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Abstract— Humanoid robots are routinely engaged in tasks
requiring the coordination between multiple degrees of freedom
and sensory inputs, often achieved through the use of sensory-
motor maps (SMMs).

Most of the times, humanoid robots have more degrees of
freedom (DOFs) available than those necessary to solve specific
tasks. Notwithstanding, the majority of approaches for learning
these SMMs do not take that into account. At most, the redundant
degrees of freedom (degrees of redundancy, DOR) are “frozen”
with some auxiliary criteria or heuristic rule.

We present a solution to the problem of learning the for-
ward/backward model, when the map is not injective, as in
redundant robots. We propose the use of a “Minimum order
SMM” that takes the desired image configuration and the DORs
as input variables, while the non-redundant DOFs are viewed as
outputs. Since the DORs are not frozen in this process, they can
be used to solve additional tasks or criteria. This method provides
a global solution for positioning a robot in the workspace, without
the need to move in an incremental way. We provide examples
where these tasks correspond to optimization criteria that can
be solved online.

We show how to learn the “Minimum Order SMM” using a
local statistical learning method. Extensive experimental results
with a humanoid robot are discussed to validate the approach,
showing how to learn the Minimum Order SMM of a redundant
system and using the redundancy to accomplish auxiliary tasks.

I. INTRODUCTION

Humanoid robots must routinely coordinate the head and the

arm. For this purpose, the robot must have a way to predict

what will happen in the world if some action is made (forward

model), and what action can change the world in a pre-defined

manner (backward model). Usually, the correspondence be-

tween perception and action is called a Sensory-Motor Map

(SMM) and it can be interpreted in terms of forward/inverse

kinematics of robotic manipulators jointly with a camera. In

this work, the SMM is used to predict the image resulting from

the robot moving the arm to a certain posture, or the inverse

association, by determining which motor command causes the

arm to reach a specified appearance.

Quite often, humanoid robots have more degrees of freedom

than those strictly necessary to accomplish a certain task. For

example, Figure 1 shows several positions of an humanoid

robot, where the wrist position is always the same, but the

posture of the arm changes. In terms of input-output map,

this redundancy translates into the fact that several different

inputs yield the same observation or output. If the backward

model is obtained by inverting the forward model, this causes

a problem, because the function is no longer invertible. Also,

if it is desired to learn the inverse model common algorithms

will fail because the dataset is incoherent. Hence, to learn this

map for a redundant systems requires the adoption of some

extra assumptions. However, this strategy effectively “freezes”

the redundant degrees of freedom, that can no longer be used

for any additional task.

Fig. 1. Redundancy of the robotic system, the 3D position of the wrist is
the same but the arm configuration is different

This work presents a solution for learning perception-action

maps when redundant degrees of freedom exist (also known

as degrees of redundancy, DOR). As we do not restrict the

output of the system at learning time, the extra degrees of

freedom stay free for online selection, and so they can be

used to fulfill a secondary task or to meet an additional

criterion or constraint, like e.g energy minimization. For this

we propose the use of a “Reduced order SMM” that takes

the image configuration and DORs as input variables, and the

non-redundant DOFs as outputs.

We also present a methodology for estimating the “Reduced

Order SMM” automatically. As the map should be differen-

tiable, the function fitting method for estimating the map must

be chosen carefully. We choose a local learning method with
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differentiable kernels [1], [2].

Several applications have already been proposed, using the

SMM perspective. A neural-network architecture was used in

[3] to coordinate a binocular head with a three-DOF arm in a

reaching task. As the open loop motion can have some error,

this work also included some error correction methods by

executing a closed loop visual servoing.

Correspondences between perception and action can also

relate dynamic properties. In [4], a statistical learning method

is used to learn an inverse kinematic function for an highly

redundant humanoid robot, engaged in imitation tasks. In

this case, a map from positions and velocities is related to

image velocities, enabling the robot to repeat arm gestures.

The trajectories for learning are hand-coded trajectories, the

authors comment that this approach solves the problem of

robot singularities, because only seen motions are learned, and

so no infinite velocities appear.

The robot jacobian matrix [5] is very often used for control

purposes. This matrix relates the cartesian velocity of the end-

effector with the corresponding joint velocities. To move in

a desired position the inverse jacobian should be evaluated.

Some other methods can be used to do this inversion when

the jacobian is not square [6]. A well known approach is the

damped least-squares, where the inversion is made jointly with

an energy minimization [7], originally introduced to solve the

problem of controlling robots near singularities.

