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Diffusion Problems — Outline
1. One-Dimensional Steady-State Heat Diffusion – Slide 4
◦ Discretized Equation for Interior Nodes
◦ Properties of Discretization Schemes
◦ Nonlinearities, Source-Term Linearization, and Under-relaxation
◦ Discretized Equations for Boundary Nodes
◦ Solution of Discretized Equations
◦ Problem 1, Problem 3, and Problem 5

2. One-Dimensional Transient Heat Diffusion – Slide 48
◦ Time Discretization Schemes

• Explicit Method
• Crank-Nicolson Method
• Fully Implicit Method

3. Multi-Dimensional Heat Diffusion – Slide 61
◦ Discretized Equation for Interior Nodes (Fully Implicit Scheme)
◦ Solution of Discretized Equations

• Gauss-Seidel Method
• Line-by-Line Method

◦ Problem 9
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Bear in Mind
• Although some topics are introduced in sections dedicated to
particular classes of heat transfer problems (for instance, for 1D
steady-state heat conduction) they are still valid and applicable to
other classes of problems. Examples of such topics:
◦ Boundary conditions;
◦ Linearization of source term;
◦ Properties of discretization schemes;
◦ Methods for solving algebraic (discretized) equations;
◦ ...

The introduction of such topics in an early stage – where simple
classes of problems are being considered – is recommended to
simplify its comprehension.

• In the following slides, temperature is considered as the dependent
variable – φ in the general transport equation. However, application
to other intensive properties are still valid (and straightforward) as
long as they are described by the same general transport equation.
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1. One-Dimensional (1D) Steady-State Heat Diffusion
Governing Equation: Differential and Integral Forms
• Pure heat conduction (diffusion) in steady-state conditions is the simplest

transport process.

• The steady-state heat diffusion equation (governing equation) can be
retrieved from the general transport equation neglecting the transient and
convective terms and considering φ = T , Γ = k , and Sφ = q̇.

◦ Differential form:
div (k gradT ) + q̇ = 0

◦ Integral form: ∫
A

n · (k gradT ) dA︸ ︷︷ ︸
F d

+

∫
∆V

q̇dV︸ ︷︷ ︸
Q

= 0

• The physical interpretation of the last equation corresponds to the
statement of the energy conservation principle applied to a control
volume: the net conduction heat rate leaving the the control volume
(−F d) is equal to the net rate of thermal energy generation (Q).
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1. 1D Steady-State Heat Diffusion

1D Grid – Space Discretization and Grid Notation (Grid-Point Cluster)
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1. 1D Steady-State Heat Diffusion

1D Grid Notation – Nodes, Faces, and Dimensions

W, P, and E – nodal points (nodes); w and e – CV boundaries (cell faces); ∆x –
CV width. W (w) – west node (face); E (e) – east node (face); and P – gen. node.

Net Rate of Thermal Energy Increase due to Diffusion Across CV Faces

F d ≡
∫
A

nx

(
k
dT

dx

)
dA =

∑
k

∫
Ak

nx

(
k
dT

dx

)
dA =

∫
Ae

nx

(
k
dT

dx

)
dA+∫

Aw

nx

(
k
dT

dx

)
dA = keAe

(
dT

dx

)
e︸ ︷︷ ︸

F d
e

− kwAw

(
dT

dx

)
w︸ ︷︷ ︸

F d
w
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1. 1D Steady-State Heat Diffusion

Net Rate of Thermal Energy Increase due to Diffusion Across CV Faces

The same result for F d can be obtained by volume integration – instead of
applying the Gauss’s divergence theorem and integrate the flux over the CV
boundaries.

F d ≡
∫
A

n · (k gradT ) dA =

∫
∆V

div (k gradT ) dV

For 1D Cartesian coordinates,

∫ xe

xw

d

dx

(
k
dT

dx

)
Adx = keAe

(
dT

dx

)
e︸ ︷︷ ︸

F d
e

− kwAw

(
dT

dx

)
w︸ ︷︷ ︸

F d
w
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1. 1D Steady-State Heat Diffusion

Profile Assumption

Since the dependent variable (tem-
perature) is only known (calculated)
at the nodal points W, P, and E
and temperature gradients are re-
quired at the CV faces w and e,
a suitable temperature profile be-
tween nodal points must be estab-
lished – interpolation formula. A
piecewise-linear profile – the sim-
plest profile assumption – is herein
considered.
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1. 1D Steady-State Heat Diffusion
1D Grid Notation – Nodes, Faces, and Dimensions

Diffusive Fluxes Discretization
Assuming linear approximations to compute gradients at the control volume
faces – central differencing scheme (second-order accurate scheme).

F d
e ≡ keAe

(
dT

dx

)
e

= keAe

(
TE − TP

δxPE

)

F d
w ≡ kwAw

(
dT

dx

)
w

= kwAw

(
TP − TW

δxWP

)
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1. 1D Steady-State Heat Diffusion

Nonuniform Thermal Conductivity – Interface Values
The value of the heat diffusion coefficient may vary spatially (composite ma-
terials) and/or depend on the value of the dependent variable (temperature).
The heat diffusion coefficient at the CV faces can be evaluated by linear in-
terpolation taking into account the corresponding values at the nodes and the
distance between nodes.

kw =
δxwPkW + (δxWP − δxwP) kP

δxWP

ke =
δxPekE + (δxPE − δxPe) kP

δxPE

For a uniform grid (equally spaced grid) where the CV faces w and e are
midway between nodes W and P and P and E, respectively, the linearly inter-
polated thermal conductivity values are given as follows:

kw =
kW + kP

2
ke =

kP + kE

2
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1. 1D Steady-State Heat Diffusion
Net Rate of Thermal Energy Generation in the CV
The volumetric rate of thermal energy generation, q̇, may be a function of
the dependent variable (temperature). In such cases and since the discretized
equations are solved by techniques for linear algebraic equations, the volume
integral should be written in a linear form as follows:

Q ≡
∫

∆V

q̇dV = q̇∆V = (sC + sPTP)︸ ︷︷ ︸
s≡q̇

∆V =

S=SC+SPTP︷ ︸︸ ︷
(sC + sPTP) δwe AP

• sC – constant part of the linear function of TP (function s) representing
the average rate of thermal energy generation per unit volume (q̇).

• sP – coefficient of TP in the linear function s (TP).

