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Transient Conduction - Introduction

o A transient (unsteady or time-dependent) heat conduction process
is initiated whenever a thermal equilibrium state of a system is
perturbed.

e A perturbation on a system thermal equilibrium state can be
induced by a change in:

surface convection conditions (T or h);

surface radiation conditions ( Ty, or h,);

surface heat flux (g, ) or surface temperature (T;); and
internal energy generation (§).

O O O O

e Transient heat conduction processes can be modelled through
analytical or numerical means:

o Lumped system analysis (overall energy balance);
o Exact solutions to the heat diffusion equation; and
o Finite difference, finite element or finite volume methods.
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Transient Conduction - Temperature Gradients

Importance of Solid Temperature Spatial Resolution

e For a transient conduction process in a solid driven by convection
heat transfer across its boundaries, Biot number (Bi) determines if
the spatial thermal gradients within the solid are negligible or not.

Bi hL. Conduction resistance within the solid
| = —— =
k Convection resistance between the solid and the fluid

e For Bi < 0.1 the solid temperature distribution can be considered
spatially uniform (depends only on the time): T (x,t) = T (t).
o The lumped capacitance method provides a solution for T (t).

e For Bi > 0.1 the local solid temperatures depend on the position
and time.

o T (x,t) solutions to the heat diffusion equation can be evaluated
by analytical (exact and approximate) or numerical means.
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One-Dimensional, Transient Conduction — Gov. Egs.

Transient conduction can be
described in 1D for the case of a
plane wall, infinite cylinder and a

Heat Diffusion Equation

aT
V.- (kVT)+§=pc—

sphere through the heat equation. ot
) _ Plane Wall
Plane Wall Infinite ;,.‘::_';der 82T 16T

Ox2 o Ot
Infinite Cylinder

19 (0T _10T
r or -

l

or a Ot
—————————————
Sphere
Simplifying assumptions: 10 (ﬁﬂ) _ 1T
® no thermal energy generation; and r2 or or a ot

® constant thermal conductivity. a = k/(pc) - Thermal diffusivity
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One-Dimensional, Transient Conduction in a Plane Wall

Symmetrical Convection Conditions I"z::?::;;:";z‘:ﬁi:d G overn | n g Eq ua tl on
: T(x,0)=T; T(z,0)=T; 82_,_ 1 87_

(i (i (i

x=-L| | |I:Lz |I:Lz T (X, t= 0) = 7-,
Boundary Conditions
8 Independent Variables orl  _,
0x |, _o
T="F(x,a,t, Ti,k,L, h, T) _k% BT (L)~ To]
x=L
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One-Dimensional, Transient Conduction in a Plane Wall

Non-dimensionalization: : :
Governing Equation

¥ _ 0 _ T-Tu
c =g =175 02%0* 00"
Ox*? - OFo
Initial Condition
0* (x*,0) =1

3 Independent Variables

Boundary Conditions

0* = f (x*, Fo, Bi)

0" — Dimensionless local temperature Ox* |
difference o0 .
Fo — Fourier number X = —Bif* (1, Fo)

x* — Dimensionless position
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One-Dimensional, Transient Conduction in a Plane Wall

Dimensionless Local Temperature Difference

e Exact Solution

The exact solution for the problem is given in the form of an infinite
series.

(x*, Fo) Z Crexp (—C3Fo) cos (Cox™)

For the geometry under consideration (plane wall), C, and ¢, are
functions of Bi. C, and (, are commonly given in tables.

e Approximate Solution: One-term Approx. (Valid for Fo > 0.2)

T (x*,Fo) — T

0* (x*, Fo) = T
I oo

= Ciexp (—CfFo) cos (¢1x™)
| S S —7
05 (Fo)=6+(0,Fo)

— Midplane (x* = 0) dimensionless temperature difference
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One-Dimensional, Transient Conduction in a Plane Wall

Dimensionless Mean Temperature Difference

e Exact Solution

The exact solution for the problem is given in the form of an infinite

series. FO) Z SlIl (Cn o i
Crexp (—(5Fo)

o Bi — 0 - The exact solution becomes equal to the lumped capaci-
tance method (LCM) solution (considering Bi and Fo defined with
L. = V/As):

0% (Fo) = 05 o\ (Fo) = exp (—Bi.Fo)

e Approximate Solution: One-term Approx. (Valid for Fo > 0.2)

T(Fo) T sm(l
Ti - Too C

0% (Fo) = 0 (Fo)
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One-Dimensional, Transient Conduction in a Plane Wall

Fractional Energy Loss/Gain to/from the Surrounding Fluid

* Q(Fo) [= pVc (T; — T (Fo))] — Total thermal energy transfer from/to
the wall over the time interval t [= Fol?/a].

