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Transient Conduction - Introduction

• A transient, unsteady, heat conduction process is initiated whenever
an initial thermal equilibrium state is perturbed.

• A perturbation on a thermal equilibrium state can be induced by a
change in:

◦ surface convection conditions (T∞ or h);
◦ surface radiation conditions (Tsur or hr );
◦ surface heat �ux (q

′′

s ) or surface temperature (Ts);
◦ internal energy generation (q̇).

• Transient heat conduction processes can be modelled through
analytic or numerical means:

◦ Lumped system analysis (overall energy balance);
◦ Exact solutions for the heat di�usion equation;
◦ Finite di�erence, �nite element or �nite volume methods.
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Transient Conduction - Temperature Gradients

Importance of the Spatially Resolution for Temperature Distribution

• During a transient heat conduction process, Bi number determine if
the temperature gradients within the solid are negligible or not.

Bi =
hLc

k
=

Conduction resistancewithin the solid

Convection resistance between the solid and the �uid

• For Bi < 0.1 the temperature of the solid can be considered
spatially uniform (depends only on the time): T (~x , t) ≈ T (t).
◦ The lumped capacitance method provides a solution for T (t).

• For Bi ≥ 0.1 the temperature distribution within the solid depend
on the position and time.
◦ Approximate solutions for appropriate forms of the heat
equation can be evaluated through exact or numerical means.
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One-Dimensional, Transient Conduction without
Thermal Energy Generation

Transient conduction can be
described in 1D for the case of a
plane wall, in�nite cylinder and a
sphere through the heat equation.

Heat Di�usion Equation

∇. (k∇T ) + q̇ = ρc
∂T

∂t

α = k

ρc - Thermal di�usivity
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One-Dimensional, Transient Conduction in a Plane Wall

Governing Equation

∂2T

∂x2
=

1

α

∂T

∂t

Initial Condition

T (x , t = 0) = Ti

8 Independent Variables

T = f (x , α, t,Ti , k , L, h,T∞)

Boundary Conditions

∂T

∂x

∣∣∣∣
x=0

= 0

−k ∂T

∂x

∣∣∣∣
x=L

= h [T (L, t) − T∞]
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One-Dimensional, Transient Conduction in a Plane Wall

Non-dimensionalization:

• θ∗ = θ
θi

= T−T∞
Ti−T∞ , 0 ≤

θ∗ ≤ 1

• x∗ = x

L
, 0 ≤ x∗ ≤ 1

• t∗ = Fo = αt
L2

• Bi = hL

k

Governing Equation

∂2θ∗

∂x∗2
=
∂θ∗

∂t∗

Initial Condition

θ∗ (x∗, 0) = 1

3 Independent Variables

θ∗ = f (x∗,Fo,Bi)

Boundary Conditions

∂θ∗

∂x∗

∣∣∣∣
x∗=0

= 0

∂θ∗

∂x∗

∣∣∣∣
x∗=1

= −Biθ∗ (1, t∗)
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One-Dimensional, Transient Conduction in a Plane Wall

Exact Solution - Dimensionless Temperature Di�erence

The exact solution for the problem is given in the form of an in�nite series.

θ∗ =
∞∑
n=1

Cnexp
(
−ζ2nFo

)
cos (ζnx

∗)

Cn and ζn are functions of Bi number and the geometry under consideration
(large plane wall). Cn and ζn are commonly given in tables.

Approximate Solution: One-term Approximation (Valid for Fo > 0.2 )

θ∗ (x∗, t∗) =
θ (x∗, t∗)

θi
=

T (x∗, t∗)− T∞

Ti − T∞
= C1exp

(
−ζ2

1
Fo
)︸ ︷︷ ︸

θ∗
0

cos (ζ1x
∗)

θ∗
0

=
T (0, t∗)− T∞

Ti − T∞
= C1exp

(
−ζ2

1
Fo
)

θ∗
0
- midplane dimensionless

temperature di�erence
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One-Dimensional, Transient Conduction in a Plane Wall

Exact Solution - Dimensionless Mean Temperature Di�erence

The exact solution for the problem is given in the form of an in�nite series.

