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Goal:

• Program highly complex robotic systems 
Multimodal sensors: cameras, inertial, touch, sound 
Actuation: >40 dof
•

 

Create interactive artificial system 
Able to deal with unexpected situations, interact with 
people, learn from people

Developmental framework:
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Affordance

 
learning:

•

 

Affordances define the relation of the robot with the 
surrounding environment in terms of its motor and 
perceptual capabilities. They

 

play

 

a crucial role in

 

core 
cognitive

 

capabilities

 

such

 

as prediction

 

and

 

planning:
•

 

Interpretation

 

of

 

observed

 

actions

 

in

 

terms

 

of

 

its

 

own

 

actions

 

(body-correspondence)
• Estimation

 

of

 

a dynamic

 

model

 

for the

 

world

•

 

World entities described as actions, object features and 
observed

 

effects. Descriptors

 

of

 

objects

 

and

 

effects

 

learnt

 

by

 

unsupervised

 

clustering

•

 

Bayesian networks

 

model Action-Feature-Effect 
relationships

•

 

The robot autonomously explores the environment and 
collects a set of data D. The posterior P

 

(G|D) over 
network structures is computed using MCMCLearning & Cognition

Imitation

 
learning:

•

 

World described as a controlled Markov 
chain

•

 

Bayesian inverse RL computes task 
description from demo (using MCMC)

•

 

Task description as a reinforcement 
function

 

maximizing likelihood of observed 
demo

• Imitation policy computed using DP
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Pa(i, j) = P[Xt+1 = j | Xt = i, At = a]
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to errors

 

& 
incomplete
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Here

 

imitation

 

is

 

not

 

a direct

 

replication

 

of

 

the

 

observed

 

actions. The

 
demontrator’s goal

 

is

 

inferred

 

by

 

computing

 

a hypothetical

 
reinforcement

 

function

 

to optimize. Task

 

execution

 

is

 

performed

 
idiosyncraticly, using

 

the

 

affordances’

 

knowledge

Task example:
•

 

The

 

goal

 

is

 

to separate

 

different

 
types

 

of

 

objects

 

in

 

to different

 
containers
•

 

The

 

demonstration

 

does not

 
visits

 

all

 

states

 

and

 

is

 

inconsistent
•

 

The system is able to achieve the

 
goal

 

of

 

the

 

task

•

 

Generalizing robot-object interaction knowledge requires taking 
into account groups of objects, sequences of actions and delayed

 
effects
•

 

Active learning strategies should be implemented to deal with 
huge search spaces
•

 

Interaction between the different learning processes, e.g., the

 
evolution of actions from pure joint positions or velocities to 
(possibly parameterized) motion primitives
•

 

Evaluate the impact of inaccurate learnt models in successive 
developmental phases (and their correction)

Copy

 

the

 

natural development

 

of

 

humans:
Starting

 

from

 

a set

 

of

 

basic

 

skills, construct

 

new

 
ones, reducing

 

the

 

complexity

 

of

 

the

 

overall

 

task
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