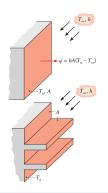
Heat Transfer

Computational Laboratories

Heat Transfer From Extended Surfaces (Laboratory I)

Exploring the role of fin geometrical parameters and transport properties on the fin performance

Extended Surfaces - Fins: Motivation for Application



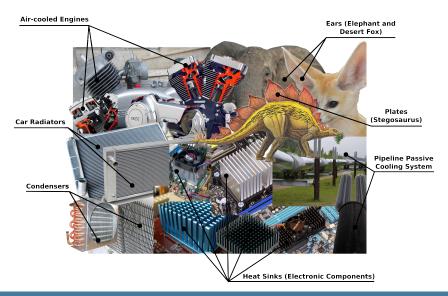
Procedures to increase the rate of heat transfer (q) from a wall at a constant temperature (T_s) to an adjoining fluid:

- Increase the convection heat transfer coefficient (h) and/or decrease the fluid temperature (T_{∞}) costly and impractical solutions; and
- Increase the effective surface area (A).

Motivation for Fin Application

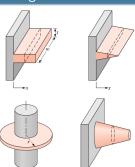
Extended surfaces aim to **enhance heat transfer** by an increase in the available surface area for convection (and/or radiation). **Highly recommended when** *h* **is small** (gases under free-convection conditions).

Extended Surfaces - Fins: Practical Applications



Extended Surfaces - Fins: Configurations

Fin Configuration



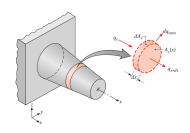
Typical Configurations:

- Straight fins:
 - Uniform Cross Section
 - Non-uniform Cross Section
- Annular fins (non-uniform cross section)
- Pin fins (non-uniform cross-section)

The **selection** of the fin design depends on: space, weight, cost, effect on fluid motion (and consequently on h and pressure drop).

Fin Equation: Governing Energy Balance Equation

- Equation derived from the application of an energy balance to a differential element.
- Assumptions:
 - one-dimensional conduction;
 - steady-state conditions;
 - constant thermal conductivity;
 - constant convection coefficient;
 - o no thermal energy generation; and
 - o negligible radiative heat losses.



Fin Equation - General Form

$$\frac{d^2T}{dx^2} + \left(\frac{1}{A_c}\frac{dA_c}{dx}\right)\frac{dT}{dx} - \left(\frac{1}{A_c}\frac{h}{k}\frac{dA_s}{dx}\right)(T - T_{\infty}) = 0$$

Fin Equation Applied to Uniform Fins

Fin Equation - General Form

$$\frac{d^2T}{dx^2} + \left(\frac{1}{A_c}\frac{dA_c}{dx}\right)\frac{dT}{dx} - \left(\frac{1}{A_c}\frac{h}{k}\frac{dA_s}{dx}\right)(T - T_{\infty}) = 0$$

Considering:

For fins of uniform cross section:

•
$$\frac{dA_c}{dx} = 0$$

•
$$m^2 = \frac{hP}{kA_c} (P = dA_s/dx)$$

•
$$\xi = x/L$$

•
$$\Theta(\xi) = \frac{\theta(\xi)}{\theta_b} = \frac{T(\xi) - T_{\infty}}{T(0) - T_{\infty}}$$

Fin Equation for Uniform Fins

$$\frac{d^2\Theta}{d\xi^2} - (mL)^2 \Theta = 0$$

General Sol. for the Fin Eq. Applied to Uniform Fins

General Solution of the Fin Equation for Uniform Fins

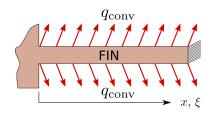
$$\Theta\left(\xi\right) = C_1 e^{mL\xi} + C_2 e^{-mL\xi}$$

Boundary conditions (BCs)

- 1. Fin base ($\xi = 0$):
 - $\circ \ \ \Theta\left(0\right)=1 \ (\text{Fixed temperature Dirichlet BC})$
- 2. Fin tip ($\xi = 1$):
 - $\circ \left. \frac{d\Theta}{d\xi} \right|_{\xi=1} = 0$ (Adiabatic tip Zero Neumann BC)
 - $-k \frac{d\Theta}{d\xi}\Big|_{\xi=1} = h_{\rm tip} L\Theta(1)$ (Active tip Convection BC)



