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1. Methods for Transport Phenomena Prediction
Prediction Approaches
Two main methods can be considered to evaluate the performance
of transport (heat transfer and fluid flow) processes: (i) experimental
methods; and (ii) theoretical methods.

Experimental Investigation
• More reliable than the theoretical method.
• Expensive and, eventually, not feasible for full-scale equipment.
• The representativeness of lab-scale (prototype) measurements for
full-scale equipment may be unsatisfactory.

• Some physical phenomena are difficult to reproduce at a lab-scale,
and consequently, neglected.

• Measuring equipment (in-situ sampling techniques) may influence
(disturb) the actual physical processes under investigation (invasive
measurements) leading to erroneous interpretations.
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1. Methods for Transport Phenomena Prediction
Theoretical Approach: Analytical and Numerical Solution Methods

• Two theoretical solution methods are available: (i) analytical (exact or
approximate); and (ii) numerical (approximate) methods.

• A mathematical model for the description of the underlying physical
processes is required.

◦ The prediction ability of the theoretical approach (theoretical results
reliability) depends strongly on the validity of mathematical model.

◦ For complex phenomena, modeling approximations are required.

• Analytical methods provide the solution in a continuum spatio-temporal
domain. On the contrary, numerical methods provide solutions at discrete
space and time locations.

• Many problems with engineering relevance cannot be solved by analytical
means – due to complicated geometries, complex boundary conditions, or
variable material properties. (For this class of problems, numerical
methods are the only theoretical solution approach available.)
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1. Methods for Transport Phenomena Prediction
Numerical Solution Methods: Advantages

• Less expensive, less harmful, and faster than experimental methods.

• Comprehensive (detailed and complete) process characterization – all
model variables are determined in the domain of interest.

• Realistic and/or ideal conditions can be investigated.

• For systems with multiple phenomena, the effect of any individual
physical phenomenon can be isolated and investigated.

• Data generated by theoretical models based on reliable and fundamental
physical descriptions can provide insights for critical gaps of
understanding.

• Continuous trend of increasing computer power allowing faster calcula-
tions and the potential to develop models from detailed fundamentals.

• Abundance of general-purpose, reliable, robust, and user-friendly software
packages.
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1. Methods for Transport Phenomena Prediction
Numerical Solution Methods: Cautions on Accuracy
• Numerical solutions for physical problems are not completely free from

underlying errors (solution deficiencies not derived from a lack of knowl-
edge) and uncertainties (deficiencies derived from lack of knowledge).

• Errors can be classified into numerical errors – roundoff errors, iteration
errors (truncation of iterative sequences), and discretization errors –,
coding errors and user errors. (If errors were completely absent the
numerical solution would be equal to the analytical (exact) solution of
the mathematical problem statement.)

• The main sources of uncertainties (modeling errors) are related to:

◦ rough (or inadequate) approximations for geometry representation,
boundary conditions, or material properties (input uncertainty); and

◦ modeling approximations (simplifying assumptions) for complex
physical processes (turbulence, combustion, multiphase flows, ...) that
can lead to deviations of theoretical predictions from the real
performance (physical model uncertainty).
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2. Numerical Solution Methods

Components of a Numerical Solution Method
1. Mathematical Model
2. Discretization Method
3. Coordinate and Basis Vector Systems
4. Numerical Grid
5. Finite Approximations
6. Solution Method
7. Convergence Criteria
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2. Numerical Solution Methods
Components of a Num. Sol. Method – 1. Mathematical Model

• Mathematical model — set of differential or integro-differential equations
that represent the governing equations as well as the boundary conditions
and, for time-dependent problems, initial conditions.

◦ Governing equations — mathematical statements of conservation
principles – mass conservation principle, Newton’s second law of
motion (momentum conservation), first law of thermodynamics
(energy conservation principle) – in an infinitesimal (differential) vol-
ume element. The governing equations take into account the relevant
trans. mechanisms described by the corresponding rate equations.

• The mathematical model is selected based on the target application
(problem in consideration) – heat conduction through a solid wall,
convection heat transfer between a wall and a adjoining fluid, etc..

