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Transient Conduction - Introduction

* A transient, unsteady, heat conduction process is initiated whenever
an initial thermal equilibrium state is perturbed.

e A perturbation on a thermal equilibrium state can be induced by a
change in:

surface convection conditions (T, or h);

surface radiation conditions ( Ty, or h,);

surface heat flux (g, ) or surface temperature ( T):
internal energy generation (q).

o O O O

e Transient heat conduction processes can be modelled through
analytic or numerical means:
o Lumped system analysis (overall energy balance);

o Exact solutions for the heat diffusion equation;
o Finite difference, finite element or finite volume methods.
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Transient Conduction - Temperature Gradients

Importance of the Spatially Resolution for Temperature Distribution

* During a transient heat conduction process, Bi number determine if
the temperature gradients within the solid are negligible or not.

B; hL. Conduction resistance within the solid
] = =
k Convection resistance between the solid and the fluid

e For Bi < 0.1 the temperature of the solid can be considered
spatially uniform (depends only on the time): T (X, t) ~ T (t).
o The lumped capacitance method provides a solution for T (t).

e For Bi > 0.1 the temperature distribution within the solid depend
on the position and time.

o Approximate solutions for appropriate forms of the heat
equation can be evaluated through exact or numerical means.

v
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One-Dimensional, Transient Conduction without
Thermal Energy Generation

Transient conduction can be
described in 1D for the case of a
plane wall, infinite cylinder and a V. (kVT)+ ¢ = pca_T
sphere through the heat equation. ot
o O*T 10T
ox2  a Ot

Infinite Cylinder

1o fory_1or1
r or or )

2 o
. Sphere
=1

a = X _ Thermal diffusivity r2 Or
pc
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One-Dimensional, Transient Conduction in a Plane Wall

Insulated Surface and

Symmetrical Convection Conditions

Convective Surface

P

Governing Equation

T e

E'/—T(x,o)—q: /—T(x,o)—n

il

Boundary Conditions

8 Independent Variables ory  _,
0x |, _o
T=1F(x,a,t, Ti,k,L, h, Ty) _k%_l' BT (L 1) — Ta]
x=L
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One-Dimensional, Transient Conduction in a Plane Wall

Non-dimensionalization: Covanilne Eoquaier

x 0
cO =g =TTs 0<
0* <1
o x*=7, 0<x*<1
« ‘ ot Initial Condition
° t —FO:L—2
o Bi:% 6% (x*,0) =1

Boundary Conditions

3 Independent Variables

00"
=0
6" = f (x*, Fo, Bi) X" o
09"
- = —Bif" (1,t7)
aX x*=1
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One-Dimensional, Transient Conduction in a Plane Wall

Exact Solution - Dimensionless Temperature Difference

The exact solution for the problem is given in the form of an infinite series.

= 3 Coexp (~C2Fo) cos (o)
n=1

C, and (, are functions of Bi number and the geometry under consideration
(large plane wall). C, and (, are commonly given in tables.

Approximate Solution: One-term Approximation (Valid for Fo > 0.2)

[ X*,t* T X*,t* o Too .
0" (x*, t%) = ( ) ) = ( T )T = Flexp (—Cleo)Jcos ((1x™)
%
T(0,t*
0y = (T )T = Ciexp (—(f Fo) 65 - midplane dimensionless
! temperature difference
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One-Dimensional, Transient Conduction in a Plane Wall

Exact Solution - Dimensionless Mean Temperature Difference

The exact solution for the problem is given in the form of an infinite series.

7 () = & /0*(x £*) dx* Zsm Crexp (—C2Fo)

* Bi — 0: 6*(t*) = exp (—Bi.Fo)
o Lumped capacitance method solution for the dimensionless
temperature difference: 6* (t) = exp (—T—‘;) = exp (—Bi.Fo).