With redundant robots, the extra degrees of freedom can

be used to solve other task, provided that the corresponding

motion is done along a direction in the null space of the

main motion, this is called the redundancy formalism as

proposed in [8], [9]. Several criteria can be used to choose this

secondary task. This formalism is very well described in [10]

for humanoid animations. In humanoids, several conflicting

constraints may frequently occur, like the position of the

hands, feet and head in a dance posture. With the redundancy

formalism these constraints can be dealt with. In a similar

application to ours, the work of [11] presents a robot under

visual control, where redundancy is used to obtain better

trajectories in a visual servoing task.

We can find examples in the literature on work done

in closed kinematic chains. Modeling the musculo-skeletal

human system [12] requires some constraints, because the

muscles only work by contraction, which must be taken

into account when computing the solution. Other works have

dealt with planning in humanoid robots. A system able to

decompose the forces in order to act both the task domain,

but also and independently in the robot posture is presented

in [13].

Some methods have already been proposed to estimate the

interaction or the jacobian matrix of robots. One of the first

works was [14], where a very robust learning rule was derived

and a convergence proof given. This method is based on the

Broyden update rule already known from optimization theory

[15]. It has been widely used in real robotic applications based

on visual control. In [16], it was used for a grasping task

guided by visual servoing. As the jacobian depends strongly on

the current position, it must be evaluated at each time instant.

For object-grasping task in [17] an estimation algorithm is

used to provide an approximation of this highly non-linear

mapping using several local linear models.

Our approach is different from these approaches in several

ways:

• Includes visual information in the loop

• No knowledge about the system kinematics is needed.

The sensory-motor map is learned with a self-exploration

phase.

• The map is global and not a local approximation. This

means that we can go directly to a position in an open-

loop fashion if we want.

• Several criteria can be used as secondary task without

having to learn a new map.

This paper is organized as follows: Section II describes the

use of statistical learning methods in redundant robots. Sec-

tion III shows how to use local regression methods to learn the

partial backward model. Section IV is devoted to experiments

done with a humanoid torso with 10 DOF, that evaluates the

quality of our approach. Finally some conclusions and future

work are done. As an annex, we have the deduction of the

jacobian of the local learning method.

II. SENSORY-MOTOR COORDINATION WITH CONTROL

OPTIMIZATION

In this section we show how to define a Sensory-Motor Map

that explicitly takes the DOR into consideration, thus allowing

the completion of several simultaneous tasks.

Let us define a SMM that maps a vector of control variables

(n,r) to a vector of image point features I, where n is

a minimum set of degrees of freedom that spans the full

output space and r is a set of redundant degrees of freedom.

Note that there are several partitions of the input space, into

redundant versus non-redundant degrees of freedom, that can

give this same property. It is possible to find automatically

the redundancy by analyzing the correlation matrix for the

jacobian estimation [18]. This forward model can thus be

written as:

I = f(n, r)

and allows to predict the image configuration of the robot

given a set of motor commands.

In many cases, we are more interested in the inverse map,

i.e. computing the motor commands that drive the robot to

a desired image configuration, I. If there were an inverse

mapping (n, r) = f−1(I), this problem could be solved in

a straight forward manner. However, as the dimension of the

input space is larger than that of the output space, there are

many input combinations that generate the same image point

features. In other words, because of the DOR, f(n, r) is not

bijective and, therefore, not invertible.

Fig. 1 shows an example of redundancy, where, for this

robot the 3D position of the wrist is controlled with 4 DOFs,

thus remaining one DOR.



To put the problem in another perspective, we can say that

finding the robot joint angles to move the arm to a desired

image configuration I is an ill-posed problem when the arm

has redundant degrees of freedom, [19], because multiple

solutions exist.

One approach to solve ill-posed problems, [20], [21], con-

sists in using additional constraints that restrain the set of

admissible solutions, in such a way that the solution sought

becomes unique in this reduced solution space. In our case, this

corresponds to recast the original problem to that of moving

the robot to a desired image position I∗ while, at the same

time, minimizing some auxiliary criterion, c(n, r).
We built a cost function, K, with two terms: one weighting

the error in the position of the end effector (data fitness)

and another one corresponding to the weights on the control

(regularization term).

K(I∗, n, r) = λ ‖I − I∗‖
2

+ c(n, r) (1)

This cost function expresses that we are willing to accept

some error in the position if another task can be solved at

the same time, in this case control costs. Examples of control

cost criteria c can be “Comfort” (e.g. distance to joint limits),

Energy minimization (e.g. the position with lower momentum)

or Minimum motion (i.e. minimize total motion from current

to desired position), posture control, amongst others.