• Simplifying model assumptions may be applied to decrease the
mathematical and numerical model complexity, save computational time,
and enhance the solution success.
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2. Numerical Solution Methods
Components of a Num. Sol. Method – 2. Discretization Method
• Discretization method (or equation discretization method) —
method to approximate a differential equation by a system of
algebraic equations for the dependent variables at discrete locations
in space- and, eventually, time-coordinates. The solution for this
set of algebraic equations provides the numerical solution for the
dependent variable at the discrete points (computational domain).

• Most relevant discretization methods:
◦ Finite Difference Method;
◦ Finite Element Method; and
◦ Finite Volume Method.

• The same solution is obtained by any discretization method if the
grid is very fine.

• The selection of a suitable discretization method depends on the
class of problems in consideration.
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2. Numerical Solution Methods
Comp. of a Num. Sol. Method – 3. Coordinate and Basis Vector Systems
• Coordinate and basis vector systems – systems that define the form in

which the conservation equations are written.

Components of a Num. Sol. Method – 4. Numerical Grid (1/3)
• Numerical grid (also called mesh or nodal network) — discrete

representation of the geometric domain (continuum space region) by a
finite number of subdomains on which the problem is to be solved.

• Different types of grids can be considered to obtain a numerical solution
depending on the problem in consideration but mainly on the domain
geometric complexity. (Note that different mesh types can be applied for
the same problem and geometry.)

• Depending on the geometric complexity the following two main mesh
categories can be considered:

◦ structured grids – suitable for very simple to complex geometries; and
◦ unstructured grids – recommended for very complex geometries.
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2. Numerical Solution Methods

Components of a Num. Sol. Method – 4. Numerical Grid (2/3)

• For a structured grid: (1) grid points are located at the intersection of
two (three) lines of different families in 2D (3D) geometries; (2) interior
grid points have a fixed number of neighboring grid points; and (3) grid
points location stored in a matrix can be easily identified by their indices
(I , J and I , J,K for 2D and 3D, respectively).

• Structured grids can be further classified into the following categories:

◦ structured (orthogonal) Cartesian, cylindrical, and spherical (uniform
ou non-uniform) – very simple (orthogonal and regular) geometries;

◦ structured (orthogonal and non-orthogonal) curvilinear grids (or body
fitted grids) – complex geometries; and

◦ block-structured grids – complex geometries.

• Unstructured grids offer great geometric flexibility and an efficient
computational cost since cells can be strictly concentrated where needed.
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2. Numerical Solution Methods
Components of a Num. Sol. Method – 4. Numerical Grid (3/3)

• An unstructured grid can be composed by elements (cells) of any shape and
there are no constrains on the number of neighbor cells or grid points.

• An explicit specification of node locations and neighbor connectivity is required
for unstruc. grids – this complicates programming and the solution method.
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2. Numerical Solution Methods

Components of a Num. Sol. Method – 5. Finite Approximations
• Finite Approximations — approximations for the discretization
process, namely for the derivatives at the grid points (in the
framework of the finite difference method), for surface and volume
integrals (finite volume method) and shape and weighting functions
(for finite element method).

• Numerical (discretization) errors can be reduced by considering
more accurate approximations (or by applying the approximations
to finer meshes).
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2. Numerical Solution Methods
Components of a Num. Sol. Method – 6. Solution Method
• Solution Method — method for solving the system of (linear or
nonlinear) algebraic equations derived from the discretization
process. (Depending on the nature of partial differential equations
(mathematical model) from which the algebraic equations are
derived (through the discretization process), the system of algebraic
equations can be linear or nonlinear.)

• A suitable method of solution depends on the problem in
consideration, grid type, and the number of nodes considered in
each algebraic equation.

• For a system of nonlinear algebraic equations, an iterative solution
technique is mandatory which involves: (1) guessing a solution; (2)
linearizing the discretized equations about that solution; (3)
improving the solution; and (4) repeating steps (2) and (3) until a
converged solution is obtained.
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2. Numerical Solution Methods

Components of a Num. Sol. Method – 7. Convergence Criteria
• Convergence Criteria – stopping criteria for iterative solution
methods.

• Generally, two levels of iterative processes are considered: (1) inner
iterations for solving a system of linear algebraic equations; and (2)
outer iterations in which nonlinearities and coupling procedures are
handled.