• To calculate q̇ through the function s (TP), the temperature at node P
(TP) is assumed to prevail throughout the control volume.
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1. 1D Steady-State Heat Diffusion
Bulk Control Volumes – Discretized Governing Equation

F d
e − F d

w + Q = 0⇔ Aef
d
e − Awf

d
w + APS = 0⇔

⇔ keAe

(
TE − TP

δxPE

)
− kwAw

(
TP − TW

δxWP

)
+ (sC + sPTP) δweAP = 0

Considering Aw = AP = Ae = A (1D heat conduction) and rearranging,(
kw

δxWP

+
ke

δxPE

− sPδwe

)
︸ ︷︷ ︸

aP

TP =
kw

δxWP︸ ︷︷ ︸
aW

TW +
ke

δxPE︸︷︷︸
aE

TE + sCδwe ⇔

⇔ (aW + aE − SP)︸ ︷︷ ︸
aP

TP = aWTW + aETE + SC︸︷︷︸
b

⇔

⇔ aPTP = aWTW + aETE + b

The discretized equation contains the value of T at the central node (node
P) and at the neighboring nodes W and E.
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1. 1D Steady-State Heat Diffusion

Properties of Discretization Schemes
Physically realistic numerical results are only obtained when the discretization
schemes fulfill certain fundamental rules, in particular:

• Conservativeness (basic rule)

• Boundedness (basic rule)

• Accuracy

• Transportiveness (relevant for convection-diffusion problems – introduced
later)

Basic rule – rule that must be respected for every discretization scheme. Oth-
erwise, physically unrealistic values can be obtained or solution convergence
can be compromised (i.e., no converged solution is obtained).
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1. 1D Steady-State Heat Diffusion

Properties of Discretization Schemes – Conservativeness

• The conservativeness property states that the flux of a property φ leaving
a control volume across a certain face must be equal to the flux of φ
entering the adjacent control volume through the same face.

• To ensure conservativeness, the flux through a common face must be
represented in a consistent manner (using the same expression) in
adjacent control volumes – see figures below.

Consistent definition of diffusive fluxes Inconsistent definition of diffusive fluxes

• If discretization scheme conservativeness is ensured, the conservation law
is satisfied either locally and globally.
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1. 1D Steady-State Heat Diffusion
Properties of Discretization Schemes – Boundedness (1/2)

• In the absence of sources, the boundedness property states that the
internal nodal values of property φ should be bounded by its boundary
values. (For instance, the source-free, constant-property, and steady-state
heat conduction problem (described by Laplace equation) has maximum
and minimum values of temperature at the medium boundaries (if the
medium is not in thermal equilibrium) and, consequently, the
temperature of all internal points are bounded by such limits.)

• To ensure boundedness, all coefficients of the discretized equations (aP
and anb – neighboring node coefficients (aW, aE, ...)) should have the
same sign (usually all positive). (Physically, this implies that an increase
in the variable φ at one node should result in an increase in φ at
neighboring nodes, considering other conditions unchanged.)

• In the existence of a source term (S = SC + SPTP 6= 0), in order to avoid
a negative center-point coefficient (aP) – which would violate the bound-
edness property –, the coefficient SP must be less than or equal to zero.
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1. 1D Steady-State Heat Diffusion

Properties of Discretization Schemes – Boundedness (2/2)

• For satisfying boundedness, the differencing scheme should provide
coefficients in compliance with the Scarborough criterion. Scarborough
criterion states that a sufficient condition for a convergent iterative
method can be expressed in terms of the values of the coefficients of the
discretized equations as follows:{ ∑

nb |anb| ≤ |aP| , at all nodes.∑
nb |anb| < |aP| , at one node at least.

• The Scarborough criterion is observed if, for all nodes (and at least for
one node), the absolute value of the coefficient aP is greater or equal
(greater) to the sum of the absolute values of the neighboring coefficients
(anb).

• A matrix of coefficients which verifies the Scarborough criterion is known
as diagonally dominant.
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1. 1D Steady-State Heat Diffusion

Properties of Discretization Schemes – Accuracy (1/3)

For an equally spaced (uniform) 1D grid, consider the following two Taylor series
expansions:

φ (x + ∆x) = φ (x) +

(
∂φ

∂x

)
x

∆x +

(
∂2φ

∂x2

)
x

∆x2

2
+

(
∂3φ

∂x3

)
x

∆x3

6
+ . . .

φ (x −∆x) = φ (x)−
(
∂φ

∂x

)
x

∆x +

(
∂2φ

∂x2

)
x

∆x2

2
−
(
∂3φ

∂x3

)
x

∆x3

6
+ . . .

Subtracting the last equation from the first equation, the following equation is
obtained for the first derivative (equation known as the central difference formula
for the first derivative):(

∂φ

∂x

)
x

=
φ (x + ∆x)− φ (x −∆x)

2∆x
−
(
∂3φ

∂x3

)
x

∆x2

6
−
(
∂5φ

∂x5

)
x

∆x4

60
. . .
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1. 1D Steady-State Heat Diffusion
Properties of Discretization Schemes – Accuracy (2/3)

The previous equation, if applied to evaluate the temperature gradient at the control
volume face w – for instance, for the 1D heat diffusion equation discretization – reads
as follows:(
dT

dx

)
w

=
TP − TW

2 (∆x/2)
−
(
d3T

dx3

)
w

∆x2

6
+ . . .︸ ︷︷ ︸

Truncated Terms

⇒
(
dT

dx

)
w

=
TP − TW

∆x
+O(∆x2)

The last equation requires besides nodal values of T (at points W and P), higher-
order derivatives. Since the higher-order derivatives are unknown the corresponding
terms are neglected and, consequently, the difference approximation becomes(

dT

dx

)
w
≈ TP − TW

∆x

The linear temperature profile between nodal points assumed previously to compute
diffusive heat fluxes at the cell faces (see Slide 8) is equivalent to neglect the stated
truncated terms of the series expansion.
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1. 1D Steady-State Heat Diffusion
Properties of Discretization Schemes – Accuracy (3/3)

The error derived from truncating the series – commonly referred to as the Taylor
series truncation error (TSTE), or shortly, truncation (or discretization) error – at
the cell face w is written as

εw = − (∆x)2

6

(
d3T

dx3

)
w
− (∆x)4

60

(
d5T

dx5

)
w

+ . . .

Since the leading term of the truncation error (term with the smallest grid
spacing exponent) is proportional to the grid spacing squared (ε ∝ (∆x)2),
the current finite-difference approximation for the first derivative (central dif-
ferencing scheme) is second-order accurate – truncation error of the order of
the magnitude of (∆x)2. The order of the difference approximation provides a
measure of the accuracy of the discretization scheme. The order of the approx-
imation provides the rate at which the error decreases as the grid spacing is reduced.

Truncation errors are inevitable unless the higher-order derivatives are zero, which
rarely occurs in practical problems. The truncation error can be reduced by selecting
finer grids, i.e., decreasing the grid spacing.
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1. 1D Steady-State Heat Diffusion

Suggested Problem:
Problem 1
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1. 1D Steady-State Heat Diffusion
Nonlinearities

• The discretized equation for a bulk (interior) CV with a central node P
(last equation of Slide 12) is a linear algebraic equation – assuming that
coefficients aW, aP, aE, and b do not depend on temperature.

