
Advanced Heat Transfer

Extraordinary Exam – Problem 3

September 4, 2021 (17h00)

Consider combined diffusion and convection transport as well as generation of thermal energy in a
tube with an inner radius (R) and length (L) equal to 0.2 m and 0.5 m, respectively. A laminar flow
of an incompressible and constant property fluid under fully developed hydrodynamic conditions is

considered in the tube. The axial velocity profile is given by vz (r) = 2um

[
1− (r/R)2

]
, where r and

um correspond to the local radial position and mean fluid velocity, respectively. (Note that for the
current conditions, the radial velocity component (vr) and ∂vz/∂z are negligible.) The volumetric
rate of thermal energy generation (q̇) is given by 500 (T [K])2 W m−3, where T [K] corresponds to the
local temperature provided in the Kelvin scale. At the tube inlet section (z = 0), the total mass flow
rate (ṁ) and fluid temperature (Tin) are equal to 1.0 kg s−1 and 350 K, respectively. The fluid density
(ρ), specific heat (cp), and thermal conductivity (k) are equal to 13464 kg m−3, 138.443 J kg−1 K−1,
and 8.883 W m−1 K−1, respectively. Temperature gradients along the circumferential direction (angular
coordinate – φ) are negligible and, consequently, the governing equation for the temperature distribution
written in 2D (two-dimensional) axisymmetric (r, z) coordinates is presented below.
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Consider the 2D axisymmetric calculation domain discretized with a uniform mesh (∆r = ∆z). Apply
the finite volume method for the following questions.

(a) (1.0 v.) Determine the maximum cell size along both coordinate directions to ensure a reliable
application of the central differencing scheme to the governing equation.

Solution:

To obtain a bounded (physically realistic) solution the absolute value of the grid Peclet number
(Pe) in both coordinate directions must be lower than 2.0. In the radial direction there is no
bulk fluid motion (vr = 0) – thermal energy transport occurs exclusively by diffusion – and,
consequently, any cell spacing ∆r considered does not lead to unbounded solutions. In the axial
direction the relative importance of convection over diffusion differs according to the radial location
in consideration. The worst case – for which the relative strength of convection over diffusion is
the highest (highest Pez value) – is observed at the nearest node to the tube center-line (r = 0)
because it is at the tube center-line that the highest axial velocity is observed – see Equation (1).

umax ≡ vz (r = 0) = 2um

[
1− (0/R)2

]
⇔ umax =

2ṁ

ρπR2
(1)

Since the grid Peclet number along the (axial) flow direction must be lower than 2, the maximum
possible cell spacing along the axial direction is calculated with Equation (2).

Pez ≡
Fz

Dz
< 2⇔ ρumaxcp∆z

k
< 2⇔ ∆z <

2k

ρumaxcp
⇔ ∆z <

πR2k

ṁcp
⇔

⇔ ∆z <
π × 0.22 × 8.883

1.0× 138.443
⇔ ∆z < 8.063 mm

(2)

The cell size along both coordinate directions (∆r = ∆z) should be less than 8.063 mm. Other-
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wise, non-positive (discretized equation) coefficients can arise leading to unbounded (physically
unrealistic) solutions.

(b) (2.0 v.) Considering the central differencing scheme and a mesh featuring 5 mm × 5 mm uniform
control volumes, determine the discretized equation for the node whose coordinates are given by
(rP, zP) = (0.1025 m, 0.2525 m). Present all intermediate calculations as well as the final (computed)
values for center-point and neighboring node coefficients – aP and anb, respectively – and the
constant term b. (In cylindrical coordinates the infinitesimal volume is given as dV = r dr dφ dz.)

Solution:

The discretized equation for a generic bulk node is obtained by volume integration of the governing
equation followed by the application of suitable interpolation functions (profile assumptions).
Volume integration is performed in Equations (3) – (8). (Note that the convective term along the
radial direction is negligible (vr = 0) and, consequently, it is not considered in the equations that
follow. Additionally, the diffusion coefficient Γ is equal to k/cp.)
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Substituting Equations (4)–(7) into Equation (3) the following equation (Equation (8)) is obtained.∫
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Considering the central differencing scheme for the convective terms and piecewise-linear profiles
(central differencing scheme) to evaluate the derivatives at the cell faces, the final discretized
equation is given as follows – see Equation (9).
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︸ ︷︷ ︸
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(9)

For the grid node in consideration, the discretized equation coefficients and constant term are
calculated below.

aW ≡ Dw =
Γwrw∆z

∆r
=
k (rP −∆r/2) ∆z

cp∆r
=

8.883× (0.1025− 0.005/2)× 0.005

138.443× 0.005
⇔

⇔ aW ≈ 6.416× 10−3 kg s−1

(10)

aE ≡ De =
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=

8.883× (0.1025 + 0.005/2)× 0.005
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⇔
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(11)
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]
⇔ aN ≈ 3.570× 10−3 kg s−1

(13)
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Source-term linearization (required to compute the center-point coefficient and constant term):
There are different procedures to linearize the source term, i.e., the constant part (sC) and the
coefficient of TP (sP) may assume different values leading to the same final (converged) solution.
However, the considered sP value cannot be positive to avoid divergence issues during the iterative
solution procedure. The following source-term linearization is herein considered – see Equation
(14). (In Equation (14), T ∗

P corresponds to the dependent variable value obtained at the previous
iteration (or initially guessed).)

s = sC + sPTP ⇔ s = 500 (T ∗
P)2︸ ︷︷ ︸

sC

+

sP︷︸︸︷
0 TP (14)

In such conditions, the center-point coefficient (aP) and the constant term (b) are calculated as
shown in Equations (15) and (16), respectively.

aP = aW + aE + aS + aN − SP ⇔ aP = 6.416× 10−3 + 6.737× 10−3 + 9.584× 10−3+

3.570× 10−3 − 0⇔ aP = 2.631× 10−2 kg s−1
(15)

b = SC ≡
sC

cp
rP∆r∆z ⇔ b =

500 (T ∗
P)2

138.443
× 0.1025× 0.005× 0.005⇔

⇔ b ≈ 9.255× 10−6 (T ∗
P [K])2 K kg s−1

(16)

The discretized equation for the nodal point in consideration is written as presented by Equation
(17), where temperatures are considered in the Kelvin scale.

26.310TP = 6.416TW + 6.737TE + 9.584TS + 3.570TN + 9.255× 10−3T ∗
P

2 (17)

(c) (1.0 v.) Considering the upwind differencing scheme, determine the discretized equation for the
boundary node embraced by the control volume with faces coincident to z = 0 and r = 0. Present
all intermediate calculations including the final expressions required to compute the center-point
and neighboring node coefficients and constant term b.

Solution:

The discretized equation for such boundary grid node is obtained considering Equation (8) and
taking into account the corresponding convective term discretization method (upwind differencing
scheme) and the stated boundary conditions – see Equation (18).

[(ρvzT )n − (ρvzT )s] rP∆r =
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⇔ Fz (TP − Tin) = De (TE − TP) +Dn (TN − TP)− 2Din (TP − Tin) + (SC + SPTP)⇔
⇔ [De +Dn + 2Din + Fz − SP]︸ ︷︷ ︸
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aW

TW + De︸︷︷︸
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b

(18)
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The following table summarizes the expressions required to compute the coefficients and constant
term for the discretized equation of any interior (bulk) node.

aW aE aS aN aP ST
P b

0 De ≡ Γere∆z
∆r

0 Dn ≡ ΓnrP∆r
∆z

∑
anb − ST

P −2Din − Fz + SP ST
C ≡ 2DinTin + FzTin + SC
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