• From the standpoints of solution accuracy (iteration errors) and
method efficiency, the criteria considered to stop the iterative
method is very relevant.
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3. General Transport Equation: Differential Form
Transport Equation for Property φ
The generic conservation equation for a scalar quantity, φ, in a
coordinate-free form is given as follows:

∂ (ρφ)

∂t︸ ︷︷ ︸
A

+ div (ρφu)︸ ︷︷ ︸
B

= div (Γ gradφ)︸ ︷︷ ︸
C

+ Sφ︸︷︷︸
D

• Nomenclature: ρ – density; φ – conserved intensive property (dependent
variable); t – time; u – velocity vector; Γ – diffusion coefficient; and Sφ –
source term.

• Equation Terms: A – Rate of change (transient or unsteady) term; B –
Convective term; C – Diffusive term; and D – Source term.

• The governing equations of fluid flow and heat transfer can be obtained
from the general transport equation considering the adequate values for
φ, u, Γ, and Sφ.
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3. General Transport Equation: Differential Form
Heat Diffusion Equation
The heat diffusion equation – equation that governs the temperature
distribution in a medium without bulk motion (advection) – is obtained
from the general transport equation considering:

φ = T ; u = 0; Γ = k/cp; and Sφ = q̇/cp.

ρcp
∂T

∂t
= div (k gradT ) + q̇

Fluid Flow Governing Equations: Continuity Equation

The overall mass conservation (continuity) equation is obtained from
the general transport equation considering:

φ = 1; Γ = 0; and Sφ = 0.

∂ρ

∂t
+ div (ρu) = 0
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3. General Transport Equation: Differential Form
Fluid Flow Governing Equations: Momentum Equations (1/2)
Considering gravity as the only body force, the momentum equation for the x
Cartesian coordinate is obtained from the gen. transport equation considering:

φ = u (x−direction velocity); Γ = µ (dynamic viscosity); and

Sφ =

{
∂
∂x

(
µ∂u∂x

)
+ ∂

∂y

(
µ∂v∂x

)
+ ∂

∂z

(
µ∂w∂x

)}
− 2

3
∂
∂x (µdiv u) − ∂p

∂x + ρgx ;

where gx is the x−direction gravity vector component. Consequently,

∂ (ρu)

∂t
+ div (ρuu) = div (µ grad u) + Sφ

For Cartesian coordinates, the previous equation – taking into account the
expression for Sφ – can be written in a tensor notation, as follows:

∂ (ρui )

∂t
+

∂

∂xj
(ρujui ) =

∂

∂xj

τij − viscous stress tensor︷ ︸︸ ︷[
µ

(
∂ui
∂xj

+
∂uj
∂xi

− 2
3
∂uk
∂xk

δij

)]
− ∂p

∂xi
+ ρgi
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3. General Transport Equation: Differential Form

Fluid Flow Governing Equations: Momentum Equations (2/2)
In a coordinate-free vector form the momentum equation is written as follows:

∂ (ρu)

∂t
+ div (ρuu) = div T + ρg

The stress tensor, T, and the rate of strain tensor, D, are provided below.

T = −
(
p +

2
3
µdiv u

)
I + 2µD

D =
1
2

[
gradu + (gradu)T

]
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3. General Transport Equation: Differential Form
Fluid Flow Governing Equations: Energy Equation (1/2)
The energy equation is obtained from the gen. transport equation considering:

φ = ut (specific internal (thermal) energy); Γ = k ; and
Sφ = −pdiv u + µΦ + q̇;

consequently,

∂ (ρut)

∂t
+ div (ρutu) = div (k gradT ) − pdiv u + µΦ + q̇

In Cartesian coordinates, the dissipation function reads as follows:

Φ = 2

[(
∂u

∂x

)2

+

(
∂v

∂y

)2

+

(
∂w

∂z

)2
]

+[(
∂u

∂y
+
∂v

∂x

)2

+

(
∂v

∂z
+
∂w

∂y

)2

+

(
∂w

∂x
+
∂u

∂z

)2
]
− 2

3
(div u)2
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3. General Transport Equation: Differential Form

