Heat Transfer

Practical Lecture 3 (Solved Problems)

6. Consider heat conduction on a rectangular plate in steady-state, the length (z direction) being
infinite.. The surface z = 0 is electrically heated with a heat flux ¢j [Wm™2]. The surface
x = a is maintained at a constant temperature Ty. The surface y = b is insulated. The surface
y = 0 dissipates heat by convection to a medium at temperature T, with a convection coefficient
h. The thermal conductivity of the material is uniform and there is no internal generation of
energy. Formulate the heat conduction problem, establishing the equation governing temperature
distribution on the plate along with the associated boundary conditions.

Solution:

The following figure presents a schematic representation of the problem geometry and bound-
ary conditions. In the plate domain, the heat transport occurs exclusively by diffusion (i.e.,
conduction).
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The general form of the heat diffusion equation is described by Equation (1). This equation
governs the (spatial and temporal) temperature distribution in stationary homogeneous media
(media without bulk fluid motion — advection of energy) in which the only mechanism of heat
transport is diffusion. The heat diffusion equation is obtained by applying the conservation of
energy requirement (first law of thermodynamics) to a differential (infinitesimal) control volume
—dz-dy-dz, dr-rd¢-dz, and dr-rsinfde¢-rdf for the case of Cartesian, cylindrical, and spherical
coordinates, respectively.
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For the temperature field described in Cartesian coordinates, T' (z, y, z), the first term of the first
member of Equation (1) can be written according to the first three terms of the first equation
member of the following equation — Equation (2).
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Equation (2) can be simplified taking into account the details of the problem as follows:

1. since the problem is bi-dimensional (rectangular plate defined in plane (z,y)) temperature
gradients (and heat fluxes) in the coordinate direction orthogonal to the plane (x,y), i.e.,
coordinate direction z, are negligible, and consequently, the term 0/0z (k0T /0z) vanishes;

2. since steady-state conditions are under consideration, the temperature distribution is not
a function of time (i.e., 9T /0t = 0), and therefore the term of the second equation member
— pc,0T/0t, rate of change of thermal energy stored withing the plate — is neglected;

3. since there is no internal generation of thermal energy in the plate (¢ = 0), the fourth
term of the first equation member (§) vanishes; and

4. since the thermal conductivity k is constant in the whole plate domain, 0k/J0z = 0k/0y =
0, and consequently, the temperature governing equation does not feature a dependence
with k.

Applying the stated simplifying assumptions, Equation (2) is written as follows — see Equation

(3)-
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Equation (3) — which corresponds to the Laplace equation (V*T = 0 or AT = 0) — governs
the temperature distribution 7" (z,y) in the plate. However, the actual temperature value at
each local position in the plate domain depends on the plate thermal interactions with its
surroundings — through its physical boundaries (r = 0, z = a, y = 0, and y = b). These thermal
interactions are considered mathematically in the problem formulation through the statement
of boundary conditions. Since the governing equation — Equation (3) — is second order in each
spatial coordinate, two boundary conditions must be specified for each spatial coordinate (z and
y). According to the problem statement, the four physical boundaries of the plate domain are
subjected to different thermal conditions, as described by the following boundary conditions:

x=0:

oT
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Equation (4) corresponds to a boundary condition of the second kind (or Neumann bound-
ary condition, or a prescribed heat flux boundary condition). This equation states that the
conduction heat flux through the plate at x = 0 equals ¢ .
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T(x=a,y) =T (5)

Equation (5) is a boundary condition of the first kind (or Dirichlet boundary condition, or a
prescribed temperature boundary condition).

y=0:

k@T

_ a_yyzozh[Too—T(x,y:O)] (6)

Equation (6) corresponds to a boundary condition of the third kind (or convection boundary
condition). This equation states that the conduction heat flux to the plate at y = 0 equals
the convection heat flux from the adjoining fluid to the plate surface at y = 0. (This type of
boundary condition is derived from a surface energy balance).

y=Db:
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Equation (7) represents a particular case of second kind boundary conditions (see Equation
(4)) since it is equivalent to a prescribed zero heat flux value — there is no heat transfer across
surface y = b (adiabatic surface).

