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Learning Object Affordances: From Sensory–Motor
Coordination to Imitation
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Abstract—Affordances encode relationships between actions,
objects, and effects. They play an important role on basic cog-
nitive capabilities such as prediction and planning. We address the
problem of learning affordances through the interaction of a robot
with the environment, a key step to understand the world prop-
erties and develop social skills. We present a general model for
learning object affordances using Bayesian networks integrated
within a general developmental architecture for social robots. Since
learning is based on a probabilistic model, the approach is able to
deal with uncertainty, redundancy, and irrelevant information. We
demonstrate successful learning in the real world by having an hu-
manoid robot interacting with objects. We illustrate the benefits of
the acquired knowledge in imitation games.

Index Terms—Affordances, biorobotics, cognitive robotics, hu-
manoid robots, learning.

I. INTRODUCTION

HUMANS can solve many complex tasks on a routine basis,
e.g., by selecting, amongst a vast repertoire, the actions

to exert on an object to obtain a certain desired effect. A painter
knows which colors and painting technique to use to produce a
certain visual impression, in the same way as a basketball player
knows how to throw a ball with the exact trajectory and spin to
introduce it in the basket.

In this paper, we discuss such human skills in the context
of the long-term vision of building (humanoid) robots capable
of acting in a complex world and interacting with humans and
objects in a flexible way. What knowledge representations or
cognitive architecture should such a system require to be able
to act in such unpredictable environment? How can the system
acquire task or domain-specific knowledge to be used in novel
situations? To help answering these questions, we propose a
methodology that draws inspiration from the concept of affor-
dances introduced by Gibson in his seminal work [1]. He defined
affordances as action possibilities available in the environment
to an individual, thus depending on its action capabilities.

Affordances define the relation between an agent and its en-
vironment through its motor and sensing capabilities (e.g., gras-
pable, movable, or eatable), as illustrated in Fig. 1. For instance,
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Fig. 1. Affordances as relations between (A)ctions, (O)bjects, and (E)ffects
that can be used to address different purposes: predict the outcome of an action,
plan actions to achieve a goal, or recognize objects or actions.

humans can grasp a cup or sit on a sofa, but not vice versa. Dogs
can sit on a sofa but cannot grasp a cup.

From the perspective of robotics, affordances are extremely
powerful since they capture the essential world and object prop-
erties, in terms of the actions the robot is able to perform. They
can be used to predict the effects of an action, to plan actions
to achieve a specific goal, or to select the object to produce a
certain effect if acted upon in a certain way.

By extending the concept further, affordances also play an
important role for interacting with other agents, since they al-
low the recognition of actions and can be used, for instance,
in imitation [2]. By observing the actions, states and effects
of other individuals (human or robots), an artificial system
can retrieve a tremendous amount of knowledge [3]. Learn-
ing by imitation is one of the motivations of our affordance
system and we will show how it can lead to imitation-like
behaviors.

There are two points that should be stressed now regarding
affordances. Firstly, one intrinsic characteristic of affordances
is that they result from the (ecological) exploratory interaction
between the robot and the environment, thus depending both
on the world and the agent’s motor and perceptual capabilities.
Secondly, the concept of affordances requires a certain num-
ber of elementary actions to be defined and functional. As we
shall see later, this means that the system must first know how
to perform a number of actions and develop some perceptual
capabilities before learning the affordances.

1552-3098/$25.00 © 2008 IEEE
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A. Related Work

Gibson used the concept of affordance to describe the re-
lation (including representation issues) established between a
living being and its environment [1]. Gibson argues that this
relation is shaped by the perceptual and motor abilities of the
agent. Hence, affordances represent what the elements present
in the environment afford to the agent. This very general concept
was originally applied to entities such as surfaces (ground, air,
water) or their frontiers. From a psychological point of view,
there has been a lot of discussion to establish a definition or
model of affordances (see [4] for a brief review). Other authors
have shown the presence of affordances by comparing percepts
among different people [5], measuring response times to tasks
elicited by specific object orientations [6], or perceiving heavi-
ness [7]. Unfortunately, there is little evidence on how humans
learn affordances.

From the robotics standpoint, affordances have been mainly
used to relate actions to objects. Several works use affordances
as prior information. A computational, cognitive model for grasp
learning in infants was proposed in [8]. The affordance layer in
this model provides information that helps to perform the action.
Affordances have also been used as prior distributions for action
recognition in a Bayesian framework [9] or to perform selective
attention in obstacle avoidance tasks [10]. Several works have
investigated the problem of learning affordances and their sub-
sequent application to different tasks. In [11], the robot learned
the direction of motions of different types of objects after pok-
ing and used this information, at a later stage, to recognize
actions performed by others. The robot used the learned maps
to push objects so as to reproduce the observed motion. A sim-
ilar approach was proposed in [12], where the imitation is also
driven by the effects. However, they focus on the interaction
aspects and do not consider a general model for learning and
using affordances. The biologically inspired behavior selection
mechanism of [13] uses clustering and self-organizing feature
maps to relate object invariants to the success or failure of an
action. All the previous approaches learn specific types of af-
fordances using the relevant information extracted from their
sensor channels. A more complete solution has been recently
proposed in [14] where the learning procedure also selects the
appropriate features from a set of visual SIFT descriptors. The
work in [15] focuses on the importance of sequences of actions
and invariant perceptions to discover affordances in a behavioral
framework. Finally, based on the formalism of [16], a goal-
oriented affordance-based control for mobile robots has been
presented in [17]. Previously learned behaviors such as traverse
or approach are combined to achieve goal-oriented navigation.