θ∗ (t∗) =
1

x∗

1∫
0

θ∗ (x∗, t∗) dx∗ =
∞∑
n=1

sin (ζn)

ζn
Cnexp

(
−ζ2nFo

)
• Bi→ 0: θ∗ (t∗) = exp (−Bi .Fo)

◦ Lumped capacitance method solution for the dimensionless

temperature di�erence: θ∗ (t) = exp
(
− t

τt

)
= exp (−Bi .Fo).

Approximate Solution: One-term Approximation (Valid for Fo > 0.2 )

θ∗ (t∗) =
sinζ1
ζ1

θ∗
0

(t∗)
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One-Dimensional, Transient Conduction in a Plane Wall

Approximate Solution: One-term Approximation (Valid for Fo > 0.2)

Q (t)

Q0

= 1− θ∗ with θ∗ (t∗) =
sinζ1
ζ1

θ∗
0

(t∗)

• Q (t)
[
= ρVc

(
Ti − Tt (t)

)]
- Total energy transfer from/to the wall over

the time interval t.

• Q0 [= ρVc (Ti − T∞)] - Initial thermal energy of the wall relative to the
�uid temperature, i.e., maximum possible energy transfer from/to the
wall if the process continues to time t =∞.

Boundary Condition at x∗ = 1: Constant Surface Temperature

The foregoing solutions for θ∗, θ∗ and Q/Q0 are also applicable for
a �xed surface temperature boundary condition at x∗ = 1 since it is
equivalent to consider h =∞ (Bi =∞) and T∞ = Ts .
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One-Dimensional, Transient Conduction in a Plane Wall

Heat Removal (Ti > T∞)
Numerical and One-Term Approximation Solutions

3 Case Studies:
• Bi = 0.2;

• Bi = 5.0;

• Bi =∞.
◦ Negligible convection

resistance: equivalent to
prescribe a constant surface
temperature (Ts) equal to
T∞.

∆Est = −Q, Q > 0
∆Est - change in thermal energy storage

One-Dimensional, Transient Conduction (Computational Laboratory II) - 10 of 35



One-Dimensional, Transient Conduction in a Plane Wall

Heat Removal - Numerical and One-Term Approximation Solutions
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One-Dimensional, Transient Conduction in a Plane Wall

Heat Removal (Ti > T∞)
One-Term Approximation Solutions

3 Case Studies:
• Bi = 0.05;

• Bi = 0.2;

• Bi = 1.0.

∆Est = −Q, Q > 0
∆Est - change in thermal energy storage
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One-Dimensional, Transient Conduction in a Plane Wall

Heat Removal - One-Term Approximation Solutions
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θ∗(1,t∗)
θ∗(0,t∗) = f (Bi ,Fo).

However, as Fo ↑ θ∗(1,t∗)
θ∗(0,t∗) −→ cos (ζ1)

One-Term Approximation:

θ∗ (1, t∗)

θ∗ (0, t∗)
=

 0.976 Bi = 0.05
0.908 Bi = 0.2
0.652 Bi = 1.0
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One-Dimensional, Transient Conduction in a Plane Wall
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• At any time during an unsteady conduction process, the extensions of the
tangents to the curves at the points x∗ = ±1 intersect the axis
perpendicular to θ∗ = 0 at the points ±

(
1 + 1

Bi

)
.

• This evidence is also observed for long rods and spheres.
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One-Dimensional, Transient Conduction in a Plane Wall

Heat Addition (T∞ > Ti)

One-Term Approximation Solutions

3 Case Studies:
• Bi = 0.2;

• Bi = 5.0;

• Bi =∞.
◦ Negligible convection

resistance: equivalent to
prescribe a constant surface
temperature (Ts) equal to
T∞

∆Est = −Q, Q < 0
∆Est - change in thermal energy storage

1− θ∗ = T (x∗,t∗)−T (x∗,0)
T∞−T (x∗,0)
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One-Dimensional, Transient Conduction in a Plane Wall

Heat Addition - One-Term Approximation Solutions
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One-Dimensional, Transient Conduction in Radial
Systems

Initial Condition

T (r , t = 0) = Ti

In�nite Cylinder - Gov. Equation

1

r

∂

∂r

(
r
∂T

∂r

)
=

1

α

∂T

∂t

Sphere - Governing Equation
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∂r