• However, nonlinearites in the mathematical model formulation can arise
if: (i) the thermal conductivity (k) depends on temperature; (ii) the
volumetric rate of thermal energy generation (q̇) is a nonlinear function
of temperature; or (iii) boundary conditions are nonlinear functions of
temperature. In such cases, the solution for the set of algebraic equations
requires successive iterations in accordance to the following procedure:

1. Provide an initial guess for the temperature of all nodes, T ;
2. Calculate/update coefficients aW, aP, aE, and b taking into account

the previous estimate for the temperature, T ∗;
3. Solve the system of linear algebraic equations to obtain new

temperature values, T ;
4. Repeat Steps 2–3 until a converged solution for all nodes is obtained.
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1. 1D Steady-State Heat Diffusion
Source-Term Linearization – Suggested Approaches (1/2)

The source term dependency on temperature (if any) should comply with the
following linear form:

s (TP) = sC + sPTP

1. Considering the source term defined by s (TP) = c0 + c1TP, with |c1| > 0,
the recommended values for sC and sP can be calculated as follows:

sC = c0 + c ′1T
∗
P sP = (c1 − c ′1)

c ′1 =

 0, if problem solvable without iterations.
≥ c1, if c1 > 0 and iterative solution procedure required.
> 0, if c1 < 0 and iter. convergence slowdown pursued.

A progressive increase of c ′1 above c1 (0) when c1 > 0 or (c1 < 0)
promotes a slowdown in the iterative convergence procedure which can
be beneficial to successfully achieve a converged solution.
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1. 1D Steady-State Heat Diffusion
Source-Term Linearization – Suggested Approaches (2/2)

2. Considering the source term defined by a polynomial function
s (TP) =

∑n
i=0 ciT

i
P, with n ≥ 2, the recommended values for sC and sP

can be calculated as follows:

sC = c0 −
n−1∑
i=0

(
ici+1 − c ′i+1

)
(T ∗P)i+1 sP =

n∑
i=1

(ici − c ′i ) (T ∗P)i−1

c ′1 = c ′i = c ′n =

 0, if
∑n

i=1 ici ≤ 0.
> 0, if

∑n
i=1 ici ≤ 0 and conv. slowd. pursued.

≥ ici , if
∑n

i=1 ici > 0.

3. More generally, the recommended linearization practice (expressions for
sC and sP) is derived from the application of the following truncated
Taylor series expansion:

s (TP) ≡ sC + sPTP = s (T ∗P) + (TP − T ∗P)

(
ds

dTP

)
TP=T∗

P

Advanced Heat Transfer – Part IV: 2. Diffusion Problems 23 of 75



1. 1D Steady-State Heat Diffusion
Source-Term Linearization – Examples (1/3)

Function s (TP) sC sP Option (Opt.)

1 2− 7TP

2 −7 1
2 + 5T ∗P −12 2
2− 4T ∗P −3 3

2 9 + 2TP

9 2 1
9 + 2T ∗P 0 2
9 + 4T ∗P −2 3

3 3− 6T 2
P

3 + 6 (T ∗P)2 −12T ∗P 1
3 + 10 (T ∗P)2 −16T ∗P 2

• Function 1: Opt. 1 is the recommended linearization procedure. Opt. 2 may be
advantageous for convergence because it promotes a slowdown in the iterative
solution procedure. Convergence with Opt. 3 is possible but this option fails to
take advantage of the dependence of s on T .

• Function 2: Opt. 1 is only applicable when no iterations are required to solve
the problem. Otherwise apply Opts. 2 or 3. Opt. 3 is slower (requires more
iterations) than Opt. 2 but it can be more robust (avoid solution divergence).
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1. 1D Steady-State Heat Diffusion

Source-Term Linearization – Examples (2/3)

Function s (TP) sC sP Option (Opt.)

2 9 + 2TP

9 2 1
9 + 2T ∗P 0 2
9 + 4T ∗P −2 3

3 3− 6T 2
P

3 + 6 (T ∗P)2 −12T ∗P 1
3 + 10 (T ∗P)2 −16T ∗P 2
3 + 12 (T ∗P)2 −18T ∗P 3

4 2 + 3T 3
P

2− 6 (T ∗P)3 9 (T ∗P)2 1
2− 6 (T ∗P)3 −9 (T ∗P)2 2
2 + 3 (T ∗P)3 0 3

• Function 3: all options are suitable but as decreasing the slope value (from
−12T ∗P to −18T ∗P), the convergence rate of the iterative procedure is slowed
down – it may be useful to successfully obtain a converged solution. (Opt. 1 is
derived from the direct application of the last equation of Slide 23 – note that
Opt. 1 provides the line tangent to the curve s (TP) at TP = T ∗P.)
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1. 1D Steady-State Heat Diffusion
Source-Term Linearization – Examples (3/3)

Function s (TP) sC sP Option (Opt.)

4 2 + 3T 3
P

2− 6 (T ∗P)3 9 (T ∗P)2 1
2− 6 (T ∗P)3 −9 (T ∗P)2 2
2 + 3 (T ∗P)3 0 3

• Function 4: Opt. 1 is obtained applying the last equation of Slide 23. However,
Opt. 1 has a positive sP value, and consequently, it is not recommended since
the source term is nonlinear and the problem solution would require an iterative
procedure. (For avoiding divergence, sP should not be positive because it may
result in a negative center-point coefficient, aP.) Opt. 2 is incorrect because it
does not agree with the prescribed s (TP) function – note that when a
converged solution is obtained TP is equal to T ∗P and, in such case, the source
term of Opt. 2 is described by a different function (2− 15T 3

P) than the
prescribed one (2 + 3T 3

P). Opt. 3 is the appropriate linearization procedure. (If
a convergence slowdown is pursued – for instance, to improving the robustness
against solution divergence due to other nonlinearity sources – a negative value
for sP can be recommended.)
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1. 1D Steady-State Heat Diffusion
Under-relaxation Strategies for the Iterative Sol. of Nonlinear Probs.

• During the iterative solution procedure adopted for handling nonlinearities
(see Slide 21) the coefficient values – calculated based on the solution of
the previous iteration (T ∗) – may change very abruptly which may lead to
divergence issues, and consequently, no reliable solution can be obtained.

• To avoid very steep changes in the discretized equation coefficients it is
recommended to slowdown solution changes between successive iterations
– process known as under-relaxation. Therefore, the temperature solution
at node P (TP) is calculated as shown below, where α corresponds to the
under-relaxation factor (0 < α < 1), and T ∗P and T̃P are the solution
from the previous iteration and the solution computed with the boxed
equation of Slide 12, respectively.

TP = αT̃P + (1− α)T ∗P

• Under-relaxation can also be applied to other quantities (viz. thermal
conductivities, boundary conditions, and source terms) – besides to the
dependent variable (T ).

Advanced Heat Transfer – Part IV: 2. Diffusion Problems 27 of 75



1. 1D Steady-State Heat Diffusion

Suggested Problem:
Problem 3
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1. 1D Steady-State Heat Diffusion
Boundary Control Volumes – Discretized Boundary Conditions
Three types of boundary conditions are herein considered:

• prescribed temperature (boundary condition of first kind or
Dirichlet boundary condition);

• specified heat flux (boundary condition of second kind or Neumann
boundary condition); and

• convection boundary condition (boundary condition of third kind or
Robin boundary condition).

