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Abstract— We propose an approach for a robot to imitate
the gestures of a human demonstrator. Our framework
consists solely of two components: a Sensory-Motor Map
(SMM) and a View-Point Transformation (VPT). The SMM
establishes an association between an arm image and the
corresponding joint angles and it is learned by the system
during a period of observation of its own gestures. The VPT
is widely discussed in the psychology of visual perception
and is used to transform the image of the demonstrator’s
arm to the so-called ego-centric image, as if the robot were
observing its own arm. Different structures of the SMM
and VPT are proposed in accordance with observations in
human imitation. The whole system relies on monocular
visual information and leads to a parsimonious architecture
for learning by imitation. Real-time results are presented and
discussed.

I. INTRODUCTION

The impressive advance of research and develop-
ment in robotics and autonomous systems in the past
years has led to the development of robotic systems of
increasing motor, perceptual and cognitive capabilities.

These achievements are opening the way for new
application opportunities that will require these sys-
tems to interact with other robots or non technical
users during extended periods of time. Traditional
programming methodologies and robot interfaces will
no longer suffice, as the system needs to learn to
execute complex tasks and improve its performance
throughout its lifetime.

Our work has the long-term goal of building sophis-
ticated robotic systems able to interact with humans
or other robots in a natural and intuitive way. One
promising approach relies on imitation whereby a
robot could learn how to handle a person’s private
objects by observing the owner’s behavior over time.

Learning by imitation is not a new topic and has
been addressed before in the literature. This learning
paradigm has already been pursued in humanoid
robotic applications [1] where the number of degrees
of freedom is very large, tele-operation [2] or assembly
tasks [3]. Most published works, however, describe

complete imitation systems but focus their attention on
isolated system components only. Instead, we describe
a complete architecture.

We will concentrate on the simplest form of imitation
that consists in replicating the gestures or movements
of a demonstrator, without seeking to understand the
gestures or the action’s goal. In the work described in
[4], the imitator can not only replicate the gestures but
also the dynamics of a demonstrator, but it requires
the usage of an exoskeleton to sense the demonstrator’s
behavior. Instead, our approach is exclusively based on
vision.

The motivation to use visual information for imi-
tation arises from the fact that many living beings -
like humans - resort to vision to solve an extremely
large set of tasks. Also, from the engineering point
view, video cameras are low-cost, non invasive devices
that can be installed in ordinary houses and that
provide an enormous quantity of information, specially
if combined with domain knowledge or stereo data.

Interestingly, the process of imitation seems to be the
primary learning process used by infants and monkeys
during the first years of life. Recently, the discovery
of the mirror neurons in the monkey’s brain [5], [6]
has raised new hypotheses and provided a better
understanding of the process of imitation in nature.
These neurons are activated both when a monkey
performs a certain action and when it sees the same
action being performed by a demonstrator or another
monkey.

Even if the role of these neurons is not yet fully un-
derstood, a few important conclusions can nevertheless
be drawn. Firstly, mirror neurons clearly illustrate the
intimate relationship between perception and action.
Secondly, these neurons exhibit the remarkable ability
of ”recognizing” certain gestures or actions when seen
from very different perspectives (associating gestures
performed by the demonstrator to the subject’s own
gestures).

One of the main contributions of this paper is related
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to this last observation, that is illustrated in Figure 1.
We propose a method that allows the system to “rotate”
the image of gestures done by a demonstrator (allo-
image) to the corresponding image (ego-image) that
would be obtained if those same gestures were actually
performed by the system itself. We call this process the
View-Point Transformation (VPT). Surprisingly, in spite
of the importance given to the VPT in psychological
studies [7], it has received very little attention from
other researchers in the field of visual imitation.

Fig. 1. Gestures can be seen from very distinct perspectives. The image
shows one’s own arm performing a gesture (ego-image) and that of the
demonstrator performing a similar gesture (allo-image).

One of the few works that dealt explicitly with
the VPT is [8]. However, instead of considering the
complete arm posture, only the mapping of the end-
effector position is done. The map between the allo
and ego image is performed using epipolar geometry,
based on a stereo camera pair.

Other studies addressed this problem in an implicit
and superficially way. A mobile robot capable of
learning the policy followed by another mobile vehicle
is described in [9]. Since the system kinematics is
very simple, the VPT corresponds to a transformation
between the views of the two mobile robots. This
is achieved in practice by delaying the imitator’s
perception until it reaches the same place as the
demonstrator, without focusing the process of VPT.
The work described in [10] has similar objectives to
our own research and allows a robot to mimic the
“dance” of an Avatar. However, it does not address
the VPT at all, and a special invasive hardware
was used to perform this transformation. Instead,
we present a simple architecture for imitation which
carefully addresses the fundamental process of View-
Point Transformation.

