
Heat Transfer
–

Practical Lecture 4 (Solved Problems)

17. Consider a conductive wire (electric conductivity equal to 5.1 × 106 Ω−1 m−1), of circular cross-
section (diameter equal to 0.04 m), unshielded, where direct current I equal to 450 A is passing.
The generated power (by Joule effect) per unit length of the wire is 31.6 W m−1 and the thermal
conductivity of the material is 300 W m−1 k−1. Assume steady-state.

(a) Assuming a maximum conductor temperature of 80◦C and an ambient temperature of 20◦C,
calculate the convection heat transfer coefficient.

Solution:

Equation (1) provides the temperature distribution along the radial direction, r, of the
conductive wire (cylindrical rod) whose external radius is rwire, under steady-state condi-
tions, one-dimensional conduction, constant thermal conductivity, k, and with a uniform
volumetric rate of thermal energy generation, q̇.

T (r) =
q̇r2wire

4k

(
1− r2

r2wire

)
+ Ts (1)

The volumetric rate of thermal energy generation – due to Joule heating (conversion of
electrical energy to thermal energy) – can be evaluated with the provided heat transfer
rate per unit length of the wire, q′, through Equation (2).

q̇ =
Ėg
V
⇔ q̇ =

q′L

πr2wireL
⇔ q̇ =

q′

πr2wire

(2)

To calculate the convection heat transfer coefficient, the wire surface temperature must be
known. When the maximum temperature in the conductor – temperature observed at the
wire centerline (r = 0) – is equal to 80◦C, the surface temperature of the wire is computed
by replacing Equation (2) in Equation (1) and considering r = 0 and T (r = 0) = 80◦C –
see Equation (3).

Ts = T (r)− q′

4πk

(
1− r2

r2wire

)
⇒ Ts = T (0)− 31.6

4× 300π

(
1− 02

0.022

)
⇔

⇔ Ts ≈ T (0) = 80 ◦C

(3)

Equation (3) shows that negligible temperature gradients are observed along the wire radial
direction. Therefore, the wire surface temperature is about the same as the temperature
observed at the wire centerline.

Once the wire surface temperature is known (Ts = 80 ◦C), the convection heat transfer
coefficient can be computed through the application of the conservation of energy require-
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ment (energy balance) to a control volume embracing the conductive wire – see Equation
(4).

Ėin − Ėout + Ėg = Ėst ⇔�
�Ėin − Ėout + Ėg = �

�Ėst ⇒ Ėg = Ėout ⇔

⇔ q′L = 2πrwireLh (Ts − T∞)⇔ h =
q′

2πrwire (Ts − T∞)
⇔

⇔ h =
31.6

2π × (0.04/2)× (80− 20)
⇔ h ≈ 4.191 W m−2 K−1

(4)

1 The problem statement provides more data than that required to solve it. The pro-
vided values for the electric conductivity and current (or, alternatively, the provided
value for the heat transfer rater per unit length) would be sufficient to solve the
problem. Note that the heat transfer rate from the external wire surface per unit
length of the wire – due to Joule (Ohmic or resistance) heating – can be calculated
with the electric conductivity (σe), electric current (I), and radius of the conductive
wire (rwire) – see Equation (5).

q′ =
Ėg
L

=
Re

L
I2 ⇔ q′ =

L

LσeAc
I2 ⇔ q′ =

1

σeπr2wire

I2 ⇔

⇔ q′ =
1

5.1× 106 × (0.04/2)2 × π
× 4502 ⇔ q′ ≈ 31.597 W m−1

(5)

2 Equation (1) is derived from the integration of the proper form of the heat diffusion
equation (in cylindrical coordinates) followed by the application of suitable boundary
conditions for the evaluation of the integration constants. The appropriate form of
the heat diffusion equation under one-dimensional heat conduction along the radial
direction of a solid cylinder (cylindrical rod), steady-state conditions, with constant
thermal conductivity and uniform internal generation of thermal energy is given by
Equation (6).

1

r

∂T

∂r

(
kr
∂T

∂r

)
+

1

r2
∂T

∂φ

(
k
�
�
�∂T

∂φ

)
+
∂T

∂z

(
k
�
�
�∂T

∂z

)
+ q̇ = ρcp

�
�
�∂T

∂t
⇒

⇒ 1

r

d

dr

(
r
dT

dr

)
+
q̇

k
= 0

(6)

The general solution of Equation (6) is obtained by integrating twice Equation (6) –
see Equations (7) and (8).

