twist action to remove a bolt to open a box (Whiten,
Custance, Gomez, Teixidor, & Bard, 1996). Children
can be selective about which actions should be imitated
(Gergely, Bekkering, & Kiraly, 2002; Williamson &
Markman, 2006) but in general they are rather prone to
imitate even parts of action sequences that are not
obviously necessary to achieve the goal—a phenome-
non known as over-imitation (Horner & Whiten, 2005).
Over-imitation can be diminished by reducing social
cues (Brugger, Lariviere, Mumme, & Bushnell, 2007;
McGuigan, Whiten, Flynn, & Horner, 2007) or by
increasing the urgency of task completion (Lyons,
Young, & Keil, 2007), and it has been argued that it may
occur for a variety of social reasons (Nielsen, 2006), or
because the observers encode the demonstrator’s actions
as causally meaningful (Lyons et al., 2007).

Other species, such as dogs, have also been shown
to switch strategies after having observed a demonstra-
tion (Range, Viranyi, & Huber, 2007). The aforemen-
tioned studies have identified distinct behavioral
patterns of social learning, but little is known about the
conditions that prompt these behaviors, the underlying
neural mechanisms that explain them or even how the
switching between them is controlled.1

The goal of this study is to provide a simple
computational model that may allow biologists and
psychologists to plan new experiments leading to a
deeper understanding of these mechanisms. To this
purpose, we provide a computational framework for
the different behavior models suggested in the litera-
ture that accounts for salient aspects of social influ-
ence, replicating key empirical results. We argue that
the ability of our model to replicate different classes
of behavior by making simple trade-offs between the
different “sources of information” available to the learn-
ing agent provides a significant contribution toward a
parsimonious interpretation for these classes of behav-
iors. We also discuss several predictions from our
model that may suggest interesting new experimental
paradigms.

We note that there are other mechanisms of social
learning, such as stimulus enhancement, that are
cognitively simpler and therefore of less interest to
cognitive psychology, but that can also confer evolu-
tionary advantages (Noble & Franks, 2002). Melo,
Lopes, Santos-Victor, and Ribeiro (2007) model some
of these simpler social learning mechanisms using a
somewhat similar formalism.

2 Model

We begin by giving a summarized description of our
model of an individual (human or otherwise) observ-
ing and performing behavior (see Figure 1). We pro-
vide only a sketch of the algorithm and refer to
Appendix A for further technical details.

The demonstrator and observer generally act within
the same world (for exceptions see below), which can
be in a number of possible states, but only in one
state at any one time. Transitions between states are
caused by actions that the demonstrator takes during
demonstration and the observer takes after exposure to
the demonstration. These possible states and transi-
tions are predetermined and constant during the dem-
onstrator’s or observer’s actions. The observer has
knowledge of all the possible states and transitions of
the world it acts in. Incomplete world knowledge is
simulated by certain possible real world states or tran-
sitions being absent from the world model that the
observer acts in (see below).

Our model was kept as simple as possible while
being capable of reproducing key biological results. It
takes into account the agent’s baseline preferences for
different actions and the information available from
the demonstration. Specifically, it considers the end-
effect of the demonstrated actions as well as the possi-
ble intentions of the demonstrator (inferred from the
demonstrated actions). The model also takes into
account the learning agent’s knowledge (even if imper-
fect or incomplete) about world dynamics and possible
state transitions. We do not consider explicitly the way
this knowledge can be acquired, but rather assume
that knowledge about the world, be it incomplete or
imprecise, is acquired prior to, or as a consequence of,
observing the demonstration.

Each of the aforementioned sources of informa-
tion (baseline preferences, end-effect, and inferred
intention) is processed by the observer in a specific
module. For any given world state, each module com-
putes a preference score for each possible course of
action. The list of preference scores is called a utility
function and generally denoted using the symbol Q.
For example, the end-effect replicating module would
rank actions in the following descending order of pref-
erence: an action leading directly to the final effect; an
action that can lead indirectly to the final effect; an
action that makes the final effect unreachable. The
modules process information as follows:
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• The module addressing the baseline preferences
of the agent evaluates actions in terms of energy
consumption, which it prefers to minimize. So,
for example, this module always prefers to per-
form “no action” than any other action. The utility
function QB associated with this module therefore
ranks possible action sequences according to their
overall energy consumption.

• The end-effect replicating module computes a util-
ity function QE that evaluates the actions in terms of
their probability of reproducing the observed result/
effect. In our simulations, this effect is always taken
as the final state observed in the demonstration, and
this module will select the sequence of actions min-
imizing the number of steps until this final state is
reached. In particular, it need not select the same
actions observed in the demonstration.