Fin Eq. Solution for Uniform Fin with Adiabatic Tip



Normalized Excess Temperature

$$\Theta^{a}(\xi) = \frac{\cosh\left[mL\left(1-\xi\right)\right]}{\cosh\left(mL\right)}$$

Fin Heat Transfer Rate

$$q_f^a = M \tanh(mL)$$

Note that

•
$$mL = \sqrt{\frac{hP}{kA_c}}L$$

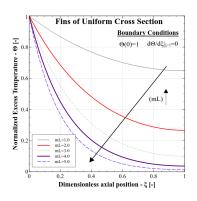
•
$$M = \sqrt{hPkA_c}\theta_b$$

• M corresponds to the heat rate observed for an infinite fin (q_f^i)

Fin Eq. Solution for Uniform Fin with Adiabatic Tip

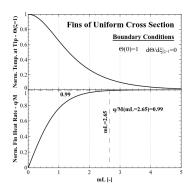
Normalized Excess Temperature

$$\Theta^{a}(\xi) = \frac{\cosh\left[mL\left(1-\xi\right)\right]}{\cosh\left(mL\right)}$$

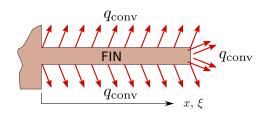


Normalized Heat Transfer Rate

$$\frac{q_f^a}{M} = \tanh(mL)$$



Fin Eq. Solution for Uniform Fin with Convective Tip



Normalized Excess Temperature

$$\Theta^{c}\left(\xi\right) = \frac{\cosh\left[mL\left(1-\xi\right)\right] + \left(h_{\mathrm{tip}}/km\right)\sinh\left[mL\left(1-\xi\right)\right]}{\cosh\left(mL\right) + \left(h_{\mathrm{tip}}/km\right)\sinh\left(mL\right)}$$

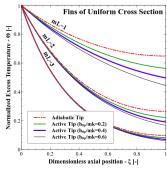
Fin Heat Transfer Rate

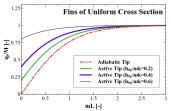
$$q_f^c = M \frac{(h_{\mathrm{tip}}/mk) + \tanh{(mL)}}{1 + (h_{\mathrm{tip}}/mk) \tanh{(mL)}}$$

Note that

- $h_{\text{tip}} = 0$: adiabatic tip solution
 - Generally $h_{\text{tip}} = h$

Adiabatic vs. Convective Tip Solutions





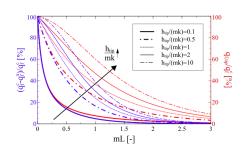
The difference $\Theta^{a}(\xi) - \Theta^{c}(\xi)$ increases by:

- increasing h_{tip} for a constant mL;
- decreasing L for a constant $h_{\rm tip}$.

Increasing h_{tip} :

- $q_f^c q_f^a$ increases;
- $\frac{d\Theta}{d\xi}\Big|_{\xi=1}$ increases, *i.e.* $q_{f,\mathrm{tip}}$ increases, since $q_{f,\mathrm{tip}} = -k\theta_b\frac{A_c}{L}\frac{d\Theta}{d\xi}\Big|_{\xi=1}$.

Relative Importance of Tip Convection on the Overall Fin Heat Transfer Rate (1/2)



 $q_{f,\mathrm{tip}}/q_f^c$ decreases:

- increasing the fin length (L↑);
- decreasing the convection coefficient at the fin tip (h_{tip} ↓).

The adiabatic tip solution becomes a suitable approximation for an actual active tip for low values of $\mathbf{q_{f,\mathrm{tip}}}/\mathbf{q_f^c}$ or high values of q_f^a/q_f^c .

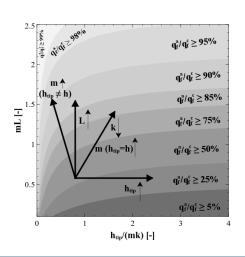
•
$$q_{f, ext{tip}} = rac{q_f^c - q_f^a}{1 - 2 ext{sech}(extit{mL}) ext{sinh}ig(rac{ extit{mL}}{2}ig)^2}$$

• $q_{f,\mathrm{tip}} \approx q_f^c - q_f^a$ for low mL values.

