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1. Fluid Flow and Heat Transfer
Introduction – Motivation

• If the flow field (velocity components and density) is known (prescribed
or calculated), convective heat transport (fluid temperature distribution
and heat transfer rates) can be readily evaluated with the discretization
practices introduced in Section 3 taking into account the corresponding
formulation for the energy governing equation and auxiliary (boundary
and initial) conditions.

• If the flow field is unknown, convective heat transport rates cannot be
accurately predicted.

• The flow field solution is obtained by solving the continuity and momen-
tum equations (Navier-Stokes equations). These coupled set of equations
must be solved in combination with other transport equations if the
corresponding transported properties influence the fluid properties – for
instance, fluid properties (such as ρ and µ) may depend strongly on tem-
perature or fluid composition (reactive flows). Otherwise, the flow field
should be determined prior to the solution of other transported properties.
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1. Fluid Flow and Heat Transfer

Governing Equations – Convection Transfer Equations

The governing equations for a two-dimensional, steady-state, and non-
isothermal laminar flow of a Newtonian fluid are given as follows:
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1. Fluid Flow and Heat Transfer

Solution Procedure Details and Challenges (1/3)

• The solution for the velocity components (u, v , and w) is given by the
(x−, y−, and z−direction) momentum equations. Momentum equations
for each coordinate direction (as well as the continuity and energy
equations) are particular cases of the general transport equation for φ –
See Section 1.

• The convective terms of the momentum equations contain nonlinear
quantities – notice, for instance, in the x−momentum equation the
derivative of ρu2 (∂(ρuu)/∂x). A similar iterative approach as that
applied to handle a temperature dependent thermal conductivity (see
nonlinearities in diffusion problems – Section 2) can be herein applied –
i.e., in each iteration, the convective coefficient ρu (that depends on the
dependent variable u) is held constant and equal to the value computed
with the solution of the previous iteration.
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1. Fluid Flow and Heat Transfer
Solution Procedure Details and Challenges (2/3)

• The solution of the discretized momentum equations – applying indirect
(iterative) solution techniques for each discretized momentum equation
(inner iterations) in a segregated fashion – requires an iterative procedure
(outer iterations) at least because the momentum equations are coupled
(notice, for instance, that the solution of the x−momentum equation, u,
is required for the solution of the y−momentum equation.)

• The main difficulty in obtaining the velocity field solution lies in the
unknown pressure field – spatial derivatives of the pressure field are
required in the momentum equations. (If the pressure field is known, the
solution is straightforward using the procedure previously introduced for
convection-diffusion problems of a scalar property φ – note that the
momentum equations are convection-diffusion equations only with an
additional term that corresponds to the pressure gradient. The solution
for the velocity components obtained with the correct pressure field in
the momentum equations satisfies the continuity equation.)
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1. Fluid Flow and Heat Transfer
Solution Procedure Details and Challenges (3/3)

• For incompressible flows, there is no obvious equation to evaluate the
pressure – in such conditions, the continuity equation represents a
kinematic constrain on the velocity field rather than a dynamic equation
from which pressure can be calculated. The pressure-velocity coupling is
not straightforward, however it is known that the correct pressure
provided to compute the velocity field satisfies the continuity equation.
(For compressible flows, the density can be evaluated with the continuity
equation – density is the dominant variable in the mass conservation
equation under such conditions – and with the addition of an energy
equation to compute the temperature field, the pressure is obtained
through an equation of state p = p (ρ,T )).

• The nonlinearities in momentum equations, the strong coupling between
momentum equations, and the pressure-velocity coupling (required for
consistent flow field solutions) can be handled with an iterative solution
approach known as the SIMPLE algorithm.
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1. Fluid Flow and Heat Transfer
Anticipated Issues (1/2)

If the grid (nodal positioning) and interpolation procedures considered so far
were employed to obtain the solution of momentum equations, an irregular
pressure distribution, such as checkerboard or zigzag (wavy) pressure distri-
butions can be taken as a uniform pressure field since a negligible (erroneous)
pressure gradient can be obtained. In such conditions, inconsistent (uncou-
pled) solutions for the velocity and pressure fields are obtained.

