
Advanced Heat Transfer (Part IV)
–

List of Problems

1. Consider the one-dimensional planar, steady-state heat diffusion equation (Equation (1)) with a
constant volumetric rate of thermal energy generation, q̇.

k
d2T

dx2
+
dk

dx

dT

dx
+ q̇ = 0 (1)

The first and second terms on the LHS of Equation (1) can be approximated by the expressions
provided in Equations (2) and (3), respectively. In such case, determine the conditions for which
the neighboring node coefficients of the discretized equation (aW and aE) would become negative,
violating, consequently, the boundedness property of discretization schemes. Assume dk/dx is a
known quantity, which may be positive or negative.

k
d2T

dx2
=
kP (TE + TW − 2TP)

(∆x)2
(2)

dT

dx
=
TE − TW

2∆x
(3)

2. Considering the finite volume method, discretize the one-dimensional, steady-state heat diffusion
equation in cylindrical coordinates given by the following equation:

1

r

d

dr

(
kr
dT

dr

)
+ q̇ = 0 (4)

3. The source term for a dependent variable φ is given by s = A − B |φ|φ, where A and B are
positive constants. If this term is to be linearized as s = sC + sPφP, comment on the following
practices (φ∗P denotes the previous iteration value):

(a) sC = A−B |φ∗P|φ∗P and sP = 0;

(b) sC = A and sP = −B |φ∗P|;
(c) sC = A+B |φ∗P|φ∗P and sP = −2B |φ∗P|; and

(d) sC = A+ 9B |φ∗P|φ∗P and sP = −10B |φ∗P|.

4. Consider one-dimensional planar, steady-state heat conduction in a medium with constant ther-
mal conductivity (k) and volumetric rate of thermal energy generation (q̇). At the left and right
domain boundaries (x = 0 and x = L, respectively) the boundary conditions are described by
Equations (5) and (6), respectively.

−kdT
dx

∣∣∣∣
x=0

= h0 (T∞ − T0) (5)
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−kdT
dx

∣∣∣∣
x=L

= hL (TL − T∞) (6)

In Equations (5) and (6), h0 and hL are the heat transfer convection coefficients and T0 and TL
are the corresponding boundary temperatures. Establish the discretized equations for boundary
and bulk (interior) control volumes. (Boundary control volumes – control volumes adjacent to
the domain boundaries.)

5. Consider one-dimensional planar, steady-state heat conduction with constant thermal conductiv-
ity (k) and volumetric rate of thermal energy generation (q̇). Establish the discretized equations
for boundary and bulk control volumes assuming a uniform mesh and taking into account the
following conditions:

(a) q̇ = 2 kW m−3, k = 3 W m−1 K−1, and the boundary conditions at the left and right bound-
aries of the domain given by Equations (7) and (8), respectively, where q′′A = 10 W m−2 and
TB = 50◦C;

−kdT
dx

∣∣∣∣
x=0

= q′′A (7) T (L) = TB (8)

(b) q̇ = 2 kW m−3, k = 3 W m−1 K−1, and the boundary conditions at the left and right bound-
aries of the domain given by Equations (9) and (10), respectively, where TA = 50◦C and
q′′B = −20 W m−2;

T (0) = TA (9) k
dT

dx

∣∣∣∣
x=L

= q′′B (10)

(c) q̇ = 2 kW m−3, k = 3 W m−1 K−1, and the boundary conditions at the left and right bound-
aries of the domain given by Equations (11) and (12), respectively, where h = 10 W m−2 K−1,
T∞ = 100◦C, and TB = 50◦C;

−kdT
dx

∣∣∣∣
x=0

= h [T∞ − T (0)] (11) T (L) = TB (12)

(d) q̇ = 2T [K] W m−3, k = 1 W m−1 K−1, and the boundary conditions at the left and right
boundaries of the domain given by Equations (13) and (14), respectively, where ε = 0.1,
Tsur = 100◦C, h = 10 W m−2 K−1, and T∞ = 150◦C; and

−kdT
dx

∣∣∣∣
x=0

= εσ{T 4
sur − [T (0)]4} (13) −kdT

dx

∣∣∣∣
x=L

= h [T (L)− T∞] (14)

6. Consider one-dimensional planar, steady-state heat conduction in a medium with a thermal
conductivity (k) equal to 1 W m−1 K−1 and a volumetric rate of thermal energy generation (q̇)
equal to 2 W m−3. The medium thickness (L) is equal to 4 m. At x = 0 (left boundary), a heat
flux into the domain equal to 5 W m−2 is applied and at x = L the heat flux leaving the domain
is equal to 13 W m−2. Using the finite volume method and a uniform mesh with four control
volumes, discretize the equations and solve the resulting system of algebraic equations by:

(a) Thomas algorithm (TDMA);
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(b) Gauss-Seidel iteration method;

(c) TDMA considering T = 100◦C for the left control volume; and

(d) Gauss-Seidel iteration method considering T = 100◦C for the left control volume.

7. Consider one-dimensional, steady-state heat conduction in a fin of constant cross-sectional area
governed by Equation (15).

d

dx

(
k
dT

dx

)
− hP

A
(T − T∞) = 0 (15)

Assume that a temperature equal to Tb is prescribed at the fin base and that the fin tip is
perfectly insulated.

(a) Discretize the equation using the finite volume method (bulk control volumes).