® Q[= pVc(Ti — Tx)] — Initial thermal energy of the wall relative to the
fluid temperature, i.e., maximum possible energy transfer from/to the
wall if the process continues to time t = co.

Boundary Condition at x* = 1: Constant Surface Temperature

The foregoing solutions for 6*, 6%, and @/Qo are also applicable for a pre-
scribed temperature boundary condition at x = L (T (L, t) = T;) since this is
equivalent to consider h = co (Bi = o0) and T, = Ts.
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One-Dimensional, Transient Conduction in a Plane Wall

Heat Removal (7; > T.): Convection Cooling

Numerical and One-Term Approximation Solutions

3 Case Studies:

Ef—T(z,O) =T; e B = 02,

o Bi =5.0; and
e Bi = 0.

T T T T T T o Negligible convection
resistance: equivalent to
‘ prescribe a constant surface

i ezt temperature (Ts) equal to
T.

AEst — —Q, Q > 0
AE;; — Change in the thermal energy stored
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One-Dimensional, Transient Conduction in a Plane Wall

Heat Removal — Numerical and One-Term Approximation Solutions

Bi=w0

Bi=0.2 Bi=5.0
Ve e I T Iy — T
) AT e ] S = One-Term Approx. 3 = One-Term Approx.
EECFo-03 § by ﬁ Numerical Sohon L £ Numercal Soruton
0.8t 0! ! 082
X Foml S 8l & = 8Fe
LT o2 0— T TSy | S s 3 v
e — i 5L Q@A \ E “f 5 Qf% o
0.6 e 0.6 0.6 -
- / \ - - A
= e I s = = s =
3 £ /? S
04 Foss. 0.4 0.4
N5
— / \ / TN \
——  Numerical Solution /
02 : T 02 — \ 0.2
y o
\ \ ¥~ __’—\\ Fo=l O————_|
T T T 0 oSy — i P
-1 05 0 05 1 -1 0.5 0 05 1 -1 0.5 0 05 1
X X' X
1 T.
o ,/ —
/ / — Bi=o

?:6 /S S




One-Dimensional, Transient Conduction in a Plane Wall

Bi=1.0 ~ Bi=2.0

Fo=0.3

<, =
= ‘> Fo=0.3
8 0

Fo=2.0
Fo=3.0
. ! - )
-2 0 1 2
. <>
x [ 1/Bi

1/Bi

e At any time instant during an unsteady conduction process, the exten-
sions of the tangents to the curves at the points x* = +1 intersect the
axis perpendicular to 6* = 0 at the points + (1 + %)

e This evidence is also observed for long rods and spheres and is due to the
mathematical formulation of the convective surface boundary condition.
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One-Dimensional, Transient Conduction in a Plane Wall

Heat Removal (7; > T.): Convection Cooling

Numerical and One-Term Approximation Solutions

3 Case Studies:
e Bi =0.05;

Mt e
o \_lLl

AEst — —Q, Q > 0
AE;; — Change in the thermal energy stored
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One-Dimensional, Transient Conduction in a Plane Wall