To demonstrate this serious issue, consider the pressure gradients required
by the momentum equations which for a 2D uniform mesh and assuming a
piecewise-linear profile for pressure (interpolation) are given as follows:
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Note that the pressure gradients do not take into account the pressure at center-point P.
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1. Fluid Flow and Heat Transfer
Anticipated Issues (2/2)

The application of the previous expressions for the pressure gradients to the
following checkerboard pressure distribution (see figure below) leads to a zero
pressure gradient, and consequently, to a negligible source contribution to
the x− and y−momentum equations. Under such conditions, the velocity
field solution will not agree with the pressure distribution. This issue must be
prevented when a flow field solution is sought.
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1. Fluid Flow and Heat Transfer
The Staggered Grid Arrangement (1/3)

The staggered grid arrangement is one remedy available to avoid such issue
from occurring. A 2D staggered grid illustrating generic control volumes
(shaded regions) for the calculation of velocity components and scalars is
shown below.
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1. Fluid Flow and Heat Transfer
The Staggered Grid Arrangement (2/3)

In a staggered grid, the velocity components are not computed (stored) at
the same locations where the pressure (and other scalar variables) are cal-
culated. (Pressure (scalar or main) nodes correspond to the solid dots pre-
sented in the 2D staggered grid – see previous slide.) In a staggered grid, the
x−(y−)velocity components are calculated at the center of the west and east
(south and north) faces of the control volumes used to calculate the pressure
– see the horizontal (vertical) arrows. Similarly, the pressure nodes are located
at the center of faces w and e (s and n) for the u (v) control volumes.
With the staggered grid arrangement, the pressure gradients required by the
momentum equations are computed as follows:
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With the current grid arrangement, pressure gradients are calculated with the
values of two adjacent nodes (nodes P and W or P and W) rather than
resorting to the values of two alternate nodes (nodes E and W or N and S).
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1. Fluid Flow and Heat Transfer

The Staggered Grid Arrangement (3/3)

• The staggered grid arrangement prevents the development of negligible
pressure differences, and consequently, unrealistic velocity solutions –
solutions decoupled from the pressure field – in the presence of a
checkerboard pressure distribution.

• Furthermore, the staggered grid arrangement allows to avoid
interpolations to calculate velocities at scalar control volume faces – for
instance, to evaluate convective mass fluxes required for the solution of
transported scalar(s) governed by convection-diffusion equations –
because the velocity values are readily available at such locations.
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1. Fluid Flow and Heat Transfer
Discretized Momentum Equations (Staggered Grids)

The discretized form of the x−momentum equation for the control volume
centered at the center of the west face of a pressure node P reads as follows:

awuw =
∑

anbunb + (pW − pP)Aw + b

For a uniform 2D grid, Aw = ∆y · 1 and b = Su∆x∆y · 1. Considering the
notation system presented in the 2D grid schematic representation (see Slide
10), the previous equations is written as follows:

ai,Jui,J =
∑

anbunb + (pI−1,J − pI ,J)Ai,J + bi,J

where
∑

anbunb = ai−1,J+ai+1,J+ai,J−1+ai,J+1. Similarly, for the discretized
y−momentum equation, one obtains:

aI ,jvI ,j =
∑

anbvnb + (pI ,J−1 − pI ,J)AI ,j + bI ,j
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1. Fluid Flow and Heat Transfer

Discretized Momentum Equations (Staggered Grids)

The coefficients of the discretized momentum equations are calculated as pre-
sented before for convection-diffusion equations – applying for instance the
upwind or hybrid discretization schemes. (Note that each momentum equa-
tion is a convection-diffusion equation.) The coefficients of the discretized
momentum equations (aP and anb) contain the values of the dependent vari-
able at a previous iteration (or guessed values in the first iteration) due to
nonlinearities and the intricately coupled nature of the set of equations.
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2. SIMPLE Algorithm
Momentum Equations (Staggered Grids)

• When the pressure field is not known, the SIMPLE (Semi-Implicit
Method for Pressure-Linked Equations) algorithm can be applied for a
consistent pressure-velocity coupling.