B. Our Approach

Learning affordances from scratch (without assuming known
models) can be overwhelming, as it involves relations between
motor and perceptual skills, resulting in an extremely large di-
mension search problem. Instead, affordances can be more ap-
propriately defined once the robot has already learned a suitable
set of elementary actions to explore the world.

TABLE I
LEARNING PHASES OF THE DEVELOPMENTAL APPROACH

We adopt a developmental approach [18], [19], where the
robot acquires skills of increasing difficulty on top of previous
ones. As newborns, the robot should “start” with a minimal sub-
set of core (phylogenetic) capabilities [20] to bootstrap learning
mechanisms that, through self-experimentation and interaction
with the environment and other humans, would progressively
lead to the acquisition of new skills.

We follow the developmental roadmap proposed in [21] and
extend it to include the learning and usage of affordances in the
world interaction phase. This framework considers three main
stages in a possible developmental architecture for humanoid
robots: 1) sensory–motor coordination; 2) world interaction;
and 3) imitation (see Table I). In the sensory–motor coordina-
tion stage, the robot learns how to use its motor DOFs and the
coupling between motor actions and perception. In the world
interaction phase, the robot learns by exploring the effects of its
own actions upon elements of the environment. In the imitation
phase, the robot learns by observing and imitating other agents.

Affordances are central in the world interaction phase. At
this stage, the robot has already developed a set of perceptual
and motor skills required to interact with the world. We intro-
duce a general model for affordances learned by unsupervised
self-exploration that includes the effects of actions on objects.
Affordances are modeled with Bayesian networks (BNs) [22],
a general probabilistic representation of dependencies. We for-
mulate the problem as a structure learning algorithm, where
affordances are encoded in the probabilistic relations between
actions and percepts (object features and effects). This allows
us to take advantage of the general methods proposed in the
machine learning community for learning, inference, and plan-
ning. Indeed, the BN provides a single framework for learning
and using affordances.

We used the humanoid robot Baltazar (see Fig. 3) to validate
our approach. We conducted several experiments to illustrate the
capability of the system to discover affordances associated with
manipulation actions (e.g., grasp, tap, and touch), applied to
objects with different properties (color, size, shape). The effects
of these actions consist of changes perceived in the sensor mea-
surements, e.g., persistent tactile activation for a grasp/touch,
and object motion for a tap.

Our results show how the learned network captures the struc-
tural dependencies between actions, object features, and effects.
The model is able to distinguish the relevant properties of the
objects and discard those that do not influence action outcomes.
This “feature selection” aspect of the structure learning method
is fundamental in planning because task execution is often
linked to object properties and only to a lesser extent to objects
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themselves. The learned model is then used to predict the ef-
fects of actions, recognize actions performed by a human, and
to play simple interaction games. These games are driven by
the observed effects of the human action and exploit knowledge
contained in the affordance network to obtain the same effects.
In this sense, imitation is not limited to mimicking the detailed
human actions. Rather, it is used in a goal-directed manner (em-
ulation), as the robot may choose a very different action (when
compared to that of the demonstrator) provided that its experi-
ence indicates that the desired effect can be met.

In conclusion, the main contribution of this paper is a model
for learning and using affordances in the context of a devel-
opmental framework for humanoid robots. The main charac-
teristics of the proposed model are: 1) it captures the relations
between actions, object features, and effects; 2) it is learned
through observation and interaction with the world; 3) it detects
the features that really matter for each affordance; 4) it pro-
vides a common (seamless) framework for learning and using
affordances; and 5) it allows social interaction by learning from
others.

C. Structure of the Paper

The paper is organized as follows. Section II presents the
first level of the developmental architecture, which deals with
sensory–motor coordination, learning of elementary actions,
and basic perceptual skills. Section III describes our approach
for learning and modeling affordances using BNs. This cor-
responds to the second developmental stage, where learning
about the world is the primary motivation. Section IV shows
how several imitation-like behaviors can be formulated as de-
cision problems over the learned affordances model. The en-
tire approach is validated in Section V through experimental
tests with our humanoid platform, illustrating the advantages of
affordance-based knowledge representation. Section VI draws
some conclusions and establishes directions for future work.

II. DEVELOPING BASIC SKILLS

In this section, we present the robot phylogenetic capabilities
and the skills acquired during the first stage of development,
sensory–motor coordination. These motor and perceptual skills,
developed prior to affordance learning, provide the abstraction
layer that allows the robot to start interacting with the world.

We consider that each skill develops on top of another one,
following a developmental perspective. At the bottom level,
we have pre-programmed skills: simple visual segmentation
and categorization abilities for characterizing objects and ef-
fects (based on color, shape, motion, and orientation) and motor
capabilities (near-chaotic motion and controller structures). Al-
though innate, they are not fully operational and they still require
some learning [23]. For instance, the structure of the controller
is predefined, but only after learning and with the complete de-
velopment of the related visual capabilities, it becomes fully
functional.

From pre-programmed skills, perception develops in order to
adapt to the structure of the world. Instead of dealing directly
with the raw sensor data, the robot has some filters that simplify

the data processing and provide higher level information such
as motion detection or color segmentation. On top of this, the
system learns in an unsupervised manner regularities in the
world resulting, for instance, on the occurrence of particular
classes of objects (colors, shapes, sizes) and effects (changes in
the sensor measurement).