The VPT allows the robot to map observed gestures
to a canonical point-of-view. The final step consists
in transforming these mapped features to motor com-
mands, which is referred to as the Sensory-Motor Map

(SMM). Our complete architecture for imitation is
shown in Fig. 2.

Fig. 2. The combination of the Sensory-Motor Map and the View-Point
Transformation allow the robot to imitate the arm movements executed
by another robot or human.

The Sensory-Motor Map can be computed explicitly
if the parameters of the arm-hand-eye configuration
are known a priori but - more interestingly - it can
be learned from observations of arm/hand motions.
Again, biology can provide relevant insight. The Asym-
metric Tonic Neck reflex [11] forces newborns to look
to their hands, which allows them to learn the rela-
tionship between motor actions and the corresponding
visual stimuli.

Similarly, in our work the robot learns the SMM
during an initial period of self-observation, while
performing hand/arm movements. Once the SMM has
been estimated, the robot can observe a demonstrator,
use the VPT to transform the image features to a
canonical reference frame and map these features to
motor commands through the SMM. The final result
will be a posture similar to that observed.

A. Structure of the paper

In Section II, we present the models used through-
out this work, namely the arm kinematics and the
camera/eye geometry. Section III is devoted to the
definition and estimation of the Sensory-Motor Map. In
Section IV we describe how the system performs the
View-Point Transformation. In Section V we show how
to use these elementary blocks to perform imitation
and present experimental results. In Section VI, we
draw some conclusions and establish directions for
future work.

II. MODELING

Throughout the paper we consider a robotic system
consisting of a computer simulating an antropomor-
phic arm and equipped with a real camera. This
section presents the models used for the camera and
robot body.
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A. Body/arm kinematics

The anthropomorphic arm is modeled as an articu-
lated link system. Fig. 3 shows the four arm links: L1

- forearm, L2 - upper arm, L3 - shoulder width and
L4 - body height.

Fig. 3. Kinematic model of the human arm.

It is further assumed that the relative sizes of these
links are known, e.g. from biometric measurements:
L1 = L2 = 1, L3 = 1.25 and L4 = 2.5.

B. Camera/eye geometry

An image is a 2D projection of the 3D world
whereby depth information is lost. In our case, we
will retrieve depth information from a single image by
using knowledge about the body links and a simplified,
orthographic camera model.

We use the scaled orthographic projection model
that assumes that the image is obtained by projecting
all points along parallel lines plus a scale factor.
Interestingly, such approximation may have some
biological grounding taking into account the scale-
compensation effect in the human vision [12] whereby
we normalize the sizes of known objects irrespective
to their distances to the eye.

Let M = [X Y Z]T denote a 3D point expressed
in the camera coordinate frame. Then, with an or-
thographic camera model, M is projected onto m =
[u v]T , according to:

m = PM

[

u
v

]

= s

[

1 0 0
0 1 0

]





X
Y
Z



 (1)

where s is a scale factor that can be estimated placing
a segment with size L fronto-parallel to the camera
and measuring the image size l(s = l/L).

For simplification, we assume that the camera axis
is positioned in the imitator’s right shoulder with the
optical axis pointing forward horizontally. With this
specification of the camera pose, there is no need for
an additional arm-eye coordinate transformation in
Equation (1).

III. SENSORY-MOTOR MAP

The Sensory-Motor Map (SMM) defines a corre-
spondence between perception and action. It can be
interpreted in terms of forward/inverse kinematics for
the case of robotic manipulators. The SMM can be
used to predict the image resulting from moving one’s
arm to a certain posture. In our case, the SMM allows
the system to determine the arm’s joint angles that
correspond to a given image configuration of the arm.

In the context of imitation, the SMM can be used
with different levels of ambiguity/completeness. In
some cases, one wants to replicate exactly someone
else’s gestures, considering all the joint angles. In some
other cases, however, we may want to imitate the hand
pose only, while the position of the elbow or the rest
of the arm configuration is irrelevant. To encompass
these possibilities, we have considered two cases: the
full arm SMM and the free-elbow SMM that will be
described in the following sections. Finally, we describe
how the system can learn the SMM during a period
of self-observation.

A. Full-Arm SMM

We denote the elbow and wrist image coordinates by
me and mw, the forearm and upper arm image lengths
by l1 and l2 and θi=1..4, the various joint angles. We
then have:

[θ1, · · · , θ4] = F1(me,mw, l1, l2, L1, L2, s)

where F1(.) denotes the SMM, L2/L1 represents the
(known) length of the upper/forearm and s is the
camera scale factor.