• The first step of this algorithm corresponds to the definition of an initial
guess for pressure and velocity components (p∗, u∗, and v∗). Taking into
account these values, the discretized momentum equations are solved
yielding new estimates for u∗ and v∗.

ai,Ju
∗
i,J =

∑
anbu

∗
nb +

(
p∗I−1,J − p∗I ,J

)
Ai,J + bi,J

aI ,jv
∗
I ,j =

∑
anbv

∗
nb +

(
p∗I ,J−1 − p∗I ,J

)
AI ,j + bI ,j

• Obtained (guessed) velocity values will be corrected (at each iteration)
taking into account the procedure described in the following slides.
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2. SIMPLE Algorithm
Pressure and Velocity Corrections (Staggered Grids)

A pressure correction (p′) and velocity corrections (u′ and v ′) are defined
as the difference between the correct values (p, u, and v) and the values
previously guessed or obtained from the previous iteration (p∗, u∗, and v∗):

p = p∗ + p′ u = u∗ + u′ v = v∗ + v ′

The following equations are obtained subtracting the discretized equation of
u∗i,J (v∗i,J) from the discretized equation of ui,J (vi,J)

ai,Ju
′
i,J = �����∑

anbu
′
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+
(
p′I−1,J − p′I ,J

)
Ai,J

aI ,jv
′
I ,j = �����∑

anbv
′
nb+

+
(
p′I ,J−1 − p′I ,J

)
AI ,j

Neglecting the summation term (SIMPLE approximation), one obtains:

u′i,J =
Ai,J

ai,J︸︷︷︸
di,J

(
p′I−1,J − p′I ,J

)
v ′I ,j =

AI ,j

aI ,j︸︷︷︸
dI,j

(
p′I ,J−1 − p′I ,J

)
The SIMPLE approximation implies that the velocity corrections are calculated
without taking into account the neighboring velocity corrections.
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2. SIMPLE Algorithm
Velocity Corrections (Staggered Grids)

Velocity components are corrected from the corresponding guessed values
(solution of the momentum equations) in each iteration considering:

ui,J = u∗i,J + di,J
(
p′I−1,J − p′I ,J

)
vI ,j = v∗I ,j + dI ,j

(
p′I ,J−1 − p′I ,J

)
Pressure-Correction Equation (Staggered Grids) (1/3)

Since the velocity field must satisfy the
continuity equation, the corrected velocity
values (ui,J , ui+1,J , vI ,j , and vI ,j+1) must
satisfy the discretized continuity equation
for a general pressure node (scalar node)
P located at (I , J) as follows:[

(ρuA)i+1,J − (ρuA)i,J

]
+

+
[
(ρvA)I ,j+1 − (ρvA)I ,j

]
= 0
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2. SIMPLE Algorithm
Pressure-Correction Equation (Staggered Grids) (2/3)

Substituting in the last equation (discretized continuity equation for a gen-
eral scalar control volume) the expressions for the corrected velocities, the
following discretized equation for pressure correction, p′, (pressure-correction
equation) is obtained

aI ,Jp
′
I ,J = aI−1,Jp

′
I−1,J + aI+1,Jp

′
I+1,J + aI ,J−1p

′
I ,J−1 + aI ,J+1p

′
I ,J+1 + b

where,
aI−1,J = (ρdA)i,J

aI+1,J = (ρdA)i+1,J

aI ,J−1 = (ρdA)I ,j

aI ,J+1 = (ρdA)I ,j+1

aI ,J = aI−1,J + aI+1,J + aI ,J−1 + aI ,J+1

b = −
{[

(ρu∗A)i+1,J − (ρu∗A)i,J

]
+
[
(ρv∗A)I ,j+1 − (ρv∗A)I ,j

]}
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2. SIMPLE Algorithm
Pressure-Correction Equation (Staggered Grids) (3/3)

• The source term of the pressure-correction equation (b) will eventually
become negligible (during the iterative process) when the values u∗ and
v∗ do satisfy the continuity equation – notice that the LHS of the
discretized continuity equation (last equation of Slide 17) is equal to −b.

• If the problem is time-dependent and the fully implicit scheme were
considered the term b includes also the term (ρ0

I ,J − ρI ,J)VI ,J/∆t, where
VI ,J for a uniform 2D mesh is equal to ∆x∆y · 1.

• Since the values of ρ are required at the faces of scalar control volumes –
and they are calculated (and stored) at the nodes of scalar control
volumes – a consistent interpolation procedure should be applied.
(Otherwise, the conservativeness property is not respected).