Fluid Flow Governing Equations: Energy Equation (2/2)

For steady, three-dimensional flow of an incompressible fluid (div u = 0 and
ut = cT ) with constant properties (ρ, c , µ, and k) in a Cartesian coordinate
system (x , y , z), the energy equation reads as follows:

ρc

(
u
∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z

)
= k

(
∂2T

∂x2 +
∂2T

∂y2 +
∂2T

∂z2

)
+

µ

{
2

[(
∂u

∂x

)2

+

(
∂v

∂y

)2

+

(
∂w

∂z

)2
]

+[(
∂u

∂y
+
∂v

∂x

)2

+

(
∂v

∂z
+
∂w

∂y

)2

+

(
∂w

∂x
+
∂u

∂z

)2
]}

+ q̇
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3. General Transport Equation: Relevance

Relevance of the General Transport Equation
• The governing equations for fluid flow and heat transfer phenomena
can be though as particular cases of the general transport equation.
Therefore, the general transport equation is a convenient equation
to demonstrate the application of discretization methods for the
terms that are common to all conservation equations – transient,
convection, diffusion, and source terms.

• For the application of the Finite Volume Method, the integral
(steady or unsteady) form of the general transport equation is
required – see next slides.
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3. General Transport Equation: Steady Integral Form
Steady Integral Form of the Transport Equation for Property φ
Integrating the steady-state differential form of the general transport
equation over a three-dimensional control volume (CV), one obtains∫

CV
div (ρφu) dV =

∫
CV

div (Γ gradφ) dV +

∫
CV

SφdV

Applying the Gauss’s divergence theorem to convert the volume integrals
of the first term on the LHS (convective term) and first term on the
RHS (diffusive term) into surface integrals, the integrated form of the
steady-state transport equation is given by:∫

A
n · (ρφu)︸ ︷︷ ︸

f c −Convective Flux

dA =

∫
A

n · (Γgradφ)︸ ︷︷ ︸
f d −Diffusive Flux

dA +

∫
CV

SφdV

f c – flux component of property φ due to fluid flow (convection) along the outward normal
vector n; and f d – flux component of property φ due to diffusion along the inward normal
vector n.
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3. General Transport Equation: Unsteady Integral Form

Unsteady Integral Form of the Transport Equation for Property φ
Integrating the unsteady-state differential form of the general transport
equation over a three-dimensional CV – and applying the Gauss’s diver-
gence theorem to the volume integrals representing the convective and
diffusive terms – and over the time interval t to t + ∆t, the following
equation is obtained.

∫
∆t

∂

∂t

(∫
CV

ρφdV

)
dt +

∫
∆t

∫
A
n · (ρφu)︸ ︷︷ ︸

f c

dAdt =

∫
∆t

∫
A
n · (Γgradφ)︸ ︷︷ ︸

f d

dAdt +

∫
∆t

∫
CV

SφdVdt
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4. Discretization Methods: Finite Difference Method
Basic Concepts (1/2)

• The governing equation in the differential form is the starting point for
the application of the finite difference (discretization) method.

• For each nodal point of the numerical grid, one algebraic equation is
derived from the differential equation – governing equation (for interior or
bulk nodes) and Neumann or convection boundary conditions (boundary
nodes) – by approximating the derivatives by finite-difference
approximations. Such finite-difference approximations involve the value of
the dependent variable, φ, at each grid point as well as at its neighboring
grid points. At the end, one equation for each unknown φ value is
obtained. (For boundary nodes where Dirichlet boundary conditions apply
no action is required.)

• Since the governing equation is solved in its original (differential) form –
without the need to modify the governing equation into an alternative
form for the application of the discretization method – the solution
obtained is called the strong form solution.
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4. Discretization Methods: Finite Difference Method

Basic Concepts (2/2)

• The solution domain is covered by a set of nodal points (numerical grid).
See below examples of 1D (top) and 2D (bottom) grids used by finite
difference methods with the corresponding (typical) node notation. Filled
dots correspond to boundary nodes and blank dots correspond to interior
(bulk) nodes.
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4. Discretization Methods: Finite Difference Method
Application to Steady, Source-free, Const. Property, 2D Cartesian Heat Diff. Eq.