• Finally, for the intention replicating module, the
utility function QI is more complex to compute,
since it involves inferring the demonstrator’s
intended goal. We therefore describe this module in
more detail. It infers the intention behind the dem-
onstration using a teleological argument, by assum-
ing the demonstrator is goal-oriented and is thus
trying to fulfill some particular goal. The demon-
strator’s goal is assumed to be one or more desired

states and/or transitions between them. Notice that
this is a rather broad definition of goal, that may
also encompass actions (i.e., state transitions) for
their own sake, independently of the states they
reach. This broad definition of goal allows the pos-
sibility that our model imitates actions without
understanding the deeper purpose behind them, in
cases in which it infers only actions themselves to
be the intended part of the demonstration.
The module operates by “enumerating” all the
possible goals in the current system, calculating
for each one the relative probability that it would
give rise to the demonstrated behavior, and choos-
ing the one that maximizes this probability. The
module’s calculated utility function therefore
ranks the actions with respect to the most likely
goal, given the demonstration.

To illustrate the interaction between the different
elements in our learning model, consider the simple
example depicted in Figure 2. In this example, the sys-
tem consists of only two states, X and Y, the transition
between which is triggered by any of the actions of
the agent. Supposing that the demonstration consists
of action A, let us analyze the output of each of the
modules in our model in both scenarios in Figure 2.

Figure 1 “Strategy weighting triangle,” representing the combination of several simpler behaviors: non-social behav-
ior, emulation, and imitation. The line separates behavior that appears to be socially influenced from behavior that does
not, but does not necessarily correspond to the agent’s reasoning.
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The module addressing the baseline preferences
would simply output a ranking of the two actions. For
example, if the baseline preference stated that the
agent preferred action B to action A, then we could
have QB(·, A) = 0 and QB(·, B) = 1.

The end-effect replication module, in this case,
merely states that the agent should reach the final state
(Y). If both actions are equally successful in achieving
that, then this means that QE(·, A) = QE(·, B) = 1. In
this case, the effect-replication module does not bias
the action choice toward either of the two possible
actions. It is interesting to note that the same would
not hold if, for example, action A only succeeds in
achieving the transition with 0.9 probability. In this
case, the end-effect replication module would output
QE(·, A) = 0.9 and QE(·, B) = 1.

Finally, the intention replication module would, in
this case, output QI(·, A) = 1 and QI(·, B) = 0, translating
the fact that the agent finds the goal “reach state Y using
action A” to be more likely than merely “reach state Y,”
because action B could have been used, but was not.

Note that intentions as inferred by this module
may best correspond to either motor intentions or
prior intentions (Carpenter, Call, & Tomasello, 2002;
Searle, 1983) or a combination of the two, depending
on the specific case. When only an action is inferred
to be the intention, it corresponds best to the concept
of motor intention, but when reaching a particular
state is inferred to be part of the intention, then it can
be seen as modeling a prior intention. This aspect of
model interpretation is complicated by the fact that
prior intentions exist on different levels, for example,
the prior intention behind the motor intention to push
a switch may be simply to move the switch from one
position to another, or it may also be to turn on a light.
We take this into account when discussing our results.

We refer to Appendix A and to the supplementary
material for further details on how each module com-
putes the corresponding utility function.

The three sets of behavior preferences (i.e., the
three utility functions) are combined to yield a final
utility function, Qout, defined as

Qout = λBQB + λEQE + λIQI,

where λB, λE, and λI are three positive weights verify-
ing λB + λE + λI = 1. The behavior the agent actually
performs is simply the preferred behavior as defined
by the utility function Qout.

Figure 1 provides a pictorial description of the
proposed model. Each vertex of the “strategy weight-
ing triangle” corresponds to the behavior computed by
one of the modules described above. The value of the
three parameters λB, λE, and λI can be chosen in order
to differently weight the contribution of the corre-
sponding behaviors with the final one. The three
extreme behaviors are:

• following baseline preferences, thus ignoring the
demonstration (non-social behavior);

• emulation, where the agent replicates the end-
effect of the observed actions; and 

• imitation, where the agent replicates the inferred
goal/intention of the demonstrator.

The inference algorithm used in the intention rep-
lication module samples the space of possible goals in
the world system, computing their likelihoods given
the observed demonstration. However, in many situa-
tions there may be several different goals that are
equally likely to produce the observed demonstration.
In such cases, goals with tied probability are ranked
randomly, which, when combined with the utility
functions from the other modules (that have no ran-
dom component), leads to stochasticity in the final
performed behavior, as will be apparent in the next
section. To compensate for this stochasticity we per-
form 1,000 simulation runs for each condition and for
each modeled experiment.

Finally, we note that different choices of parame-
ters will lead to different combinations of the resulting
behavioral preferences computed by each of the three
modules and, thus, to different final behaviors. We do
not propose a method for choosing these weights, but
observe that, in general, their choice for each particu-
lar individual will depend on its social, environmental,
and internal context.

Figure 2 Simple example scenario in which the world
can be in one of two states, X and Y, and the agent can
trigger the transition between these by choosing either of
the available actions.
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3 Simulations

In this section we model three well-known social
learning experimental paradigms to assess how well
our model can replicate the corresponding results. We
also perform a simulation that does not correspond to
any existing experimental paradigm.