• After the solution for the pressure-correction equation, the corrected
pressure is obtained as follows:

pI ,J = p∗I ,J + p′I ,J
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2. SIMPLE Algorithm
SIMPLE Algorithm – Full Description of Steps

1. Provide initial estimates for p∗, u∗, v∗, and φ∗i . (φi corresponds to a property –
viz. temperature, concentration, or turbulence quantities – with a known
influence on the flow field through fluid properties, source terms, etc.);

2. Solve the discretized momentum equations (boxed equations in Slide 15) to
obtain u∗ and v∗;

3. Solve the pressure-correction equation (boxed equation in Slide 18) to obtain
the pressure correction, p′;

4. Correct pressure and velocity fields – i.e., obtain new values for p, u, and v
from the old/guessed values (p∗, u∗, and v∗) and the solution for p′ (boxed
equations of Slides 17 and 19.)

5. Solve the discretized equation for φi (if required);

6. Check convergence criteria:

◦ if convergence is not achieved, assign the latest values of p, u, and v
(obtained in Step 4), and φi (Step 5) to p∗, u∗, v∗, and φ∗i , respectively,
and return to Step 2;

◦ if convergence is achieved the iterative procedure is concluded.
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2. SIMPLE Algorithm
SIMPLE Algorithm – Flowchart
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2. SIMPLE Algorithm
SIMPLE Algorithm – Recommendations for Fast and Robust Calculations

• If a particular property, φ, (whose solution is sought) does not influence the
flow field solution, it is convenient to obtain the corresponding solution only
after a converged flow field solution is achieved – i.e., after the application of
SIMPLE algorithm.

• The application of under-relaxation techniques to evaluate the final values of p,
u, and v in each iteration is strongly acknowledge to improve the stability of
the iterative procedure – avoid solution divergence. For a generic iteration n,
the under-relaxation procedure is given as follows

p(n) = p∗ + αpp
′

u(n) = αuu + (1− αu) u
(n−1) v (n) = αvv + (1− αv ) v

(n−1)

where, αp, αu, and αv correspond to the under-relaxation factors for the
pressure, p, and x− and y−corrected velocity values – u and v , respectively.
u(n−1) and v (n−1) are the x− and y−velocity values obtained at the previous
iteration.
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2. SIMPLE Algorithm

SIMPLE Algorithm – Recommendations and Improved Algorithms

• The (intermediate) solution of discretized (momentum, continuity, and
scalar(s)) equations (inner iterations) does not need to be highly accurate –
this would represent a waste of computational resources – since such solutions
are obtained from approximate guesses. Only slight solution improvements are
required. For instance, if the pressure field is far from the correct one (incorrect
pressure field), solving the momentum equations with such pressure field
through a large number of iterations (very accurate velocity field solution) is
worthless because the obtained velocity values were derived from an incorrect
pressure distribution.

• The presented flow field solution procedure can be easily extended to transient
and 3D problems.

• Revised versions (refinements) and variants of the SIMPLE algorithm were
proposed (such as, the SIMPLER, SIMPLEC, and PISO algorithms) to improve
computational savings (lowering computational costs) and enhance iterative
stability (convergence robustness).
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2. SIMPLE Algorithm
The Collocated Grid Arrangement (1/2)

• An alternative strategy to the staggered grid arrangement – that was the initial
remedy applied to avoid pressure oscillations and inconsistent (uncoupled)
velocity-pressure fields – corresponds to the collocated (non-staggered) grids.

• Collocated grids can be applied for complex geometries (and unstructured
meshes). Collocated grids do not offer significant advantages for Cartesian
geometries (over the staggered arrangement) besides lower computer storage
(memory) requirements.

• In collocated grids, there is only one group of nodes – pressure, scalars, and
velocity components are all calculated with the same set of nodes.

• Pressure values at cell faces for the momentum equation (pe, pw, ps, and pn)
are evaluated by (linear) interpolation.

• For consistent flow field solutions (and to prevent unphysical checkerboarding
of pressure), the application of collocated grids demands the calculation of cell
face velocities as a function of the pressure difference between adjacent nodes
(nodes P and W or nodes P and S) through specific interpolation procedures,
such as the Rhie-Chow interpolation.