•
$$q_{f,\text{tip}} = h_{\text{tip}} A_c \theta_b \Theta^c(\xi = 1)$$

•
$$\frac{q_{f, \text{tip}}}{q_f^c} = \frac{\left(h_{\text{tip}}/km\right)}{\left(h_{\text{tip}}/km\right)\cosh(mL) + \sinh(mL)}$$

Relative Importance of Tip Convection on the Overall Fin Heat Transfer Rate (2/2)



The adiabatic tip solution becomes a suitable approximation for an actual active tip for low values of $q_{f,\mathrm{tip}}/q_f^c$ or high values of $\mathbf{q}_{\mathbf{f}}^{\mathbf{a}}/\mathbf{q}_{\mathbf{f}}^c$.

$$\bullet \ \, \frac{q_f^a}{q_f^c} = \frac{\tanh(mL)[1+(h_{\mathrm{tip}}/km)\tanh(mL)]}{(h_{\mathrm{tip}}/km)+\tanh(mL)}$$

 q_f^a/q_f^c increases:

- increasing the fin length (L↑);
- decreasing $h_{\rm tip}$;
- increasing m, that is:
 - increasing h/k;
 - increasing P/A_c .

Fin Thermal Performance Parameters

Fin Effectiveness (ε_f)

$$\varepsilon_f = \frac{q_f}{A_{c,b}h\theta_b}$$

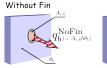
 $\varepsilon_{\rm f}$ – ratio between the actual fin heat rate (q_f) and the heat rate observed without the fin application $(q_b^{\rm NoFin})$.

- The application of an extended surface may increase the heat transfer resistance (fin resistance) in relation to the convection resistance of the bare surface $(\varepsilon_f = R_{t,b}/R_{t,f})$.
- In general, $\varepsilon_f < 2$ do not justify the fin application.

Fin Efficiency (η_f)

$$\eta_f = \frac{q_f}{A_f h \theta_b}$$

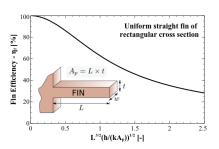
 $\eta_{\rm f}$ – ratio between the actual fin heat rate (q_f) and the heat rate that would be observed if the entire fin were at the fin base temperature (maximum – idealized – fin heat rate, $q_{\rm max}$).



Performance for the Uniform Fin with Adiabatic Tip

Fin Efficiency (η_f)

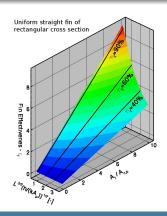
$$\eta_f^a = \frac{\tanh\left(mL\right)}{mL} = \int_0^1 \Theta d\xi$$



$$mL \cong L^{3/2} \left[2h/\left(kA_p\right)\right]^{1/2}, \ w >> t$$

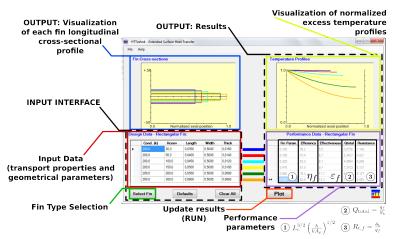
Fin Effectiveness (ε_f)

$$\varepsilon_f^{\mathsf{a}} = \frac{A_f}{A_{c,b}} \eta_f^{\mathsf{a}}$$



Exploring the Software Module (1/2)

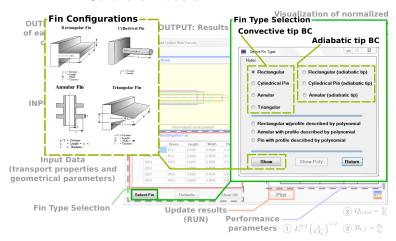
Software module - HTTextnd.exe



• The module solves the fin equation through a finite-volume approach.

Exploring the Software Module (2/2)

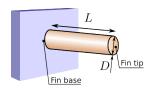
Software module - HTTextnd.exe



The module considers active and adiabatic tip BCs for different fin types.

Module Application Example I: Problem Statement

Consider a pin fin of uniform cross section with dimensions $L=0.05\,\mathrm{m}$ and $D=0.005\,\mathrm{m}$. The fin is made of 2024 aluminum alloy. All fin surfaces (lateral and tip surfaces) are surrounded by a fluid medium with a constant convection coefficient (h) and temperature (T_{∞}) equal to 250 $\mathrm{W.m^{-2}.K^{-1}}$ and 20 $^{\circ}\mathrm{C}$, respectively. The fin base temperature (T_{b}) is equal to 90 $^{\circ}\mathrm{C}$.



