### Heat Transfer

#### **Computational Laboratories**

# One-Dimensional, Transient Conduction (Laboratory II)

Space- and time-dependent conduction heat transfer in large plane walls, long rods, and spheres initiated by convection heat transfer across its boundaries



### Transient Conduction - Introduction

- A transient (unsteady or time-dependent) heat conduction process is initiated whenever a thermal equilibrium state of a system is perturbed.
- A perturbation on a system thermal equilibrium state can be induced by a change in:
  - surface convection conditions ( $T_{\infty}$  or h);
  - surface radiation conditions ( $T_{sur}$  or  $h_r$ );
  - o surface heat flux  $(q_s'')$  or surface temperature  $(T_s)$ ; and
  - internal energy generation  $(\dot{q})$ .
- Transient heat conduction processes can be modelled through analytical or numerical means:
  - Lumped system analysis (overall energy balance);
  - Exact solutions to the heat diffusion equation; and
  - Finite difference, finite element or finite volume methods.

## Transient Conduction - Temperature Gradients

### Importance of Solid Temperature Spatial Resolution

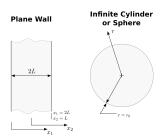
• For a transient conduction process in a solid driven by convection heat transfer across its boundaries, Biot number (Bi) determines if the spatial thermal gradients within the solid are negligible or not.

$$Bi = \frac{hL_c}{k} = \frac{\text{Conduction resistance within the solid}}{\text{Convection resistance between the solid and the fluid}}$$

- For  $\mathsf{Bi} < 0.1$  the solid temperature distribution can be considered spatially uniform (depends only on the time):  $\mathcal{T}(\mathsf{x},t) \approx \mathcal{T}(t)$ .
  - $\circ$  The lumped capacitance method provides a solution for T (t).
- For  $Bi \ge 0.1$  the local solid temperatures depend on the position and time.
  - $\circ$  T (x,t) solutions to the heat diffusion equation can be evaluated by analytical (exact and approximate) or numerical means.

### One-Dimensional, Transient Conduction – Gov. Eqs.

Transient conduction can be described in 1D for the case of a plane wall, infinite cylinder and a sphere through the heat equation.



Simplifying assumptions:

- no thermal energy generation; and
- constant thermal conductivity.

#### **Heat Diffusion Equation**

$$\nabla \cdot (k\nabla T) + \dot{q} = \rho c \frac{\partial T}{\partial t}$$

#### Plane Wall

$$\frac{\partial^2 T}{\partial x^2} = \frac{1}{\alpha} \frac{\partial T}{\partial t}$$

#### Infinite Cylinder

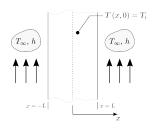
$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial T}{\partial r}\right) = \frac{1}{\alpha}\frac{\partial T}{\partial t}$$

#### Sphere

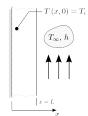
$$\frac{1}{r^2} \frac{\partial}{\partial r} \left( r^2 \frac{\partial T}{\partial r} \right) = \frac{1}{\alpha} \frac{\partial T}{\partial t}$$

$$\alpha = k/(\rho c)$$
 – Thermal diffusivity

#### Symmetrical Convection Conditions



### Insulated Surface and



### Governing Equation

$$\frac{\partial^2 T}{\partial x^2} = \frac{1}{\alpha} \frac{\partial T}{\partial t}$$

### Initial Condition

$$T(x,t=0)=T_i$$

### 8 Independent Variables

$$T = f(x, \alpha, t, T_i, k, L, h, T_{\infty})$$

### **Boundary Conditions**

$$\left. \frac{\partial T}{\partial x} \right|_{x=0} = 0$$

$$-k \frac{\partial T}{\partial x}\Big|_{t=0} = h[T(L,t) - T_{\infty}]$$

#### Non-dimensionalization:

• 
$$\theta^* = \frac{\theta}{\theta_i} = \frac{T - T_{\infty}}{T_i - T_{\infty}}$$
  
•  $0 < \theta^* < 1$ 

• 
$$x^* = \frac{x}{L}$$
  
•  $0 \le x^* \le 1$ 

• 
$$Fo = t^* = \frac{\alpha t}{I^2}$$

• 
$$Bi = \frac{hL}{k}$$

#### 3 Independent Variables

$$\theta^* = f(x^*, Fo, Bi)$$

 $\theta^*$  – Dimensionless local temperature difference

Fo - Fourier number

 $x^*$  – Dimensionless position

#### Governing Equation

$$\frac{\partial^2 \theta^*}{\partial x^{*2}} = \frac{\partial \theta^*}{\partial F_0}$$