The application of such conditions into the discretized equations of
boundary control volumes is illustrated in the slides that follow, in par-
ticular, for the right (last) control volume.
(Note that the physical domain boundaries x = xA and x = xB are
coincident with the west and east faces of the first and last control
volumes, respectively.)
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1. 1D Steady-State Heat Diffusion

1D Grid – Space Discretization and Grid Notation (Grid-Point Cluster)
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1. 1D Steady-State Heat Diffusion

Discretized Boundary Conditions: Prescribed Temperature (1/2)

Prescribed temp. at the right boundary of the domain: T (x = xB) = TB

f de − f dw + S = 0⇔ kB
(TB − TP)

δxPB

− kw
(TP − TW )

δxWP

+ (SC + SPTP) = 0

Rearranging,

 kw

δxWP

−ST
P︷ ︸︸ ︷

−SP +
kB

δxPB


︸ ︷︷ ︸

aP

TP =
kw

δxWP︸ ︷︷ ︸
aW

TW + 0︸︷︷︸
aE

TE +

b≡ST
C︷ ︸︸ ︷

SC +
kB

δxPB

TB ⇔

⇔ aPTP = aWTW + aETE + b
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1. 1D Steady-State Heat Diffusion

Discretized Boundary Conditions: Prescribed Temperature (2/2)

Prescribed temp. at the right boundary of the domain: T (x = xB) = TB

aPTP = aWTW + aETE + b

aP = aW + aE − ST
P

aW =
kw

δxWP

aE = 0

ST = ST
C + ST

PTP

b ≡ ST
C = SC +

kB

δxPB

TB

ST
P = SP −

kB

δxPB

Note that: (i) for a uniform grid δxPB = 1/2δxWP ; and (ii) in the absence of
thermal energy generation (energy source) S = 0 (SC = 0 and SP = 0).
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1. 1D Steady-State Heat Diffusion

Discretized Boundary Conditions: Specified Heat Flux (1/2)

Specified heat flux at the right boundary of the domain:
(
k dT

dx

)∣∣
x=xB

= q′′B

f de − f dw + S = 0⇔ q′′B − kw
(TP − TW )

δxWP

+ (SC + SPTP) = 0

Rearranging,

 kw

δxWP

−ST
P︷︸︸︷

−SP


︸ ︷︷ ︸

aP

TP =
kw

δxWP︸ ︷︷ ︸
aW

TW + 0︸︷︷︸
aE

TE +

b≡ST
C︷ ︸︸ ︷

SC + q′′B ⇔

⇔ aPTP = aWTW + aETE + ST
C
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1. 1D Steady-State Heat Diffusion

Discretized Boundary Conditions: Specified Heat Flux (2/2)

Specified heat flux at the right boundary of the domain:
(
k dT

dx

)∣∣
x=xB

= q′′B

aPTP = aWTW + aETE + b

aP = aW + aE − ST
P

aW =
kw

δxWP

aE = 0

ST = ST
C + ST

PTP

b ≡ ST
C = SC + q′′B

ST
P = SP

Note that: (i) for a uniform grid δxPB = 1/2δxWP ; and (ii) in the absence of
thermal energy generation (energy source) S = 0 (SC = 0 and SP = 0).
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1. 1D Steady-State Heat Diffusion

Discretized Bound. Conditions: Convection Boundary Condition (1/2)
Imposed convective heat flux at the right boundary of the domain:(
k dT

dx

)∣∣
x=xB

= h [T∞ − T (x = xB)]

f de − f dw + S = 0⇔

UB︷ ︸︸ ︷(
δxPB

kB
+

1
h

)−1

(T∞ − TP)− kw
(TP − TW )

δxWP

+

(SC + SPTP) = 0
Rearranging, kw

δxWP

−ST
P︷ ︸︸ ︷

−SP + UB


︸ ︷︷ ︸

aP

TP =
kw

δxWP︸ ︷︷ ︸
aW

TW + 0︸︷︷︸
aE

TE +

b≡ST
C︷ ︸︸ ︷

SC + UBT∞ ⇔

⇔ aPTP = aWTW + aETE + b
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1. 1D Steady-State Heat Diffusion

Discretized Bound. Conditions: Convection Boundary Condition (2/2)
Imposed convective heat flux at the right boundary of the domain:(
k dT

dx

)∣∣
x=xB

= h [T∞ − T (x = xB)]

aPTP = aWTW + aETE + b

aP = aW + aE − ST
P

aW =
kw

δxWP

aE = 0

ST = ST
C + ST

PTP

b ≡ ST
C = SC + UBT∞

ST
P = SP − UB

UB =

(
δxPB

kB
+

1
h

)−1

Note that: (i) for a uniform grid δxPB = 1/2δxWP ; and (ii) in the absence of
thermal energy generation (energy source) S = 0 (SC = 0 and SP = 0).
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1. 1D Steady-State Heat Diffusion

Discretized Boundary Conditions: Summary

BC Boundary aW aE b ST
P aP

1st L 0 ke
δxPE

SC + kA
δxAP

TA SP − kA
δxAP

aW + aE − ST
P

R kw
δxWP

0 SC + kB
δxPB

TB SP − kB
δxPB

2nd L 0 ke
δxPE

SC + q′′A SP

R kw
δxWP

0 SC + q′′B SP

3rd L 0 ke
δxPE

SC + UAT∞ SP − UA

R kw
δxWP

0 SC + UBT∞ SP − UB

First Column – boundary condition kind; and Second Column – L (left boundary) and R (right boundary).

Boundary conditions are considered in the discretized equations of boundary
control volumes by suppressing the link to the boundary side (aW = 0 or
aE = 0) and introducing the boundary side heat flux through additional terms
on ST

C (≡ b) and/or ST
P .
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1. 1D Steady-State Heat Diffusion

Suggested Problem:
Problem 5
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1. 1D Steady-State Heat Diffusion
Solution of Discretized Equations (1/2)
For each nodal point, the discretization process yields the following equation

aPTP = aWTW + aETE + b

which can be re-written as

aiTi = biTi+1 + ciTi−1 + di

and the system of linear algebraic equations can be presented in a matrix form
as follows

a1 −b1 0 0 . . . 0 0 0 0
−c2 a2 −b2 0 . . . 0 0 0 0
0 −c3 a3 −b3 . . . 0 0 0 0
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

0 0 0 0 . . . −cN−2 aN−2 −bN−2 0
0 0 0 0 . . . 0 −cN−1 aN−1 −bN−1
0 0 0 0 . . . 0 0 −cN aN


︸ ︷︷ ︸[

a
]



T1
T2
T3
.
.
.

TN−2
TN−1
TN


︸ ︷︷ ︸[

T
]

=



d1
d2
d3
.
.
.

dN−2
dN−1
dN


︸ ︷︷ ︸[

b
]
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1. 1D Steady-State Heat Diffusion
Solution of Discretized Equations (2/2)

• The solution for the temperature distribution can be calculated through
direct matrix inversion methods – such as, Cramer’s rule and Gauss
elimination – as follows:[

a
] [

T
]

=
[
b
]
⇔
[
T
]

=
[
a
]−1 [

b
]

• In alternative, other more efficient (economical) methods that take
advantage of matrix sparsity (matrix [a] is a tridiagonal matrix) can be
considered such as, the Thomas algorithm (or tridiagonal matrix
algorithm – TDMA).