Evaluate the following using the software module:

- 1. temperature profile along the fin longitudinal direction, T(x);
- 2. total fin heat transfer rate, q_f ;
- 3. fin efficiency, η_f ; and
- 4. fin effectiveness, ε_f .

Module Application Example I: Module Application and Results

Module Input Data

1 - Fin type "Cylindrical Pin" 2 - Fin transport properties

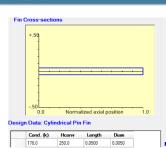
 $k \text{ (Cond.): } 178 \,\mathrm{W.m}^{-1}.\mathrm{K}^{-1}$

 $h \text{ (Hconv)}: 250 \text{ W.m}^{-2}.\text{K}^{-1}$

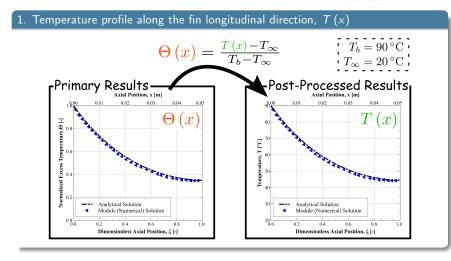
3 - Fin geom. parameters

L (Length): 0.05 m D (Diam): 0.005 m

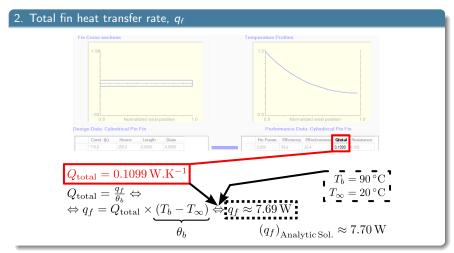
Module Results



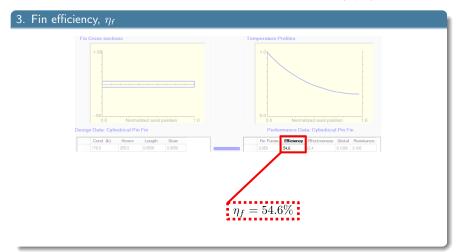
Module Application Example I: Results Analysis (1/4)



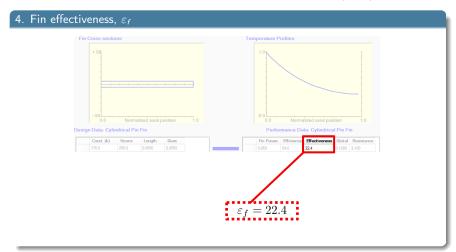
Module Application Example I: Results Analysis (2/4)



Module Application Example I: Results Analysis (3/4)

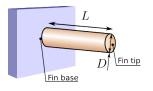


Module Application Example I: Results Analysis (4/4)



Module Application Example II: Problem Statement

Consider for the same fin configuration, fin dimensions and temperatures of Example I the combination of three values of thermal conductivities – 5 ($\mathbf{k_1}$), 178 ($\mathbf{k_2}$), and 300 ($\mathbf{k_3}$) W.m⁻¹.K⁻¹ – with three values of convection heat transfer coefficients – 10 ($\mathbf{h_1}$), 250 ($\mathbf{h_2}$), and 1500 ($\mathbf{h_3}$) W.m⁻².K⁻¹.



For these nine combinations, evaluate the following using the module:

- 1. fin efficiency, η_f ;
- 2. fin effectiveness, ε_f ;
- 3. the suitability of the adiabatic tip assumption for the prediction of the fin heat rate for an actual active tip situation, q_f^a/q_f^c ; and
- 4. the suitability of the 1D conduction assumption on the fin equation formulation in relation to the 3D conduction problem (advanced).

Module Application Example II: Results Analysis (1/4)

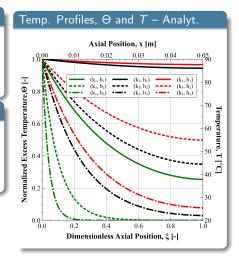
1. Fin efficiency, η_f – $\mathrm{Num._{(Analyt.)}}$ [%]

	h_1	h ₂	h ₃
$\overline{k_1}$	47.2 _(47.3)	9.9(10.2)	4.3(4.9)
k_2	96.2 _(96.2)		23.8 _(24.0)
	97.7 _(97.7)	$65.6_{(65.6)}$	30.8 _(30.9)

2. Fin effectiveness, ε_f – $\mathrm{Num._{(Analyt.)}}$ [–]

	h ₁	h ₂	h ₃
k_1	19.4(19.4)	4.1 _(4.2)	$1.8^*_{(2.0)}$
k_2	39.5 _(39.5)	22.4 _(22.4)	$9.8_{(9.8)}$
k_3	40.1(40.1)	26.9(26.9)	12.6(12.7)

Attention: The combination (k_1, h_3) is not recommended (and should be avoided) because the calculated fin effectiveness value (1.8) is less than 2.0.