(
r2
∂T

∂r
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Boundary Conditions
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= h [T (r0, t) − T∞]
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One-Dimensional, Transient Conduction in Radial
Systems

Non-dimensionalization:

• θ∗ = θ
θi

= T−T∞
Ti−T∞ , 0 ≤ θ∗ ≤

1

• r∗ = r

r0
, 0 ≤ r∗ ≤ 1

• t∗ = Fo = αt
r2
0

• Bi = hr0

k

Initial Condition

θ∗ (r∗, 0) = 1

In�nite Cylinder - Gov. Equation

1
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∂

∂r∗
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∂θ∗

∂r∗

)
=

1

α
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∂t∗
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∣∣∣∣
r∗=1
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One-Dimensional, Transient Conduction in Radial
Systems

Exact Solutions - Dimensionless Temperature Di�erence

The exact solutions for the in�nite cylinder and sphere are given in the form
of in�nite series.

In�nite Cylinder

θ∗ =
∞∑
n=1

Cnexp
(
−ζ2nFo

)
J0 (ζnr

∗)

Sphere

θ∗ =
∞∑
n=1

Cnexp
(
−ζ2nFo

) 1

ζnr∗
sin (ζnr

∗)

Cn and ζn are functions of Bi number and the geometry under consideration
(long rod or sphere). Cn and ζn are commonly given in tables.
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One-Dimensional, Transient Conduction in Radial
Systems

Approximate Solutions: One-term Approximation (Valid for Fo > 0.2 )

In�nite Cylinder Sphere

θ∗ = θ∗0J0 (ζ1r
∗) θ∗ = θ∗0

1

ζ1r∗
sin (ζ1r

∗)

θ∗ (t∗) = 2J1(ζ1)
ζ1

θ∗0 θ∗ (t∗) =
3θ∗

0

ζ3
1

[sin (ζ1) − ζ1cos (ζ1)]

Q

Q0
= 1− 2J1(ζ1)

ζ1
θ∗0

Q

Q0
= 1− 3θ∗

0

ζ3
1

[sin (ζ1) − ζ1cos (ζ1)]

θ∗0 =
T (0, t∗) − T∞

Ti − T∞
= C1exp

(
−ζ21Fo

)
• θ∗0 - centerline [centerpoint] dimensionless temperature di�erence for an in�nite

cylinder [sphere].

One-Dimensional, Transient Conduction (Computational Laboratory II) - 20 of 35



One-Dimensional, Transient Conduction in Radial
Systems

Boundary Condition at r∗ = 1: Constant Surface Temperature

The foregoing solutions for θ∗, θ∗ and Q/Q0 are also applicable for
a �xed surface temperature boundary condition at r∗ = 1 since it is
equivalent to consider h =∞ (Bi =∞) and consequently T∞ = Ts .
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One-Dimen., Transient Conduction in Radial Systems

Heat Removal (Ti > T∞)
Numerical and One-Term Approximation Solutions

3 Case Studies:
• Bi = 0.2;

• Bi = 5.0;

• Bi =∞.
◦ Negligible convection

resistance: equivalent to
prescribe a constant surface
temperature (Ts) equal to
T∞

∆Est = −Q, Q > 0
∆Est - change in thermal energy storage
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One-Dimen., Transient Conduction in Radial Systems

Heat Removal - Numerical and One-Term Approximation Solutions

T∞

Ti

r* [-]
0 0.2 0.4 0.6 0.8 1

θ*  [-
]

0

0.2

0.4

0.6

0.8

1
Bi=0.2

T

Fo=1.0

Fo=3.0

Fo=0.25

Fo=0.005

Fo=0.5

Long Cylinder (One-Term)
Long Cylinder (Num.)
Sphere (One-Term)
Sphere (Num.)

T∞

Ti

r* [-]
0 0.2 0.4 0.6 0.8 1

θ*  [-
]

0

0.2

0.4

0.6

0.8

1
Bi=5.0

T
Fo=1.0

Fo=0.5
Fo=0.3

Fo=0.25

Fo=0.05

Fo=0.005

Fo=0.1

Fo=0.01

Long Cylinder (One-Term)
Long Cylinder (Num.)
Sphere (One-Term)
Sphere (Num.)