Approximate Solution: One-term Approximation (Valid for Fo > 0.2)

7 () = T (1)
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One-Dimensional, Transient Conduction in a Plane Wall

Approximate Solution: One-term Approximation (Valid for Fo > 0.2)

, - - :
QW) 17 with 7 (¢) = 2% (¢)
Qo G
° Q(t)[=pVc (T; — T¢(t))] - Total energy transfer from/to the wall over
the time interval t.
® @Q[=pVe(T; — Tso)] - Initial thermal energy of the wall relative to the

fluid temperature, i.e., maximum possible energy transfer from/to the
wall if the process continues to time t = oo.
4

Boundary Condition at x* = 1: Constant Surface Temperature

The foregoing solutions for 6%, #* and Q/Qo are also applicable for
a fixed surface temperature boundary condition at x* = 1 since it is
equivalent to consider h = oo (Bi = o0) and T = Ts.
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One-Dimensional, Transient Conduction in a Plane Wall

Heat Removal (T; > T.)

Numerical and One-Term Approximation Solutions

3 Case Studies:

— T e

Ef_T(x’O) o ° Bi=0.2;

. Bi = .
T ? T T T T o Negligible convection

resistance: equivalent to

prescribe a constant surface

=kl |o=1 temperature (T) equal to
Tso.

AEst:—Q, Q>O

AE,; - change in thermal energy storage
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One-Dimensional, Transient Conduction in a Plane Wall

Heat Removal - Numerical and One-Term Approximation Solutions

Bi=0.2 Bi=5.0
1 TS BREmE————————— Ti 1 o T T;
=
$00 34)1__’——\\ N ———  One-Term Approx.
EEro0- \ by ——  Numerical Solution
0.8 —Fom10— —— 08k Aw—
.8 ~— 5 ¢ '1,5"
I 75 //4.

0[]

0.6 — — 0.6
" Fo=3 I - = f o
© /@7“‘
0.4 Fo=5.0 0.4 /

e
02 Fo=10.0 02 V'
E A
15.0 - . T ey -
-1 -0.5 0 0.5 1 -1 —0.5 0 0.5 1
X [ x [

— Bi=oc0

0.87 A
: 7 — Bi=02
i — Bi=5.0

/,

— = One-Term Approx.

T0.6f
S //
S0.4f /
0.2}

[ —— Numerical Solution

—"—"1 ‘ ‘ —
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One-Dimensional, Transient Conduction in a Plane Wall

Heat Removal (T; > T.)

One-Term Approximation Solutions

— T e

i’/;—T(a:,O)zTi
3 Case Studies:

e Bi = 0.05;
o e
o * Bi=10.

eetl T e

AEst:—Q, Q>O

AE,; - change in thermal energy storage

One-Dimensional, Transient Conduction (Computational Laboratory I1) - 12 of 35



One-Dimensional, Transient Conduction in a Plane Wall

Heat Removal - One-Term Approximation Solutions

Bi=0.05 Bi=0.2 .
1 T; 1 pm——— T; 1
Fo=1.0 Fo=0.25
Fo=2.0 — | o—— T Fo=0.25»
0.8 ; 0.8 === === — 0.8 X
0=0.1
e o= Fo20 e
0.6 m————eF0=10. 0.6 0.6
= = = S i =
> == -
0.4 04— [— 04 - F°f1'°< y
onctemager (X — Ot (5 O emagee (5
02 o™ 02 AR 02— | e
=== ;CM === e;CM : e[CM
0 I I T, 0 I I T, 0 \ I I T.
| 05 0 05 1 1 05 0 0.5 1 o1 -05 0 05 1
X[ X [ X[
——————————— * *
I = ! o (L) _ £ (Bi, Fo)
8 \ . ] I’E3 (0 £ ) — 5 .
70.8 = T — Bi=0.05 10.8 & ) . ( *)
I~ TTs=-.| — Bi=02 2 0*(1,t
62 Bi-l0 | {05 However, as Fo 1 o) oS (¢1)
s Vi f
E e g : :
o 04 0.4 One-Term Approximation:
S E — gLCM/g‘OuefrennAppr [-] =
$02p | "7 Seml] 02X [ —
Pl T Oonetemape [F] o* (1’ t*) 0.976 B’_ =0.05
07 I I I I I 0 ﬁ = 0.908 BI = 0.2
0 0.5 1 15 2 25 3 0 (0, t*) 0.652 Bi—1.0
Fo [-]
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One-Dimensional, Transient Conduction in a Plane Wall