#### Initial Condition

$$\theta^*\left(x^*,0\right)=1$$

#### **Boundary Conditions**

$$\left. \frac{\partial \theta^*}{\partial x^*} \right|_{x^* = 0} = 0$$

$$\left. \frac{\partial \theta^*}{\partial x^*} \right|_{x^*=1} = -Bi\theta^* (1, Fo)$$

### Dimensionless Local Temperature Difference

#### Exact Solution

$$\theta^*(x^*, Fo) = \sum_{n=1}^{\infty} C_n \exp\left(-\zeta_n^2 Fo\right) \cos\left(\zeta_n x^*\right)$$

For the geometry under consideration (plane wall),  $C_n$  and  $\zeta_n$  are functions of Bi.  $C_n$  and  $\zeta_n$  are commonly given in tables.

• Approximate Solution: One-term Approx. (Valid for Fo > 0.2)

$$\theta^*\left(x^*, Fo\right) = \frac{T\left(x^*, Fo\right) - T_{\infty}}{T_i - T_{\infty}} = \underbrace{C_1 \mathrm{exp}\left(-\zeta_1^2 Fo\right)}_{\theta_0^*(Fo) = \theta^*(0, Fo)} \cos\left(\zeta_1 x^*\right)$$

 $\theta_0^*$  – Midplane ( $x^* = 0$ ) dimensionless temperature difference

### Dimensionless Mean Temperature Difference

Exact Solution

The exact solution for the problem is given in the form of an infinite series.  $\infty$  sin (2)

$$\overline{\theta^*}(Fo) = \sum_{n=1}^{\infty} \frac{\sin(\zeta_n)}{\zeta_n} C_n \exp(-\zeta_n^2 Fo)$$

o  ${\bf Bi} \to {\bf 0}$  – The exact solution becomes equal to the lumped capacitance method (LCM) solution (considering Bi and Fo defined with  $L_c = V/A_s$ ):

$$\overline{ heta^*}$$
 (Fo)  $= heta^*_{ ext{LCM}}$  (Fo)  $=\exp\left(- ext{Bi.Fo}
ight)$ 

• Approximate Solution: One-term Approx. (Valid for Fo > 0.2)

$$\overline{\theta^*}(Fo) = \frac{\overline{T}(Fo) - T_{\infty}}{T_i - T_{\infty}} = \frac{\sin\zeta_1}{\zeta_1}\theta_0^*(Fo)$$

### Fractional Energy Loss/Gain to/from the Surrounding Fluid

$$\frac{Q(Fo)}{Q_0} = 1 - \overline{\theta^*}(Fo)$$

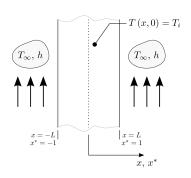
- $Q(Fo) \left[ = \rho Vc \left( T_i \overline{T}(Fo) \right) \right]$  Total thermal energy transfer from/to the wall over the time interval  $t \left[ = FoL^2/\alpha \right]$ .
- $Q_0 = \rho Vc (T_i T_\infty)$  Initial thermal energy of the wall relative to the fluid temperature, *i.e.*, maximum possible energy transfer from/to the wall if the process continues to time  $t = \infty$ .

### Boundary Condition at $x^* = 1$ : Constant Surface Temperature

The foregoing solutions for  $\theta^*$ ,  $\overline{\theta^*}$ , and  $Q/Q_0$  are also applicable for a prescribed temperature boundary condition at x=L ( $T(L,t)=T_s$ ) since this is equivalent to consider  $h=\infty$  ( $Bi=\infty$ ) and  $T_\infty=T_s$ .

### Heat Removal $(T_i > T_{\infty})$ : Convection Cooling

Numerical and One-Term Approximation Solutions

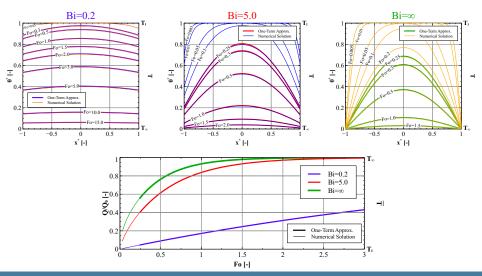


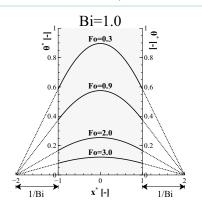
#### 3 Case Studies:

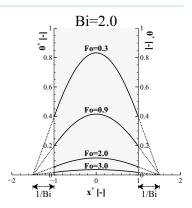
- Bi = 0.2;
- Bi = 5.0; and
- $Bi = \infty$ .
  - Negligible convection resistance: equivalent to prescribe a constant surface temperature  $(T_s)$  equal to  $T_{\infty}$ .

$$\Delta E_{st} = -Q, \quad Q>0$$
  
 $\Delta E_{st}$  - Change in the thermal energy stored

#### Heat Removal - Numerical and One-Term Approximation Solutions





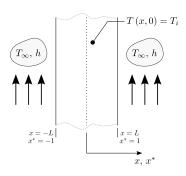


- At any time instant during an unsteady conduction process, the extensions of the tangents to the curves at the points  $x^* = \pm 1$  intersect the axis perpendicular to  $\theta^* = 0$  at the points  $\pm \left(1 + \frac{1}{B_i}\right)$ .
- This evidence is also observed for long rods and spheres and is due to the mathematical formulation of the convective surface boundary condition.

12 of 42

### Heat Removal $(T_i > T_{\infty})$ : Convection Cooling

Numerical and One-Term Approximation Solutions

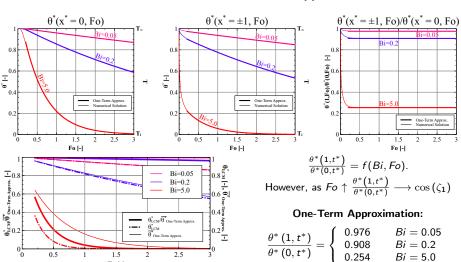


### 3 Case Studies:

- Bi = 0.05;
- Bi = 0.2; and
- Bi = 5.0.

$$\Delta E_{st} = -Q, \quad Q>0$$
  
 $\Delta E_{st}$  - Change in the thermal energy stored

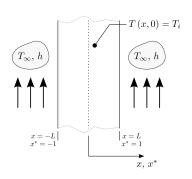
### Heat Removal - Numerical and One-Term Approximation Solutions



Fo [-]

### Heat Addition ( $T_{\infty} > T_i$ ): Convection Heating

Numerical and One-Term Approximation Solutions

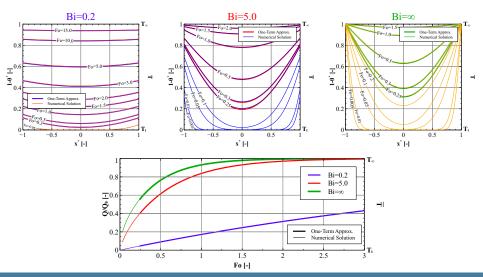


#### 3 Case Studies:

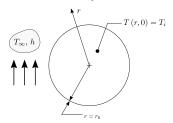
- Bi = 0.2;
- Bi = 5.0; and
- $Bi = \infty$ .
  - Negligible convection resistance: equivalent to prescribe a constant surface temperature  $(T_s)$  equal to  $T_{\infty}$ .

$$\Delta E_{st} = -Q, \quad Q < 0$$
  
 $\Delta E_{st}$  – Change in the thermal energy stored

#### Heat Addition - Numerical and One-Term Approximation Solutions



#### Infinite Cylinder or Sphere Heated/Cooled by Convection



#### **Initial Condition**

$$T(r, t = 0) = T_i$$

### Infinite Cylinder - Gov. Equation

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial T}{\partial r}\right) = \frac{1}{\alpha}\frac{\partial T}{\partial t}$$

### Sphere - Governing Equation

$$\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial T}{\partial r}\right) = \frac{1}{\alpha}\frac{\partial T}{\partial t}$$

#### **Boundary Conditions**

$$\frac{\partial T}{\partial r}\Big|_{r=0} = 0$$

$$-k \left. \frac{\partial T}{\partial r} \right|_{r=0} = h \left[ T \left( r_0, t \right) - T_{\infty} \right]$$

#### Non-dimensionalization:

• 
$$\theta^* = \frac{\theta}{\theta_i} = \frac{T - T_{\infty}}{T_i - T_{\infty}}$$

$$0 \le \theta^* \le 1$$

• 
$$r^* = \frac{r}{r_0}$$

$$0 \le r^* \le 1$$

• 
$$Fo = t^* = \frac{\alpha t}{r_0^2}$$

• 
$$Bi = \frac{hr_0}{k}$$

#### Initial Condition

$$\theta^*\left(r^*,0\right)=1$$

#### Infinite Cylinder - Gov. Equation

$$\frac{1}{r^*} \frac{\partial}{\partial r^*} \left( r^* \frac{\partial \theta^*}{\partial r^*} \right) = \frac{\partial \theta^*}{\partial Fo}$$