∫
d

(
r
dT

dr

)
= − q̇

k

∫
rdr ⇔ r

dT

dr
= − q̇r

2

2k
+ C1 (7)
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∫
dT = − q̇

2k

∫
rdr + C1

∫
1

r
dr ⇔ T (r) = − q̇

4k
r2 + C1ln (r) + C2 (8)

The constants of integration C1 and C2 are obtained by applying the adequate bound-
ary conditions. At the cylindrical rod centerline (r = 0), a zero-Neumann boundary
condition stating this radial location as an axis of symmetry is considered – see
Equation (9). At the external rod surface (r = rs), a prescribed temperature value
is applied (first kind boundary condition) – see Equation (10).

dT

dr

∣∣∣∣
r=0

= 0 (9)

T (r = rs) = Ts (10)

The integration constant C1 is obtained replacing Equation (7) in Equation (9) – see
Equation (11).

dT

dr

∣∣∣∣
r=0

= 0⇔ r
dT

dr

∣∣∣∣
r=0

= 0⇔ − q̇ × 02

2k
+ C1 = 0⇔ C1 = 0 (11)

The integration constant C2 is obtained replacing Equation (8) in Equation (10) and
considering C1 = 0 – see Equation (12).

T (r = rs) = Ts ⇔ −
q̇r2s
4k

+ 0× ln (rs) + C2 = Ts ⇔ C2 = Ts +
q̇r2s
4k

(12)

Finally, the governing equation for the temperature distribution under the stated
conditions is obtained by replacing the integration constants C1 and C2 (Equations
(11) and (12)) in Equation (8) – see Equation (13) which is equal to Equation (1).
(Note that rs (radius of the cylindrical rod) in Equation (13) corresponds to rwire in
Equation (1).)

T (r) =
q̇r2s
4k

(
1− r2

r2s

)
+ Ts (13)

(b) Consider two insulators A and B, with 0.005 m of thickness and thermal conductivities
kA = 0.3 W m−1 K−1 and kB = 4 W m−1 K−1. In order to protect the outer surface of the
conductor wire, which of the two insulators would you choose in order to prevent the maxi-
mum conductor temperature of reaching more than 10% of the value previously considered?
Consider for this question h = 3 W m−2 K−1.

Solution:

In the previous question it was concluded that the temperature gradients along the radial
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direction of the conductive wire are negligible, and consequently, the wire surface temper-
ature and the wire centerline (maximum) temperature are similar.

The equivalent thermal circuit for the conduction along the insulation thickness and con-
vection from the external insulation surface to the surrounding environment is presented
in the figure below. In this figure, Ts,1 is the temperature at the interface of the conductive
wire with the insulation layer – Ts,1 ≈ T (r = 0) = Tmax,wire.

The radial position at the external insulation surface is given in Equation (1), where tins
corresponds to the insulation thickness.

rins = rwire + tins ⇔ rins = (0.04/2) + 0.005⇔ rins = 0.025 m (14)

Equation (15) allows to evaluate the conductive wire surface temperature (similar to the
maximum wire temperature) for materials with different thermal conductivity values.

q′ =
Ts,1 − T∞
R′t,tot

⇔ Ts,1 = q′R′t,tot + T∞ ⇔ Ts,1 = q′
(
R′t,cond +R′t,conv

)
+ T∞ ⇔

⇔ Ts,1 = q′
[

ln(rins/rwire)

2πk
+

1

2πrinsh

]
+ T∞

(15)

The maximum temperatures in the conductive wire considering insulation materials A and
B are calculated in Equations (16) and (17), respectively.

Ts,1 = q′
[

ln(rins/rwire)

2πkA
+

1

2πrinsh

]
+ T∞ ⇔

⇔ Ts,1 = 31.6×
[

ln(0.025/0.02)

2× 0.3π
+

1

2× 0.025× 3π

]
+ 20⇔

⇔ Ts,1 ≈ 90.798◦C ((Ts,1[
◦C]− 80)/80 ≈ 13.498%)

(16)

Ts,1 = q′
[

ln(rins/rwire)

2πkB
+

1

2πrinsh

]
+ T∞ ⇔

⇔ Ts,1 = 31.6×
[

ln(0.025/0.02)

2× 4π
+

1

2× 0.025× 3π

]
+ 20⇔

⇔ Ts,1 ≈ 87.338◦C (9.173%)⇒ Insulation material B respects the requirements!