3.1 Imitation of the Inferred Intentions of 
Observed Behavior

We begin by demonstrating that our model can repli-
cate the tendency of primates to interpret and repro-
duce observed actions in a teleological manner, that is,
in terms of the inferred goals of the action (Csibra &
Gergely, 2007). For example, Bekkering, Wohlschläger,
and Gattis (2000) allowed 3- to 6-year-old children to
observe a demonstrator reaching across her body to
touch a dot painted on a table to one side of her, using
the hand on her other side. Children tended to copy
the dot touching action, but not the use of the contra-
lateral hand. However, when the same action was per-
formed without a dot, the children’s tendency was to imi-
tate the use of the contra-lateral hand. In the first case, the
children interpreted dot touching as the intention, and
therefore chose their own easier way to touch the dot. In
the second case, as there was no clear target of the action,
the action itself was interpreted as the intention and was
therefore imitated more faithfully.

Carpenter, Call, and Tomasello (2005) designed
an experiment with the same logic but adapted for
infants. A demonstrator moved a toy mouse across a
table from one point to another, using either a “simple”
action or a “stylized” action (i.e., placing the mouse at
a particular location by hopping or sliding). In one
condition the final point of the move was inside a little
house and in the other condition no house was present.
Similar to the older children in the study of Bekkering
et al. (2000), and presumably for similar reasons, the
14- and 18-month-olds tested in this experiment
showed a much greater tendency to replicate the spe-
cific mouse moving action observed when there was
no house to move the mouse into. We present our sim-
ulation in terms of Carpenter et al.’s (2005) study, but
the results are generalizable.

Figure 3 represents the world dynamics for this
problem. We assume the mouse to be in an initial, rest-
ing state, from which it can transition into the “moved”
state using either a stylized or a simple action. In the

house condition there is also an “in house” state that
can be reached from the “moved” state. For the no-
house condition there is no “in house” state, only the
“initial” and “moved” states. In each simulation, the
observer is exposed to one demonstration (of the styl-
ized action) and then is allowed to act. The observer has
a baseline preference (derived from energetic consider-
ations) for using a “simple” over a “stylized” place. It
can also choose to do nothing (“no action”) and has a
baseline preference for the latter option over the former
two. In the house situation the end-effect module uses
the simple action to reach the final state, but for the
non-house situation the end-effect module is irrelevant.

The results can be found in Figure 4. In all results
shown in this work we vary the parameters and evalu-
ate the resulting behavior. In this case we see what
happens when increasing the tendency to follow the
inferred intention of the demonstration (λI) while
reducing the tendency to replicate the end-effect (λE).
In the “with house” condition the probability of choos-
ing the demonstrated action increases with λI. In the
“no house” condition the resulting behavior is usually
to faithfully imitate the demonstration. The only
parameter values at which the empirical results are not

Figure 3 World model for the first set of simulations: (a)
Condition with the toy house and (b) condition without the
toy house. Circles represent world states and arrows rep-
resent the transition between them. The arrows are la-
beled according to the action inducing the transition. We
omitted the “no action” possibility from the diagram, as it
does not induce any state transition.
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replicated are when λE is close to zero—in other words
when the agent gives no weight to the final observed
effect. This results reproduces the findings of Carpen-
ter et al. (2005) and therefore confirms the logic of the
standard interpretation of this experiment: the results
can be explained by the assumption that the infant
infers what the demonstrator’s intention was, adopts
the same intention, and imitates only as much as is
necessary to achieve it.

3.2 Sensitivity to Action Constraints in Goal-
Directed Imitation

In an experiment originally designed to test infants’
memories of novel actions, Meltzoff (1988) exposed
14-month-olds to a demonstrator who performed unu-
sual actions on objects and found that the infants
reproduced the actions when presented with the
objects a week later. One of the objects was a box
with a panel that lit up when the demonstrator touched

it with his forehead and most infants copied the use of
the forehead rather than using their hand. Gergely et
al. (2002) extended this experiment by including a
condition in which the demonstrator was restricted
and could not use her hands because she was holding
a blanket wrapped around herself. In this case, only
21% of the infants copied the use of the forehead,
whereas in a control condition replicating the study of
Meltzoff (1988) without a held blanket, 69% of the
infants copied the use of the forehead. Possibly, in this
latter case, infants detect no constraints upon the dem-
onstrator’s action and therefore encode the use of the
forehead as a specific part of the intention, whereas in
the restricted case, they detect the constraint as a non-
task related reason for the use of the forehead and as
such do not encode the specific action as part of the
intention.

We simulate this experiment, using world models
that reflect the different possible transitions in the con-
strained and unconstrained conditions (Figure 5). There

Figure 4 Percentage of simulation runs in which the modeled agent replicates the demonstrated stylized action as λI

(the weight of the intention replicating module) is increased, in the house and no-house conditions. Whenever the styl-
ized action was not replicated, the simple action was performed. The weight of the baseline preference module, λB, is
kept constant with a value of 0.2. Recalling that λI + λB + λE = 1, λE (the weight of the end-effect replicating module) de-
creases to 0 as λI increases to 0.8.
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is a baseline preference for using the hand over using
the head to contact the panel. Again, the observer can
also choose to do nothing (“no action”) and has a
baseline preference for the latter option over the
former two. In this experiment, the final effect module
does not distinguish between the two possible ways of
activating the switch, while the imitation module pre-
fers the head in the unrestricted condition and is indif-
ferent between the two in the restricted condition.
This is because the constraints of the demonstrator
were taken into account when inferring the intention.