The regularized solution can be found by minimizing the

cost defined in Equation (1), as follows:

(n̂, r̂) = arg min
n,r

(

λ ‖I − I∗‖
2

+ c(n, r)
)

(2)

where I can be computed with the forward model I = f(n, r).
Similarly to [13], this formula integrates two terms: one

describing the task part and another related to posture control.

There are two important observations to this formulation.

Firstly, the optimization is done with respect to all control

variables, which translates into a significant computational

cost. Secondly, the DORs are not treated as such, since they

undergo exactly the same process as the non-redundant DOFs.

The consequence of this approach is that the extra degrees

of freedom are frozen from the beginning and can no longer

be used for a different purpose during execution. In a way,

redundancy is lost.

Instead, in our approach, we would like to keep the re-

dundant degrees of freedom free for solving additional tasks

online. In essence, we split the problem in two steps. Firstly,

we define a “Minimal Order Sensory Motor Map”, g(I, r),
that relates n and (I, r):

n = g(I, r) (3)

By taking the DORs as input (independent variables) instead

of output signals, the problem of computing the non-redundant

DOFs becomes well posed. The DORs, r, are left uncon-

strained and can be fixed during runtime, when a secondary

task or optimization criterion is specified.

The definition of the “Minimum Order SMM” allows us

to use the redundancy to meet additional criteria or task-

constraints, that can be changed online. The DORs can be

determined as the solution of a new optimization problem,

with cost function L:

r̂ = arg min
r

L(I∗, r) (4)

The optimization is done with a gradient-descendant method

with following update step:

rt+1 = rt − α∇rL(I, r)

Note that, in contrast with the previous case, this optimiza-

tion is done with respect to the redundant degrees of freedom,

only. The optimization complexity is thus substantially lower

and lends itself to be used as an online process. In general, the

solutions in the two cases are not the same, because different

local minima could be reached and the criteria are slightly

different.

Our approach guarantees zero prediction error, because the

Minimum Order SMM allows us to determine the values of n

corresponding to the exact image position, for the selected

redundant degrees of freedom. This solution is similar to

the first (regularized) problem when λ becomes large. If the

Minimum Order SMM is not exact, then it will introduce some

error in the final image configuration.

For clarity, we summarize the final algorithm.

1) Select the desired image configuration, I∗

2) Select and initial motor command (n, r)
3) Select the secondary task optimization criterion

4) Solve the optimization of Equation (4) for r and use g(.)
to compute n.

5) Move the arm to the obtained solution, (n, r)
6) Observe I and possibly adjust the function g(I, n)
7) If some extra precision is needed, go to 4

There are several important differences in our approach

whem compared to other methods based on the robot Jacobian.

The Minimum Order SMM provides directly the goal position

corresponding to the desired redundant joint position. It is

then possible to move the robot directly (i.e. in an open-

loop fashion) to the goal position, avoiding incremental steps.

The posture optimization is done iteratively with the previous

update rule. Therefore, the motion goes along the optimization

path or directly to the convergence point. This is the case

because no visual feedback is necessary to the algorithm. If

extra precision is needed, then a visual feedback loop needs

to be added.

An example, where the secondary goal is to maintain the

control variables as near zero as possible, is presented next:

L(I∗, r) = ‖n‖
2

+ ‖r‖
2

= ‖g(I∗, r)‖
2

+ ‖r‖
2

(5)

Differentiating this cost function yields:

∇rL(I, r) = 2

(

∂g(I, r)

∂r
g(I, r) + r

)

The derivation of
∂g(I,r)

∂r
is presented as an appendix.



We have seen how the introduction of the Minimum Or-

der SMM allows us to use the system redundancy to solve

additional tasks online, as opposed to freezing the DORs in

a regularized solution to the initial ill-posed problem. In the

next section, we will see how to estimate the Minimum Order

SMM g(I, n) online.

III. LEARNING THE MINIMUM ORDER SMM THROUGH

LOCAL REGRESSION

In the previous section we have seen how to partition the

redundant and non-redundant degrees of freedom to build a

Minimum Order SMM, g(I, r) that allows for the computation

of the non-redundant DOFs leaving the DORs unconstrained.

We will now see how such a map can be estimated online.

Without loss of generality, let us assume that we want to

estimate the following non-linear function:

y = f(x) (6)

Since we have little information about this function, the

usual approach consists in approximating f(x) by a set of

models that are good local approximations of the original

global non-linear function, [1].