• The solution techniques for linear algebraic equations suggested before
belong to the class of direct methods – methods requiring no iterations.
An alternative class of methods are the indirect or iterative methods.

• The number of operations required by direct methods to solve a system
of N equations with N unknowns can be determined in advance – on the
order of N3 – but not for iterative methods.
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1. 1D Steady-State Heat Diffusion

Solution of Discretized Equations – Application to Problem 5(c) (1/3)

Taking into account the discretized equations developed for Problem 5(c),
determine the corresponding solution considering L = 1 (domain length) and
10 (equally-sized) control volumes.

The expressions developed for the coefficients aW, aP, aE, and b should be
evaluated taking into account the conditions considered – see the values for
these coefficients in the next table.

Node aW aE b
(
= SC,S

T
C
)

SP, ST
P aP

1 0.000 30.000 1057.143 −8.571 38.571

2, . . . , 9 30.000 30.000 200.000 0.000 60.000

10 30.000 0.000 3200.000 −60.000 90.000
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1. 1D Steady-State Heat Diffusion

Solution of Discretized Equations – Application to Problem 5(c) (2/3)

The equation for the first node (i = 1) reads as follows:

aPTP = aWTW + aETE + b ⇔
⇔ 38.571T1 = 0TW + 30T2 + 1057.143⇔ 38.571T1 − 30T2 = 1057.143

The equation for any interior node i (2 ≤ i ≤ 9) reads as follows:

aPTP = aWTW + aETE + b ⇔
⇔ 60Ti = 30Ti−1 + 30Ti+1 + 200⇔ −30Ti−1 + 60Ti − 30Ti+1 = 200

The equation for the last node (i = 10) reads as follows:

aPTP = aWTW + aETE + b ⇔
⇔ 90T10 = 30T9 + 0TE + 3200⇔ −30T9 + 90T10 = 3200
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1. 1D Steady-State Heat Diffusion
Solution of Discretized Equations – Application to Problem 5(c) (3/3)
The previous equations can be presented in a matrix form as follows

38.571 −30 0 . . . 0 0 0
−30 60 −30 . . . 0 0 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

0 0 0 . . . −30 60 −30
0 0 0 . . . 0 −30 90





T1
T2
.
.
.

T9
T10

 =



1057.143
200
.
.
.

200
3200

⇔
[
T
]

=
[
a
]−1 [b]

The results for uniform grids with 10 and 100 CVs are presented in the following
figure. Analytical results are also provided for comparison purposes.
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1. 1D Steady-State Heat Diffusion
Methods for Solving Algebraic Equations – TDMA

• Tridiagonal matrix algorithm is an efficient method (O(N) – requires
computational storage and computational time proportional to N) for
solving a system of N linear algebraic equations represented by

aiTi = biTi+1 + ciTi−1 + di

where i = 1, . . . , N. Note that for i = 1 and i = N (first and last nodal
points of the domain), c1 = 0 and bN = 0, respectively.

• Tridiagonal matrix algorithm is comprised by two main steps: (i) forward
elimination; and (ii) backward substitution. In the forward elimination
stage, the dependency of Ti−1 on Ti is eliminated for nodes i = 2 to
i = N. Consequently, the equation for Ti only depends on Ti+1 for i = 1
to i = N − 1 and TN is directly computed based on the values of ai , bi ,
ci , and di . Once TN is known the remaining temperatures are calculated
(backward substitution step).
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1. 1D Steady-State Heat Diffusion
TDMA: Forward Elimination Step (1/2)

• In the forward elimination stage, each equation for Ti (i = 1, . . . , N − 1)
is rewritten in such a way that it only depends on Ti+1 as follows.

◦ Starting with i = 1,

aiTi = biTi+1 + ciTi−1 + di ⇒

⇒ a1T1 = b1T2 + d1 ⇔ T1 =
b1
a1︸︷︷︸
P1

T2 +
d1
a1︸︷︷︸
Q1

⇔ T1 = P1T2 + Q1

◦ For i = 2,

a2T2 = b2T3 + c2T1 + d2 ⇔ a2T2 =

c2b2T3 + (P1T2 + Q1)︸ ︷︷ ︸
T1

+d2 ⇔ T2 =
b2

a2 − c2P1︸ ︷︷ ︸
P2

T3 +
d2 + c2Q1

a2 − c2P1︸ ︷︷ ︸
Q2

⇔

T2 = P2T3 + Q2
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1. 1D Steady-State Heat Diffusion
TDMA: Forward Elimination Step (2/2)
◦ For 2 ≤ i ≤ N − 1,

Ti = PiTi+1 + Qi

where
Pi =

bi
ai − ciPi−1

Qi =
di + ciQi−1

ai − ciPi−1

• Finally, TN can be written as follows,

aiTi = biTi+1 + ciTi−1 + di ⇒ aNTN = cNTN−1 + dN ⇔

TN =
cN
aN

TN−1 + dN ⇔ TN =
cN
aN

(PN−1TN + QN−1)︸ ︷︷ ︸
TN−1

+
dN
aN
⇔

TN =
dN + cNQN−1

aN − cNPN−1︸ ︷︷ ︸
QN

⇔ TN = QN

Note that QN is calculated taking into account only the known values of ai , bi ,
ci , and di for 1 ≤ i ≤ N.
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1. 1D Steady-State Heat Diffusion

TDMA: Forward and Backward Steps (Summary)

1. Forward elimination step

◦ Determine P1, P2, . . . , PN−1 and Q1, Q2, . . . , QN (according to this
order – forward) and using the expressions listed in the following table.

i 1 2, . . . , N − 1 N

Pi b1/a1 bi/
(
ai − ciPi−1

)
−

Qi d1/a1
(
di + ciQi−1

)
/
(
ai − ciPi−1

) (
dN + cNQN−1

)
/
(
aN − cNPN−1

)
◦ Set TN = QN .

2. Backward substitution step

◦ Once TN , PN−1, . . . , P1, and QN−1, . . . , Q1 are known (from the
forward elimination step), the direct calculation of TN−1, . . . , T1 is
performed from i = N − 1 to i = 1 (backward) with the equation:

Ti = PiTi+1 + Qi
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2. One-Dimensional (1D) Transient Heat Diffusion

Governing Equation: Differential and Integral Forms

• The unsteady heat diffusion equation (governing equation) can be
retrieved from the general transport equation neglecting the convective
term and considering φ = T , Γ = k/cp, and Sφ = q̇/cp.

◦ Differential form:

ρcp
∂T

∂t
= div (k gradT ) + q̇

◦ Integral form: ∫ t+∆t

t

(∫
∆V

ρcp
∂T

∂t
dV

)
dt =∫ t+∆t

t

[∫
A

n · (k gradT ) dA +

∫
∆V

q̇dV

]
dt
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2. 1D Transient Heat Diffusion

Governing Equation: Differential and Integral Forms

• The unsteady 1D (Cartesian) heat diffusion equation (governing
equation) reads as follows.