(b) Establish the discretized equations for the boundary control volumes.

(c) Solve the system of algebraic equations derived from the discretization process and compare
the corresponding numerical solution against the analytical solution.

8. The fully developed laminar flow between two parallel plates is described by Equation (16), where
u, µ, and dp/dx correspond to the flow velocity, fluid dynamic viscosity, and pressure gradient,
respectively.

d

dy

(
µ
du

dy

)
− dp

dx
= 0 (16)

(a) Discretize the equation using the finite volume method (bulk control volumes).

(b) Considering stationary plates, establish the discretized equations for the boundary control
volumes.

(c) Considering one of the plates stationary and the other moving with velocity U , establish
the discretized equations for the boundary control volumes.

(d) Solve the system of algebraic equations derived from the discretization process and compare
the corresponding numerical solution against the analytical solution.

9. Consider two-dimensional, transient heat conduction in a rectangular plate with 1 m× 1 m cross
section. In such conditions, heat conduction is described by Equation (17). The plate is subjected
to the boundary conditions given by Equations (18) – (21). Consider the initial condition of the
plate given by Equation (22).

ρcp
∂T

∂t
= div (k gradT ) + q̇ (17)

k
∂T

∂x

∣∣∣∣
x=0

= 10 W m−2 (18)

T (x = 1 m) = 350◦C (19)

∂T

∂y

∣∣∣∣
y=0

= 0 (20)

Page 3 of 6



−k∂T
∂y

∣∣∣∣
y=1m

= 30 [T (y = 1 m)− 300◦C] (21)

T (x, y, t = 0) = 500◦C (22)

Consider the thermophysical properties given by Equations (23) – (25) and assume a volumetric
rate of thermal energy generation dependent on temperature given by Equation (26). (Equations
(23) and (26) require local temperature values in ◦C.)

k = 100 + 0.1T − 0.0001T 2 W m−1 K−1 (23)

ρ = 1000 kg m−3 (24)

cp = 200 J kg−1 K−1 (25)

q̇ = 20
(
1− 0.05T + 0.001T 2

)
W m−3 (26)

Using the finite volume method, a uniform mesh 10× 10 control volumes, and the fully implicit
discretization scheme with a time step size (∆t) equal to 1 s, establish the discretized equations
for the control volumes containing the following grid nodes:

(a) i = 5 and j = 5;

(b) i = 1 and j = 5;

(c) i = 5 and j = 1;

(d) i = 10 and j = 5;

(e) i = 5 and j = 10;

(f) i = 1 and j = 1;

(g) i = 10 and j = 1;

(h) i = 10 and j = 10;

(i) i = 1 and j = 10; and

10. Consider the one-dimensional distribution of a scalar variable φ governed by convection and
diffusion transport processes along the axial direction of a porous-walled duct – the corresponding
governing equation is given by Equation (27).

d

dx
(ṁxφ)− ΓA

d2φ

dx2
+ ṁLφL = 0 (27)

In Equation (27), A is the duct cross-sectional area, ṁx is the mass flow rate at any location x,
and ṁL corresponds to the rate of mass leakage through the porous wall per unit length of the
duct (ṁL ≡ −dṁx/dx). When ṁL is positive (fluid leaking out), φL is equal to the value of φ
within the duct and when ṁL is negative (fluid leaking into the duct), φL is equal to φ0 (value of
φ in the duct external environment). For a duct length l, the boundary conditions are φ = φ1 at
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x = 0 and φ = φ0 at x = l. Assume that ṁL and ΓA are constants. Apply the central-differecing
scheme for the following.

(a) Establish the discretized equations for bulk and boundary control volumes.

(b) Determine φ for the following two cases:

(i) ṁx/ΓA = 40 and ṁx = 0 at x = 0 and x = l, respectively; and

(ii) ṁx = 0 and ṁx/ΓA = 40 at x = 0 and x = l, respectively.

11. In a steady-state two-dimensional flow, the value of a scalar variable φ is governed by Equation
(28), where ρ = 1, Γ = 1, a = 10, and b = 2. The velocity field is uniform and equal to
u ≡ (u, v) = (1, 4). Consider φ = 0 at the top and right boundaries and φ = 100 at the
remaining boundaries.

div (ρφu) = div (Γ gradφ) + a− bφ (28)

For the uniform mesh presented in the figure, establish the finite volume discretization equations
for all control volumes and calculate the values of φ considering for the convective term the

Problem 11

following methods:

(a) central differencing scheme;

(b) upwind differencing scheme; and

(c) hybrid differencing scheme.

12. Consider an incompressible, two-dimensional, steady-state laminar flow in the channel shown in
the figure. Assume that the velocity profile in the inlet section is uniform, where u = 4 and
v = 0, and that the Reynolds number based on the velocity in the inlet section and its height is
equal to 100. Assume that the velocity gradient is null at the outlet section. Apply the hybrid
differecing scheme.

(a) Establish the discretized equation for the momentum in the x−direction for the Control
Volumes A, B, and C.

(b) Establish the discretized equation for the momentum in the y−direction for the Control
Volumes A, B, and C.

(c) Establish the discretized pressure correction equation for the Control Volumes A, B, and C.

(d) Is the exit section boundary condition indicated in the problem statement reasonable? Jus-
tify.

Page 5 of 6



Problem 12
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