Bi=1.0 ~ Bi=2.0

Fo=0.3 =
e | Fo=0.3
0

.-'"':.0‘4: 7.0-4:""-.
Fo=2.0 il
02,
Fo=3.0 i Fo=2.0
Fo=3.0
I L P T AN |
0 -2 0 1 2
x [-] 1/Bi 1/Bi x [ 1/Bi

e At any time during an unsteady conduction process, the extensions of the
tangents to the curves at the points x* = +1 intersect the axis
perpendicular to 8% = 0 at the points & (1+ 5).

e This evidence is also observed for long rods and spheres.
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One-Dimensional, Transient Conduction in a Plane Wall

Heat Addition (7 > T;)

One-Term Approximation Solutions

3 Case Studies:

N 5;/_T(33;0) =T; e B = 0.2;

e Bi = oo.
T ? T T T T o Negligible convection
resistance: equivalent to
- prescribe a constant surface
o= o=t temperature (T5) equal to
* TOO
T, T
AEst - _Q7 Q < 0 1 — 0* — T(X*at*)_T(X*9O)

AE: - change in thermal energy storage Too—=T(x*,0)
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One-Dimensional, Transient Conduction in a Plane Wall

Heat Addition - One-Term Approximation Solutions

Bi=0.2 Bi=5.0 Bi=o0

1 T. 1 T. 1 T..
Fo=2.0—7 Fo=1.5
~=Fo=].5m— ,\D/ SE T ——————— =10 ;;
) ) ~— — /) 0.8

(=)} 00/
c;t%og//
&
[
N

K " —
— —0. _ \ /
= = T \ v/
C- T = @ = @ oy & =
— 3.0 1 — - 0L N
04 04 0.4 N’
] \
e~ = FO=] 5 == ]
0.2 \\'FO:‘-O _ 0.2 0.2
\\_p(,:o.s—m
e " T, T, T
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1 —0.5 0 0.5 1
X[ X[ X I

R
Fo <0.20
\

— — Bi=02
" / ,/ : g:ifo ]
i
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One-Dimensional, Transient Conduction in Radial
Systems

Infinite Cylinder or Sphere Infinite Cylinder - Gov. Equation
Heated/Cooled by Convection

T lg(ar)_mr

r— —_
T =T ror \ Or a Ot
—_—

Sphere - Governing Equation

1t ig(r28T>:1aT

ar)  aodt

Boundary Conditions

oT

Initial Condition ar =0

r=0

T(r,t:O):T,- —ka—T

EP =h([T (ro,t) — Too]

r=rg
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One-Dimensional, Transient Conduction in Radial
Systems

Infinite Cylinder - Gov. Equation

Non-dimensionalization:
1 0 e o00* 1 o00*
T— T S r* or* or* ] aot*

Sphere - Governing Equation

°
S
*
I
SRS
I
T
~|
8
o
AN
S
*x
IA

l

0 1 0 (200" _ 106"
.t:FOZ? r<2 or* or* )] aot*
o Bi=1p

Boundary Conditions
9*
Initial Condition P =0
r r*=0
0" (r*,0) =1 00* ok e
or-| = Bif (1,t")
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One-Dimensional, Transient Conduction in Radial
Systems

Exact Solutions - Dimensionless Temperature Difference

The exact solutions for the infinite cylinder and sphere are given in the form
of infinite series.