Again, the simulation results of Figure 6 closely
replicate those from the empirical study. Unless λI

(the tendency to replicate the inferred intention) is
zero, the use of the head is more likely to be copied in
the hands-free condition. The reason is that, in the
hands-free condition, head use tends to be classed as
part of the intention because it was chosen over a pos-
sible alternative, whereas in the restricted condition
there was no alternative.

Our simulation therefore confirms the logic of part
of Gergely et al.’s (2002) analysis of their empirical
results, both in terms of imitation of the inferred inten-

tion and of sensitivity to the constraints on the demon-
strator. Note, however, that Gergely et al. (2002) also
go a step further in their interpretation: they suggest
that in the unrestricted condition the infants “may have
inferred that the head action must offer some advan-
tage in turning on the light.” There are two ways in
which this goes beyond the simplest logic necessary to
explain the results, as demonstrated by our model.
Firstly, it is not necessary to assume that the infants
believed that the method used offered an advantage. Our
model replicates the results by inferring the intention to
act in a certain way, but it does not infer anything about
the underlying motive for the demonstrator’s choice of
intended action. It is therefore possible that in cases
such as this, infants may imitate intended actions with-
out necessarily making any inferences about why those
actions may or may not be effective. Note, however, that
in cases where causality is more transparent, infants
may make such inferences (Brugger et al., 2007).

Secondly, it is not even necessary to assume that
the inferred and adopted intention was to turn on the
light. The inferred intention may have been the prior
intention of turning on the lights, but a simpler and
sufficient interpretation of both our model and the
empirical result is that the intention was simply the
motor intention of contacting the panel (for recent dem-
onstrations of how infants have difficulty motivating
behavior by knowledge of such arbitrary contingencies,
see Kenward, Folke, Holmberg, Johansson, & Grede-
bäck, 2009; Klossek, Russell, & Dickinson, 2008).

3.3 Sensitivity to Imperfect Knowledge

The simulations in Sections 3.1 and 3.2 replicated
experiments in which, in the right conditions, children
copy faithfully a demonstrated action, even if it is not
necessary to achieve the desired end state. These
results were replicated most accurately at intermediate
values of λI (the tendency to replicate the inferred
intentions): when this parameter is close to 1, the
observed action sequence was almost always copied
faithfully even when it is plausible that specific action
choices were not an integral part of the intention.

To investigate what happens when the learner does
not have complete knowledge of the world dynamics,
we now model a type of experiment that has been
designed to further investigate the imitation/emulation
balance in different circumstances and ages, and also
comparatively with chimpanzees.

Figure 5 The world model representing the experiment
of Gergely et al. (2002). In the restricted condition, the ac-
tion “use hand” is not available, representing the fact that
the agent is assumed to appreciate that hand use is not
possible in this situation. The observer does not operate
under constraint even after having observed the con-
strained condition. As before, we omitted the “no action”
possibility from the diagram, as it does not induce any
state transition.
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The archetypical such experiment includes the
demonstration of a sequence of actions, not all of which
are actually necessary to achieve the outcome. Horner
and Whiten (2005) presented preschoolers and chim-
panzees with two identical boxes, one opaque and one
transparent. The demonstration consisted of inserting
a stick into a hole on the top of a box and then into a
hole on the front of the box, with the latter step caus-
ing the retrieval of a reward. The insertion of the stick
into the top hole was unnecessary in order to obtain
the reward, but the causal physical relations were only
visible with the transparent box. The results showed
that 3- and 4-year-old children tended to imitate both
actions no matter whether they had observed and were
tested on the transparent or opaque box. In contrast,
chimpanzees were able to switch between emulation
and imitation if causal information was available; after
having observed demonstrations with a transparent box,
the chimpanzees had a greatly reduced tendency to
insert the stick into the upper ineffective hole.

We simulated this experiment, using the model
depicted in Figure 7. In the experiment in Section 3.2
the learning agent considered that only the demonstra-
tor had a restriction, that is, it could not use the hand,
but that the learning agent could use the hand. In this
case the learner does not know the real dynamics of
the world and so has to rely on the demonstration to
infer them. In the transparent condition the learner
knows that it is possible to directly open the front lock
and get the reward. In the opaque condition the learner
does not know that this is possible.

In each simulation (in both conditions), the
observer is exposed to one demonstration of the action
“insert in upper hole” followed by the action “insert in
front hole,” and is then allowed to act. The baseline
preference module makes no distinction between the
two actions, that is, both actions are equally prefera-
ble. The observer can also choose to do nothing and
has a baseline preference for the latter option over the
former two.