(17)
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The insulation material A leads to an increase in the conductive wire maximum temper-
ature of about 13.5% in relation to the previous considered maximum temperature value
(80◦C) – see Equation (16). On the other hand, the application of the insulation mate-
rial B leads to an increase of the maximum temperature below 10% – see Equation (17).
Therefore, the insulation material B should be selected.

(c) What is the outside temperature of the insulation under the conditions of (b)?

Solution:

Considering the equivalent thermal circuit presented in the figure of the solution of question
(b), Ts,2 corresponds to the outside temperature of the insulation that can be computed
according to Equation (18).

q′ =
Ts,2 − T∞
R′conv

⇔ Ts,2 = q′R′conv + T∞ ⇔ Ts,2 = q′
1

2πrinsh
+ T∞ ⇔

⇔ Ts,2 = 31.6× 1

0.025× 3× 2π
+ 20⇔ Ts,2 ≈ 87.057 ◦C

(18)

1 In alternative to Equation (18), the outside temperature of the insulation can also
be computed according to Equation (19) considering the thermal conductivity of the
insulation material B (kB = 4 W m−1 K−1) and the corresponding conductive wire
surface temperature computed in the previous question (Ts,1 = 87.338◦C).

q′ =
Ts,1 − Ts,2
R′cond

⇔ Ts,2 = Ts,1 − q′R′cond ⇔ Ts,2 = Ts,1 − q′
ln(rins/rwire)

2πkB
⇔

⇔ Ts,2 = 87.338− 31.6× ln(0.025/0.02)

4× 2π
⇔ Ts,2 ≈ 87.057◦C

(19)
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18. (Homework) A cable of circular cross-section, with radius R, drives an electrical current and
lays in a medium at temperature T∞. Consider that the power released by Joule effect, per unit
volume, is uniform in a cross-section of the cable.

(a) Explain, justifying, how the thermal conductivity of the material influences the temperature
at r = 0 and r = R. Sketch the radial temperature profile T (r) in a graph.

Solution:

The Final Comment 2 of Question 17(a) provides the detailed procedure to obtain the
temperature distribution T (r) from the integration of the appropriate form of the heat dif-
fusion and application of the boundary conditions for the same conditions as those herein
considered – one-dimensional heat conduction along the radial direction of a cylindrical
rod, steady-state conditions, constant thermal conductivity, and uniform internal gener-
ation of thermal energy. The resulting equation for the radial temperature distribution
is reproduced in Equation (20) where Ts corresponds to the temperature at the (outer)
surface of the cable, i.e., the temperature at the radial position r = R.

T (r) =
q̇R2

4k

(
1− r2

R2

)
+ Ts (20)

Ts can be readily obtained by applying the energy conservation requirement to a control
volume embracing the cable and considering that convection heat transfer is the sole mech-
anism for thermal energy extraction from the cable – see Equation (21). (Alternatively,
Ts could be obtained by the application of an energy balance to the outer cable surface
(surface r = R) as shown in Final Comment 1 below.)

Ėin − Ėout + Ėg = Ėst ⇔�
�Ėin − Ėout + Ėg = �

�Ėst ⇒ Ėg = Ėout ⇔
⇔ q̇V = Ah (Ts − T∞)⇔ q̇πR2L = 2πRLh (Ts − T∞)⇔

⇔ Ts = T (r = R) =
q̇R

2h
+ T∞

(21)

Equation (21) shows that the thermal conductivity does not play any role on the cable sur-
face temperature Ts = T (r = R). On the other hand, Equation (21) shows that increasing
the convection heat transfer coefficient (h) or decreasing the cable radius (R) – i.e., de-
creasing the thermal resistance for convection (Rconv)– the cable surface temperature (Ts)
approaches to fluid temperature (T∞).

The temperature at the cable centerline (T (r = 0)) can be calculated considering r = 0 in
Equation (20) and Ts given by Equation (21) – see Equation (22).

T (r = 0) =
q̇R2

4k

(
1− 02

R2

)
+ Ts ⇔ T (r = 0) =

q̇R2

4k
+
q̇R

2h
+ T∞︸ ︷︷ ︸
Ts

(22)

Equation (22) shows that decreasing (increasing) the thermal conductivity the tempera-
ture at the cable centerline increases (decreases) in relation to the cable surface tempera-
ture and fluid temperature.
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The following figure presents the radial temperature distribution for five different thermal
conductivity values (left) and the temperatures at the cable centerline and surface as a
function of the material thermal conductivity (right). Note that as the thermal conductivity
increases the temperature gradients within the cable become negligible with no effect on
the cable surface temperature that remains constant (and equal to 21◦C).