#### Sphere - Governing Equation

$$\frac{1}{r^{*2}}\frac{\partial}{\partial r^*}\left(r^{*2}\frac{\partial \theta^*}{\partial r^*}\right) = \frac{\partial \theta^*}{\partial Fo}$$

#### **Boundary Conditions**

$$\frac{\partial \theta^*}{\partial r^*} \bigg|_{r^*=0} = 0$$

$$\frac{\partial \theta^*}{\partial r^*} \bigg|_{r^*=0} = -Bi\theta^* (1, Fo)$$

#### Dimensionless Local Temperature Difference – Exact Solutions

The exact solutions for the infinite cylinder and sphere are given in the form of infinite series.

#### Infinite Cylinder

$$\theta^*(r^*, Fo) = \sum_{n=1}^{\infty} C_n \exp(-\zeta_n^2 Fo) J_0(\zeta_n r^*)$$

#### Sphere

$$\theta^*\left(r^*, Fo\right) = \sum_{n=1}^{\infty} C_n \exp\left(-\zeta_n^2 Fo\right) \frac{1}{\zeta_n r^*} \sin\left(\zeta_n r^*\right)$$

 $C_n$  and  $\zeta_n$  are functions of Bi and the geometry under consideration (long rod or sphere).  $C_n$  and  $\zeta_n$  are commonly given in tables.

### Approximate Solutions: One-term Approximation (Valid for Fo > 0.2)

|                           | Infinite Cylinder                                                          | Sphere                                                                                                   |
|---------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| $\theta^*(r^*, Fo)$       | $	heta_{0}^{st}\left( Fo ight) J_{0}\left( \zeta_{1}r^{st} ight)$          | $	heta_0^*$ (Fo) $	frac{1}{\zeta_1 r^*} \sin\left(\zeta_1 r^*\right)$                                    |
| $	heta_0^*$ (Fo)          | $C_1 \exp\left(-\zeta_1^2 Fo ight)$                                        |                                                                                                          |
| $\overline{	heta^*}$ (Fo) | $rac{2J_{1}\left(\zeta_{1} ight)}{\zeta_{1}}	heta_{0}^{st}\left(Fo ight)$ | $\frac{3\theta_0^*(Fo)}{\zeta_1^3}\left[\sin\left(\zeta_1\right)-\zeta_1\cos\left(\zeta_1\right)\right]$ |
| Q(Fo)<br>Q <sub>0</sub>   | $1-\overline{	heta^*}$ (Fo)                                                |                                                                                                          |

•  $\theta_0^*$  - centerline [centerpoint] dimensionless temperature difference for an infinite cylinder [sphere].

### Dimensionless Temperature Difference for Bi o 0

As  $Bi \to 0$  the exact solution for  $\theta^*$  ( $r^*$ , Fo) becomes equal to the lumped capacitance method solution (considering Bi and Fo defined with  $L_c = V/A_s - L_c$  is equal to  $r_0/2$  and  $r_0/3$  for a long cylinder and sphere, respectively):

$$\theta^{*}\left(r^{*}, Fo\right) \rightarrow \overline{\theta^{*}}\left(Fo\right) = \exp\left(-Bi.Fo\right)$$

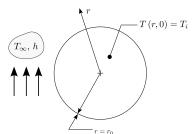
### Boundary Condition at $r^* = 1$ : Constant Surface Temperature

The foregoing solutions for  $\theta^*$ ,  $\overline{\theta^*}$ , and  $Q/Q_0$  are also applicable for a prescribed temperature boundary condition at  $r=r_0$  ( $T(r_0,t)=T_s$ ) since this is equivalent to consider  $h=\infty$  ( $Bi=\infty$ ) and  $T_\infty=T_s$ .