The following figure presents the temperature field (first row) and heat flux vectors, q” (second
row) for the current problem — governing equation and boundary conditions — considering three
different values for the convection heat transfer coefficient (h): 10, 100, and 1000 Wm 2K~
(The actual convection heat transfer coefficient value affects the solution for the temperature
distribution (and, consequently, heat flux vectors) through the convection boundary condition
described by Equation (6).) The remaining geometric parameters (a and b), transport properties
(k) and thermal conditions at the physical boundaries (T, Tw, and ¢j) that are required to
solve the problem are stated in the figure.

The figure shows that an increase in the convection heat transfer coefficient promotes an increase
on the thermal energy (heat) extraction rate through the surface y = 0. As a consequence, the
plate temperatures decrease, being such a decrease particularly striking near the vicinity of
surface y = 0. Note that because surface y = b is adiabatic, the isothermal surfaces (isotherms
— lines of constant temperature) are perpendicular to this surface. (By the definition of the
Fourier’s law the heat flux vectors are perpendicular to the isotherms). Therefore, at y = b the
heat flux vectors have a negligible y component (q’y’ = 0) which is in full agreement with the
corresponding boundary condition (see Equation (7)). Considering the lowest convection heat
transfer coefficient (h = 10 W m~2K™!), a preferential heat transport path — from the surface

x = 0 to the surface x = a — is established (see the isotherms and heat flux vectors).
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a=b=02m; k=30Wm 1K™} ¢f =2kWm2; Ty = 100°C; T,, = 20°C
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Convection Boundary Conditions — Final Remark

Bear in mind that a convection boundary condition is derived from a surface energy balance
(Ei — Eout = 0) in which a convective heat transfer rate equals a conductive heat transfer rate
at the surface of interest. A common mistake in formulating this kind of boundary condition
is related to an incorrect signal affecting, for instance, the convective heat flux term (i.e.,

+h ([T — T (£ = &)], where & corresponds to the coordinate direction).

Consider the (plane, cylindrical, or spherical) wall presented in the following figures — Cases
A and B. The coordinate direction & corresponds to the coordinate direction z (or y or z)
in rectangular (Cartesian) coordinates (plane wall) or to r for radial systems (cylindrical and
spherical walls). For each case, consider that both wall surfaces (located at £ = &; and £ = &) are
exchanging heat by convection with and adjoining fluid. The only difference between both cases
relies on the positive direction of the coordinate system — axis £. The mathematical formulation
of the convection boundary condition at each surface depends on the chosen (positive) direction
for the coordinate system as it can be concluded by comparing the formulation of the boundary
conditions at the same surface for both cases — compare Equations (8) and (10) and Equations
(9) and (11).
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9. Consider a truncated cone as shown in the figure. The coordinates zy and z; indicate the positions
of the faces where the cone was truncated relatively to the apex of the cone. Consider that the
lateral surface is insulated and the temperature in each section x = constant is uniform. In the
larger face, the temperature 7} is known and, in the smaller face, the heat flux ¢ is imposed.
Determine the temperature distribution along .

XO’ I‘O \

Solution:

Considering steady-state conditions, with no internal generation of thermal energy and no heat
losses from the sides of the truncated cone (conical frustum), as a result of the conservation of
energy principle, the heat rate is constant along x. Furthermore, if radial temperature gradients
were neglected the conduction heat transfer problem becomes one-dimensional (along x). Under
these circumstances an alternative approach for conduction analysis — in relation to the standard
approach that consists in the integration of a proper form of the heat diffusion equation and
taking the boundary conditions to obtain the corresponding integration constants in order to
evaluate the temperature distribution — can be applied. This alternative conduction analysis
consists in applying the integral form of the Fourier’s law which considering that at section
x = x; the corresponding temperature is 73 (in accordance to the problem statement) reads as
follows — see Equation (13).

X1 1 Ty
qx/z T = —/T(x)k:(T)dT (13)

The functional form of the temperature distribution, 7' (z), — the solution for this problem —
can be obtained by performing the integration from x at which the temperature is T' (z) to x; at
which the temperature is equal to T7. Therefore, it is mandatory to evaluate the cross-sectional
area of the conical frustum as a function of the cross section axial position — A ().

The radius of the conical frustum is calculated in accordance to Equation (14), where ry corre-
sponds to the conical frustum radius at zo (smaller face section) — see figure below that presents
the conical frustum radius, r, as a function of the axial position, x.

