Optimizing Smart Irrigation ElectroCap Final Pitch Deck

Table of Content

Content	Page	Content	Page
 Introduction 	03	 Competitors 	12
• Team	04	 Team members' contributions 	14
• Problem	05	 Benefits 	16
 Solution/Product 	07	• Results	17
 Target Audience 	11	• Links	18

Introduction

Thousands of farmers water their plants through schedule or by hand, OSI creates a solution

OSI is a project devoloped by 6 Eletrical and Computer Engeneering students from Instituto Superior Técnico that aims to improve the development of crops through a fully autonomous irrigation system.

Our Team

António Simões 103057

Rodrigo Arriegas 103110

102755

André Carvalho 103774

João Galego 109234

110342

Filipe Cruz

Gonçalo Amado

Advisors and Mentors

Prof. Marcelino Santos Scientific Co-advisor

Francisco Simplício Coordinator

Survey Results: Insights from Farmers on **Their Irrigation Systems**

- smart irrigation system.
- market.

- The majority of farmers surveyed (81.2%) expressed that they currently do not employ a
- The primary deterrents cited were the perceived high costs and limited availability within the

Solution/Product

OSI works based on a central node connected to several peripheral ones.

Peripheral Node

By combining the data from the peripheral and central nodes, the decision algorithm calculates if there's a need to irrigate the crops.

Solution/Product

The decision is based on a threshold, which is calculated based on the information defined in the OSI Aplication

Solution/Product

OSI is completely solar powered, being dimensioned to have the ability to be turned-on all year round.

Target Audience

Large Scale Agriculture

Greenhouses

11 OSI-Optimizing Smart Irrigation -

Domestic Gardening

Competitors

There are numerous companies in the market offering smart irrigation systems. They mainly use one of these types of systems

- Soil moisture sensors that schedule irrigation and activate irrigation systems.
- Climate-based solutions that use climate data to estimate evapotranspiration, predicting soil water levels and scheduling irrigation accordingly.

Competitors

NOS Rega Inteligente

A system that collects and provides users with data, assisting them in deciding when to irrigate. Users can remotely control valves and pumps

Watersystems

A system that uses climate data to estimate evapotranspiration and predict IWN

13 OSI-Optimizing Smart Irrigation

IRRIOT, Spherag, Hydropoint

Systems that acquire data with soil and climate sensors, controlling irrigation based on thresholds defined by the user.

Team Members' Contributions

António Simões	Rodrigo Arriegas
Redefining the Prototype	Redefining the Prototype
Google Forms Conception	Google Forms Conception
Website Development	Pitch, Poster and Video
Pitch, Poster and Video	Energy Management

André Carvalho

Website Designing

Blog Entries

Prototype assembling

LoRa Communication

Team Members' Contributions

Gonçalo Amado	João Galego
App Development	App Development
App Communication with Arduino	App Communication with Arduino

15 OSI-Optimizing Smart Irrigation –

Filipe Cruz

IPMA API

Blog Entries

Prototype assembling

LoRa Communication

Benefits

Results

OSI-Optimizing Smart Irrigation

Thank You

https://web.tecnico.ulisboa.pt/ist1102774/index.html

https://www.youtube.com/watch?v=IbECUuzoaec