◦ Differential form:

ρcp
∂T

∂t
=

∂

∂x

(
k
∂T

∂x

)
+ q̇

◦ Integral form: ∫
∆V

(∫ t+∆t

t

ρcp
∂T

∂t
dt

)
dV =

∫ t+∆t

t

[∫
∆V

∂

∂x

(
k
∂T

∂x

)
dV +

∫
∆V

q̇dV

]
dt
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2. 1D Transient Heat Diffusion
Transient Term – Discretization∫

∆V

(∫ t+∆t

t

ρcp
∂T

∂t
dt

)
dV = ρ∆Vcp [TP (t + ∆t)− TP (t)] =

ρAPδxwecp
(
T 1

P − T 0
P
)

(The temperature at the node (TP) is assumed to prevail over the whole CV.)

Diffusive and Source Term – Spatial Discretization

∫ t+∆t

t


∫
A

n · (k gradT ) dA︸ ︷︷ ︸
F d

+

∫
∆V

q̇dV︸ ︷︷ ︸
Q

 dt =

∫ t+∆t

t

[
keAe

(
TE − TP

δxPE

)
− kwAw

(
TP − TW

δxWP

)
+ (sC + sPTP) δweAP

]
︸ ︷︷ ︸

F d+Q=F d
e−F d

w+Q – see Slide 12

dt
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2. 1D Transient Heat Diffusion

Temporal Temperature Profile Assumption

To compute the integral
∫ t+∆t

t

(
F d + Q

)
dt, the following assumption on how

local temperatures (TW, TP, and TE) vary with time is considered

T = fT 1 + (1− f )T 0

where 0 ≤ f ≤ 1 is a weighting factor. (T 0 and T 1 correspond to the
temperature at time t and time t + ∆t, respectively). Consequently, the time
integral of temperature TP is given as follows:∫ t+∆t

t

TPdt =
[
fT 1

P + (1− f )T 0
P
]

∆t

f =


0, Temperature at time t (T 0) prevails over [t, t + ∆t[.
1, Temp. at the end of time step (T 1) is considered over ]t, t + ∆t].
0.5, Temperatures at t (T 0) and t + ∆t (T 1) are equally weighted.
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2. 1D Transient Heat Diffusion

Bulk Control Volumes – Discretized Governing Equation
The integral form of the governing equation reads as follows:∫

∆V

(∫ t+∆t

t

ρcp
∂T

∂t
dt

)
dV =

∫ t+∆t

t

(∫
A

n · (kgradT ) dA +

∫
∆V

q̇dV

)
dt

Substituting the expressions for each integral (see previous slides) and considering
Aw = AP = Ae, we have

ρcpδxwe

(
T 1

P − T 0
P
)

=

f

[
ke

(
T 1

E − T 1
P

δxPE

)
− kw

(
T 1

P − T 1
W

δxWP

)
+
(
sC + sPT

1
P
)
δwe

]
∆t+

(1− f )

[
ke

(
T 0

E − T 0
P

δxPE

)
− kw

(
T 0

P − T 0
W

δxWP

)
+
(
sC + sPT

0
P
)
δwe

]
∆t
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2. 1D Transient Heat Diffusion
Bulk Control Volumes – Discretized Governing Equation
From the previous slide,

ρcpδxwe

(
T 1

P − T 0
P
)

=

f

[
ke

(
T 1

E − T 1
P

δxPE

)
− kw

(
T 1

P − T 1
W

δxWP

)
+
(
sC + sPT

1
P
)
δwe

]
∆t+

(1− f )

[
ke

(
T 0

E − T 0
P

δxPE

)
− kw

(
T 0

P − T 0
W

δxWP

)
+
(
sC + sPT

0
P
)
δwe

]
∆t

This equation can be re-written as follows:

aPT
1
P = f

(
aWT 1

W + aET
1
E
)

+ b

where,

aP = f (aW + aE − SP) + ρcp
δxwe

∆t
aW =

kw

δxWP

aE =
ke

δxPE

b = (1− f )
[
aE
(
T 0

E − T 0
P
)
− aW

(
T 0

P − T 0
W
)

+ SPT
0
P
]

+ SC + ρcp
δxwe

∆t
T 0

P
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2. 1D Transient Heat Diffusion
Time Discretization Schemes

• Different values of f leads to different forms for the discretized equations
– different temporal differencing schemes for the diffusive and source
terms.

• For f = 0 (explicit scheme), the temperature T 1
P only depends on known

temperatures obtained (or estimated) in a previous (old) time step (T 0
W,

T 0
P, and T 0

E). Therefore, an explicit expression to compute T 1
P is

obtained.

• For 0 < f ≤ 1 (implicit scheme), the temperatures at t + ∆t (T 1) are
present on both sides of the discretized equation (see the boxed equation
in the previous slide) and, consequently, the calculation of T 1

P is implicit.

• Two extreme implicit schemes are considered based on the actual value
for f :

◦ f = 0.5 – Crank-Nicolson (or semi-implicit) scheme; and
◦ f = 1 – fully implicit scheme.
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2. 1D Transient Heat Diffusion

Explicit Discretization Scheme (1/2)
The explicit discretization method applied to the 1D heat diffusion equation
is obtained considering f = 0 and the corresponding discretized equation is
given as follows:

ρcp
δxwe

∆t
T 1

P = aWT 0
W + aET

0
E +

[
ρcp

δxwe

∆t
− (aW + aE − SP)

]
T 0

P + SC

• T 1
P is calculated by forward marching in time since the previous equation

only includes values at the old time step – the evaluation of a single
algebraic equation is required to obtain T 1

P.

• First-order accurate (Taylor series truncation error accuracy) in time.

• Easy to implement and solve.
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2. 1D Transient Heat Diffusion

Explicit Discretization Scheme (2/2)

• Since all coefficients need to be positive to ensure a physically realistic
solution, a constrain on the selection of the adopted time step, ∆t, arises
from the coefficient of T 0

P:

ρcp
δxwe

∆t
− aW − aE > 0⇒

Stability Criterion︷ ︸︸ ︷
∆t < ρcp

(∆x)2

2k

(A constant thermal conductivity, kw = ke = k , and a uniform grid
spacing δxWP = δxPE = ∆x are assumed.)

• Recommended for simple conduction problems.

• Not recommended for general transient problems due to the effect of
spatial accuracy on the maximum possible time step in accordance to the
stability criterion – an increase of spatial refinement leads inevitably to
very small maximum (allowable) time steps.
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2. 1D Transient Heat Diffusion

Crank-Nicolson Discretization Scheme (1/2)
The Crank-Nicolson discretization method applied to the 1D heat diffusion
equation is obtained considering f = 1/2 and the corresponding discretized
equation is given as follows: [

ρcp
δxwe

∆t
+

1
2

(aW + aE − SP)

]
T 1

P =

aW

(
T 0

W + T 1
W

2

)
+ aE

(
T 0

E + T 1
E

2

)
+

[
ρcp

δxwe

∆t
− 1

2
(aW + aE − SP)

]
T 0

P + SC

• The Crank-Nicolson method – as any other implicit method – requires
the simultaneous solution of the equations for all nodal points at each
time step.