In parallel, the basic motor skills allow the robot to discover
the relation between its actions and its proprio-perceptions. Usu-
ally, this correspondence between perception and action is called
a sensory–motor map (SMM), and it can be interpreted in terms
of direct/inverse kinematics of robotic manipulators. Inverse
models are used to control the robot while direct ones serve for
prediction purposes.

Next, we describe the different modules that allow the robot
to acquire the following capabilities: 1) basic motor skills, 2)
visual perception of objects, and 3) perception of effects.

A. Basic Motor Skills

Newborns have a series of reflexes and responses that drive
their future mastering of motor abilities. However, at birth, they
are still too coarse to be functional and need to develop during
the first months of life. Similarly, we consider that the robot starts
with a predefined set of core motor actions M = {mi}, whose
parameters (λ, ψ) must be adjusted by self-experience, i.e., by
autonomous exploration of its motor and sensory capabilities.
A generic description for the model mi is

Θ̇ = mi(Θ∗, y, λ, ψ) (1)

where Θ represents the controlled variables, Θ∗ is the final ob-
jective, and y’s are the available proprioceptive measurements of
the robot. Parameters ψ are related to the kinematics/dynamics
of the robot. In particular, SMMs are used to relate observations
y to robot kinematics and dynamics. Parameters λ depend on
the task and serve to control its execution, i.e., desired speed,
energy criteria, posture. They can be tuned during affordance
learning (refer to Section V, Fig. 7), but they are frozen by the
system during the initial learning phase.

In this paper, we are focusing on object manipulation ac-
tions like grasping (m1), tapping (m2), and touching (m3) (see
Fig. 2). We consider each of these tasks consisting of three
phases: 1) bringing the hand to the field of view in an open-loop
fashion; 2) approaching the object using visual servoing; and
3) actually grasping, tapping, or touching the object. The two
former phases are learned by self-experience (see [21] for fur-
ther details), while the latter is preprogrammed due to practical
limitations of our current robotic platform.

B. Visual Perception of Objects

Vision is the most complex perceptual system in humans and
the least developed at birth. Although infant perception and cog-
nition have been subject of extensive research in developmental
psychology, there is still not much consensus on the particu-
lar developmental stages of the young infant [24]. Recent work
also suggests that infants are able to start forming perceptual
categories based on correlation information at the age of four
months [25].
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Fig. 2. Examples of actions as seen by the robot. (a) Grasping.(b) Tapping.

In this paper, we assume that the system has simple segmenta-
tion and category formation capabilities already built-in. For the
sake of experimental simplicity, we have constructed a “play-
ground” environment as shown in Fig. 3. In this environment,
the robot plays with simple colorful objects over a white table,
and observes other people playing with the same objects. Fast
techniques like background or color segmentation are employed
at this stage to allow the robot to individuate and track objects
in real time. Along time, the robot collects information regard-
ing simple visual object properties like color, shape, size, etc.
Fig. 3 illustrates the robot’s view of several objects, together
with their color segmentation and extracted contour. After some
time of interaction with the objects, the robot is able to group
their properties into meaningful categories. The set of visual
features employed here consist of color descriptors, shape de-
scriptors, and size (in the image). The color descriptor is given
by the hue histogram of pixels inside the segmented region
(16 bins). The shape descriptor is a vector containing region-
based measurements, as follows:

1) convexity—ratio between object area and convex hull
area;

2) eccentricity—ratio between object minor and major axes;
3) compactness—ratio between object area and squared ex-

ternal contour perimeter;
4) circleness—ratio between object area and the area of the

minimum enclosing circle;
5) squareness—ratio between object area and the area of the

minimum enclosing rectangle.
In the category formation phase, color, shape, and size de-

scriptors are clustered into independent categories. This allows
us to make predictions on previously unseen objects, but with
some properties whose affordance has already been learned.

C. Perception of Effects

In our framework, effects are defined as salient changes in
the perceptual state of the agent that can be correlated to ac-
tions. For instance, upon interacting with objects, the robot may
experience sudden changes of object position and velocity, and
changes on tactile information related to contact. Similarly to
what was carried out for object properties, effects are grouped
into categories with unsupervised learning techniques. For ex-
ample, after tapping an object, its velocity may be null, small, or
large, depending on the object characteristics. After some time
experimenting with objects and collecting information about
the effects of actions on objects, the agent forms categories of

Fig. 3. Experimental setup. The Robot’s workspace consists of a white table
and some colored objects with different shapes (left). Objects on the table are
represented and categorized according to their size, shape and color, e.g., the
“ball” and “square” class (right).

effects by grouping those that are close in the sensory space.
Obviously, we have to assume that the motor and perceptual ca-
pabilities of the agent are such that the same action applied to the
same object will have similar effects on average. For instance,
all successful grasps will have the pressure sensors persistently
activated.

All effects are processed in the same way. When the action
starts, the agent observes its sensory inputs during a certain
time window that depends on the action execution time and
the effects duration, and records the corresponding information
flow. We then fit a linear model to the temporal information
and represent the observed effects by the slope and bias of the
regression. For velocities (object, hand, and object–hand), the
regression is made on the sequence of image velocity norms.
Only the inclination is used since the bias only reflects the
absolute position in the image. For the contact information, we
consider only the bias (offset) of the linear regression that gives
a rough measure of the duration of contact.