Figure 6 Percentage of runs in which the modeled agent replicates the demonstrated use of head as λI (the weight of
the intention replicating module) is increased. Whenever the action was not performed with the head, it was performed
with the hand. The weight of the baseline preference module, λB, is kept constant with a value of 0.2 (so λE, the weight
of the end-effect replicating module, decreases to 0).
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The simulation results greatly depend upon the
particular condition considered (see Figure 8). In the
opaque condition the learner is faced with a lack of
world knowledge and so, both the intention and end-
effect replicating modules can only choose to open
both locks to obtain the item. In the transparent condi-
tion the end-effect replicating module chooses the
most efficient method, while the intention replicating
module infers that the more complex alternative was
intended, because it was chosen over a simpler alterna-
tive, and so copies both actions. With the transparent
box, the tendency to insert the stick in the upper hole,
which has no visible effect, increases with λI. This
shows that, as expected, unless emphasis is placed
upon the imitation of inferred intentions rather than the
tendency to simply obtain the reward, the model tends
to emulate with the transparent box. With the opaque
box, it is not clear what the effect of inserting in the
upper hole is, and it is therefore not possible to know
that the reward may be obtained without first inserting
in the upper hole as is demonstrated. The agent there-
fore always inserts in both holes, independently of the
value of λI.

Our simulation results suitably replicate the results
from both children and chimpanzees, with a higher
value of λI for children. Horner and Whiten (2005) sug-
gest that the difference occurs because chimpanzees
are primarily motivated to select the most efficient
method they know to achieve the end effect, whereas
children are more motivated to copy the inferred
intentions of the demonstration (see also Tomasello,
Carpenter, Call, Behne, & Moll, 2005). Imitation in
cases such as the transparent box has been termed
over-imitation because actions are imitated despite the
fact that they serve no visible purpose (Horner &
Whiten, 2005; Lyons et al., 2007).

Our model confirms the logic of the interpretation
of the phenomenon of over-imitation in terms of the
inferring and sharing of intended goals, without neces-
sarily understanding the higher level prior intention.
Note, however, that our model does not include an
explanation for why children should be motivated to
imitate the actions that do not appear to have an
effect—the λI parameter is simply set high to enable
this motivation.

The model does demonstrate that a complex moti-
vation is not necessary to explain the results of the
experiment modeled here—even a simple automatic
tendency to imitate (Dijksterhuis & Bargh, 2001) would
suffice. However, it is also possible, for example, that
children make inferences about the opaque causal
structure of actions with no visible consequence, in
other words, that individuals imitate actions because
they have encoded them as causing useful outcomes,
even though they do not know how (see Section 4 and
Lyons et al., 2007).

3.4 Intermediate Behaviors

We now present again the simulation of Section 3.2
but now we evaluate the outcome of increasing λI (the
tendency to replicate the inferred intention) while λE is
set to 0. This corresponds to completely ignoring the
behavior coming from the end-effect replicating mod-
ule and slowly “shifting” the interest of the agent from
its baseline preferences toward the replication/imita-
tion of the observed demonstration. In this new situa-
tion it is important to recall that we always allow the
agent the possibility of performing no action. In terms
of baseline preferences, we consider that the agent
prefers to do nothing over using the hand and prefers
to use the hand over using the head.

Figure 7 The world model for each of the two conditions
in Horner and Whiten (2005). Notice that the difference in
the world models represents the different knowledge of
the learner about the world in the two conditions, rather
than differences in the causal system. We again omitted
the “no action” possibility from the diagram.
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The results obtained are depicted in Figure 9. The
result shows that the agent starts by performing no
action, then replicates the observed effect, choosing
the most effective action, and only for higher values
of λI does the replication of the observed action
appear. In previous simulations, the agent never chose
to perform no action, because λB (the weight of the
baseline preference module) was very small. The
existence of an “intermediate” behavior (more obvi-
ous in the restricted condition) in the absence of the
end-effect replicating module, is a prediction of the
model that could be very interesting to observe in ani-
mals.

Our interpretation of this behavior is the follow-
ing. For λI = 0 the agent is focused on “energy conser-
vation,” opting to do nothing. Increasing the interest
for replicating the observed demonstration leads the
agent to compromise, replicating only “part” of the
demonstration (touching the panel/turning the light
on) while maintaining the energy consumption to a
minimum (using the hand). This corresponds to the

intermediate emulative behavior. By further increas-
ing the importance of replicating the observed demon-
stration while reducing the energy concerns, the agent
finally adopts the imitative behavior, as observed in
our results.

4 General Discussion

The motivation for our study stemmed from the fact
that, while many experiments have been conducted
investigating the conditions under which children and
apes use different strategies for incorporating observed
behavior into their own repertoire, there is still no
definitive theory about the mechanisms which enable
switching between strategies.