In this work, f(x) will be approximated by a mixture

of models that are locally linear. Obviously, a single linear

approximation would fail to provide the desired degree of

accuracy. Each local model has a “confidence” region, the

kernel Kj , the mixture of all models yields the approximation:

y = f(x) ≈

∑M
j=1 KjB

T
j x

∑M
j=1 Kj

for some regression matrices, Bj to be estimated. The

choice of the kernel shapes [2] leads to different properties

of the approximating function. We have adopted a Gaussian

kernel with mean µ and variance W :

Kj = KWj
(µj , x) =

1

det(Wj)
e−(x−µj)

T Wj(x−µj) (7)

Let us assume for the moment that the number and the

parameters of each Kernel are known in advance. Each model

will be fitted by minimizing the following criteria:

B̂j = arg min
B

t
∑

i=1

λ(t−i)Kj

∥

∥yi − BT xi

∥

∥

2
(8)

where Kj weights points according to the kernel measure and

λ provides a time forgetting factor. The model can be estimated

by:

B̂ = QR+ (9)

with

Q =

t
∑

i=1

λ(t−i)KW (µ, xi)y
T
i xi

R =

t
∑

i=1

λ(t−i)KW (µ, xi)x
T
i xi (10)

An advantage of writing these terms in this way is the

possibility of defining an online estimator:

Qt = λQt−1 + KW (µ, xt)y
T
t xt

Rt = λRt−1 + KW (µ, xt)x
T
t xt (11)

Finally, at runtime when an input sample is present, the

output will be evaluated as a combination of each model Bi

weighted by Kj :

ŷ =

∑M
j=1 KjB̂

T
j x

∑M
j=1 Kj

(12)

If the kernels are C0 and have an infinite support, this function

is guaranteed to be C0. If the kernels are differentiable, the

function will be C1 .

The final point to discuss is related to the Kernel functions

KW (µ, x). How many kernels should be used and what should

the parameters of each kernel be? The number of kernels can

be is iteratively increased during training. When the distance

between a new data sample and its nearest kernel exceeds a

certain threshold, a new kernel is created with center (µ) in

this point. The shape of the kernels (the covariance matrix)

can be automatically updated choosing, e.g., a measure of

reconstruction quality [22], [23].

Other formulations have already been proposed. The Locally

Weighted Projection Regression method, proposed in [24], is

linear with the number of samples and every new sample can

be added easily. As the method is not capable of extrapolating,

the work space must be well covered in the training set. Other

implementations keep several samples in memory without

estimating any explicit models. The prediction is produced

online by weighting the points in memory with some kernel

functions.

IV. EXPERIMENTAL RESULTS

Several experiments were done with a real robot to assess

the quality of the algorithms and the ability to learn the pro-

posed SMM online. The experimental setup was the Baltazar

humanoid robot torso [25], consisting of a 4 DOF head, a

6 DOF arm and a 10 DOF under-actuated hand. The image

features consist on the image position of the wrist, and we

want to position the wrist in the the image. This task requires

only two degrees of freedom. The non-redundant DOFs are

the shoulder adduction/abduction and flexion/extension. The

shoulder axis rotation and elbow flexion/extension are consid-

ered as redundant degrees of freedom.

A. Evaluation of the learning method

The first experiment is designed to validate the learning

of the Minimum order SMM. The map associates the image

position of the robot hand and the DOR to the non-redundant

DOFs.

During learning, the head remains in a fixed position and

observes the robot hand. The arm is moved to several randomly

selected positions. The range of movement of each joint is

in the order of 0.55 rad. Once, the robot wrist attains one



such position, it remains fixed while different solution for the

inverse kinematics are used. This is possible due to the redun-

dancy of this robot’s kinematics, when four degrees of freedom

are used for a positioning task. Another redundancy exists

because, with the use of a single camera, depth information is

lost. Hence, for a 2 DOF task we have 4 DOF available.

Fig. 2 shows the evolution of joint angles during this period

of auto-observation and learning. It also shows the image

position of the robot wrist where, due to elasticity in the robot

joints, oscillations occur when the acceleration is high.
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Fig. 2. Dataset for the real robot experiments. The top figure shows the
temporal evolution of the joint angles (joint position in radian vs sample
number), the bottom presents the trajectories in the image (pixel coordinates),
where oscillation is caused by elasticity in the robot joints.

Fig. 3 shows the quality of the SMM estimation, as de-

scribed in Section III. The top plots show the true and

estimated non-redundant joint angles, which are in good

agreement. The histogram and cumulative distribution of the

error are shown in the bottom plots, for 2000 data points. For

both non-redundant joints less than 10% of the points have an

error bigger than 0.05 rad.