The computation of this function can be done in
successive steps, where the angles of the shoulder
joint are determined first and used in a later stage
to simplify the calculation of the elbow joint’s angles.

The inputs to the SMM consist of features extracted
from the image points of the shoulder, elbow and wrist;
the outputs are the angular positions of every joint.
The shoulder pan and elevation angles, θ1 and θ2 can
be readily obtained from image data as:

θ1 = f1(me) = arctan(ve/ue)

θ2 = f2(l2, L2, s) = arccos(l2/sL2)

Once the system has extracted the shoulder angles,
the process is repeated for the elbow. Before computing
this second set of joint angles, the image features
undergo a set of transformations so as to compensate
the rotation of the shoulder:
[

u′

w

v′

w

ξ

]

= Rzy(θ1, θ2)

([

uw

vw
√

s2L2

1
− l2

1

]

−

[

ue

ve

0

])

(2)
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where ξ is not used in the remaining computations and
Rzy(θ1, θ2) denotes a rotation of θ1 around the z axis
followed by a rotation of θ2 around the y axis.

With the transformed coordinates of the wrist we
can finally extract the remaining joint angles, θ3 and
θ4:

θ3 = f3(m
′

w
) = arctan(v′w/u

′

w)

θ4 = f4(m
′

w
, L1, s) = arccos(l′

1
/sL1)

The approach just described allows the system to
determine the joint angles corresponding to a certain
image configuration of the arm. In the next section, we
will address the case where the elbow joint is allowed
to vary freely.

B. Free-Elbow SMM

The free-elbow SMM is used to generate a given
hand position, while the elbow is left free to reach
different configurations. The input features consist of
the hand image coordinates and the depth between the
shoulder and the hand.

[θ1, θ2, θ4] = F2(mw,
rdZw, L1, L2, s)

The elbow joint, θ3, is set to a comfortable position.
This is done in an iterative process aiming at main-
taining the joint positions as far as possible from their
limit values. The optimal elbow angle position, θ̂3 is
chosen to maximize:

θ̂3 = arg max
θ3

∑

i

(θi − θlimits
i )2

while the other angles can be calculated from the arm
features. Again, the estimation process can be done
sequentially, each joint being used to estimate the next
one:

θ4 = arcsin

(

rx2

h +ry2

h +rz2

h

2
− 1

)

θ1 = 2arctan

(

b1 −
√

b2
1

+ a2

1
− c2

1

a1 + c1

)

θ2 = 2arctan

(

b2 −
√

b2
2

+ a2

2
− c2

2

a2 + c2

)

+ π

where the following constants have been used:

a1 = sin θ4 + 1

b1 = cos θ3 cos θ4

c1 = −ryh

a2 = cos θ4 cos θ2 cos θ3 − sin θ2(1 + sin θ4)

b2 = − cos θ4 sin θ3

c2 = rxh

C. Learning the SMM
In the previous sections we have derived the ex-

pressions of the full-arm and free-elbow SMMs. How-
ever, rather than coding these expressions directly
we adopted a learning approach whereby the system
learns the SMM by performing arm movements and
observing the effect on the image plane.

The computation of the SMM can be done sequen-
tially: estimating the first angle, which is then used in
the computation of the following angle and so forth.
This fact allows the system to learn the SMM as a
sequence of smaller learning problems.

This approach has strong resemblance to the de-
velopment of sensory-motor coordination in newborns
and young infants, which starts by simple motions that
get more and more elaborate as infants acquire a better
control over motor coordination.

In all cases, we use a Multi-Layer Perceptron (MLP)
to learn the SMM, i.e. to approximate functions
fi,i=1..4. Table I presents the learning error and il-
lustrates the good performance of our approach for
estimating the SMM. The value 3.6 corresponds to
the threshold for the training algorithm. The order
of magnitude is 100x bigger in the last 2 degrees of
freedom because they depend on the previous ones in
a non-linear way.

θ1 θ2 θ3 θ4

3.6e−2
3.6e−2

3.6 3.6

TABLE I
MEAN SQUARED ERROR (IN DEG.2) FOR THE EACH JOINT IN THE

full-arm SMM

Ideas about development can be further exploited
in this construction. Starting from simpler cases, de-
coupling several degrees of freedom, interleaving per-
ception with action learning cycles are developmental
“techniques” found in biological systems.