Page 6 of 10



r1 -

ro -

0 == = ! Conical Frustum Centerline ———- b

0 xo x1 T

r(z) = o (xﬁo) (14)

Equation (14) is considered in Equation (15) in order to obtain the value of the conical frustum
cross-sectional area as a function of the axial position.

X

Alx)=7[r ()] o A(z) = nrl (—)2 (15)

Zo

The heat transfer rate, ¢,, (constant along z) can be calculated taking into account the heat
flux imposed at the smaller surface, x = x¢, that is equal to ¢ — see Equation (16).

@ = @A (x = 30) & g = gymrs (16)
The temperature distribution is obtained considering the thermal conductivity constant (inde-

pendent of temperature) and replacing Equations (15) and (16) in Equation (13) and performing
the integration — see Equation (17).
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Equation (17) can also be written according to Equation (18) taking into consideration Equation
(19).
2
qy (o 5 (1 1
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(Note that Equation (19) simply states that since the slope of the conical frustum radius with
the axial position (dr/dx) is constant it can be evaluated with the radial and axial coordinates
(r,x) of either the smaller or the larger conical frustum face.)

@:ﬁ%:(@)xl (19)

Zo X1 T1

@ The figure below presents the temperature profile — computed according to Equation (17)
— for the geometrical parameters (z¢ and z; ), thermophysical properties (k), and operating
conditions (¢j and 77) therein stated.
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@ The following figure presents the solution of the heat diffusion equation — 2D axisymmetric
heat diffusion equation (see Equation (20)) — and the adequate boundary conditions (see
Equations (21) to (24)) for the temperature field. (Equation (23) corresponds to the
boundary conditions for the symmetry axis (conical frustum centerline) and in Equation
(24), 9T /On corresponds to the temperature gradient in a direction perpendicular to the
lateral surface of the conical frustum.)
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The figure below shows the comparison between the temperature distribution obtained
with Equation (17) — alternative conduction analysis — and the temperature profile at the
conical frustum centerline computed with the 2D axisymmetric heat diffusion equation
(and corresponding boundary conditions) — standard approach — for the same properties
and conditions. Slightly lower temperatures are obtained with the alternative approach in
relation to the standard procedure. The temperature difference between both approaches
increases as the distance to the section x = xg decreases. The differences observed between
both approaches are mainly derived by the one-dimensional heat transfer assumption
(no radial temperature gradients) considered behind the formulation of the alternative
approach. In fact, the 2D results show that for the current geometry (slope of the lateral
surface) significant temperature differences are observed at each conical frustum cross-
section (sections x = constant).
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The next table compares the results — temperatures at *+ = xy and r = 0 — obtained
with the alternative conduction analysis with the standard approach as the slope of the
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lateral surface of the conical frustum decreases, i.e., as 1 tends to ro. (ro and z1 — zg was
kept constant and equal to 0.1 m and 0.6 m, respectively.) As r; approaches rq the radial
temperature gradients become less relevant and the results computed with the alternative
conduction analysis and the 2D axisymmetric (Ax.) heat equation become similar — the
(relative) error of the results obtained with alternative conduction analysis in relation
to the 2D-Ax. heat equation results decreases. For the limiting case of r; = 7y (conical
frustum degenerates into a cylinder) the alternative conduction analysis provides the same
solution as the (exact) solution calculated with heat diffusion equation. This is observed
because in the case of a cylinder there are no temperature gradients in the radial direction
(heat transfer is exclusively one-dimensional) and the assumption of isothermal cross-
sections — underlying assumption for application of the integral form of the Fourier’s law
to evaluate the temperature distribution — is fully observed. (The 2D-Ax. results were
obtained numerically and for that reason the corresponding solution for the cylinder case
is not (exactly) equal to the analytical solution — numerical solution contains numerical
errors.)

Temperature at x = zp and r =0, T (r = 0,z = x,) [°C]
r1 [m] Slope, m[—] Alter. Cond. Analys. Standard Approach — Heat Equation

Eq. (17) 2D-Ax. 1D
0.400 0.500 175.0 187.1
0.250 0.250 220.0 225.8 00,0
0.175 0.125 271.4 273.9 '
0.100 0.000 400.0 399.8
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