III. AFFORDANCE MODELING AND LEARNING

In this section, we address the acquisition of affordances
(second phase of Table I.). In the previous phase, the robot
developed a set of skills that allows it to reason in a more
abstract level than joint positions or raw perceptions. The robot
has now available a set of actions to interact with the world
and is able to detect and extract categorical information from
the objects around it. We pose the affordance learning problem
at this level of abstraction where the main entities are actions,
objects, and effects.

We use a probabilistic graphical model known as BNs [22] to
encode the dependencies between the actions, object features,
and the effects of those actions (see Fig. 4). Such a representa-
tion has several advantages. It allows us to take into account the
uncertainty of the real world, encodes some notion of causality,
and provides a unified framework for learning and using affor-
dances. We next describe briefly the representation, inference,
and learning concepts using BNs and show how to apply them
to our affordance problem.
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A BN is a probabilistic directed graphical model where the
nodes represent random variables X = {X1 , . . . , Xn} and the
(lack of) arcs represent conditional independence assumptions.
BNs are able to represent causal models since an arc from Xi →
Xj can be interpreted as Xi causes Xj (see [26]). The joint
distribution of the BN decomposes in the following way:

p(X1 , . . . , Xn ) =
n∏

i=1

p(Xi | XP a(Xi ) , θi) (2)

where XP a(Xi ) represents the parents of node i, i.e., the set of
nodes with an arc toward Xi . The conditional probability dis-
tribution (CPD) p(Xi | XP a(Xi ) , θi) of each node in the graph
depends on the parents XP a(Xi ) and on a set of parameters
θi . If the conditional distributions and priors are conjugate, the
CPDs and marginal likelihood can be computed in closed form
resulting in efficient learning and inference algorithms.

We now describe how to model the affordances using a BN
and the information already learned by the robot in the previous
phase. A discrete random variable A = {ai} models the activa-
tion of the different motor actions mi described in Section II-A.
Each action ai is parameterized by the corresponding set of pa-
rameters λi as described in (1). For instance, when approaching
an object to perform a grasp, the height of the hand with respect
to the object or the closing angles of the hand are free parame-
ters. It is important to note that from a sensory–motor point of
view, the free parameters result in the same action. Hence, at
this stage of development, the robot cannot distinguish between
them, since the differences will only appear when interacting
with those objects.

The object properties and effects are also modeled using
discrete variables corresponding to the classes detected by
the robot (see Sections II-B and Sections II-C. We denote
Fr = {Fr (1), . . . , Fr (nr )} and Fo = {Fo(1), . . . , Fo(no)}, the
descriptors extracted by each of the preprocessing modules for
the robot itself and for the object o, respectively. Finally, let
E = {E(1), . . . , E(ne)} be the effects detected by the robot
after executing an action. The set of nodes X is formed by the
discrete variables A, Fr , Fo , and E, X = {A,Fr , Fo , E}.1 The
difference between object features and effects is that the former
can be acquired through simple observation whereas the latter
require interaction with the objects. Thus, clustering the effects
correspond to the first stage of the world interaction phase and
preludes the learning of the affordances.

Our final objective is to discover the relations between the
random variables X representing actions, features, and objects
(see Fig. 4). To do this, the robot performs an action on an object
and observes the resulting effects. By repeating this procedure
several times, the robot acquires a set of N trials D = x1:N

(see Fig. 5). Let us assume for the moment that we know the
dependencies, that is, the structure of the network representing
affordances. Given the discrete representation of actions, fea-
tures, and effects, we use multinomial distributions and their
corresponding conjugate, the Dirichlet distribution, to model
the CPDs p(Xi | XP a(Xi ) , θi) and the corresponding parameter

1We represent a random variable by a capital letter X and its realizations
by x.

Fig. 4. BN model to represent the affordances. (a) Example of the proposed
model using color, shape, and size information for the object features; and
motion and contact information as effects. (b) Generic model where the nodes
represent the actions A, the object features available to the robot F (1) · · · (n)
and the effects obtained through the actions E(1) · · ·E(m).

Fig. 5. Experiments protocol. The object to interact with is selected manually
and the action is randomly selected. Object properties are recorded in the INIT to
APPROACH transition when the hand is not occluding the object. The effects
are recorded in the OBSERVE state. INIT moves the hand to a predefined
position in open loop.

priors p(θi). According to [27], the marginal likelihood for a
node Xi and its parents given D is

p(x1:N
i | x1:N

P a(xi )) =
∫ [

N∏
n=1

p(xn
i | xn

P a(xi ) , θi)

]
p(θi) dθi

=
|Xi |∏
j=1

Γ(αij )
Γ(αij + Nij )

|XP a (X i ) |∏
k=1

Γ(αijk+Nijk )
Γ(αijk )

where Nijk counts the number of trials with Xi = j, XP a(Xi ) =
k, Nij =

∑
k Nijk , and Γ represents the gamma function. The

pseudocounts αijk are the Dirichlet hyper parameters of the se-
lected prior distribution of θi and αij =

∑
k αijk . The marginal

likelihood of the data is simply the product of the marginal
likelihood of each node

p(D | G) = p(x1:N | G) =
∏

i

p(x1:N
i | x1:N

P a(xi )) (3)

where we have made explicit the dependency on the graph struc-
ture G.