### Heat Removal $(T_i > T_{\infty})$ : Convection Cooling

Numerical and One-Term Approximation Solutions

Infinite Cylinder or Sphere Heated/Cooled by Convection

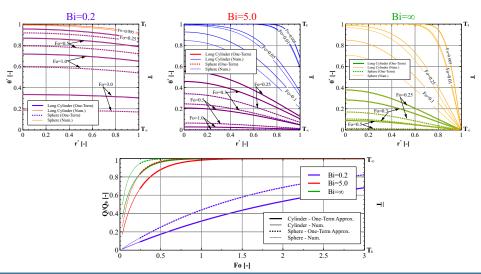


#### 3 Case Studies:

- Bi = 0.2;
- Bi = 5.0; and
- $Bi = \infty$ .
  - Negligible convection resistance: equivalent to prescribe a constant surface temperature  $(T_s)$  equal to  $T_{\infty}$

$$\Delta E_{st} = -Q, \quad Q>0$$
  $\Delta E_{st}$  – Change in the thermal energy stored

#### Heat Removal - Numerical and One-Term Approximation Solutions



## Final Remarks (1/2)

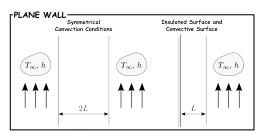
 Biot number provides an estimation for the relevance of temperature spatial gradients in a heat conduction process within a solid concurrent with convection across its boundaries.

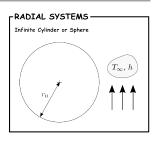
For a one-dimensional, transient heat conduction process if:

- $\circ$  *Bi* < 0.1: the spatial gradients are not relevant; consequently, the lumped capacitance method can be applied;
- o  $Bi \geq 0.1$ : the spatial gradients are relevant; consequently, the one-term approximation to the exact solution particularly recommended for Fo > 0.2 or a numerical procedure should be applied to evaluate the temporal and spatial solid temperature distribution profiles.
- The one-term approx. for Fo > 0.2 results in an error below 2%.
- Heisler/Gröber charts (transient temperature and heat transfer charts) provide a graphical representation for  $\theta_0^*$ ,  $\theta^*/\theta_0^*$ , and  $Q/Q_0$  obtained with the single-term approximation of the exact solution.

## Final Remarks $(2/2) - L_c$ for Biot and Fourier Numbers

|                                   | $L_c$ – Characteristic length <sup>1</sup> |                   |                       |
|-----------------------------------|--------------------------------------------|-------------------|-----------------------|
|                                   | Plane Wall                                 | Inf. Cylinder     | Sphere                |
| Conservative Bi Criterion (rele-  | ,                                          |                   |                       |
| vance of temp. spatial gradients) | L                                          | $r_0$             | $r_0$                 |
| Lumped capacitance                |                                            | r <sub>0</sub> /2 | $r_0/3$               |
| $method - L_c = V/A_s$            | L                                          | 10/2              | 10/3                  |
| Analytical and numerical solu-    | 1                                          | ٧-                | r.                    |
| tions for $\theta^*(x^*, Fo)$     | L                                          | $r_0$             | <i>r</i> <sub>0</sub> |

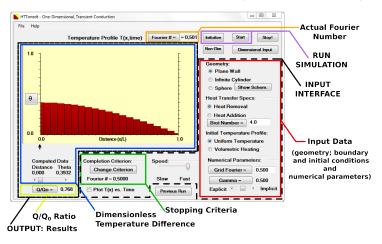




<sup>&</sup>lt;sup>1</sup>Find the  $L_c$  value (L and  $r_0$ ) in accordance with the accompanying figure.

## Exploring the Software Module (1/4)

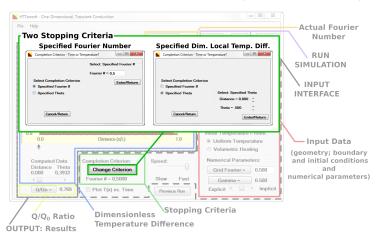
Software module - HTTonedt.exe (Version 5.0.0.2)



 The module solves the one-dimensional, transient heat equation through a finite-volume approach for a plane wall, infinite cylinder, and sphere.

## Exploring the Software Module (2/4)

Software module - HTTonedt.exe (Version 5.0.0.2)



The module ends the simulation for two possible criteria: (a) specified
 Fourier number; and (b) specified dimensional local temperature difference.

## Exploring the Software Module (3/4)

#### Completion Criteria

The module terminates the simulation for two possible criteria:

- Specified Fourier number Fo; and
  - For evaluation of the temperature distribution profiles and the ratio  $Q/Q_0$  at a specific time instant
- Specified dimensionless local temperature difference – θ\* (x\*, Fo).
  - For the evaluation of the elapsed time, temperature distribution profiles, and the ratio  $Q/Q_0$ .