1 A surface energy balance applied to the cable cylindrical surface r = R can be consid-
ered to obtain the cable surface temperature, Ts, in alternative to the application of
an energy balance to the overall cable – as considered in Equation (21). Note that the
temperature gradient (dT/dr) in Equation (23) was evaluated with the temperature
distribution provided by Equation (20).

Ėin − Ėout = 0⇔ A (r = R) q′′cond (r = R) = A (r = R) q′′conv ⇔

⇔ q′′cond (r = R) = q′′conv ⇔ −k
dT

dr

∣∣∣∣
r=R

= h (Ts − T∞)⇔

⇔ −k
(
− q̇R

2k

)
= h (Ts − T∞)⇔ Ts =

q̇R

2h
+ T∞

(23)

(b) Suddenly the electrical current is cut-off. On the same graph, plot the temperature profile
at the instant the current is cut-off and at a later time before the steady-state has been
restored. Justify the shape of the plotted profiles and compare, for these two time instants,
the temperature and temperature gradients at r = 0 and r = R.

Solution:

The following equation (after applying the simplifying assumptions) governs the spatial
and temporal temperature distribution after the current cut-off – see Equation (24). In
this equation, α corresponds to the thermal diffusivity of the cable (α = k/(ρcp)).
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1

r

∂T

∂r

(
kr
∂T

∂r

)
+

1

r2
∂T

∂φ

(
k
�
�
�∂T

∂φ

)
+
∂T

∂z

(
k
�
�
�∂T

∂z

)
+ ��̇q = ρcp

∂T

∂t
⇒

⇒ 1

r

∂

∂r

(
r
∂T

∂r

)
=

1

α

∂T

∂t

(24)

The governing equation is subjected to the boundary conditions given by Equations (25)
and (26) and to the initial condition provided by Equation (27).

dT

dr

∣∣∣∣
r=0

= 0 (25)

−k dT
dr

∣∣∣∣
r=R

= h [T (r = R, t)− T∞] (26)

T (r, t = 0) =
q̇R2

4k

(
1− r2

R2

)
+
q̇R

2h
+ T∞ (27)

The stated problem was solved numerically and the temperature distribution profile for
different time instants after the current cut-off is presented in the next figure. The actual
properties and conditions considered are listed in the figure. As the time evolves the
temperatures within the cable tend towards the fluid temperature. Notice that for all time
instants the gradient dT/dr at r = 0 (cable centerline) is zero in full accordance to the
boundary condition defined in Equation (25). On the other hand, at the cable surface
(r = R) the magnitude of the temperature gradient |dT/dr| decreases as the elapsed
time increases because the convective heat flux from the surface decreases as the surface
temperature approaches the fluid temperature which is in full agreement with the boundary
condition defined in Equation (27).
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19. (Homework) Consider a spherical reservoir where a mixture of fluids undergoes an exothermic
reaction. As shown in the figure (below), the reservoir is formed by two layers where the thermal
conductivity of layer A is kA = 19 W m−1 K−1 and that of material B is kB = 0.21 W m−1 K−1.
The dimensions of the reservoir are R0 = 0.3 m, R1 = 0.35 m, and R2 = 0.4 m. For the sake of
the materials resistance, the temperatures within materials A and B should not be higher than
450◦C and 400◦C, respectively. The reactor lays in an environment at temperature Tamb = 35◦C
where the convection coefficient at the outer surface of the reactor is hext = 8 W m−2 K−1. The
convection coefficient at the inner surface of the reactor is hint = 200 W m−2 K−1 and the mixture
of reactants is homogeneous and is at a uniform temperature. Neglect the thermal contact
resistance between materials A and B.

(a) Calculate the maximum power that can be released within the reactor.

Solution:

The equivalent thermal circuit for the problem under consideration is presented in the
figure below. In this figure, the heat transfer direction is identified. Since the reaction is
exothermic (there is conversion of chemical energy to thermal energy), the heat flow direc-
tion is observed from the reactive fluid mixture towards the external environment. Note
that the heat transfer is one-dimensional along the radial direction of the spherical shell
– this is an outcome of the following facts: the convection coefficients and fluid tempera-
tures at the inner and outer reservoir surfaces are constant and independent of the angular
(φ and θ) coordinates as well as the thermal conductivity which only varies in the radial
direction.