Heat Removal — Numerical and One-Term Approximation Solutions

0"(x" =0, Fo) 0°(x" =1, Fo) e (x" =1, Fo)/0’ (x =0, Fo)
| ~—— ™ T. 1 T,
\ N~ T \\\\\&\ Bi-02 —
0.8 0.8 0.8
i ™~ T
\ 4 ~ i, z
08 Py 06 ~ ;0.6
= - =g S g
04 \ 04 S04
[= mmmam, \ [ = ommmam, £ N besd
0.2 0.2 5 0.2
S, — Oneem Ao,
~— . , \\ . Numerical Solutio
UO 0.5 1 15 2 25 3 0 0.5 1 1.5 2 25 3 UO 0.5 1 1.5 2 25 3
Fo [-] Fo [-] Fo[-]
1 1 0% (1,¢%) .
~— I : : = -4 = f(Bi, Fo).
Tos T——, — BiF0.05 [Jos3 07(0,2%) ( )
S| — Bi02 = H Fot & (Le)
f06 — B0 | o owever, as Fo 1 0.0 7 ¢08 (¢1)
£ ~ =]
[ ‘ ‘ 042 One-Term Approximation:
53 \ —_ gm/ewmw z
g \ s— Oiox .
S02 N S 02f, 0% (1,t) 0.976  Bi =0.05
0 D~ —t— \1\ ] o — = 0.908 Bi =0.2
0 05 1 15 2 2.5 3 0% (0,t*) 0.254 Bi =50
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One-Dimensional, Transient Conduction in a Plane Wall

Heat Addition (7., > T;): Convection Heating

Numerical and One-Term Approximation Solutions

3 Case Studies:

Ef—T(z,O) =T; e B = 02,

o Bi =5.0; and
e Bi = 0.

T T T T T T o Negligible convection
resistance: equivalent to
‘ prescribe a constant surface

i ezt temperature (Ts) equal to
T.

AEst — —Q, Q < 0
AE;; — Change in the thermal energy stored

Computational Laboratory IlI: One-Dimensional, Transient Conduction - 15 of 42



One-Dimensional, Transient Conduction in a Plane Wall

Heat Addition — Numerical and One-Term Approximation Solutions

Bi=0.2

5.1
0.8
,'_0,6
< oa — |__Fo-30-1
, ]
s One-Term A X. Fo=2.0
— S, T
0.2~
Fox(
[~Fo255s: _—
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One-Dimen., Transient Conduction in Radial Systems

Infinite Cylinder or Sphere Infinite Cylinder - Gov. Equation

Heated/Cooled by Convection
; 10 ( ar) 10T

— r— _
Tr0) =T ror \' or a Ot
R
Sphere - Governing Equation

A 10 <r2ar>:1ar

r?ar\’ o9r) adr

Boundary Conditions

or
ar

=0
r=0

oT

—k 5y

=h[T (r,t) — Teo]

r=rg
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One-Dimen., Transient Conduction in Radial Systems

Non-dimensionalization: Infinite Cylinder - Gov. Equation

o pr =4 — T-T 1 0 L 00" 1 06*
9,‘ T,'*T(x, _— r = —
0 0<p <1 r* or* or* a 0Fo
<0" < ————————————————
I Sphere - Governing Equation
fo
c0<r <1 1 0 (w2007 _ 100"
r<2 or* or*)  adFo

o Bi = ’% Boundary Conditions

00*
0o .. 8"* = 0
Initial Condition r*=0
"1 _ _Big" (1, Fo)
0 (*,0) = 1 ore| . =B (LFo
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One-Dimen., Transient Conduction in Radial Systems

Dimensionless Local Temperature Difference — Exact Solutions

The exact solutions for the infinite cylinder and sphere are given in the form
of infinite series.

Infinite Cylinder

0" (r*, Z Coexp (—C2Fo) Jo (Car™)
Sphere
0" (r, Z Crexp ( -2 Fo) Cism (Car™)

C, and ¢, are functions of Bi and the geometry under consideration (long rod
or sphere). C, and (, are commonly given in tables.
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One-Dimen., Transient Conduction in Radial Systems

Approximate Solutions: One-term Approximation (Valid for Fo > 0.2 )

Infinite Cylinder Sphere
0% (r*,Fo) | 6§ (Fo)Jo (¢ar™) 05 (Fo) #iesin (Gur™)
b (Fo) Ciexp (—(FFo)
0% (Fo) | 245 (Fo) 27 [sin (G1) — Gacos (G1)]
girel 1— 6+ (Fo)
® (g - centerline [centerpoint] dimensionless temperature difference for an infinite
cylinder [sphere].
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One-Dimen., Transient Conduction in Radial Systems

