
Heat Transfer
–

Practical Lecture 2 (Solved Problems)

1. A flat plate has an insulated surface and another exposed to the sun. The surface exposed to the
sun absorbs radiation at a rate of 800 W m−2 and loses heat by convection and radiation to ambi-
ent air at 300 K. If the surface emissivity is 0.9 and the convection coefficient is 12 W m−2 ◦C−1,
determine the plate temperature in steady-state.

Solution:

The flat plat steady-state temperature is computed by applying an energy balance. Equation
(1) corresponds to the energy balance equation formulated on a time rate basis for a control
volume (flat plate).

Ėin − Ėout + Ėg = Ėst (1)

Equation (1) can be simplified to solve the problem by taking into account the following as-
sumptions:

• Ėst = 0 – the steady-state solution is in consideration, and consequently, the rate of energy
storage vanishes.

• Ėg = 0 – the generation rate of thermal energy in the control volume is not relevant in
the steady-state flat plat temperature governing equation because there are no references
in the problem statement to internal generation of thermal energy.

Equation (2) is obtained after applying the stated simplifying assumptions in Equation (1).

Ėin = Ėout (2)

The terms Ėin e Ėout (Equation (2)) are obtained by considering the corresponding heat transfer
rate contributions through the plate surface that is exposed to the sun radiation (see figure)
according to Equations (3) and (4), respectively.
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Ėin = AGabs
sun (3)

Ėout = A

h (Ts − T∞)︸ ︷︷ ︸
q′′conv

+ εσ
(
T 4
s − T 4

sur

)︸ ︷︷ ︸
q′′rad

 (4)

In Equation (3), Gabs
sun corresponds to the absorbed solar irradiation. In Equation (4), q′′conv

e q′′rad are the convective and net radiative heat fluxes, respectively, from the exposed surface
of the flat plate to the sun radiation. In the later equation, Ts, T∞, and Tsur are the plate
surface temperature, adjoining fluid temperature and surrounding surfaces temperature. (For
the problem under consideration, T∞ = Tsur = 300 K.) Note that the calculation of the net
radiative heat flux as stated in Equation (4) implies that the flat plate surface is exposed to
very large surrounding surfaces – in order to approximate its irradiation as blackbody emission
power (G = σT 4

sur) – and that the plate surface has gray radiative properties (α = ε).

Finally, the flat plate steady-state temperature, Tp is obtained replacing Equations (3) and (4)
in Equation (2) and solving for Tp – see Equation (5).

AGabs
sun = Aq′′conv + Aq′′rad ⇔ Gabs

sun = h (Tp − T∞) + εσ
(
T 4
p − T 4

sur

)
⇔

⇔ 800 = 12 (Tp − 300) + 0.9× 5.67× 10−8
(
T 4
p − 3004

)
⇔

⇔ −5.103× 10−8T 4
p − 12Tp + 4813.34 = 0⇒ Tp ≈ 342.556 K

(5)

Note that in Equation (5), for the calculation of convective and radiative heat fluxes the surface
temperature of the plate, Ts, was replaced by the plate temperature, Tp, because the entire
plate is at the same temperature (Tp = Ts). The flat plate isothermal condition is due to the
fact that only the steady-state condition is in consideration and because the opposite surface
to the exposed one to the sun is an adiabatic surface (see figure above).
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Please, bear in mind that for the calculation of radiative heat transport rates the temperature
must be considered in the Kelvin scale – thermodynamic (absolute) temperature. (If in the
problem statement Tsur were given as 26.85◦C you should convert this temperature value to the
Kelvin scale in order to correctly obtain Tp.) Also notice, that because temperature differences in
the Celsius and Kelvin scales are equal – see Problem A(a) (Practical Lecture 1) – a convection
heat transfer coefficient value given as 12 W m−2 ◦C−1 is equal to 12 W m−2 K−1.
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3. A 2 m long pipeline with an outer diameter of 5 cm transports hot water, dissipating heat by
convection and radiation to the surroundings at 0◦C. Let the temperature of the outer surface
of the pipeline be 125◦C, which can be assumed to behave as a blackbody. Determine the rate of
heat transfer to the surrounding, knowing that the outer convection coefficient is 20 W m−2 ◦C−1.