Infinite Cylinder

0* = Z_; Coexp (—C2Fo) Jo (Car™)

Sphere

1
or sin (Car™)

C, and (, are functions of Bi number and the geometry under consideration
(long rod or sphere). C, and (, are commonly given in tables.

0" = Z Cnexp (—C,%Fo)
n=1
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One-Dimensional, Transient Conduction in Radial
Systems

Approximate Solutions: One-term Approximation (Valid for Fo > 0.2 )

Infinite Cylinder Sphere
0" = 6gJo (Car™) 0" = 05 & =sin (Gr”)
7 () = 2l 07 (°) = % [sin () — Greos ()]
Q2 —1 - 2hlaly; & =13 [sin(G) — Gacos (Gr)]
05 = T((_)I_’ti)_; Too = Ciexp (—{12Fo)
® (g - centerline [centerpoint] dimensionless temperature difference for an infinite
cylinder [sphere].
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One-Dimensional, Transient Conduction in Radial
Systems

Boundary Condition at r* = 1: Constant Surface Temperature

The foregoing solutions for 6%, #* and Q/Qo are also applicable for
a fixed surface temperature boundary condition at r* = 1 since it is
equivalent to consider h = co (Bi = o0) and consequently T, = Ts.
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One-Dimen., Transient Conduction in Radial Systems

Heat Removal (T; > T.)

Numerical and One-Term Approximation Solutions

Infinite Cylinder or Sphere 3 Case StUdleS:
Heated/Cooled by Convection e B = 02’

' e Bi =5.0:

T(T!O) =T

* Bi = .
o Negligible convection

resistance: equivalent to
prescribe a constant surface

temperature (T) equal to
T

AEst:—Q, Q>O

AE,; - change in thermal energy storage
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One-Dimen., Transient Conduction in Radial Systems

Heat Removal - Numerical and One-Term Approximation Solutions

Bi=0.2 Bi=5.0 Bi=o0
1 T; 1 =~ T; 1 S T
o005 ) BN =N 2
08 S ) S 08
e . - oy, -
- = Long Cylinder (One-Term) % %
Fo=1.0< E— ——  Long Cylinder (Num.) 4 \ 3
TN [| wemen Sphere (One-Term) Y 3 [ | = LongCylinder (One-Term) T
[ Y e XY meeses 0.6 - Sphere (Num.) 0.6 Long Cylinder (Num.) X
T - 00 . . e s e P 2
= - = = Sphere (Num.) Y B -
@04 Fo=3.0 °04 — @04 S 2
NN A -
STt Fo=0.25
\ Fo-0.5 aﬁ,\ 0\\0_/
——  Long Cylinder (One-Term) ne —~———
0.2 ——  Long Cylinder (Num.) EEE I — 0.2 020 Foz073 ,‘T\
----- Sphere (One-Term) Foel0 / \
Sphere (Num.) o=1 F -:;) 5 ..............
0 I I I T.. 0 mceniased LS S M%‘ T,
0 0.2 0.4 0.6 0.8 1 0 0.2 0 0.2 0.4 0.6 0.8 1
r[-] r[-]
17
0.8 — Bi=02 |
R o = Bi=5.0
~0.6 [ . ‘-“‘_._...-.-»- Bi=o [—
g & -”.‘______ - /
L R e = / -
7 R = Cylinder - One-Term Approx.
{ .~‘/ ——  Cylinder - Num.
D I e s Mt Sphere - One-Term Approx.
< - Sphere - Num.
|
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Final Remarks

* The evaluation of temperature distribution profiles (T (X, t)) during
a transient heat conduction process with an appropriate form of the
heat equation (and initial and boundary conditions) through
numerical or approximated analytical solutions require a Biot
number computed with L. equal to L for large plane walls and ry
for long cylinders and spheres.

o Bi number with a characteristic length (L.) equal to V /Ag is only
considered for lumped system analysis.

® The one-term approximation for Fo>0.2 results in an error below
2%.