The maximum temperature limits in the spherical layers A and B must be respected for
the calculation of the maximum power (qr,max) that can be released from the reactive fluid
mixture. Due to the heat flow direction, the maximum temperature in layer A is observed
at r = R0 (Ts,1), while the maximum temperature in layer B is registered at r = R1 (Ts,2).

The procedure herein considered to evaluate the maximum power is divided into two stages:
(1) fix Ts,1 = TmaxA in order to determine if Ts,2 ≤ TmaxB ; and (2) fix Ts,2 = TmaxB in order
to evaluate if Ts,1 ≤ TmaxA . The stage assuring that the maximum temperatures in both
layers are respected corresponds to the stage that defines the temperatures Ts,1 (or Ts,2)

Page 9 of 13



for the computation of the maximum power.

Stage (1): Fixing Ts,1 = TmaxA , verify if Ts,2 ≤ TmaxB .

qr =
(TmaxA − Text)

Rt,condA +Rt,condB +Rt,convext

=
TmaxA − Ts,2
Rt,condA

⇔

⇔ Ts,2 = TmaxA +
Rt,condA

Rt,condA +Rt,condB +Rt,convext

(Text − TmaxA)⇔

⇔ Ts,2 = TmaxA +

(1/R0)−(1/R1)
4πkA

(1/R0)−(1/R1)
4πkA

+ (1/R1)−(1/R2)
4πkB

+ 1
4πR2

2hext

(Text − TmaxA)⇔

⇔ Ts,2 = 450 +

(1/0.3)−(1/0.35)
4π×19

(1/0.3)−(1/0.35)
4π×19 + (1/0.35)−(1/0.4)

4π×0.21 + 1
4π×0.42×8

(35− 450)⇔

⇔ Ts,2 ≈ 445.85◦C > 400◦C (= TmaxB)

(28)

Considering Ts,1 = TmaxA , the maximum temperature of Material B is not respected.

Stage (2): Fixing Ts,2 = TmaxB , verify if Ts,1 ≤ TmaxA .

qr =
(TmaxB − Text)

Rt,condB +Rt,convext

=
Ts,1 − TmaxB

Rt,condA

⇔

⇔ Ts,1 = TmaxB +
Rt,condA

Rt,condB +Rt,convext

(TmaxB − Text)⇔

⇔ Ts,1 = TmaxB +

(1/R0)−(1/R1)
4πkA

(1/R1)−(1/R2)
4πkB

+ 1
4πR2

2hext

(TmaxB − Text)⇔

⇔ Ts,1 = 400 +

(1/0.3)−(1/0.35)
4π×19

(1/0.35)−(1/0.4)
4π×0.21 + 1

4π×0.42×8

(400− 35)⇔

⇔ Ts,1 ≈ 403.49◦C < TmaxA

(29)

Fixing Ts,2 = TmaxB , the maximum temperature limits of Material A and B are respected.
Considering this condition, the maximum power that can be released from the reactor is
calculated through the following equation – see Equation (28).

qr,max =
(TmaxB − Text)

Rt,condB +Rt,convext

⇔ qr,max =
(TmaxB − Text)

(1/R1)−(1/R2)
4πkB

+ 1
4πR2

2hext

⇔

⇔ qr,max =
(400− 35)

(1/0.35)−(1/0.4)
4π×0.21 + 1

4π×0.42×8

⇔ qr,max = 1848.048 W

(30)

(b) Under these circumstances, what is the temperature inside the reactor?
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Solution:

Since the maximum power that can be released from the reactor (qr,max) was previously
computed (see last question), this value can be considered in Equation (31) to calculate the
temperature inside the reactor, Tint, considering the thermal resistance for convection by
the inner reservoir surface side (Rt,convint) and the temperature Ts,1 (≈ 403.49◦C) calculate
under the conditions considered to compute qr,max – see Stage 2 of last question.

qr =
(Tint − Ts,1)
Rt,convint

⇔ Tint = qrRt,convint + Ts,1 ⇔

⇔ qr
1

4πR2
0hint

+ Ts,1 ⇔ Tint = 1848.048× 1

4π × 0.32 × 200
+ 403.49⇔

⇔ Tint ≈ 411.660◦C

(31)

(c) If the rate of heat release were increased by 50%, what should be the new value of the outer
radius, R2, in order to ensure a proper operation of the system? Suppose that all parameters
keep their values.