• Second-order accurate in time – since this method is based on central
differencing.
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2. 1D Transient Heat Diffusion

Crank-Nicolson Discretization Scheme (2/2)

• Although unconditionally stable1 for all time step values, to make
sure physically realistic and bounded solutions are obtained all
coefficients need to be positive. For the coefficient of T 0

P the
following constrain is observed:

ρcp
δxwe

∆t
− 1

2
(aW + aE) > 0⇒

Stability Criterion︷ ︸︸ ︷
∆t < ρcp

(∆x)2

k

• The Crank-Nicolson method provides greater accuracy than the
explicit scheme considering sufficiently small times steps.
aA numerical method is stable if it does not magnify the errors that appear

during the solution process. For temporal problems, stability guarantees that
the method produces a bounded solution whenever the solution of the exact
equation is bounded.
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2. 1D Transient Heat Diffusion

Fully Implicit Discretization Scheme (1/2)
The fully implicit discretization method applied to the 1D heat diffusion equa-
tion is obtained considering f = 1 and the corresponding discretized equation
is given as follows:[

ρcp
δxwe

∆t
+ aW + aE − SP

]
︸ ︷︷ ︸

aP

T 1
P = aWT 1

W + aET
1
E + ρcp

δxwe

∆t
T 0

P + SC︸ ︷︷ ︸
b

• No constrains on the selection of the time step size – no stability
restrictions (unconditionally stable method) – since all coefficients (aW,
aP, aE, and the coefficient of T 0

P) are positive.

• First-order accurate in time.

• Scheme recommended for general-purpose transient calculations due to
its robustness and unconditional stability.
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2. 1D Transient Heat Diffusion

Fully Implicit Discretization Scheme (2/2)

• Less accurate than the Crank-Nicolson scheme for small time steps.

• To obtain accurate results small time steps are required.

• The steady-state discretized equation is obtained considering ∆t →∞.

• Since the fully implicit scheme implies that the new value for TP (i.e.,
T 1

P) prevails over the entire time step (]t, t + ∆t]), a temperature
dependent thermal conductivity (k = f (T )) should be iteratively
computed taking into account T 1

P – as it is done for steady-state
problems.
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3. Multi-Dimensional (MD) Heat Diffusion

Governing Equation: Differential and Integral Forms
The unsteady multidimensional Cartesian (MD Carte.) heat diffusion equation
(governing equation) reads as follows.

• Differential form:

ρcp
∂T

∂t
=

∂

∂x

(
k
∂T

∂x

)
+

∂

∂y

(
k
∂T

∂y

)
+

∂

∂z

(
k
∂T

∂z

)
+ q̇

• Integral form: ∫
∆V

(∫ t+∆t

t

ρcp
∂T

∂t
dt

)
dV =∫ t+∆t

t

[∫
∆V

∂

∂x

(
k
∂T

∂x

)
dV +

∫
∆V

∂

∂y

(
k
∂T

∂y

)
dV +

∫
∆V

∂

∂z

(
k
∂T

∂z

)
dV+∫

∆V

q̇dV

]
dt
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3. MD Heat Diffusion
Transient Term – Discretization∫

∆V

(∫ t+∆t

t

ρcp
∂T

∂t
dt

)
dV = ρ∆Vcp [TP (t + ∆t)− TP (t)] =

ρ∆Vcp
(
T 1

P − T 0
P
)

2D and 3D Cartesian Grid Notation – Nodes, Faces, and Dimensions

S (s) – south node (face); N (n) – north node (face); B (b) – bottom node (face);
and T (t) – top node (face).

Advanced Heat Transfer – Part IV: 2. Diffusion Problems 62 of 75



3. MD Heat Diffusion

Diffusive and Source Term – Spatial and Temporal Discretization∫ t+∆t

t

(∫
A

n · (k gradT ) +

∫
∆V

q̇dV

)
dt =∫ t+∆t

t

[(
F d

e − F d
w
)

+
(
F d

n − F d
s
)

+
(
F d

t − F d
b
)

+ Q
]
dt ⇒

Fully Implicit Scheme⇒

{[
keAe

(
T 1

E − T 1
P

δxPE

)
− kwAw

(
T 1

P − T 1
W

δxWP

)]
+[

knAn

(
T 1

N − T 1
P

δyPN

)
− ksAs

(
T 1

P − T 1
S

δySP

)]
+[

ktAt

(
T 1

T − T 1
P

δzPT

)
− kbAb

(
T 1

P − T 1
B

δzBP

)]
+

(
sC + sPT

1
P
)

∆V

}
∆t
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3. MD Heat Diffusion
Bulk Control Volumes – Discretized Governing Equation
Equating the discretized expression for the transient term with the sum of the dis-
cretized equations for the diffusive and source term and rearranging, we have

aPT
1
P = aWT 1

W + aET
1
E + aST

1
S + aNT

1
N + aBT

1
B + aTT

1
T + b ⇔

aPT
1
P =

∑
nb

anbT
1
nb + b

where,

aP = aW + aE + aS + aN + aB + aT+

ρcp
∆V

∆t
− SP ⇔ aP =

∑
nb

anb + ρcp
∆V

∆t
− SP

b = ρcp
∆V

∆t
T 0

P + SC

For a uniform grid, δxWP = δxPE = ∆x , δySP = δyPN = ∆y , and δzBP = δzPT = ∆z ,

Dim. aW aE aS aN aB aT ∆V

2D kw
∆y·1
∆x

ke
∆y·1
∆x

ks
∆x·1
∆y

kn
∆x·1
∆y

– – ∆x∆y · 1
3D kw

∆y∆z
∆x

ke
∆y∆z

∆x
ks

∆x∆z
∆y

kn
∆x∆z

∆y
kb

∆x∆y
∆z

kt
∆x∆y

∆z
∆x∆y∆z
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3. MD Heat Diffusion

Suggested Problem:
Problem 9

Advanced Heat Transfer – Part IV: 2. Diffusion Problems 65 of 75



3. MD Heat Diffusion
Solution of Discretized Equations – Methods for Solving Algebraic Equations

• Direct methods: only competitive for linear problems (not efficient for
nonlinear problems).

• Iterative methods – such as, the Gauss-Seidel and line-by-line method:

◦ based on a repeated application of a relatively simple algorithm;
◦ more economical than direct methods, particularly for large systems of

equations (extremely refined meshes);
◦ recommended for nonlinear problems; and
◦ total number of operations (iter. path) not predictable in advance.

Methods for Solving Algebraic Eqs. – Gauss-Seidel Iteration Method (1/4)

• According to the Gauss-Seidel method, the values of variables are
calculated by visiting each grid point in a specific order.

• Convergence is guaranteed if Scarborough criterion is satisfied.