We started from the taxonomy proposed by Call
and Carpenter (2002) to build a unifying mathemati-
cal model of types of social influence on behavior,
mainly imitation and emulation. Notwithstanding,
we believe that the separation of socially acquired

Figure 8 Percentage of runs in which the modeled agent replicates the demonstrated insertion into the upper hole, as
λI (the weight of the intention replicating module) is increased. Whenever the upper hole was not inserted into, the front
hole only is inserted into. The weight of the baseline preference module, λB, is kept constant with a value of 0.2 (so λE,
the weight of the end-effect replicating module, decreases to 0).
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behaviors into different categories might not neces-
sarily correspond to independently operating cogni-
tive mechanisms, but to different ways of integrating
the mechanisms.

It is worth noting that attention plays an important
part in determining the goal of an action or under-
standing the relevant part of a demonstration, some-
thing that is not explicit in Call and Carpenter’s
(2002) model. Although we did not explicitly model
such a mechanism, we implicitly included attentional
information when designing the world models we
used. This effect can be seen in the work of McGuigan
et al. (2007), in which the experiment described in
Section 3.3 was replicated, additionally including a
condition in which the demonstration was presented
on a video screen with only the demonstrator’s hands
and the apparatus visible. They found that this degra-
dation of the demonstration’s social context caused 3-
year-olds to adopt an emulative rather than imitative
approach.

Important evidence of how young children represent
and imitate others’ actions in terms of intended goals
comes from their ability to socially learn complete
actions which they have only seen partially demonstrated,
because of mistakes or inability of the demonstrator
(Johnson, Booth, & O’Hearn, 2001; Meltzoff, 1995). In
another study of our model, we demonstrated that the
learning agent is also capable of handling such accidental
or incomplete actions, by correctly interpreting the task
even when there are errors in the demonstration. The
inference module is robust to mistakes in the demon-
strated action sequence if these are, in a sense, incompat-
ible with the general goal that can be inferred from the
demonstration (Lopes, Melo, & Montesano, 2007).

The sources of information that shape the behav-
ior of our model are three-fold:

1. beliefs about the world’s possible states and actions
transitioning between them, and baseline prefer-
ences among these actions;

Figure 9 Rates of occurrence of the different actions as λI (the weight of the intention replicating module) is increased.
When neither of the two indicated actions is performed, no action is performed. The weight of the end-effect replicating
module, λE, is kept constant at 0, hence λB (the weight of the baseline preference module) starts at 1.0 and decreases to
zero. Note that the agent starts by performing no action, then emulates (although this emulation does not arise from the
end-effect replicating module), and then finally imitates.
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2. a variable tendency to infer and adopt intentions
of observed behavior; and

3. a variable tendency to attempt to achieve observed
results.

Acting on these premises, our model was able to repli-
cate the results from three archetypical empirical exper-
iments from important methodological paradigms in
infant, preschooler, and chimpanzee social learning
(equivalent situations are presented in the works of
Brugger et al., 2007; Lyons et al., 2007; McGuigan et
al., 2007; Schwier, Maanen, Carpenter, & Tomasello,
2006). We have thus demonstrated that a rather parsi-
monious artificial system, using a single computa-
tional formalism and only two variable parameters,
can account for a variety of phenomena observed in
empirical social learning experiments, such as goal-
inference taking into account action constraints and
incomplete knowledge, over-imitation, and flexible
constraint-sensitive imitation.

On the basis of the results obtained and estab-
lished facts from social psychology, we now discuss
the interpretation of our model together with possible
reasons for some of the observed behaviors, and make
several testable predictions.

A switch between imitation and emulation might
be triggered by changing the value (to the learner)
of the social interaction or of the effect. Our model
produces different behaviors with different weights on
the different modules, representing the influence of
the importance of each element to different experi-
mental participants in different circumstances, a sub-
ject widely studied in behavioral psychology. These
mathematical values correspond to psychological
characteristics such as: urgency, motivation and
desire. Lyons et al. (2007) found that increasing the
urgency to solve a task reduced the tendency to over-
imitate in 3- to 5-year-olds.

The greater utilization of imitation by children
might be explained by a stronger focus on others’
intentions, mediated by social cues. Social cues have
been observed to be important in promoting imitation.
Infants were observed to imitate intended results, even
when the demonstrator makes a mistake and fails to
obtain the result (Meltzoff, 1995). Brugger et al. (2007)
also found that 15-month-olds were not very prone to
over-imitate but that social cues could increase the ten-
dency. The arguments of Tomasello et al. (2005) sup-

port our contention that the differences between
children and chimps in the experiment simulated in
Section 3.3 can be accounted for by simply varying
the parameter controlling weighting between inten-
tions and end effects.

It is also interesting to note that similarly to the
way in which children’s motivation to imitate can be
manipulated, chimpanzees may also show different
tendencies to imitate, depending on background
factors. For example, Tomasello, Kruger, and Ratner
(1993) argue that enculturated chimpanzees are better
imitators than wild chimpanzees. This may be because
exposure to a complex human environment equips
them with different motivations (or abilities to process
to different types of information, see the work of
Lyons, Santos, & Keil, 2006). It can also be speculated
that even in humans, different backgrounds in terms of
exposure to complex action sequences might similarly
affect tendency to imitate, via effects on motivation or
ability.

The development of this unifying model allows us
to reason not only about possible interpretations but
also to predict the behavior in novel or more complex
situations. The following paragraph gives an example.