The 2D Cartesian, steady-state heat diffusion equation without sources and constant
thermal conductivity (Laplace equation in 2D rectangular coordinates) is written as
follows:

∂2T

∂x2 +
∂2T

∂y2 = 0

For the application of the finite difference method, the second (partial) deriva-
tives must be approximated. The usual procedure to derive such (finite-difference)
approximations involves the use of the Taylor series expansion around a reference
interior (bulk) point (xi , yj). Particularly, for the derivative ∂2T/∂x2, the Taylor
series expansion at points (xi−1, yj) and (xi+1, yj) are considered as follows

Ti−1,j = Ti,j − (xi − xi−1)

(
∂T

∂x

)
i,j

+
(xi − xi−1)2

2

(
∂2T

∂x2

)
i,j

− . . .

Ti+1,j = Ti,j + (xi+1 − xi )

(
∂T

∂x

)
i,j

+
(xi+1 − xi )

2

2

(
∂2T

∂x2

)
i,j

+ . . .
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4. Discretization Methods: Finite Difference Method
Application to Steady, Source-free, Const. Property, 2D Cartesian Heat Diff. Eq.

Truncating the series after the third term and combining both equations yields,(
∂2T

∂x2

)
i,j

≈ Ti+1,j (xi − xi−1) + Ti−1,j (xi+1 − xi )− Ti,j (xi+1 − xi−1)
1
2 (xi+1 − xi−1) (xi+1 − xi ) (xi − xi−1)

This equation corresponds to the central-difference approximation for the second
derivative. An alternative procedure to arrive at the previous equation consists in
the application of approximations for the first derivative as follows(

∂2T

∂x2

)
i,j

≈

(
∂T
∂x

)
i+1/2,j −

(
∂T
∂x

)
i−1/2,j

1
2 (xi+1 − xi−1)

where the first derivatives are approx. by the central-difference form as shown below.(
∂T

∂x

)
i−1/2,j

≈ Ti,j − Ti−1,j

xi − xi−1

(
∂T

∂x

)
i+1/2,j

≈ Ti+1,j − Ti,j

xi+1 − xi

(These approximations for the first derivatives are obtained using Taylor series expan-
sion – as previously, for the second derivative approximation but at points (xi−1, yj)
and (xi , yj) and points (xi , yj) and (xi+1, yj).)
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4. Discretization Methods: Finite Difference Method

Application to Steady, Source-free, Const. Property, 2D Cartesian Heat Diff. Eq.

Considering a constant grid spacing (equidistant grid points – uniform grid) along
the x axis, xi − xi−1 = xi+1 − xi = ∆x , the last equation can be written as(

∂2T

∂x2

)
i,j

≈ Ti−1,j − 2Ti,j + Ti+1,j

(∆x)2

In a similar fashion, for the derivative ∂2T/∂y2 and considering a constant grid
spacing along the y axis, the following equation is obtained(

∂2T

∂y2

)
i,j

≈ Ti,j−1 − 2Ti,j + Ti,j+1

(∆y)2

Substituting the approximations obtained for the second derivatives into the gov-
erning equation, one obtains the discretized (or discrete) equation for the grid point
(xi , yj):

Ti−1,j − 2Ti,j + Ti+1,j

(∆x)2 +
Ti,j−1 − 2Ti,j + Ti,j+1

(∆y)2 = 0
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4. Discretization Methods: Finite Difference Method

Application to Steady, Source-free, Const. Property, 2D Cartesian Heat Diff. Eq.

For a uniform 2D grid (∆x = ∆y), the last equation simplifies to

Ti−1,j + Ti+1,j + Ti,j−1 + Ti,j+1 − 4Ti,j = 0

The procedure to obtain the discretized equation applies for the interior (bulk) nodal
points. Such discretized equations correspond to approximate algebraic equations
for the governing equation.

For boundary (external) nodes at which non-Dirichlet boundary conditions are ap-
plied, the corresponding discrete equation is obtained considering simultaneously the
boundary condition and the governing equation.
For instance, consider that at the left boundary of the domain the following (con-
vection) boundary condition applies:

−k ∂T

∂x

∣∣∣∣
x=x1

= h [T∞ − T (x1, yj)]

Advanced Heat Transfer – Part IV: 1. Introduction 30 of 35



4. Discretization Methods: Finite Difference Method
Application to Steady, Source-free, Const. Property, 2D Cartesian Heat Diff. Eq.