A. Learning the Structure of the Network

We are interested in learning the structure G, which is actu-
ally an instance of a model selection problem. In a Bayesian
framework, this can be formalized as estimating the distribution
on the possible network structures G ∈ G given the data. Using
the Bayes rule, we can express this distribution as the product
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of the marginal likelihood and the prior over graphs

p(G | D) = ηp(D | G)p(G) (4)

where η−1 = p(D) is a normalization constant. The prior term
p(G) allows to incorporate prior knowledge on possible struc-
tures. Unfortunately, the number of BNs is super exponential
with the number of nodes [28]. Thus, it is infeasible to explore
all the possible graphs and one has to approximate the full solu-
tion. Markov chain Monte Carlo (MCMC) methods have been
proposed to approximate the distribution p(G | D) [29]. In our
case, this can be important during the first stages of the learning
to keep a set of alternative hypotheses.

When there is enough data, an alternative solution is to per-
form a local search to obtain the maximum likelihood structure
given the data:

G∗ = arg maxGp(G | D). (5)

This is a local technique, and consequently, may converge to a
local minimum.

As the robot itself performs the actions, it usually obtains
information of all the variables Xi . There are several algorithms
to learn the structure of the network with complete data (see [30]
for a review). In our experimental validation, we use the MCMC
to approximate the full distribution and the hill-climbing K2 al-
gorithm [28] to explore the neighbors using a gradient technique.
Although the model also allows the robot to learn by obser-
vation, there may be some missing information. For instance,
the action is not available and has to be inferred from visual
measurements. In this case, the learning task is much harder
and several algorithms have been proposed such as augmented
MCMC or structural expectation-maximization [31].

Finally, it is important to consider causality. The previous
learning schemes are able to distinguish among equivalent
classes.2 So as to be able to infer the correct causal dependency,
it is necessary to use interventional data where we fixed some of
the variables to a specific value to disambiguate between graphs
in the same equivalent class.

In the case of a robot interacting with its environment, there
are several variables that are actively chosen by the robot: the
action and the object. These variables are actually interventional
since they are set by the robot to their specific values at each
experience. Interventional data are currently an important re-
search topic within BN learning algorithms (see [32]). Under
the assumption of a perfect intervention of node i, the value of
Xi = x∗

i is set to the desired value and its CPD is just an indica-
tor function with all the probability mass assigned to this value
p(Xi | XP a(Xi ) , θi) = I(Xi = x∗

i ). As a result, the variable Xi

is effectively cut off from its parents XP a(Xi ) .

B. Parameter Learning and Inference

Once the structure of the network has been established, the
parameters θi of each node are estimated using a Bayesian ap-
proach [30]. The estimated parameters can still be sequentially

2Two directed acyclic graphs G and G′ are equivalent, if for every BN,
B = (G, Θ), there exist another network B ′ = (G′, Θ′) such that they define
the same probability distribution.

updated online allowing the incorporation of the information
provided by new trials.

Since the structure of the BN encodes the relations between
actions, object features, and effects, we can now compute the
distribution of a (group of) variable(s) given the values of the
others. The most common way to do this is to convert the BN
into a tree, and then, apply the junction tree algorithm [33] to
compute the distribution of interests. It is important to note that
it is not necessary to know the values of all the variables to
perform inference.

Based on these probabilistic queries, we are now able to
use the affordance knowledge to answer the questions of Fig. 1
simply by computing the appropriate distributions. For instance,
the prediction of the effects when observing an action ai on
given observed object features fj is just p(E | A = ai, F = fj ).
The query can combine features, actions, and effects both as
observed information and as the desired output.

IV. INTERACTION GAMES

After interacting with the objects, the robot is ready to start
the social phase of its development. In this section, we show
how to use affordances in this context. Imitation, as a word
used in everyday language, refers to many different behaviors.
In biology, imitation aims to achieve the same effect by copying
the actions of the demonstrator [34]. This requires to solve the
body correspondence problem [35], i.e., the correspondence be-
tween the demonstrator’s actions and the learner’s ones. Another
common behavior is emulation. In this case, the objective is to
match the resulting effect [34]. This means that the learner can
choose different actions from those of the demonstrator as long
as it achieves the same effect. Indeed, for many authors [36],
emulation is strongly related with affordances. This is because
affordances provide the means to relate actions to effects. In this
paper, we use imitation to refer to this last behavior.

We describe next a set of interaction games between a hu-
man and a robot. In each game, the robot observes a human
performing an action on an object. Then, the robot is presented
with another object or objects and has to perform a compatible
action. More formally, let ad be the action performed by the
demonstrator, fd the features of the object and ed the resulting
effect. We pose the problem as a one-step Bayesian decision
problem where a reward (cost) function r defines the objective
of the imitation task. The function to optimize is

< a∗, o∗ >= arg max︸ ︷︷ ︸
a∈A,o∈O

E
[
r(ad, fd , ed , a, fo , eo)

]
(6)

where fo and eo represent the object features and effects of ac-
tion a. The maximization is over the set of possible actions A and
possible objects O. Since the knowledge about the actions, ob-
jects, and effects is not deterministic, we need to take the expec-
tation E [] over the reward function. In particular, the probability
of the effects of a particular action–object pair p(E | A,O) is
encoded by the affordance network presented in Section III. For
the sake of simplicity, in the remainder of the section, we use
the maximum likelihood estimation f̂ d and êd of object features
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and effects. We present examples of simple imitation behaviors
to illustrate the previous formulation.