“Pure imitation” versus “pure emulation” behav-
iors will become more indistinguishable as the
complexity of the task increases. If the mechanism
of social learning is, as we suggested, a combination
of several strategies, then the resulting behavior will
be different from that which would be produced by
any of the strategies operating individually. In the
experiments considered herein, where the agent has to
perform only one or two actions, this effect is not visi-
ble. However, we expect this aspect to become visible
if there is a longer sequence of optional actions.

One good example is that proposed by William-
son and Markman (2006) who present one of the few
experiments with a sequence of actions, where the
action pattern observed did indeed correspond to a
mixed imitative behavior (see also the work of Flynn
& Whiten, 2008). In experiments with a robot we also
observed such a phenomenon, where the resulting
behavior was neither pure emulation nor pure imita-
tion (Lopes et al., 2007).

A continuous change in the value of the social
interaction (the tendency to imitate) versus the ten-
dency to conserve energy may lead to several inter-
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mediate behaviors. This phenomenon was observed
in the simulation shown in Section 3.4. It reinforces
our previously made arguments that more complex
situations, involving more alternative action possibili-
ties, will result in more complex arrays of behavior. We
predict that such a phenomenon might be observable
experimentally, for example in an imitation game with
children in which the motivation to imitate the goals of
the demonstrator is manipulated. A task which is in
itself inherently rather boring might allow effective
manipulation of motivation to imitate, by varying how
engaging the demonstrator is. Our model predicts that in
such a situation, as engagement is increased, first behav-
iors will appear that appear emulative, and then behav-
iors will appear which appear more faithfully imitative.

These behaviors which appear emulative may
occur (at intermediate levels of motivation to imitate)
even when there is no motivation to emulate (for
example if the end-effect is inherently unrewarding).
This is because, as observed in our model, a partial
imitation may appear emulative although it is not in
fact motivated by the achievement of and end-effect
for its own sake.

5 Conclusions

We argue that all animals that are able to imitate and
emulate (such as children and chimpanzees) need to
have, at least, the mechanisms considered in our model.
Given that young children and chimpanzees are both
known to be able to imitate and emulate (Tennie et al.,
2006; Want & Harris, 2002; Whiten et al., 2004)
depending upon circumstances, we suggest that our
computational framework can be used as an adequate
model for both these species, with a generally higher
value of λI for children than chimpanzees. This is to
say that, when faced with prioritizing either faithful
imitation or achieving the results as fast as possible,
different species weight differently the different moti-
vations and sources of information.

The components of our model thus seem sufficient
to explain much of what is known about tendencies to
imitate or emulate in children and chimpanzees. We
are unable to conceive of a simpler model to replicate
these results and as such we believe that our computa-
tional model provides a parsimonious explanation for
the observed behaviors. Although in some situations
similar behaviors could be obtained with simpler

mechanisms such as mimicry, stimulus enhancement,
response facilitation, and contextual facilitation (Byrne,
2002; Melo et al., 2007; Noble & Franks, 2002), such
mechanisms cannot account for all the phenomena
reviewed in this work.

A Technical Details

Now we proceed with the details about the underlying
model.2 At each time instant, the learner must choose
an action from its repertoire of action primitives �,
depending on the state of the environment. We repre-
sent the state of the environment at time t by Xt and let
� be the (finite) set of possible environment states.
This state evolves according to the transition probabil-
ities

(1)

where At denotes the learner’s action primitive at time
t. The action-dependent transition matrix P thus
describes the dynamic behavior of the process {Xt}.

We consider that the demonstration consists of a
sequence � of state-action pairs

� = {(x1, a1), (x2, a2), …, (xn, an)}.

Each pair (xi, ai) exemplifies to the learner the
expected action (ai) in each of the states visited during
the demonstration (xi). From this demonstration, the
learning agent is expected to perceive what the dem-
onstrated task is and, eventually by experimentation,
learn how to perform it optimally. A decision-rule
determining the action of the learner in each state is
called a policy and is denoted as a map π : � → �.

In our adopted formalism, a task can be defined
using a function u : �→ � describing the “immediate
desirability” of each particular state x ∈� in terms of
the task. Once u is known, the learner should choose
its actions to maximize the functional

where γ is a discount factor between 0 and 1 that
assigns greater importance to the immediate future
than to the distant future.3

� Xt 1+ y Xt x= At, a= =[ ] Pa x y,( ),=

J x At{ },( ) � γtu Xt( ) X0 x=
t 1=

∞

∑ ,=
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The relation between the function u describing the
task and the optimal behavior rule can be evidenced
by means of the function Vu given by

The value Vu(x) represents the expected (discounted)
utility of a path of the process {Xt} starting at state x,
when the optimal behavior rule is followed. Letting

(2)

it holds that

and the optimal policy associated with the function u
is given by

The computation of πu (or, equivalently, Qu) given P
and u is a standard problem and can be solved using
any of several standard methods available in the litera-
ture (Bertsekas & Tsitsiklis, 1996).