The discretized equation for a nodal point located at the left boundary where the
previous convection boundary condition applies – generic point (x1, yj), with 2 ≤
j ≤ Nj − 1 (see node locations in Slide 26) – is obtained as follows:(

∂2T

∂x2

)
1,j

=

(
∂T
∂x

)
1+1/2,j −

(
∂T
∂x

)
1,j

x1+1/2,j − x1,j
=

T2,j−T1,j
∆x

− h(T1,j−T∞)
k

∆x/2
=

2T2,j − 2 (1 + h∆x/k)T1,j + 2 (h∆x/k)T∞

(∆x)2

The approximation for ∂2T/∂y2 presented in Slide 29 still holds for the current
boundary nodes. Substituting the approximations for the second derivatives into the
governing equation (first equation presented in Slide 27) and assuming a uniform
2D grid (∆x = ∆y), the discretized equation for these boundary nodes corresponds
to

2T2,j + T1,j+1 + T1,j−1 +
2h∆x

k
T∞ − 2

(
h∆x

h
+ 2
)
T1,j
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4. Discretization Methods: Weighted Residual Method
Basic Concepts

• The differential equation is expressed in the form L (φ) = 0, where φ (x) and L
correspond to the dependent variable and differential operator, respectively.
Considering φ (x) an approximate solution of φ (x), the residual R ≡ L

(
φ
)
6= 0

is multiplied by a weighting function w – forming the weighted residual (wR) –
and the corresponding integration over the domain of interest Ω is set to zero∫

Ω

w (x)R (x) dΩ = 0

φ (x) =
N∑
i=1

aiΨi (x) w (x) =
N∑
i=1

biwi (x)

• Finite element method and finite volume method are particular versions of the
weighted residual method.

• Finite element method: the same set of basis functions is considered for the
definition of the approximate solution and weighting function, i.e., wi = Ψi .

• Finite volume method: no assumption on the functional dependence of φ is
considered and w (x) is set equal to one.
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4. Discretization Methods: Finite Volume Method
Basic Concepts (1/2)

• The entire solution domain (computational domain) is divided into a
finite (discrete) number of contiguous (adjacent and non-overlapping)
control volumes (cells) forming a mesh (grid) – step known as space
discretization (or mesh generation).

• In general, control volumes are triangles, quadrilaterals, or arbitrary
polygons in 2D and tetrahedral and hexahedral elements or arbitrary
polyhedra in 3D geometries.

• At the centroid (geometrical center) of each control volume, a nodal
point is placed at which the dependent variable is computed – other
choices for nodal point locations are possible.

• The governing equation in the integral form is the starting point for the
application of the finite volume method – since the governing differential
equation is not solved directly (it is integrated, approximated, and then
solved) the solution obtained is called the weak form solution.
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4. Discretization Methods: Finite Volume Method
Basic Concepts (2/2)

• The integral form of the transport (conservation) equation is applied to
each control volume yielding one discretized algebraic equation.

• Piecewise profiles for the variation of the dependent variable between grid
points are considered to evaluate integrals.

• Each discretized equation represents a mathematical statement of the
conservation principle over the corresponding control volume.

• The numerical solution obtained using the finite volume method satisfies
local and global conservation independently of grid characteristics – even
in a coarse mesh conservation is assured.

• The numerical solution of the system of algebraic equations derived by
applying the finite volume discretization method yields an approximate
solution to the original governing (differential) equation at only the grid
nodes. There is no underlying assumption concerning the numerical
solution at other points embraced by the computational domain.
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Further Reading

• Chapter 1: Introduction
• Chapter 2: Mathematical Description Physical
Phenomena

• Chapter 3: Discretization Methods

• Chapter 1: Introduction
• Chapter 2: Conservation Laws of Fluid Motion
and Boundary Conditions

• Chapter 1: Basic Concepts of Fluid Flow
• Chapter 2: Introduction to Numerical Methods
• Chapter 3: Finite Difference Methods
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