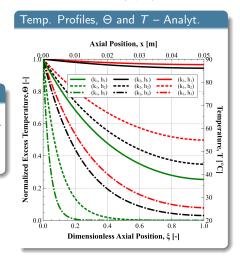
Module Application Example II: Results Analysis (2/4)

The ratio q_f^a/q_f^c is equal to $Q_{\rm total}^a/Q_{\rm total}^c$. $Q_{\rm total}^a$ ($Q_{\rm total}^c$) is directly given by the module selecting the adiabatic (convective) fin tip boundary condition.

3. q_f^a/q_f^c – Num._(Analyt.) [–]

	h_1	h_2	h ₃
k_1	1.00(1.00)	$1.00_{(1.00)}$	$1.00_{(1.00)}$
k_2	0.99 _(0.98)	$0.99_{(0.99)}$	$1.00_{(1.00)}$
k ₃	0.97 _(0.98)	$0.99_{(0.99)}$	$1.00_{(0.99)}$

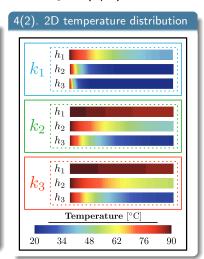
The adiabatic tip assumption becomes well-suited for high values of q_f^a/q_f^c , i.e., as the ratio h/k increases – in full accordance with Slide 13



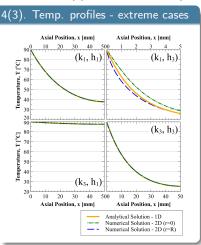
Module Application Example II: Results Analysis (3/4)

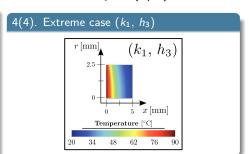
4(1). 1D vs. multi-dim. heat conduction

- The 1D heat conduction assumption behind the fin equation formulation may be inadequate for accurate predictions under specific fin conditions.
- Since the fin configuration is axisymmetric the heat conduction may proceed along the longitudinal and radial directions (2D heat flow).
- 2D axisymmetric simulation results for the nine (k, h) combinations are presented at the right figure. For ease of visualization the vertical (radial) direction was stretched by a factor of 2.



Module Application Example II: Results Analysis (4/4)





- The 1D conduction assumption on the formulation of the fin equation is less adequate for high h/k ratios.
- The multi-dimensional conduction effects are more pronounced near the fin base surface.

Useful Relations

1. Fin Temperature Profile - Θ , θ , T

$$\Theta\left(\xi\right) = \frac{\theta\left(\xi\right)}{\theta_b} = \frac{T\left(\xi\right) - T_{\infty}}{T\left(0\right) - T_{\infty}}$$

 $\Theta\left(\xi\right)$ – Normalized excess temperature θ_b – Excess temperature at the fin base $\xi\left(=x/L\right)$ – Dimensionless axial position L – Fin length

2. Fin Heat Rate - q_f

$$q_{f} = \theta_{b} \underbrace{h \int_{A_{f}} \Theta\left(\xi\right) dA_{s}}_{Q_{\text{total}} = \frac{q_{f}}{\theta_{f}} = R_{f,f}^{-1}}$$

 q_f^a – Fin heat rate considering an adiabatic tip q_f^c – Fin heat rate considering a convective tip A_f – Convective fin area

3. Fin Effectiveness - ε_f

$$arepsilon_f = \underbrace{rac{q_f}{A_{c,b}h\theta_b}}_{q_b^{
m NoFin}} = \eta_f rac{A_f}{A_{c,b}}$$

Fins with $\varepsilon_f < 2$ are not recommended for application

4. Fin Efficiency - η_f

$$\eta_f = \underbrace{\frac{q_f}{A_f h heta_b}}_{q_{ ext{max}}} = rac{Q_{ ext{total}}}{A_f h}$$

 $q_{
m max}$ – Heat transfer rate that would be observed if the entire fin were at the base temperature