
Advanced Heat Transfer

Special S. Exam – Problem 3

July 27, 2021 (18h00)

Consider combined diffusion and convection transport of thermal energy in a tube with an inner radius
(R) and length (L) equal to 0.1 m and 0.5 m, respectively. A laminar flow of an incompressible and
constant property fluid under fully developed hydrodynamic conditions is considered in the tube. The

axial velocity profile is given by vz (r) = 2um

[
1− (r/R)2

]
, where r and um correspond to the local radial

position and mean fluid velocity, respectively. (Note that for the current conditions, the radial velocity
component (vr) and ∂vz/∂z are negligible.) At the tube inlet section (z = 0), the total mass flow rate
(ṁ) and fluid temperature (Tin) are equal to 0.4 kg s−1 and 100◦C, respectively. The tube lateral wall
(surface r = R) is kept at a constant temperature of 20◦C. The fluid density (ρ), specific heat (cp),
and thermal conductivity (k) are equal to 13464 kg m−3, 138.443 J kg−1 K−1, and 8.883 W m−1 K−1,
respectively. Temperature gradients along the circumferential direction (angular coordinate – φ) are
negligible and, consequently, the governing equation for the temperature distribution written in 2D
(two-dimensional) axisymmetric (r, z) coordinates is presented below.
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)
Consider the 2D axisymmetric calculation domain discretized by a uniform mesh with ∆r = ∆z = 5 mm.
Apply the finite volume method for the following questions.

(a) (1.0 v.) Is the stated cell size (5 mm× 5 mm) suitable for the application of the central differencing
scheme to the governing equation? Justify.

Solution:

To obtain a bounded (physically realistic) solution the absolute value of the grid Peclet number
(Pe) in both coordinate directions must be lower than 2.0. In the radial direction there is no
bulk fluid motion (vr = 0) – thermal energy transport occurs exclusively by diffusion – and,
consequently, any cell spacing ∆r considered does not lead to unbounded solutions. In the axial
direction the relative importance of convection over diffusion differs according to the radial location
in consideration. The worst case – for which the relative strength of convection over diffusion is
the highest (highest Pez value) – is observed at the nearest node to the tube center-line (r = 0)
because it is at the tube center-line that the highest axial velocity is observed – see Equation (1).

umax ≡ uz (r = 0) = 2um

[
1− (0/R)2

]
⇔ umax =

2ṁ

ρπR2
(1)

Since the grid Peclet number along the (axial) flow direction must be lower than 2, the maximum
possible cell spacing along the axial direction is calculated with Equation (2).

Pez ≡
Fz

Dz
< 2⇔ ρumaxcp∆z

k
< 2⇔ ∆z <

2k

ρumaxcp
⇔ ∆z <

πR2k

ṁcp
⇔

⇔ ∆z <
π × 0.12 × 8.883

0.4× 138.443
⇔ ∆z < 5.039 mm

(2)

The stated cell size is adequate for the application of the central differencing because the maxi-
mum cell spacing along the axial direction required by this scheme (5.039 mm) is higher than the
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stated cell spacing along the axial direction (5 mm). (The cell spacing along the radial direction
does not lead to boundedness issues while applying the central differencing scheme because the
velocity along the radial direction is negligible.)

For the following questions consider the upwind differencing scheme.

(b) (1.5 v.) Determine the discretized equation for a generic interior grid node. Present all intermediate
calculations including the final expressions required to compute the center-point and neighboring
node coefficients – aP and anb, respectively – and the constant term b. (In cylindrical coordinates
the infinitesimal volume is given as dV = r dr dφ dz.)

Solution:

The discretized equation for a generic bulk node is obtained by volume integration of the governing
equation followed by the application of suitable interpolation functions (profile assumptions).
Volume integration is performed in Equations (3) – (7). (Note that the convective term along the
radial direction is negligible (vr = 0) and, consequently, it is not considered in the equations that
follow. Additionally, the diffusion coefficient Γ is equal to k/cp.)
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dV︸ ︷︷ ︸
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(3)

A ≡
∫
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∂z
(ρvzT ) dV =

∫ re
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∫ zn

zs

∂

∂z
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w

2
=
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(4)
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(5)
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s

]
rP∆r (6)

Substituting Equations (4)–(6) into Equation (3) the following equation is obtained – see Equation
(7).
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(7)

Considering the upwind differencing scheme for the convective terms and piecewise-linear profiles
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(central differencing scheme) to evaluate the derivatives at the cell faces, the final discretized
equation is given as follows – see Equation (8).

[(ρvzT )n − (ρvzT )s] rP∆r =

[(
Γr
∂T

∂r

)
e

−
(

Γr
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∂r

)
w

]
∆z+[(

Γ
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−
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]
rP∆r ⇔ ρvzrP∆r (TP − TS) =[

Γere∆z

∆r
(TE − TP)− Γwrw∆z

∆r
(TP − TW)

]
+

[
ΓnrP∆r

∆z
(TN − TP)− ΓsrP∆r

∆z
(TP − TS)

]
⇔

⇔ Fz (TP − TS) = De (TE − TP)−Dw (TP − TW) +Dn (TN − TP)−Ds (TP − TS)⇔
⇔ (Dw +De +Dn +Ds + Fz)︸ ︷︷ ︸

aP

TP = DwTW +DeTE + (Ds + Fz)TS +DnTN ⇔

⇔ aPTP = aWTW + aETE + aSTS + aNTN + b

(8)

The following table summarizes the expressions required to compute the coefficients and constant
term for the discretized equation of any interior (bulk) node.

aW aE aS aN aP b

Dw ≡ Γwrw∆z
∆r De ≡ Γere∆z

∆r Ds + Fz ≡ ΓsrP∆r
∆z + ρvzrP∆r Dn ≡ ΓnrP∆r

∆z

∑
anb 0

(c) (1.5 v.) Determine the discretized equation for the boundary node embraced by the control volume
with faces coincident to z = 0 and r = R. Present all intermediate calculations as well as the final
(computed) values for the center-point and neighboring node coefficients and constant term b.