IV. VIEW-POINT TRANSFORMATION

A certain arm gesture can be seen from very dif-
ferent perspectives depending on whether the gesture
is performed by the robot (self-observation) or by the
demonstrator.

One can thus consider two distinct images: the ego-
centric image, Ie, during self-observation and the allo-
centric image, Ia, when looking at other robots/people.
The View-Point Transformation (VPT) has the role of
aligning the allo-centric image of the demonstrator’s
arm, with the ego-centric image, as if the system were
observing its own arm.

The precise structure of the VPT is related to the
ultimate meaning of imitation. Experiments in psychol-
ogy show that imitation tasks can be ambiguous. In
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some cases, humans imitate only partially the gestures
of a demonstrator (e.g. replicating the hand pose
but having a different arm configuration, as in sign
language), use a different arm or execute gestures with
distinct absolute orientations [13]. In some other cases,
the goal consists in mimicking someone else’s gestures
as completely as possible, as when performing dancing
or dismounting a complex mechanical part.

According to the structure of the chosen VPT, a
class of imitation behaviors can be generated. We
consider two different cases. In the first case - 3D VPT
- a complete three-dimensional imitation is intended.
In the second case - 2D VPT - the goal consists in
achieving coherence only in the image, even if the arm
pose might be different. Depending on the desired level
of coherence (2D/3D) the corresponding (2D/3D) VPT
allows the robot to transform the image of an observed
gesture to an equivalent image as if the gesture were
executed by the robot itself.

A. 3D View-Point Transformation

In this approach we explicitly reconstruct the pos-
ture of the observed arm in 3D and use fixed points
(shoulders and hip) to determine the rigid transforma-
tion that aligns the allo-centric and ego-centric image
features: We then have:

Ie = P T Rec(Ia) = V PT (Ia)

where P is a orthographic projection matrix, T is
a 3D rigid transformation and Rec(Ia) stands for
the 3D reconstruction of the arm posture from allo-
centric image features. Posture reconstruction and
the computation of T are presented in the following
sections.

1) Posture reconstruction: To reconstruct the 3D pos-
ture of the observed arm, we will follow the approach
suggested in [14], based on the orthographic camera
and articulated arm models presented in Section 2.

Let M1 and M2 be the 3D endpoints of an arm-link
whose image projections are denoted by m1 and m2.
Under orthography, the X,Y coordinates are readily
computed from image coordinates (simple scale). The
depth variation, dZ = Z1 −Z2, can be determined as:

dZ = ±

√

L2 −
l2

s2

where L = ‖M1 −M2‖ and l = ‖m1 −m2‖.
If the camera scale factor s is not known before-

hand, one can use a different value provided that the
following constraint, involving the relative sizes of the
arm links, is met:

s ≥ max
i

li
Li

i = 1..4 (3)

Fig. 4 illustrates results of the reconstruction pro-
cedure. It shows an image of an arm gesture and
the corresponding 3D reconstruction, achieved with a
single view and considering that s and the arm links
proportions were known.

 Arm x

y

z

Fig. 4. Left: Reconstructed arm posture. Right: Original view.

With this method there is an ambiguity in the sign
of dZ. We overcome this problem by restricting the
working volume of the arm. In the future, we will
further address this problem and several approaches
may be used: (i) optimization techniques to fit the arm
kinematic model to the image; (ii) explore occlusions
to determine which link is in the foreground; or
(iii) use kinematics constraints to prune possible arm
configurations.

2) Rigid Transformation (T ): A 3D rigid transforma-
tion is defined by three angles for the rotation and a
translation vector. Since the arm joints are moving,
they cannot be used as reference points. Instead, we
consider the three points in Fig. 3: left and right shoul-
ders, (Mls,Mrs) and hip, Mhip, with image projections
denoted by (mls,mrs,mhip). The transformation T is
determined to translate and rotate these points until
they coincide with those of the system’s own body.

The translational component must place the demon-
strators right shoulder at the image origin (which
coincide’s with the system’s right shoulder) and can
be defined directly in image coordinates:

t = −amrs

After translating the image features directly, the
remaining steps consist in determining the rotation
angles to align the shoulder line and the shoulder-hip
contour. The angles of rotation along the z, y and x
axes, denoted by φ, θ and ψ are given by:

φ = arctan (vls/uls)

θ = arccos (uhip/L4)

ψ = arccos (vhip/L3)

Hence, by performing the image translation first and
the 3D rotation described in this section, we complete
the process of aligning the image projections of the
shoulders and hip to the ego-centric image coordinates.
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B. 2D View-Point Transformation

The 2D VPT is used when one is not interested in
imitating the depth variations of a certain movement,
alleviating the need for a full 3D transformation. It
can also be seen as a simplification of the 3D VPT if
one assumes that the observed arm describes a fronto-
parallel movement with respect to the camera.