1) Matching of effects: The objective of this behavior is to
achieve the same effect as observed when a single object
is present. The reward function is

r(ed) =
{

1, if Ei = êd

0, otherwise.
(7)

where êd is the most likely effect detected by the robot.
Since the reward does not depend on the object or the
features, the general expression simplifies to

a∗ = arg maxarp(Ei = êd |a, f i) (8)

where fi are the features of the object.
2) Matching of effects and object selection: We now describe

the more complex situation, where the robot has to select
among a set of objects O. If we do not care about the
object features fd , this simply requires the inclusion of
the available objects in the optimization

< a∗, o∗ >= arg max︸ ︷︷ ︸
a,oi ∈O

rp(Ei = êd |a, foi ) (9)

where foi represent the features of object oi .
3) Matching of effects and object features: The last behav-

ior adds information about the object features in the cost
function. This allows the favoring of those objects similar
to the one used by the demonstrator. The cost function has
the following expression:

r(ed, fd , f i) =

{
1, if Ei = êd ∧ F i = f̂ d

0, otherwise.
(10)

Notice that one could weigh the features giving different
rewards to different object features. For instance, if the desired
object is a big ball, we could weigh the sizes as a function of their
distance in the space of the measurements to the class model.
Since the current observations of the robot are not deterministic,
the expectation of (6) is now also taken over the possible classes
of each of the available objects. The resulting expression is

< a∗, o∗ >= arg max︸ ︷︷ ︸
a,oi ∈O

rp(Ei = f̂ d |a, foi )p(Foi = f̂ d) (11)

where p(Foi = f̂ d) represents the likelihood of the features
of oi being equal to the features f̂ d . Again this probability is
computed based on the clusters of each dimension using a metric
on the space of each feature.

V. EXPERIMENTS

In this section, we present a set of experimental results to
illustrate the acquisition and usage of affordance knowledge.
We used Baltazar, a 14 DOFs humanoid torso composed by a
binocular head and an arm. Using the motor skills of Section II,
Baltazar is able to perform three different actions A = {a1 =
grasp(λ), a2 = tap(λ), a3 = touch(λ)} where λ represents the
height of the hand in the 3-D workspace when reaching the
object in the image. The robot applies its actions on a set of

different objects with two shapes (box and ball) with four colors
and three sizes (see Fig. 3).

We recorded a set of 300 experiments following the proto-
col depicted in Fig. 5. At each trial, the robot was presented
with a random object. Baltazar randomly selected an action and
approximated its hand to the object using the algorithms of Sec-
tion II-A. When the reaching phase is completed, it performed
the selected action [grasp(λ) or tap(λ) or touch(λ)], and finally,
returned the hand to the initial location. During the action, the
object features and effects are recorded.

We used the data of these trials to implement steps 3 to 7
of Table I. In this paper, we assume that the motor skills have
already been learned as presented in Section II, for details refer
to [21]. Next, we present the results for the different steps allow-
ing the robot to evolve from basic sensory–motor coordination
to imitation capabilities.

A. Discretization of Perceptual Information

This step plays an important role since it is the basis of the
discretization used in the affordance learning algorithms. In our
example, we used the three features described in Section II:
color, shape, and size. Each one is modeled as a n-dimensional
vector space. Since our setup is clearly discrete, we applied
the X-means algorithm [37] to detect clusters in the space of
each object feature and in the effects. For the continuous free
parameters λ of the actuators such as height of the wrist, we
discretized them with a predefined resolution.

It is important to note that the final objective is to learn
the affordances given a set of available motor and perceptual
skills, not to make a perfect object classification. Indeed, the
clustering contains some errors due to different illumination
conditions. For instance, the features of some objects were mis-
classified, and the affordance learning has to cope with this
noise.

Fig. 6(a) shows the results of the X-means algorithm for the
object shape. The two resulting clusters separate easily balls
from boxes based mostly on circleness and eccentricity descrip-
tors. Fig. 6(b) gives the equivalent result for colors where the
features vector is an histogram of the hue. As the objects have
uniform color, each histogram has only one salient peak. Fi-
nally for the unidimensional size, three clusters were enough
to represent five different sizes of the objects presented to the
robot.

Fig. 6(c) shows the classes of object velocities and contact
patterns detected by the robot following the procedure described
in Section II-C. Roughly speaking, a grasp action resulted in
medium velocity (except in one case where the ball fell down the
table), tap produced different velocity patterns depending on the
shape and size of the object, and touch has small velocities. Also,
contact information lasted longer for grasp and touch actions
than for tap ones. The combination of the different features
produces patterns in the feature space that are used to infer
statistical dependencies and causation. Table II summarizes the
clustering results for the different variables and provides the
notation used in the remainder of this section.
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Fig. 6. Clustering of object features and effects. (a) Shape description of the objects. Five features: convexity, eccentricity, compactness, circleness, and squareness
describe the objects. In the experiments box and balls were clustered automatically. Different clusters are represented by circles or plus signs. (b) Color histograms
with the corresponding clusters. Each bin relates to a given Hue value.The clusters correspond to: yellow, green1 , green2 , and blue. (c) Clustering of object
velocity and contact. For each observation grasp is represented by x, tap by �, and touch by ◦. The vertical lines show the clusters boundaries for velocity and the
horizontal line for contact.

TABLE II
SUMMARY OF VARIABLES AND VALUES

B. Affordances

Based on the previous descriptors of actions and its parame-
ters, features and effects, we present two different experiments
to illustrate the ability of the proposed model to capture the
affordances. We would like to remark that the robot does not
receive any information about the success of the actions. The
interest is in understanding the effects obtained by the actions
in an unsupervised manner.