These results show that the online estimation method pre-

sented in Section III provides a good approximation to the

original Minimum order SMM. The next set of experiments

show how to define a secondary task based on an energy min-

imization criterion, to drive the robot to the desired position,

while meeting this secondary goal.
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Fig. 3. These figures show the prediction error for (non-redundant) Joint 1
and Joint 2. The absolute error histogram and the cumulative distribution are
also shown. Almost 90% of the samples have an error below 0.05 rad

, see measure in the figures.



B. Sensory-motor coordination for redundant robots

For a given desired image position and an initial position of

the redundant degrees of freedom, our goal is to reach a certain

image position, while satisfying a secondary criterion (task).

This is obtained through the following optimization problem,

as defined earlier:

L = ‖n − µn‖
2

+ ‖r − µr‖
2

that aims to maximize the distance to joint limits, correspond-

ing to a comfort criterion.

It is worth stressing that the optimization process relies on

the estimated Minimum order SMM, as described before. Fig.

4 presents the evolution of the cost function l, for each iteration

of the Newton method. It also presents the trajectory of all 4

(redundant and non-redundant) robot joints. We can see that,

for this case, the maximum for one joint was 0.5 rad.
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Fig. 4. Convergence rate and evolution of the position for the real robot as a
function of the optimization step. It is interesting to see that one joint moved
0.5 rad and the final error in the image corresponds to 0.03 rad.

The final error in the image was as small as 0.03 rad, and

most it is due to elasticity in the robot joints. Fig. 5 shows the

robot view of the hand for an intuition for this error (about

the size of the target). Due to the redundancy in the arm, it

would be possible to fixate the target while changing the arm

posture.

Fig. 5. Robot view. We can see the arm, hand and the target being tracked

V. CONCLUSIONS / FUTURE WORK

We have addressed the problem of estimating Sensory

Motor Maps in redundant systems, which is often the case

of humanoid robots. As a consequence of redundancy, the

inverse map cannot be estimated since the forward model is

not bijective.

For a given task, we started by partitioning the robot

degrees of freedom in redundant and non-redundant DOFs.

Then, we defined a “Minimum order SMM” that takes as

the input general image configurations and redundant degrees

of freedom. This partial backward model can be used to

determine the configuration for the non-redundant degrees of

freedom and can be used for control. Using the “Minimum

order SMM”, the redundant degrees of freedom are available

to meet additional online constraints, arising from secondary

tasks or criteria.

A noteworthy observation is that this method is not incre-

mental, in the sense of requiring small steps toward the final

goal. It gives directly the goal position so that the robot can

be moved directly there. However, the optimization leads to

several steps being used for the secondary goal, in this case

the posture optimization.

The Minimum Order SMM is learned with a local learning

method. Experimental results done in an humanoid torso with

10 degrees of freedom were presented, illustrating both the

ability to learn the Minimum order SMM and how it can be

used for specific tasks.

A large workspace was used of about 40 degrees for

each joint, a small reconstruction error was achieved, about

2.5 degrees. For the optimization one joint could “travel”

90 degrees to be able to reduce the cost function by 40%,

with a corresponding error in the image of only 1.5 degrees

(about the same size of the target).

In the future we plan to investigate automatic methods for

the division between redundant and non-redundant degrees of

freedom. One possible direction of research can go a similar

path as the one presented in [18]. The use of more degrees of

freedom will be necessary to deal with more complex image

features (e.g. position and orientation), a binocular head and

changing head positions.

As a final comment, we would like to stress that learning



inverse maps for redundant robots is a frequent need in

humanoid robotics, and that the proposed method is simple,

computationally efficient and well suited for online learning.

APPENDIX

A. Derivative of Local learning method

If redundant degrees of freedom are to be chosen with some

extra criterion, it is important to evaluate the derivative of the

prediction function. The prediction of the chosen local learning

method is given by:

ŷ =

∑M
j=1 KjB

T
j x

∑M
j=1 Kj

Now we want to evaluate its derivative as a function of the

inputs ∂ŷ
∂x

:

∂ŷ

∂x
=

M
∑

j=1

(

∂Kj

∂x
xT + Kj

)

Bj

k̃
−

1

k̃2

M
∑

l=1

∂Kl

∂x

M
∑

j=1

Kjx
T β

with k̃ =
∑M

j=1 Kj and
dKj

dx
= −Wj(x − µj)Kj

After some computations, we have:

k̃
∂ŷ

∂x
=

M
∑

j=1

∂Kj

∂x
xT Bj +

M
∑

j=1

BjKj − d̃k ŷT (13)

with d̃k =
∑M

j=1
∂Kj

∂x
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