Advanced Heat Transfer – Part IV: 4. Convective Heat Transfer 24 of 31



2. SIMPLE Algorithm
The Collocated Grid Arrangement (2/2)

The x−direction velocity at the cell face w is approximated through a custom
interpolation procedure and taking into account the pressure difference between
adjacent nodes as shown below (overlined terms are obtained by interpolation).

uw =

(∑
aunbunb + bu

auP

)
w
− (pP − pW)

(
Aw

auP

)
w︸ ︷︷ ︸

dw

From the solution of the x−momentum equation, the new estimates (before correc-
tion) for u at the cell face w is approximated as follows:

u∗w =

(∑
aunbu

∗
nb + bu

auP

)
w
− (p∗P − p∗W) dw

Subtracting the two equations and applying the SIMPLE approximation yields,

u′w =
���������(∑

aunbu
′
nb + bu

auP

)
w
−
(
p′P − p′W

)
dw
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2. SIMPLE Algorithm

Velocity Corrections (Collocated Grid Arrangement)

Velocity components are corrected from the corresponding guessed values
(solution of the momentum equations) in each iteration considering:

uw = u∗w + dw (p′W − p′P) vs = v∗s + ds (p′S − p′P)

Pressure-Correction Equation (Collocated Grids) (1/2)

Since the velocity field must satisfy the
continuity equation, the corrected velocity
values (uw , ue , vs , and vn) must satisfy the
discretized continuity equation for a gen-
eral node P :

[(ρuA)e − (ρuA)w ] +

+ [(ρvA)n − (ρvA)s ] = 0
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2. SIMPLE Algorithm
Pressure-Correction Equation (Collocated Grids) (2/2)

Substituting in the last equation the expressions for the corrected veloci-
ties, the following discretized equation for pressure correction, p′, (pressure-
correction equation) is obtained

aPp
′
P = aWp′W + aEp

′
E + aSp

′
S + aNp

′
N + b

where,
aW = (ρdA)w

aE = (ρdA)e

aS = (ρdA)s

aN = (ρdA)n

aP = aW + aE + aS + aN

b = −
{

[(ρu∗A)e − (ρu∗A)w] + [(ρv∗A)n − (ρv∗A)s]

}
Remarks provided in Slide 20 et seq. are still applicable for collocated grids.
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3. Boundary Layer Flows
Introduction
• A moving viscous fluid with a finite thermal conductivity in close contact

with a stationary surface at a different temperature will give rise to the
development of hydrodynamic (momentum) and thermal boundary layers
– fluid regions along which non-negligible velocity gradients (shear
stresses) and thermal gradients (heat transfer) are registered.

• The boundary layer velocity and temperature distributions are governed
by the boundary layer equations – equations derived from the set of
equations presented in Slide 4 after the applying the boundary layer
approximations:
◦ velocity component in the main flow direction much larger than the

other velocity components;
◦ negligible diffusion of momentum and heat along the main flow

direction in comparison to the corresponding diffusive transport rates
along other directions; and

◦ pressure gradient across the flow much smaller than the pressure
gradient along the flow main direction.
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3. Boundary Layer Flows
Governing Equations

The governing equations for two-dimensional, steady-state, laminar, and non-
isothermal boundary layer flows considering negligible body forces and thermal
energy generation read as follows:

∂

∂x
(ρu) +

∂

∂y
(ρv) = 0

∂

∂x
(ρuu) +

∂

∂y
(ρvu) =

∂

∂y

(
µ
∂u

∂y

)
− dp

dx

∂

∂x
(ρuut) +

∂

∂y
(ρvut) =

∂

∂y

(
k
∂T

∂y

)
+ µ

(
∂u

∂y

)2

Pressure as a function of the main flow direction is provided considering free
stream (inviscid) flow conditions.
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3. Boundary Layer Flows

Discretization Practices

• Since dp/dx is obtained taking into account external considerations
(dp/dx is assumed as a known quantity – source term for the
x−momentum equation), the solution for the boundary layer equations
can be obtained through the discretization procedures introduced for
convection-diffusion problems – there is no need to apply a
pressure-velocity coupling algorithm such as the SIMPLE algorithm.

• Due to the parabolic nature of the boundary layer governing equations,
the solution at a particular x location only depends on the solution
upstream that location – the x−coordinate in boundary layer equations
exhibits a similar behavior to the time coordinate (in transient problems
the solution at a particular time instant is only influenced by past events).

• Different spatial (along x−direction) interpolation methods can be
considered for u and T giving rise to different discretization schemes for
x−direction derivatives – explicit and implicit schemes.
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Further Reading

• Chapter 6: Calculation of the Flow Field

• Chapter 6: Solution Algorithms for
Pressures-Velocity Coupling in Steady Flows

• Chapter 7: Sol. of Navier-Stokes Eqs.: Part I
• Chapter 8: Sol. of Navier-Stokes Eqs.: Part II
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