* Heisler/Grober charts (transient temperature and heat transfer
charts) provide a graphical representation for 83, 6* /65 and Q/ Qo
obtained with the single-term approximation of the exact solution.

v
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Exploring the Software

Output - Results

i
Temperature Profile
= 0.5000 Geomer
(® Planar Wall
C Infinite Cylinder|
) Sphere Pre-Processing
Heat Transfer Specs: —| Sta g e
(@ Heat Removal H
grmm (geomatry; boundary
and initial conditions
Biot Number |= 40.0 and
= numerical parameters)
Tnitial Temp Profile:
(® Uniform Temperature
T - — O Volumetric Heating
Computed Data: Completion Criterion: — |
Stutent Names m;:::’ IPSET.; [X] Change Criterion Numerieal Parameters: ~|
« o Fo= 0.5000 GridFo | = 0100
% e = -
\

Two Stopping Criteria:
1 - elapsed time; 2 - achieved temperature.

® The software solves the one-dimensional, transient heat equation through
numerical methods employing the finite volume method.
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Exploring the Software

Completion Criteria

The program ends its computations for two possible stopping criteria:

1. Specified Fourier number (Fo);
o For evaluation of the temperature distribution profiles and the ratio
Q/ Qo at a specific time instant.
2. Specified 6% (x*, t*).
o For the evaluation of the elapsed time, temperature distribution
profiles and the ratio Q/Qp.

" Specified Fourier Number

Select: Specified Fourier No.

| Select: Completion Criterion

Fo = 05000 £ | @ Specified Theta Select: Speci.ﬁed Theta
nter =1
Distance =0.00 =
Enter
| - —_— _|
Theta 0.25 ;I
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Exploring the Software - Case Study |

Cooling of a Plane Wall

Using Fo Number as the Stopping Criterion

) /’\/T (5,0) =T, Objectives:
1. Calculation of the
temperature distribution at
T T T T T T any time instant, T (x, t);
2. Calculation of the fractional
e s energy loss, @/Qo, at any
At :1» time instant, Q/ Qo (t).
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Exploring the Software - Cooling of a Plane Wall (1/3)

Temperature distribution and heat lost to the fluid after a
specific time interval (Fo number as the stopping criterion)

Consider a plane wall initially at T; = 180 °C that is suddenly cooled with a fluid
at Too = 20°C and with h = 2500 W.m > K.

T(2.0)=T,
Reference Data :

Thermoph. Properties Geom. Properties

k=110 W/(m.K) TTT TTT
p = 8530 W/(m*.K) L =0.05m
c =380 W/(m” K) o
el 224
1. Determine the Temperature (T) at 7
2. Determine Q/Qo after
® x =0m and after t =205
® t=2
® x =L/2m and after t = 40s 0s
® t=140s
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Exploring the Software - Cooling of a Plane Wall (2/3)

Temperature distribution and heat lost to the fluid after a
specific time interval (Fo number as the stopping criterion)

Consider a plane wall initially at T; = 180 °C that is suddenly cooled with a fluid
at Too = 20°C and with h = 2500 W.m 2. K.

T(5,0) =T,
Reference Data :

Thermal Diffusivity Biot Number

a=339x10"°m*s ! Bi =1.14 TTT TTT

zszI e |x:L
¥ =—1 zr=1

1. Determine the Temperature (T) for

2. Determine Q/Qo after

® x*=0and t* = Fo =0.27
® x*=05and t" = Fo =0.54

o t* = Fo=0.27
® t"=Fo=054
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Exploring the Software - Cooling of a Plane Wall (3/3)

Temperature distribution and heat lost to the fluid after a
specific time interval (Fo number as the stopping criterion)

Consider a plane wall initially at T; = 180 °C that is suddenly cooled with a fluid
at Too = 20°C and with h = 2500 W.m > K.