Dimensionless Temperature Difference for Bi — 0

As Bi — 0 the exact solution for 6* (r*, Fo) becomes equal to the lumped
capacitance method solution (considering Bi and Fo defined with L. = V/ /A,
— L¢ is equal to ry/2 and ry/3 for a long cylinder and sphere, respectively):

0" (r*, Fo) — 0" (Fo) = exp (—Bi.Fo)

Boundary Condition at r* = 1: Constant Surface Temperature

The foregoing solutions for 6*, 6%, and @/@Qp are also applicable for a pre-
scribed temperature boundary condition at r = ry (T (rg,t) = Ts) since this
is equivalent to consider h = oo (Bi = 00) and T, = Ts.
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One-Dimen., Transient Conduction in Radial Systems

Heat Removal (7; > T.): Convection Cooling

Numerical and One-Term Approximation Solutions

Infinite Cylinder or Sphere 3 Case stUdIES.
Heated/Cooled by Convection ° BI — 02'

' o) -, e Bi =5.0; and

e Bi = 0.
o Negligible convection

resistance: equivalent to
prescribe a constant surface

temperature (Ts) equal to

/™ Tw

AEst — —Q, Q > 0
AE;; — Change in the thermal energy stored
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One-Dimen., Transient Conduction in Radial Systems

Heat Removal — Numerical and One-Term Approximation Solutions

Bi=0.2 Bi=5.0

Bi=w0

1 Ti 1 T 1 Ti
> 2
T £KCY
-y — 2%
08 Fo-0. 08 — ) 0.8 "
——  Long Cylinder (One-Term) a»qr %
Fo=1.0 Lo Cabnder (o) Lot Cylindes OnTerm | 2
0. = 0.6f) T e Quem : 0.6 Lo ol ()
- L R - N 1 =T e Sphere (One-Term) % Z
= Sphee Y, | L -
04 Fo=3.0 v 2
. —— "
Fo=025 N
agtk\ 0\0/
—— Long Cylinder (One-Term) \ |
02 T L \ 2 ¥
e osphereOneTerm) | |1 pemred N TN [T ‘b
Sphere (Num.) s
0 I I I be § T,
0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 1
LT v
1 T.
0.8 =
=
0.6 —
o] =l
g /
S04 - - H
[/ ——  Cylinder - One-Term Approx.
= ——  Cylinder - Num.
o | . Sphere - One-Term Approx.  H
Sphere - Num.
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Final Remarks (1/2)

e Biot number provides an estimation for the relevance of
temperature spatial gradients in a heat conduction process within a
solid concurrent with convection across its boundaries.

For a one-dimensional, transient heat conduction process if:

o Bi < 0.1: the spatial gradients are not relevant; consequently, the
lumped capacitance method can be applied;

o Bi > 0.1: the spatial gradients are relevant; consequently, the
one-term approximation to the exact solution — particularly
recommended for Fo > 0.2 — or a numerical procedure should be
applied to evaluate the temporal and spatial solid temperature
distribution profiles.

e The one-term approx. for Fo > 0.2 results in an error below 2%.

 Heisler/Grober charts (transient temperature and heat transfer
charts) provide a graphical representation for 65, 6* /6§, and Q/ Qo
obtained with the single-term approximation of the exact solution.
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Final Remarks (2/2) — L. for Biot and Fourier Numbers

L. — Characteristic length!

Plane Wall  Inf. Cylinder Sphere
Conservative Bi Criterion (rele- L , .
vance of temp. spatial gradients) 0 0
Lumped capacitance
L ro/2 rn/3
method — L, = V/A; o/ o/
Analytical and numerical solu- L . .
tions for 6* (x*, Fo) 0 0
-PLANE WALL -RADIAL SYSTEMS
Symmetrical Insulated Surface and
Convection Conditions Convective Surface Infinite Cylinder or Sphere

@) @ @
. u

Find the L. value (L and ro) in accordance with the accompanying figure.