Solution:

In question (a), it was concluded that considering Ts,2 = TmaxB the temperatures in both
layers do not exceed the maximum recommended values (TmaxA and TmaxB). Therefore,
considering a different value for the heat transfer rate (qr = qr,max (1 + 0.5)) and Ts,2 =
TmaxB , an updated value for R2 – that ensures a proper operation of the system – can be
calculated through the following equation – see Equation (32).

qr =
(Ts,2 − Text)

Rt,condB +Rt,convext

⇔ qr,max (1 + 0.5) =
(TmaxB − Text)

(1/R1)−(1/R2)
4πkB

+ 1
4πR2

2hext

⇔

⇔ 1848.048× 1.5 =
(400− 35)

(1/0.35)−(1/R2)
4π×0.21 + 1

4πR2
2×8

⇒ R2 ≈ 0.37m

(32)
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21. Calculate the steady-state temperature distribution in a compact sphere subjected to a uniform
internal heat generation q̇ [W m−3], with the surface behaving as a blackbody and exchanging
heat exclusively by radiation with the environment at a temperature Tsur.

Solution:

The general form of the heat diffusion equation in spherical coordinates is given by Equation
(33).

1

r2
∂

∂r

(
kr2

∂T

∂r

)
+

1

r2sin2θ

∂

∂φ

(
k
∂T

∂φ

)
+

1

r2sinθ

∂

∂θ

(
ksinθ

∂T

∂θ

)
+ q̇ = ρcp

∂T

∂t
(33)

The appropriate form of the heat equation for the problem under consideration is obtained in
Equation (34) after applying the adequate simplifying assumptions – negligible angular temper-
ature gradients, steady-state conditions, and constant thermal conductivity.

1

r2
∂

∂r

(
kr2

∂T

∂r

)
+

����������1

r2sin2θ

∂

∂φ

(
k
∂T

∂φ

)
+

������������1

r2sinθ

∂

∂θ

(
ksinθ

∂T

∂θ

)
+ q̇ =

�
�
��ρcp
∂T

∂t
⇒

⇒ 1

r2
d

dr

(
r2
dT

dr

)
+
q̇

k
= 0

(34)

The general solution of Equation (34) is obtained by integrating twice Equation (34) – see
Equations (35) and (36). (Note that the volumetric rate of thermal energy generation, q̇, is
uniform in the sphere volume, and consequently, independent of the sphere radius.)

∫
d

(
r2
dT

dr

)
= − q̇

k

∫
r2dr ⇔ r2

dT

dr
= − q̇r

3

3k
+ C1 (35)

∫
dT = − q̇

3k

∫
rdr + C1

∫
1

r2
dr ⇔ T (r) = − q̇r

2

6k
− C1

r
+ C2 (36)

To obtain the particular solution of Equation (34), the constants of integration C1 and C2

must be calculated through the application of suitable boundary conditions. At the sphere
centerpoint (r = 0), a zero-Neumann boundary condition stating this radial location as a point
of symmetry is considered – see Equation (37). At the external sphere surface (r = rs), a
prescribed temperature value is applied (first kind boundary condition) – see Equation (38).
The prescribed temperature value at the external sphere surface is derived from the application
of an overall energy balance to the sphere considering that the sphere is losing heat by radiation
to the surrounding surfaces at temperature Tsur.

dT

dr

∣∣∣∣
r=0

= 0 (37)
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Ėin − Ėout + Ėg = Ėst ⇔�
�Ėin − Ėout + Ėg = �

�Ėst ⇒ Ėg = Ėout ⇔

⇔ q̇V = Aσ
(
T 4
s − T 4

sur

)
⇔ q̇

4

3
πr3s = 4πr2sσ

(
T 4
s − T 4

sur

)
⇔

⇔ Ts =

(
q̇rs
3σ
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(38)

The integration constant C1 is obtained replacing Equation (35) in Equation (37) – see Equation
(39).
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r=0

= 0⇔ − q̇ × 03

3k
+ C1 = 0⇔ C1 = 0 (39)

The integration constant C2 is obtained replacing Equation (36) in Equation (38) and consid-
ering C1 = 0 – see Equation (40).
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(40)

Finally, the governing equation for the temperature distribution under the stated conditions is
obtained by replacing the integration constants C1 and C2 (Equations (39) and (40)) in Equation
(36) – see Equation (41).
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(41)
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