• Slow convergence particularly for a large system of equations.
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3. MD Heat Diffusion
Methods for Solving Algebraic Eqs. – Gauss-Seidel Iteration Method (2/4)

Gauss-Seidel Iteration Method – [Algorithm]. Consider a system of n equations
with n unknowns (x1, . . . , xn) in which each equation is described by

n∑
j=1

aijxj = bi

where aij corresponds to the coefficient of the xj in the i th equation. For the
application of iterative methods, it is convenient to rearrange the system of
equations in such a way that the contribution xi is isolated on the LHS of the
i th equation as follows:

aiixi = bi −
n∑

j=1, j 6=i

aijxj

According to the Gauss-Seidel iteration method, the solution for variable xi
obtained at the iteration k (x (k)

i ) is computed as follows:

x
(k)
i =

i−1∑
j=1

(
−aij
aii

)
x

(k)
j +

n∑
j=i+1

(
−aij
aii

)
x

(k−1)
j +

bi
aii
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3. MD Heat Diffusion
Methods for Solving Algebraic Eqs. – Gauss-Seidel Iteration Method (3/4)

Gauss-Seidel Iteration Method – [Appli. Example]. Consider the following sys-
tem of equations whose solution is to be found with the Gauss-Seidel Method. 2x1 + x2 + x3 = 7

−x1 + 3x2 − x3 = 2
x1 − x2 + 2x3 = 5

⇔

 x1 = (7− x2 − x3) /2
x2 = (2 + x1 + x3) /3
x3 = (5− x1 + x2) /2

Since the matrix of coefficients is diagonally dominant (Scarborough criterion
is satisfied) the convergence of the Gauss-Seidel method is guaranteed. The
initial guess (arbitrary estimate) for the three unknowns is considered equal
to zero, i.e., x0

1 = x0
2 = x0

3 = 0. The first iteration of the method yields:

x
(1)
1 =

(
7− x0

2 − x0
3
)
/2 = (7− 0− 0) /2⇔ x

(1)
1 = 3.50

x
(1)
2 =

(
2 + x1

1 + x0
3
)
/3 = (2 + 3.50 + 0) /3⇔ x

(1)
2 = 1.8(3)

x
(1)
3 =

(
5− x1

1 + x1
2
)
/2 = (5− 3.50 + 1.8(3)) /2⇔ x

(1)
3 = 1.6(6)
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3. MD Heat Diffusion
Methods for Solving Algebraic Eqs. – Gauss-Seidel Iteration Method (4/4)

The second and subsequent iterations follow the exact same procedure.
The results of successive iterations of the Gauss-Seidel method are presented
in the following table.

Iteration k
0 1 2 3 . . . 13

x1 0 3.5000 1.7500 1.3333 . . . 1.000
x2 0 1.8333 1.8056 1.9537 . . . 2.000
x3 0 1.6667 2.5278 2.8102 . . . 3.000

Methods for Solving Algebraic Equations – Line-by-line Method (1/5)

• The line-by-line method results from the combination of the TDMA
(direct method for 1D problems – see Slide 44 et seq.) and the
Gauss-Seidel method (iterative method)

• The line-by-line method consists in the iterative application of the TDMA
for solving multi-dimensional (2D and 3D) problems.

Advanced Heat Transfer – Part IV: 2. Diffusion Problems 69 of 75



3. MD Heat Diffusion
Methods for Solving Algebraic Equations – Line-by-line Method (2/5)

• According to the line-by-line method, the TDMA is applied along each
line of the grid (column or row) – see the figure below illustrating the
TDMA application along north-south lines. Each line is assumed as a 1D
domain. The influence of the nodes belonging to the neighboring lines is
assumed to be known (from the initial guess or from the current or
previous iteration). Once the node values of the current line have been
evaluated, the TDMA is applied to the next line, taking always into
account the latest (most recent) node values for every calculations.
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3. MD Heat Diffusion

Methods for Solving Algebraic Equations – Line-by-line Method (3/5)

The general two-dimensional discretized transport equation reads as

aPTP = aWTW + aETE + aSTS + aNTN + b

Applying the method along north-south lines, the previous equation can be
organized as follows:

aPTP = aNTN + aSTS + aWTW + aETE + b︸ ︷︷ ︸
Temp. known value

For each central node P the neighboring contributions (aWTW and aETE)
are considered temporarily known from the previous iteration or initial guess.
The last equation is similar to the equation presented in Slide 44 to illustrate
the application of the TDMA method considering aiTi = aPTP, biTi+1 =
aNTN, ciTi−1 = aSTS, and di = aWTW + aETE + b.
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3. MD Heat Diffusion

Methods for Solving Algebraic Equations – Line-by-line Method (4/5)

• The TDMA is applied to all lines (from the west to the east, east to
west, north to south, or south to north boundaries) several times. The
method terminates when specific criteria are observed (generally when
the results do not change considerably between successive iteration, i.e.,
when a converged solution is obtained).

• The sweep direction (direction of the successive application of the TDMA
– from west to east, east to west, north to south, or south to north
boundaries) should be selected taking into account the dominant
transport direction to improve the convergence rate.

• The sweep direction has a strong effect on the convergence rate but not
on the accuracy of the final converged solution.
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3. MD Heat Diffusion
Methods for Solving Algebraic Equations – Line-by-line Method (5/5)

• If the dominant transport direction (defined by boundary conditions) is
from the west to the east boundaries then this sweep direction should be
selected since the transport of information from the boundary nodes to
the interior nodes is faster – convergence rate improved. (For instance,
when advection is relevant it is convenient to define the sweep direction
in accordance to the fluid flow direction – from upstream to downstream).

• The line-by-line method is easily implemented in 3D.

Methods for Solving Algebraic Eqs. – Gauss-Seidel With Relaxation (1/2)

• The convergence rate of the Gauss-Seidel method can be improved (less
iterations required to achieve the solution) with the application of a
relaxation factor, α, as follows

x
(k)
i = x

(k−1)
i + α

 i−1∑
j=1

(
−aij
aii

)
x

(k)
j +

n∑
j=i

(
−aij
aii

)
x

(k−1)
j +

bi
aii


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3. MD Heat Diffusion
Methods for Solving Algebraic Eqs. – Gauss-Seidel With Relaxation (2/2)

• Depending on the value of the relaxation parameter, the change in the
variables (successive variable adjustments towards the final solution)
along the iterative procedure can be accelerated (α > 1 – over-relaxation)
or slowed down (0 < α < 1 – under-relaxation). Note that when no
relaxation is applied, i.e. when α = 1, the previous equation reduces to
the iteration equation for the basic Gauss-Seidel method (compared such
equation with the last equation presented in Slide 67).

• A suitable relaxation parameter value influences the convergence rate
(iterative convergence path) but not the final solution.

• While over-relaxation applied to Gauss-Seidel method – known as the
SOR (successive over-relaxation) method – may be advantageous for
speeding up the iterative procedure, in the presence of strong nonlin-
earites sub-relaxation may be convenient to avoid solution divergence.

• The optimum relaxation param. value is mesh- and problem-dependent.
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Further Reading

• Chapter 3: Discretization Methods
• Chapter 4: Heat Conduction

• Chapter 4: The FVM for Diffusion Problems
• Chapter 7: Solution of Discretised Equations
• Chapter 8: The FVM for Unsteady Flows

• Chapter 4: Finite Volume Methods
• Chapter 5: Solution of Linear Equation Systems
• Chapter 6: Methods for Unsteady Problems
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