Computational Laboratory IlI: One-Dimensional, Transient Conduction - 25 of 42




-
Exploring the Software Module (1/4)

Software module — HTTonedt .exe (Version 5.0.0.2)

I\ HTTonedt - One-Dimensional, Transient Conduction cl@ %

File  Help

Actual Fourier

0500
+ Implicit

Gamma =

Q/Qo- | 0.768 [} [ Plot T(x) vs. Time Explicit < |

Stopping Criteria

Dimensionless
Temperature Difference

Q/Q, Ratio
OUTPUT: Results

Temperature Profile T(x,time) | Fourier # = |=0.501 I Initalize: Start | I Stop! Number
-m Dimensional Input
e N | I ey RUN
Geomety. SIMULATION
© Plane Wall
Infinite Cylinder
Sphere [ show Schem. | INPUT
) Heat Transfer Specs: INTERFACE
s © Heat Removal
) Heat Addition
Biot Number = | 4.0 r
00 Initial Temperature Profile: \
: 0 © Uniform Temperature Input Data
Volumetric Heating (geometry; boundary
Computed Data Completion Criterion: Numerical Parameters: and initial conditions
tance: 1t Il Change cterin [ oarouer= | 0500 __and
, 5 Fourier # = 0,5000 numerical parameters)

® The module solves the one-dimensional, transient heat equation through a
finite-volume approach for a plane wall, infinite cylinder, and sphere.
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Exploring the Software Module (2/4)

Software module — HTTonedt .exe (Version 5.0.0.2)

A HITC . ent tion
Two Stopping Criteria
Specified Fourier Specified Dim. Local Temp. Diff.
I Completion riterin - Time or Temperature? =@ I Completion Citrion - Time or Temperature?. =[@
Soloct Spocified Fourier
Fourer 1= 05
Seloct Completion Crterion — Seloct Completion Criterion
© Spocifed Fourie # Specifed Fourir #
Spocifod Thta © Spaciied Theta Seloct: Specifed Theta
Distance = 0.000 -
Theta = 500
(ConcelfRenen (ConcelfRenn ;
) —
00 Distance (x/L) / 10 I Uniform Temperature
4 Volumetric Heating
Computed Data Speed Numerical Parameters:
Distance Theta = .
0.000 0.3932 Grid Fourier 0.500
4 Gamma 0.500
Q/Qo 0.768 Explicit Implicit

Q/Q, Ratio
OUTPUT: Results

Dimensionless
Temperature Difference

Stopping Criteria

Actual Fourier
Number

RUN

'YIMULATION
|
] INPUT

INTERFACE

Input Data
(geometry; boundary
and initial conditions

and
numerical parameters)

® The module ends the simulation for two possible criteria: (a) specified
Fourier number; and (b) specified dimensional local temperature difference.

Computational
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Exploring the Software Module (3/4)

Completion Criteria

The module terminates the
simulation for two possible criteria:

1. Specified Fourier number —
Fo; and
o For evaluation of the
temperature distribution profiles
and the ratio Q/ Qo at a specific
time instant.

2. Specified dimensionless local
temperature difference —
6* (x*, Fo).
o For the evaluation of the elapsed
time, temperature distribution
profiles, and the ratio Q/Qp.

1. Specified Fourier Number

I Completon Citrion - Time or Temperature? (=75 s
Select Specifid Fourier #
Fourier #= 05
Seloct Completion Criterion
© Speciied Fowior &
Specificd Theta
[ Cance/Retum |

2. Specified Dimensionless Lo-

cal Temperature Difference

Bl Complction Crterion = Tame or Temperainel [=]e

Select Completion Criterion
Specified Fourier f

© Specified Theta

Select: Specified Theta
Distance = 0,000 *

Theta = 500

[m@
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Exploring the Software Module (4/4)

Spatial Discretization

* Two spatial discretization schemes (meshes) are available in the
software module.

e The finest mesh has two times the cell count of the default mesh
and, consequently, should provide more accurate results; however,
at the expense of longer computation times.

e The finest grid is taken into account (activated) for the calculations
once the default window size is changed.

e To revert to the default mesh, the user should restart the software
module.

e The module application examples that follow (next slides) consider
the default mesh.