Solution:

The discretized equation for such boundary grid node is obtained considering Equation (7) and
taking into account the corresponding boundary conditions – see Equation (9).

[(ρvzT )n − (ρvzT )s] rP∆r =

[(
Γr
∂T

∂r

)
e

−
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w

]
∆z+[(
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−
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)
s

]
rP∆r ⇔ ρvz (rP) rP∆r (TP − Tin) =[

Γwall∆z

ln (R/rP)
(Twall − TP)− Γwrw∆z

∆r
(TP − TW)

]
+[

ΓnrP∆r

∆z
(TN − TP)− 2ΓinrP∆r

∆z
(TP − Tin)

]
⇔ Fz (TP − Tin) =

Γwall∆z

ln (R/rP)
(Twall − TP)−

Dw︸︷︷︸
aW

(TP − TW) + Dn︸︷︷︸
aN

(TN − TP)− 2Din (TP − Tin)⇔

⇔
[
aW + aN + 2Din + Fz +

Γwall∆z

ln (R/rP)

]
︸ ︷︷ ︸

aP

TP =

= aWTW + 0︸︷︷︸
aE

TE + 0︸︷︷︸
aS

TS + aNTN +
Γwall∆z

ln (R/rP)
Twall + 2DinTin + FzTin︸ ︷︷ ︸

b

(9)

To evaluate the coefficients aW, aN, and aP and the constant term b the following is required:
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rw = R−∆r = 0.1−0.005 = 0.095 m, rP = R−∆r/2 = 0.1−0.005/2 = 0.0975 m, re = R = 0.1 m,
and Γw = Γwall = Γin = Γn = k/cp.

aW ≡ Dw =
Γwrw∆z

∆r
=
krw∆z

cp∆r
=

8.883× 0.095× 0.005

138.443× 0.005
⇔ aW ≈ 6.096× 10−3 kg s−1 (10)

aN ≡ Dn =
ΓnrP∆z

∆r
=
krP∆z

cp∆r
=

8.883× 0.0975× 0.005

138.443× 0.005
⇔ aN ≈ 6.256× 10−3 kg s−1 (11)

aP = aW + aN + 2Din + Fz +
Γwall∆z

ln (R/rP)
=

=
krw∆z

cp∆r
+
krP∆r

cp∆z
+

2ΓinrP∆r

∆z
+ ρvz (rP) rP∆r +

k∆z

cpln (R/rP)
=

=
krw∆z

cp∆r
+
krP∆r

cp∆z
+

2krP∆r

cp∆z
+

2ṁ

πR2

[
1− (rP/R)2

]
rP∆r +

k∆z

cpln (R/rP)

(12)

aP =
krw

cp
+
krP

cp
+

2krP

cp
+

2ṁ

πR2

[
1− (rP/R)2

]
rP∆r +

k∆z

cpln (R/rP)
=

=
k

cp

[
rw + 3rP +

∆z

ln (R/rP)

]
+

2ṁ

πR2

[
1− (rP/R)2

]
rP∆r =

=
8.883

138.443
×
[
0.095 + 3× 0.0975 +

0.005

ln (0.1/0.0975)

]
+

2× 0.4

π × 0.12
×
[
1− (0.0975/0.1)2

]
× 0.0975× 0.005⇔

⇔ aP = 3.815× 10−2 kg s−1

(13)

b =
Γwall∆z

ln (R/rP)
Twall + 2DinTin + FzTin =

k∆z

cpln (R/rP)
Twall +

2krP∆r

cp∆z
Tin+

2ṁ

πR2

[
1− (rP/R)2

]
rP∆rTin =

k

cp

[
∆z

ln (R/rP)
Twall + 2rPTin

]
+

2ṁ

πR2

[
1− (rP/R)2

]
rP∆rTin =

8.883

138.443
×
[

0.005

ln (0.1/0.0975)
× 20 + 2× 0.0975× 100

]
+

2× 0.4

π × 0.12
×
[
1− (0.0975/0.1)2

]
× 0.0975× 0.005× 100⇔

⇔ b = 1.566 kg ◦C s−1

(14)

Finally, the discretized equation is given by Equation (15).

aPTP = aWTW + aNTN + b⇔ 38.150TP = 6.096TW + 6.256TN + 1566 (15)

Solution:

Supplementary material – not necessary for previous questions (bonus).

The numerical solution for the problem under consideration is provided in the following figure.
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Challenge: Formulate the finite volume discretization equation for every node and implement/solve the
corresponding set of linear algebraic equations with a programming language of your choice – even MS
Excel can be used to solve the problem. Compare your numerical solution with the solution presented
above. With your solution for the temperature field calculate the mean fluid temperature along the axial
direction (Tm (z)), the convection heat transfer coefficient (h (z)), and the Nusselt number (NuD (z)).
Determine the thermal entrance length and compare the thermally fully developed Nusselt number
solution with the analytical solution NuD = 3.66.
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