The objective of the first experiment is to find the influence
of a free parameter of an action. The robot tries the action
for different configurations of the free parameters. For a grasp,
these parameters are the joint angles of the fingers and height
of the hand. The former is used after reaching the object in the
closing of the hand, whereas the latter is a free parameter of
the SMM used to approximate the hand to the object. We used
the K2 algorithm3 to find the maximum likelihood graph with
a random starting point and BDeu priors [27] to give uniform
priors to different equivalence classes.

Fig. 7(a) shows how the resulting network captures the de-
pendency of the effects on these parameters. More interestingly,
the CPDs provide the probability of producing different effects
according to the values of the free parameters. Fig. 7(b) shows
the estimated probability of each height conditioned on observ-
ing a long contact for medium and small objects (which is the

3The implementation of the algorithms is based on the BNT toolbox for
Matlab, http://bnt.sourceforge.net/.

Fig. 7. Tuning the height for grasping a ball. (a) Dependencies discovered
by the learning algorithm. The action and shape for this example are fixed and
color does not have an impact on the effects. Node labels are shown in Table II.
(b) CPD of height given the robot obtained a long contact (successful grasp).

sign of a successful grasp). Since big objects cannot be grasped
by the robot’s hand, all heights have zero probability for this
class. Please note that the distribution of Fig. 7(b) can be di-
rectly used to adjust the height of the action for different object
sizes.

The objective of the second experiment is to show how the
robot is able to distinguish the effects of different actions and
simultaneously select those features that are interesting for this
purpose. Also, we illustrate the differences between the MCMC
estimation of the distribution of possible networks and the max-
imum likelihood solution provided by the K2 algorithm. In both
cases, we use BDeu priors for the graphs and random initializa-
tion. Although, one can use conditional independence tests to
provide a rough initialization for both algorithms, in our case,
we got similar results using randomly generated networks. For
the MCMC algorithm, we used 5000 samples with a burn-in
period of 500.

Fig. 8(a)–(d) shows the network computed by the K2 al-
gorithm and the three most likely networks computed by the
MCMC. For this particular case, there are no major differences
between both models. However, in the initial steps, the MCMC
probability distributions represent the uncertainty on the model
selection problem. When using longer datasets, the probability
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Fig. 8. This figure shows the affordance model estimated by the K2 algorithm and the MCMC. Node labels are shown in Table II. (a) K2 maximum likelihood
network. (b)–(d) Three more likely networks obtained by the MCMC for the same data. (e) Posterior probability over graphs computed by the MCMC.

mass concentrates on a single group of very similar networks
but it still maintains a set of plausible networks that capture
correct relationships between the variables. Fig. 8(e) shows the
posterior probability of all the sampled models. Note that in
the example, the posterior probability of the K2 model is lower
than 0.05 according to the distribution computed by the MCMC.
In some situations, due to its greedy approach, we found that
the K2 algorithm converged to a model that lacked some rele-
vant relation such as the dependency on the shape of the object.
Nonetheless, for most cases, the K2 algorithm converges to a
reasonable model even for little data. The price to pay, when
approximating the distribution of possible networks, is a higher
computational cost for the MCMC algorithm.

Although there is no ground truth to compare the estimated
networks, we see that color has been detected as irrelevant when
performing any action. Shape and size are important for grasp,
tap and touch since they have an impact on observed velocities
and contact. In order to show the convergence of the network
toward a plausible model, we have estimated a network for dif-
ferent numbers of trials. For each number, we have randomly
created 100 datasets from the complete dataset, estimate the
posterior over graphs using the MCMC and compute the likeli-
hood of the whole data for the most likely model. Fig. 9 shows
how the marginal likelihood of the data converges as the num-
ber of trials increases. The figure also indicates that, after 100
trials, the improvement of the likelihood of the data, given more
experiments, is very small since the model already was able
to capture the correct relations. On the other hand, for the K2
model of Fig. 8(a), the marginal likelihood is −2775 which is
lower than the one attained by the MCMC algorithm.

The actual dependencies are encoded in the multinomial
CPDs of each node. Based on the most probable hypothesis
generated by the MCMC algorithm, we compute the maximum
likelihood parameters using the same dataset. To validate the
network actually captures the correct dependencies, we com-
pute some illustrative CPDs. Fig. 10(a) presents the predicted
contact duration of a grasp action for different sizes. It basi-
cally states that successful grasps (longer contact between the
hand and the object) occur more often with small objects than
with bigger ones. Fig. 10(b) shows the distribution of size after
performing a tap on a ball for different velocities. According
to it, small balls move faster than bigger ones and medium ball
velocities are highly unpredictable (similar likelihood for all ve-
locities). This actually reflects the behavior of the objects during
the trials. For instance, the mean and variance of the ball ve-

Fig. 9. Marginal likelihood of the data given the learned network as the number
of trials increases. The vertical bars show the variance of the likelihood.

Fig. 10. Examples of CPD for the learned network: (a) p(Ct | S = si , A =
grasp, Sh = sq), the CPD of contact duration given a grasp was performed
on a box for every value of size. (b) p(S | V = vi , A = tap, Sh = ball), the
CPD of the size of a ball given the action was a grasp for every possible value
of velocity.

locity (µ[pixel/frame], σ2 [pixel2/frame2 ]) were (33.4,172.3),
(34.3,524.9), and (17.5, 195.5) for a small, medium, and big
balls, respectively.