Computational Laboratory IlI: One-Dimensional, Transient Conduction - 29 of 42



Exploring the Module - Cooling a Plane Wall

Module Application Example I: Problem Statement

Consider a 0.1m (2L) thick plane wall initially at -
T; = 180 °C that is suddenly cooled with a fluid at :

Too = 20°C and with h = 2y200 W.m 2K!. The
wall material has a thermal conductivity (k), TTT TTT
density (p), and specific heat (¢) equal to
110W-m~" - K™, 8530kg.m™?, and . 5

380 J.kg 1. K, respectively. e =

After 40 s of cooling, evaluate the following using the module:

1. temperature distribution profile, T (—L < x < L);

2. fractional energy loss, Q/Qy;
3. average wall temperature, T; and
4

. compare the average wall temperature computed with the module
with the temperature predicted by the lumped capacitance method.
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Exploring the Module - Cooling a Plane Wall

Module Application Example I: Module Application

Preliminary Calculations
Biot Number Thermal Diffusivity Fourier Number

Bi=1.00 «a=339x10"°m?s"! Fo(t=40s)~0.54

Module Input Data

1 - Geometry: 2 - Heat Transfer Specs: 3 - Initial Temperature Profile:

""Heat Removal" .
n ll n n
Plane Wall "Biot Number — 1" Uniform Temperature

4 - Numerical Parameters:
"Grid Fourier = 0,5" " . _ "
1Gamma = 0.500" Fourier # = 0,5400
"Default Mesh"

5 - Completion Criteria:
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Exploring the Module - Cooling a Plane Wall

Module Application Example I: Module Application and Results

Module Results

I\ HTTonedt - One-Dimensional, Transient Conduction

===
File Help

Temperature Profile T(x,time) | Fourier#= | =0.54 @

.

Geometry:
© Plane Wall
© Infinite Cylinder

© Sphere

Heat Transfer Specs:
© Heat Removal
| Heat Addition
i
Initial Temperature Profile:
Distance {x/L) - © Uniform Temperature
* Volumetric Heating
Computed Data Completion Criterion: Speed: — Numerical Parameters:
Yo aaene v
1.000 04976 Change Criterion Grid Fourier 05
« & Fourier # = 0.5400 Slow  Fast

0500

0344 [ Plot T(x) vs. Time Explicit ¢

L1 Implicit

imensional,
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Exploring the Module - Cooling a Plane Wall

Module Application Example I: Results Analysis (1/3)

1. Temperature distribution profile, T (—L < x < L)

0% (z) = Ll =Te | T; = 180°C
_— )
T —Teo 'Too:200C|
b e e e m - -
.Pmmar‘y Results APOST—PPOCCSSCCJ Results
Position, x [m] Position, x [m]
19 001 002 0.03 0.04 00 0.0 003 0.00 0.03 0.0;
- 175.0F T ! ]
= kS
= 0" (z) T(-)=T@ 1T (x)
“La.‘.‘_. 1 1500 1
el ¥ Y “ay _ M
- D250l 1
. & 1250
06 e .| = v \
. éll‘)ﬂn’
04 z
E 750f
&
Z 02f 1 500)
==+ Analytical (One-Term Approx.) Solution ==+ Analytical (One-Term Approx.) Solution
¢ Module (Numerical) Solution W #  Module (Numerical) Solution
1 I I I 2. I I I 1
0.0 02 04 06 08 10 10 0.5 0.0 05 10

Dimensionless Position, x” [-] Dimensionless Position, x” [-]

Computational Laboratory IlI: One-Dimensional, Transient Conduction - 33 of 42



Exploring the Module - Cooling a Plane Wall

Module Application Example I: Results Analysis (2/3)

Temperature Profile T(x,ime) | Fourier #=

((Q/QO)Analytic Sol. ~ 0339)
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Exploring the Module - Cooling a Plane Wall

Module Application Example I: Results Analysis (3/3)

4. Average wall temperature — module vs.
3. Average wall temperature, T lumped capacitance method results

_ 1 " . hat
0* :/(; 0" (x*)dx* = Ot.cm = exp (—Bi - Fo) = exp <_W) =
-5
=1—-Q/Qo =0.656 — exp 2200 x 3.39 x 107> x 40
110 x 0.05
—  T-T < Orom ~ 0.581
S

| T =124.96°C Oiom = % & | Trou = 112.960°C |

A relative error of about 10% is observed

(T Analytic sol. & 125.79 °C) for Trom in relation to the module solution
(Tiod. = 124.96°C).
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Exploring the Module - Heating a Plane Wall