T∞

Ti

r* [-]
0 0.2 0.4 0.6 0.8 1

θ*  [-
]

0

0.2

0.4

0.6

0.8

1
Bi=∞

T

Fo=0.5

Fo=0.3

Fo=0.25

Fo=0.25

Fo=0.005

Fo=0.1

Fo=0.01

Long Cylinder (One-Term)
Long Cylinder (Num.)
Sphere (One-Term)
Sphere (Num.)

Q
/Q

0 [
-]

0

0.2

0.4

0.6

0.8

1

Fo [-]
0 0.5 1 1.5 2 2.5 3

Bi=0.2
Bi=5.0
Bi=∞

Cylinder - One-Term Approx.
Cylinder - Num.
Sphere - One-Term Approx.
Sphere - Num.

One-Dimensional, Transient Conduction (Computational Laboratory II) - 23 of 35

Final Remarks

• The evaluation of temperature distribution pro�les (T (~x , t)) during
a transient heat conduction process with an appropriate form of the
heat equation (and initial and boundary conditions) through
numerical or approximated analytical solutions require a Biot
number computed with Lc equal to L for large plane walls and r0
for long cylinders and spheres.
◦ Bi number with a characteristic length (Lc) equal to V /As is only

considered for lumped system analysis.

• The one-term approximation for Fo>0.2 results in an error below
2%.

• Heisler/Gröber charts (transient temperature and heat transfer
charts) provide a graphical representation for θ∗0, θ

∗/θ∗0 and Q/Q0

obtained with the single-term approximation of the exact solution.
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Exploring the Software

• The software solves the one-dimensional, transient heat equation through

numerical methods employing the �nite volume method.
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Exploring the Software

Completion Criteria

The program ends its computations for two possible stopping criteria:

1. Speci�ed Fourier number (Fo);
◦ For evaluation of the temperature distribution pro�les and the ratio

Q/Q0 at a speci�c time instant.

2. Speci�ed θ∗ (x∗, t∗).
◦ For the evaluation of the elapsed time, temperature distribution

pro�les and the ratio Q/Q0.
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Exploring the Software - Case Study I

Cooling of a Plane Wall

Using Fo Number as the Stopping Criterion

Objectives:

1. Calculation of the
temperature distribution at
any time instant, T (x , t);

2. Calculation of the fractional
energy loss, Q/Q0, at any
time instant, Q/Q0 (t).
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Exploring the Software - Cooling of a Plane Wall (1/3)

Temperature distribution and heat lost to the �uid after a
speci�c time interval (Fo number as the stopping criterion)

Consider a plane wall initially at Ti = 180 ◦C that is suddenly cooled with a �uid
at T∞ = 20 ◦C and with h = 2500W.m−2.K−1.

Reference Data

Thermoph. Properties Geom. Properties

k = 110W/(m.K)
L = 0.05mρ = 8530W/(m2.K)

c = 380W/(m2.K)

1. Determine the Temperature (T ) at

• x = 0m and after t = 20 s

• x = L/2m and after t = 40 s

2. Determine Q/Q0 after

• t = 20 s

• t = 40 s
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Exploring the Software - Cooling of a Plane Wall (2/3)

Temperature distribution and heat lost to the �uid after a
speci�c time interval (Fo number as the stopping criterion)

Consider a plane wall initially at Ti = 180 ◦C that is suddenly cooled with a �uid
at T∞ = 20 ◦C and with h = 2500W.m−2.K−1.

Reference Data

Thermal Di�usivity Biot Number

α = 3.39× 10−5m2.s−1 Bi = 1.14

1. Determine the Temperature (T ) for

• x
∗ = 0 and t

∗ = Fo = 0.27

• x
∗ = 0.5 and t

∗ = Fo = 0.54

2. Determine Q/Q0 after

• t
∗ = Fo = 0.27

• t
∗ = Fo = 0.54
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Exploring the Software - Cooling of a Plane Wall (3/3)

Temperature distribution and heat lost to the �uid after a
speci�c time interval (Fo number as the stopping criterion)

Consider a plane wall initially at Ti = 180 ◦C that is suddenly cooled with a �uid
at T∞ = 20 ◦C and with h = 2500W.m−2.K−1.