Within the formalism just described, the funda-
mental imitation problem lies in the estimation of the
function u from the observed demonstration �. In the
continuation, we discuss how this function u is com-
puted by each of the modules in our model.

A.1 The Proposed Computational Model

Our model takes into account the agent’s baseline
preferences, the effects of the demonstrated actions
and the possible goals of the demonstrator. Each of
these sources of information is processed in a specific
“module,” that generates a representation of the corre-
sponding behavior. These behaviors are then com-
bined by merging the corresponding representations
using a standard convex combination.

As seen above, the function Qu associated with a
particular task can be used to compute the optimal
policy πu for that task. More generally, such a “Q-
function” can be used to define a general policy and
we will adopt this approach to represent the behaviors
computed in each of the modules in our model.

1. The agent’s baseline preferences: For each sce-
nario, this component of the model simply out-
puts a previously defined function QB. This
function encompasses the baseline preferences of
the agent in that, if action a1 is preferred over
action a2 in a particular state of the world x, then

This function can be seen as “part” of the defini-
tion of the agent: its values are set beforehand,
independently of the demonstration.

2. Replicating the end-effect: Throughout the sim-
ulations in the article, we considered the desired
effect as the final state observed during the dem-
onstration, hereby denoted as xE. Replicating the
effect thus consists in attaining xE. The task of
attaining xE can be represented by means of a util-
ity function uE defined as

The function QE obtained from this utility repre-
sents a behavior for reaching xE as quickly as pos-
sible and can be easily computed using standard
dynamic programming.

3. Inferring the goal of the demonstrator: We
adopt the method by Melo et al. (2007), which is a
basic variation of the Bayesian inverse reinforce-
ment learning (BIRL) algorithm (Ramachandran
& Amir, 2007).
For a given u-function, the likelihood of a pair (x, a)
is defined as

The parameter η is a user-defined confidence
parameter that we describe below. The value
Lu(x, a) translates the “plausibility” of the choice
of action a in state x when the underlying task is
described by u. Given a demonstration sequence

� = {(x1, a1), (x2, a2), …, (xn, an)}.

the corresponding likelihood is

Vu x( ) max u x( ) γ Pa x y,( )Vu y( )
y �∈
∑+=

a �∈

Qu x a,( ) u x( ) γ Pa x y,( )Vu y( ),
y �∈
∑+=

Vu x( ) maxQu x a,( )=
a �∈

πu x( ) max Qu x a,( ).arg=
a �∈

QB x a1,( ) QB x a2,( ).>

uE x( ) 1 if x xE;=

0 otherwise.



=

Lu x a,( ) � x a,( ) u[ ] e
ηQu x a,( )

e
ηQu x b,( )

b �∈
∑

------------------------------.=
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Lu(�) =

The method uses MCMC to estimate the distribu-
tion over the space of possible u-functions, given
the demonstration (Ramachandran & Amir, 2007).
It will then choose the maximum a posteriori u-
function. Since we consider a uniform prior for the
distribution, the selected utility is the one whose
corresponding optimal policy “best matches” the
demonstration. The confidence parameter η deter-
mines the “trustworthiness” of the method: it is a
user-defined parameter that indicates how “close”
the demonstrated policy is to the optimal policy
(Ramachandran & Amir, 2007). Once the “best”
u-function is chosen, standard dynamic pro-
gramming is used to compute the corresponding
Q-function, QI.

We conclude by discussing how the underlying
structure in our formalism translates to biological
terms. Firstly, the assumed “world knowledge” con-
sists of the set of possible states of the environment, �,
the repertoire of action primitives, �, and the world
dynamics, summarized by the transition probabilities
P. Note, in particular, that the action repertoire � is
fixed and known in advance. This means that our
overall model addresses learning at the task level. The
modeled agent does not learn new actions, but instead
learns how to combine known actions in new ways.
Formally, there is no reason why our model cannot be
used at different levels of abstraction, but the biologi-
cal correspondence may become less clear.

Secondly, we note that the goal-inference model
is probabilistic and relies on a Bayesian formalism
that can be exploited beyond what was described here.
Its probabilistic nature implies that the goal-inference
module is somewhat robust to some wrong (“acciden-
tal”) actions if these are, in a sense, incompatible with
the general goal that can be inferred from the demon-
stration. We refer to the work of Lopes et al. (2007)
for further discussion on the robustness of the method
to partially incorrect actions. On the other hand, the
Bayesian formalism allows the inclusion of prior infor-
mation in a straightforward manner. In other words, the
Bayesian formalism easily accommodates prior infor-
mation on possible utilities which, in our particular set-
ting, would translate into prior information on the
demonstrator’s prior intentions.
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Notes

1 For a study of the brain regions involved in action under-
standing in typical and atypical situations, we refer to the
work of Brass, Schmitt, Spengler, and Gergely (2007).

2 An extended version can be found at http://users.isr.ist.utl.
pt/~macl/myrefs/SL08app.pdf

3 The discount factor γ can be seen by the agent as a “proba-
bility of surviving” in the next time-step.
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