In order to further validate the model, we have performed a
leave one out cross validation to evaluate the action recognition
capabilities of the network. For each trial, we computed the
network structure and parameters using the other trials and the
MCMC algorithm. We then estimated the probability of each
action given the object features and the object velocity, hand
velocity, and object–hand velocity. Since contact is a proprio-
ceptive measurement, it is not usually available when observing
other’s actions. The most likely action was correct in more than
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Fig. 11. Different imitation behaviors. Top: demonstration, middle: set of potential objects, bottom: imitation. Situations (a)–(d) represent imitation of actions.
(a) Matching effect. (b) Matching effect. (c) Matching effect. (d) Matching effect and shape.

85% of the cases. The errors were mainly due to the absence
of contact information. After touching or tapping boxes, the re-
maining effects are very similar. If contact was included, the
ratio of correct recognition was 98%.

Summarizing, we have shown how the robot can tune its mo-
tor controllers through experimentation by including the effects
of its actions. Once this information is available, it starts es-
tablishing relationships between the features of the objects and
the resulting effects of its actions. The model can then easily
be used to perform simple inference, prediction, and planning.
The learning depends on the motor and perceptual skills and is
done in a completely unsupervised manner. There is no notion
of success or failure, and the network may not be able to distin-
guish between nonseparable objects given the used descriptors.
However, it constructs a plausible model of the behavior of the
different objects under different actions.

C. Interaction Games

Finally, we present results on basic interaction games using
the affordance network. In this case, the robot observes a per-

son performing an action on a given object. Then, using one
of the functions described in Section IV, it selects an action
and an object to imitate (emulate) the human. Fig. 11 depicts
the demonstration, the objects presented to the robot, and the
selected action and object for different reward functions.

We used two different demonstrations, a tap on a small ball
resulting in high velocity and medium hand–object distance,
and a grasp on a small square resulting in small velocity and
small hand–object distance. Notice that contact information is
not available when observing others.

The objective of the robot is to obtain the same observed
effects. The first situation [see Fig. 11(a)] is trivial as only tap
has a nonzero probability of producing a high velocity. Hence,
the imitation function selected a tap on the only available ob-
ject. In Fig. 11(b), the demonstrator performed the same ac-
tion, but the robot had to decide between two different ob-
jects. Table III shows the probabilities for the desired effects
given the six possible combinations of actions and objects. The
robot selected the highest probability and performed a tap on
the ball.
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TABLE III
PROBABILITY OF ACHIEVING THE DESIRED EFFECTS FOR EACH ACTION AND

THE OBJECTS OF FIG. 11(B)

Fig. 11(c) and Fig. 11(d) illustrate how including the object
features in the reward function results in different behaviors.
After observing the grasp demonstration, the robot had to select
among three objects: yellow big ball, yellow small ball, and blue
small box. In the first case, the objective was to obtain the same
effects (8). The probability for each of the objects is 0.88, 0.92,
and 0.52, respectively, and the robot grasped the yellow small
ball even if the same object was also on the table [see Fig. 11(c)].
Notice that this is not a failure since it maximizes the probability
of a successful grasp that is the only requirement of the reward
function. As described in Section IV, we can include object
information within the reward function of the robot using (9).
For instance, when the reward was modified to include a similar
shape, the robot selected the blue box instead [see Fig. 11(d)].

VI. CONCLUSION

This paper addresses the learning and usage of affordances,
i.e., the relations between actions, objects, and effects. We used
BNs as a general tool to capture these dependencies and to infer
causality relationships by taking advantage of the intervention of
the robot and the temporal ordering of the events. Most previous
works assumed that the dependencies were known and learned a
mapping between pairs of actions and objects or used supervised
approaches. Our affordance model does not assume any prior
knowledge on the dependencies and tries to infer the graph of
the network directly from the exteroceptive and proprioceptive
measurements. In addition to affordance learning, the model also
allows the robot to tune the free parameters of the controllers.
By using Bayesian inference, the robot is able to predict actions,
objects features or effects using the available information at a
given point in time. Planning and basic imitation behaviors are
also posed as a Bayesian decision problem to maximize a reward
function.

We have integrated the previous model within a developmen-
tal architecture where the robot incrementally develops its skills.
We argue that affordances are the bridge between sensory–motor
coordination, world understanding and imitation. Affordances
not only describe agent–object interactions, but they also pro-
vide an interpretation of the observed action in terms of equiv-
alent effects in the robot’s body, allowing the robot to emulate
others.

Based on the proposed framework, there are plenty of oppor-
tunities for future research. Biological systems develop many
of their different skills in parallel. We are now investigating
how to dynamically incorporate new robot capabilities (actions)
or world knowledge in the learning algorithms. Although the
proposed model can directly learn through observation of other
agents, it is necessary to develop mechanisms to update the
knowledge sequentially and to deal with new actions or effects.

Finally, more complex plans are required that include temporal
dependencies of sequences of actions.
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José Santos-Victor (S’86–A’88–M’00) received the
Ph.D. degree in electrical and computer engineering
from the Instituto Superior Técnico (IST), Lisbon,
Portugal, in 1995.

He is currently an Associate Professor in the De-
partment of Electrical and Computer Engineering,
IST, and a Researcher at the Computer and Robot
Vision Laboratory (VisLab), Institute of Systems and
Robotics (ISR). He is also responsible for the partic-
ipation of the IST in various European and National
research projects in the areas of computer vision and

robotics. His current research interests include areas of computer and robot vi-
sions, particularly in the relationship between visual perception and the control
of action, biologically inspired vision and robotics, cognitive vision and visual
controlled (land, air, and underwater) mobile robots.

Dr. Santos-Victor is an Associate Editor of the IEEE TRANSACTIONS ON

ROBOTICS.