T(5,0) =T,
Reference Data :

Thermal Diffusivity Biot Number

@=339x10"°m’s™!  Bi=114 TTT TTT

1. Determine the Temperature (T)

2. Determine @/ Qo

®* Q/Qo(0.27) = 0.210
®* Q/Qo (0.54) = 0.366

® 6%(0,0.27) = 0.9011 = T = 164.2°C
® 6*(0.5,0.54) = 0.6565 = T = 125.0°C
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Exploring the Software - Case Study Il

Cooling of a Sphere

Using a Specified 6* (x* = x{, t*) Value as the Stopping Criterion

Objectives:

Infinite Cylinder or Sphere 1. Calculation of the elapsed time, t,
Heated/Cooled by Convection ..
Y for achieving 0™ (x™ = x{, t*)

" equal to a specified value;

T(r,0) =T,
@ 2. Calculation of the temperature
distribution, T (x, t), when
0" (x* = xy,t") is equal to a
T T T specified value;
3. Calculation of the ratio Q/Qo

when 0" (x* = x{', t*) is equal to
a specified value.

r=ry
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Exploring the Software - Cooling of a Sphere (1/3)

Temperature distribution, heat lost to the fluid and elapsed time for a
specific value of 6* (x*,t*) (6" (x*,t*) as the stopping criteria)

Consider a sphere initially at 7; = 260 °C that is suddenly cooled with a fluid at
Too =20°C and with h = 3000 W.m >.K".

Reference Data

Thermoph. Properties Geom. Properties
k =110W/(m.K)
p = 8530 W/(m?* K) ro = 0.02m
¢ =380 W/(m? K)

1. Determine the time instant, t, for which

2. Determine @/Qo when

® T(r=0,t)=200°C
® T(r=r,t)=80°C

® T(r=0,t)=200°C
® T(r=r,t)=80°C
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Exploring the Software - Cooling of a Sphere (2/3)

Temperature distribution, heat lost to the fluid and elapsed time for a
specific value of 6* (x*,t*) (6" (x*,t*) as the stopping criteria)

Consider a sphere initially at 7; = 260 °C that is suddenly cooled with a fluid at
Too = 25°C and with h = 3000 W.m >.K .

T(r,0) =T,
Thermal Diffusivity Biot Number

a=2339%x10%m?.s! Bi =0.55 TTT

1. Determine the time instant, t, for which

2. Determine @/Qo when

® 6 (0,t7) =0.75

e 0*(0,t")=0.75
® 0" (1,t")=10.25 (0.£7)

° 9" (1,t") =0.25
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Exploring the Software - Cooling of a Sphere (3/3)

Temperature distribution, heat lost to the fluid and elapsed time for a
specific value of 6* (x*,t*) (6" (x*,t*) as the stopping criteria)

Consider a sphere initially at 7; = 260 °C that is suddenly cooled with a fluid at
Too =25°C and with h = 3000 W.m >.K .

Reference Data nrt
T(r,0) =T,
Thermal Diffusivity Biot Number

a=2339%x10%m?s! Bi =0.55 TTT

1. Determine the time instant, t, for which

2. Determine @/ Qo

® 6% (0,t*) = 0.75 = Fo = 0.2930 =

t = 3.46s ° Q/Qo(0.2930) = 0.355
® 6% (0,t*) = 0.25 = Fo = 0.8595 = _
e 10 14s ° Q/Qo(0.8595) = 0.721

One-Dimensional, Transient Conduction (Computational Laboratory I1) - 34 of 35



Useful Relations

Plane Wall Radial Systems

T (2,0) =T; "
/ T(r,0) =T,

T

T

L

o
7 1

0 — T(r"t")— Teo
N T(x*,O)—TC>O - T(r*,O)—Tc>o
x* =X T
o L o
% ot % ot
t :FO_F t :FO—r—z
. hl_ . hl’o
BI—T BI—T
o = k/pc Qo = pVe (T; — Tao) J

One-Dimensional, Transient Conduction (Computational Laboratory I1) - 35 of 35