Reference Data

Thermal Di�usivity Biot Number

α = 3.39× 10−5m2.s−1 Bi = 1.14

1. Determine the Temperature (T )

• θ∗ (0, 0.27) = 0.9011⇒ T = 164.2 ◦C

• θ∗ (0.5, 0.54) = 0.6565⇒ T = 125.0 ◦C

2. Determine Q/Q0

• Q/Q0 (0.27) = 0.210

• Q/Q0 (0.54) = 0.366
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Exploring the Software - Case Study II

Cooling of a Sphere

Using a Speci�ed θ∗ (x∗ = x∗
1
, t∗) Value as the Stopping Criterion

Objectives:

1. Calculation of the elapsed time, t,
for achieving θ∗ (x∗ = x

∗
1 , t
∗)

equal to a speci�ed value;

2. Calculation of the temperature
distribution, T (x , t), when
θ∗ (x∗ = x

∗
1 , t
∗) is equal to a

speci�ed value;

3. Calculation of the ratio Q/Q0

when θ∗ (x∗ = x
∗
1 , t
∗) is equal to

a speci�ed value.
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Exploring the Software - Cooling of a Sphere (1/3)

Temperature distribution, heat lost to the �uid and elapsed time for a
speci�c value of θ∗ (x∗, t∗) (θ∗ (x∗, t∗) as the stopping criteria)

Consider a sphere initially at Ti = 260 ◦C that is suddenly cooled with a �uid at
T∞ = 20 ◦C and with h = 3000W.m−2.K−1.

Reference Data

Thermoph. Properties Geom. Properties

k = 110W/(m.K)
r0 = 0.02mρ = 8530W/(m2.K)

c = 380W/(m2.K)

1. Determine the time instant, t, for which

• T (r = 0, t) = 200 ◦C

• T (r = r0, t) = 80 ◦C

2. Determine Q/Q0 when

• T (r = 0, t) = 200 ◦C

• T (r = r0, t) = 80 ◦C
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Exploring the Software - Cooling of a Sphere (2/3)

Temperature distribution, heat lost to the �uid and elapsed time for a
speci�c value of θ∗ (x∗, t∗) (θ∗ (x∗, t∗) as the stopping criteria)

Consider a sphere initially at Ti = 260 ◦C that is suddenly cooled with a �uid at
T∞ = 25 ◦C and with h = 3000W.m−2.K−1.

Reference Data

Thermal Di�usivity Biot Number

α = 3.39× 10−5m2.s−1 Bi = 0.55

1. Determine the time instant, t, for which

• θ∗ (0, t∗) = 0.75

• θ∗ (1, t∗) = 0.25

2. Determine Q/Q0 when

• θ∗ (0, t∗) = 0.75

• θ∗ (1, t∗) = 0.25
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Exploring the Software - Cooling of a Sphere (3/3)

Temperature distribution, heat lost to the �uid and elapsed time for a
speci�c value of θ∗ (x∗, t∗) (θ∗ (x∗, t∗) as the stopping criteria)

Consider a sphere initially at Ti = 260 ◦C that is suddenly cooled with a �uid at
T∞ = 25 ◦C and with h = 3000W.m−2.K−1.

Reference Data

Thermal Di�usivity Biot Number

α = 3.39× 10−5m2.s−1 Bi = 0.55

1. Determine the time instant, t, for which

• θ∗ (0, t∗) = 0.75⇒ Fo = 0.2930⇒
t = 3.46 s

• θ∗ (0, t∗) = 0.25⇒ Fo = 0.8595⇒
t = 10.14 s

2. Determine Q/Q0

• Q/Q0 (0.2930) = 0.355

• Q/Q0 (0.8595) = 0.721
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Useful Relations

Plane Wall

θ∗ =
T (x∗, t∗) − T∞

T (x∗, 0) − T∞

x
∗ =

x

L

t
∗ = Fo =

αt

L2

Bi =
hL

k

Radial Systems

θ∗ =
T (r∗, t∗) − T∞

T (r∗, 0) − T∞

r
∗ =

r

r0

t
∗ = Fo =

αt

r2
0

Bi =
hr0

k

α = k/ρc Q0 = ρVc (Ti − T∞)
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