Module Appl. Example Il: Problem Statement

Consider the same plane wall of Example | (same
thermophysical properties and geometrical
parameters) initially at T; = 20 °C. One surface is
perfectly insulated while the other is suddenly
exposed to a fluid at T = 180 °C and with
h=2200W.m > K"

Evaluate the following using the module:

1. elapsed time, t, to observe a temperature equal to 100°C at the
insulated surface (i.e., T(x =0,t) = 100°C);
2. temperature at x = 0.08 m and at the time instant of 1.; and

3. thermal energy absorbed per unit active surface area, Q/As, at the
time instant of 1.
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Exploring the Module - Heating a Plane Wall

Module Appl. Example Il: Module Application

Preliminary Calculations
Biot Number Thermal Diffusivity Dim. Local Temp. Diff.

Bi =2.00 a=339x10"°m? ! 0% (0,Fo) =05

Module Input Data

1 - Geometry: 2 - Heat Transfer Specs: 3 - Initial Temperature Profile:

1 HH 1l
"Plane Wall" ”:?;tt I{?Si';g“_ o "Uniform Temperature"

4 - Numerical Parameters:
"Grid Fourier = 0,05" " _ _ "
1Gamma = 0.500" Theta=0.5 at x/L=0.000
"Default Mesh"

5 - Completion Criteria:
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Exploring the Module - Heating a Plane Wall

Module Appl. Example Il: Module Application and Results

Module Results

I\ HTTonedt - One-Dimensional, Transient Conduction

[E=E—)
File Help

Temperature Profile T(x,time) | Fourier#= |=0.75

Geometry:
@ Plane Wall

]

© Infinite Cylinder
© Sphere
Heat Transfer Specs:
Heat Removal
© Heat Addition

[ BrotNumber- | 2

Initial Temperature Profile:
Distance (xjL) X

© Uniform Temperature
*) Volumetric Heating

Computed Data Completion Criterion: Speed: — Numerical Parameters:
Sz v
1.000 o Change Criterion Grid Fourier 0.0500
« "0 Theta = 0.5 at x/L = 0.000 Slow Fast

[ Gomma=_ ] 0500
Explicit < [ Implicit

Plot T(x) vs. Time

imensional,



Exploring the Module - Heating a Plane Wall

Module Application Example II: Results Analysis (1/3)

1. Elapsed time to observe T(x =0,t) = 100°C

Tomperature Profie T(xime) [Eamietma]=075] (] (] [se

Distance (x/L)

Computed Data “ompletion Criterion: Spee:

Toxo" 0238 Change Crit 0.0500
, D || & o o
it ——— =
Fo=075 <t = 0.1* x 0.75 < | t ~ 3min. and 41 sec |
’ 3.39 x 105 ' . -

((0* (0, F0)) Apatytic sor. = 0-5 = tanalyticSol. A~ 3min. and 38 sec.)
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Exploring the Module - Heating a Plane Wall

Module Application Example II: Results Analysis (2/3)

Temperature Profile T(xtime) | Fourier#= |=075 | intialize St Siop!

Computed Data
Distance Theta
800 03269

W

Q/Qo= | 0610 P—— prom

6" (x" =0.8,Fo) =0.3269 = | T (x = 0.08m, t) ~ 127.7°C|

((T (x = 0,081, ) paryiie sor. ~ 127.9°C)
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Exploring the Module - Heating a Plane Wall

Module Application Example II: Results Analysis (3/3)

3. Absorbed energy per unit active surface area, Q/As, when T(x =0, t) = 100°C

Temperature Profile T(xtime) | Fourier#= |=075 | intialize St Siop!

Computed Data Cor

Distance Theta
1000 02389

Theta = 0.5 atx/L = 0.000 Slow  Fast

[amo- | 0610 Provious Fom

Q/As = pLlec(Q/ Qo) 0; = 8530 x 0.1 x 380 x 0.610 x (20 — 180) <

& /A~ 316 107 m | ((Q/As) paryricso, = ~3:07 x 1077 -m™?)
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Useful Relations

Plane Wall Radial Systems

rort

il

T(r,0)=T:

T (r*,0)— T
« r
r =
[}
at
Fo=—=
o rg
. hro
Bi = —
Tk

Qo = pVC(T,' — Too)
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