Solution:

The total heat transfer rate from the pipeline outer surface to the surroundings, qout, have two
contributions, namely convection and radiation heat transfer rates (see figure below), and is
computed according to Equation (6).

qout = A (q′′conv + q′′rad)⇔ qout = πDoutL
[
h (Ts − T∞) + εσ

(
T 4
s − T 4

sur

)]
⇔

⇔ qout = π × 0.05× 2× {20× (125− 0) +

1× 5.67× 10−8 ×
[
(125 + 273.15)4 − (0 + 273.15)4

]}
⇔

⇔ qout ≈ 1133.869 W

(6)

Note that for the net radiative heat rate expression (per unit surface area), q′′rad, the temperature
values must be provided in the Kelvin scale.
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5. (Homework) Under certain conditions, the temperature at the surface of a person’s skin is 30◦C,
which is lower than the body temperature, i.e., 36.5◦C. The transition between these tempera-
tures takes place in a skin layer of 1 cm thickness. The thermal conductivity is 0.42 W m−1 K−1.

(a) Estimate the heat flux escaping through the skin, considering it as a conductive medium at
rest.

Solution:

The heat flux escaping through the skin can be evaluated with a surface energy balance
formulated on a time rate basis and applied to the skin external surface as described by
Equation (7). (The surface energy balance equation (Equation (7)) differs from the control
volume energy balance equation (Equation (1)) by the absence of the terms related to
the volume of the system. Because a control surface has no mass (volume) there are no
terms related to the internal generation of energy (Ėg) and to energy storage/accumulation
(Ėst)).

Ėin − Ėout = 0 (7)

The terms Ėin e Ėout (Equation (7)) are obtained by considering the corresponding heat
transfer rate contributions at the control surface (skin external surface) – see figure. Partic-
ularly, the inflow of thermal energy (heat) towards the control surface is due to conduction
heat transfer through the skin. Therefore, the Fourier’s law (heat conduction rate equa-
tion) is applied to evaluate Ėin – see Equation (8). In Equation (8), Ts,int and Ts,ext are the
internal and external skin layer temperatures, respectively (see figure) and k and L are the
skin layer thermal conductivity and thickness, respectively. Ėout is given by Equation (9)
in which q′′out corresponds to the heat flux escaping through the skin.

Ėin = A

(
k
Ts,int − Ts,ext

L

)
︸ ︷︷ ︸

q′′cond

(8)

Ėout = Aq′′out (9)

Finally, the heat flux escaping through the skin is obtained by replacing Equations (8) and
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(9) in Equation (7) and solving for q′′out as shown in Equation (10).

Aq′′cond = Aq′′out ⇔ k
(Ts,int − Ts,ext)

L
= q′′out ⇔ q′′out = 0.42× (36.5− 30)

0.01
⇔

⇔ q′′out = 273 W m−2
(10)

(b) Assuming that ambient air is at 20◦C, determine the convection coefficient.

Solution:

Considering convection heat transfer as the only mode of heat removal from the skin exter-
nal surface then Equation (11) applies, where q′′out corresponds to the heat flux calculated
previously – see Equation (10).

q′′out = q′′conv (11)

Replacing q′′conv by the corresponding rate expression (Newton’s law of cooling), and con-
sequently, Text and T∞ by the corresponding values according to the problem statement
(30◦C and 20◦C, respectively) as well as q′′out obtained in Equation (10), the convection
heat transfer coefficient is obtained – see Equation (12).

q′′out = q′′conv ⇔ q′′out = h (Text − T∞)⇔

⇔ h =
q′′out

(Text − T∞)
⇔ h =

273

(30− 20)
⇔ h = 27.3 W m−2 K−1

(12)
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