The 2D VPT performs an image translation to align
the shoulder of the demonstrator (ams) and that of the
system (at the image origin, by definition). The VPT
can be written as:

V PT (am) =

[

−1 0
0 1

]

[am−ams] (4)

and is applied to the image projection of the demon-
strator’s hand or elbow, amh or ame.

Notice that when the arm used to imitate is the same
as the demonstrator, the imitated movement is a mirror
image of the original. If we use a identity matrix in
Equation (4) then the movement will be correct. At the
image level both the 2D and 3D VPTs have the same
result but the 3D posture of the arm is different in the
two cases.

From the biological standpoint, the 2D VPT is more
plausible than the 3D version. In [13] several imitation
behaviors are presented which are not always faithful
to the demonstrated gesture: sometimes, people do
imitate with the contra-lateral hand, depth is irrelevant
in some other cases, movements can be reflections of
the original ones, etc. The 3D VPT might be more
useful in industrial facilities where gestures should be
reproduced as exactly as possible.

V. EXPERIMENTS

We have implemented the modules discussed in the
previous sections to build a system able to learn by
imitation. In all the experiments, we use a web camera
to observe the demonstrator gestures and a simulated
robot arm to replicate those gestures.

We start by describing the approach used for hand-
tracking before presenting the overall results of imi-
tation. The position of the shoulder is assumed to be
fixed. In the following sections we shall discuss about
the procedures for doing imitation.

A. Hand Color Segmentation

To find the hand in the image we use a color
segmentation scheme, implemented by a feed-forward
neural network with three neurons in the hidden layer.
As inputs we use the hue and saturation channels
of HSV color representation. The training data are
obtained by selecting the hand and the background in
a sample image. After color classification a majority
morphological operator is used. The hand is identified

as the largest blob found and its position is estimated
over time with a Kalman filter. Figure 5 shows a typical
result of this approach.

Fig. 5. Skin color segmentation results.

B. Gesture Imitation

The first step to achieve imitation consists in train-
ing the system to learn the Sensory-Motor Map as
described in Section III-C. This is accomplished by
a neural network that estimates the SMM while the
system performs a large number of arm movements.

The imitation process consists of the following steps:
(i) the system observes the demonstrator’s arm move-
ments; (ii) the VPT is used to transform these image
coordinates to the ego-image, as proposed in Section IV
and (iii) the SMM generates the adequate joint angle
references to execute the same arm movements.

Figure 6 shows experimental results obtained with
the 3D-VPT with the learned SMM (full-arm). To
assess the quality of the results, we overlaid the images
of the executed arm gestures (wire frame) on those of
the demonstrator. The figure shows that the quality of
imitation is very good.

Figure 7 shows results obtained in real-time (about
5 Hz) when using the 2D VPT and the free-elbow
SMM. The goal of imitating the hand gesture is well
achieved but, as expected, there are differences in

Fig. 6. The quality of the results can be assessed by the coincidence
of the demonstrator gestures and the result of imitation.
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Fig. 7. Family of solutions with different elbow angles, while the hand
is faithfully imitated.

the configuration of the elbow, particularly at more
extreme positions.

These tests show that encouraging results can be
obtained with the proposed framework under realistic
conditions.

VI. CONCLUSIONS AND FUTURE WORK

We have proposed an approach for learning by
imitation that relies exclusively on visual information
provided by a single camera.

One of the main contributions is the View-Point
Transformation that performs a “mental rotation” of
the image of the demonstrator’s arm to the ego-image,
as if the system were observing its own arm. In spite
of the fundamental importance of the VPT in visual
perception and in the psychology of imitation [7], it
has received little attention by researchers in robotics.

We described two different VPTs needed for 3D or
2D imitation. The View-Point Transformation can have
an additional interest to Mirror Neurons studies, by
providing a canonical frame of reference that greatly
simplifies the recognition of arm gestures.

The observed actions are mapped into muscles
torques by the Sensory-Motor Map, that associates
image features to motor acts. Again two different
types of SMM are proposed, depending on whether
the task consists of imitating the entire arm or the
hand position only. The SMM is learned automatically
during a period of self-observation.

Experiments conducted to test the various sub-
systems have led to encouraging results, thus validating
our approach to the problem.

Besides improvements on the feature detection
component using shape and kinematic data, future
work will focus on the the understanding of the task
goals to enhance the quality of imitation.
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