1. Specified Fourier Number



2. Specified Dimensionless Local Temperature Difference



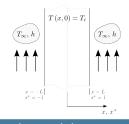
## Exploring the Software Module (4/4)

#### Spatial Discretization

- Two spatial discretization schemes (meshes) are available in the software module.
- The finest mesh has two times the cell count of the default mesh and, consequently, should provide more accurate results; however, at the expense of longer computation times.
- The finest grid is taken into account (<u>activated</u>) for the calculations once the default window size is changed.
- To revert to the default mesh, the user should restart the software module.
- The module application examples that follow (next slides) consider the default mesh.

### Module Application Example I: Problem Statement

Consider a  $0.1\,\mathrm{m}$  (2L) thick plane wall initially at  $T_i=180\,^{\circ}\mathrm{C}$  that is suddenly cooled with a fluid at  $T_{\infty}=20\,^{\circ}\mathrm{C}$  and with  $h=2200\,\mathrm{W.m^{-2}.K^{-1}}$ . The wall material has a thermal conductivity (k), density ( $\rho$ ), and specific heat (c) equal to  $110\,\mathrm{W\cdot m^{-1}\cdot K^{-1}}$ ,  $8530\,\mathrm{kg.m^{-3}}$ , and  $380\,\mathrm{J.kg^{-1}.K^{-1}}$ , respectively.



### After 40 $\rm s$ of cooling, evaluate the following using the module:

- 1. temperature distribution profile,  $T(-L \le x \le L)$ ;
- 2. fractional energy loss,  $Q/Q_0$ ;
- 3. average wall temperature,  $\overline{T}$ ; and
- 4. compare the average wall temperature computed with the module with the temperature predicted by the lumped capacitance method.

### Module Application Example I: Module Application

#### **Preliminary Calculations**

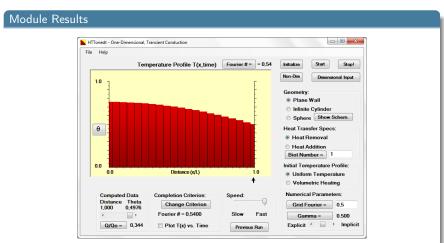
| Biot Number | Thermal Diffusivity                                         | Fourier Number                       |
|-------------|-------------------------------------------------------------|--------------------------------------|
| Bi = 1.00   | $\alpha = 3.39 \times 10^{-5} \mathrm{m}^2.\mathrm{s}^{-1}$ | $Fo(t = 40 \mathrm{s}) \approx 0.54$ |

#### Module Input Data

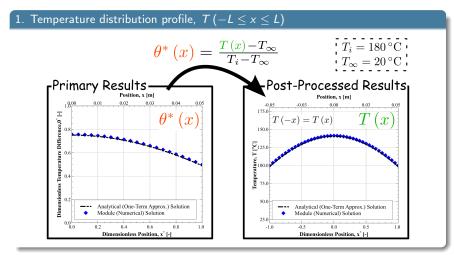
"Default Mesh"

| 1 - Geometry: "Plane Wall"                                       | 2 - Heat Transfer Specs:  "Heat Removal"  "Biot Number = 1" | 3 - Initial Temperature Profile: "Uniform Temperature" |
|------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------|
| 4 - Numerical Parameters:  "Grid Fourier = 0,5"  "Gamma = 0,500" |                                                             | $\frac{5 - Completion Criteria:}{Fourier # = 0.5400"}$ |

### Module Application Example I: Module Application and Results

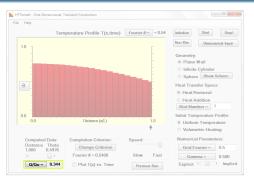


### Module Application Example I: Results Analysis (1/3)



### Module Application Example I: Results Analysis (2/3)

#### 2. Fractional energy loss, $Q/Q_0$



$$Q/Q_0 = 0.344$$

 $\left(\left(Q/Q_0\right)_{\mathrm{Analytic\,Sol.}} \approx 0.339\right)$ 

### Module Application Example I: Results Analysis (3/3)

### $\overline{\phantom{a}}$ 3. Average wall temperature, $\overline{T}$

$$\overline{\theta^*} = \int_0^1 \theta^* (x^*) dx^* = 
= 1 - Q/Q_0 = 0.656$$

$$\overline{\theta^*} = \frac{\overline{T} - T_{\infty}}{T_i - T_{\infty}} \Leftrightarrow$$

$$\Leftrightarrow \overline{T} = 124.96 \,^{\circ}\text{C}$$

$$\left(\overline{T}_{\mathrm{Analytic\,Sol.}} \approx 125.79\,^{\circ}\mathrm{C}\right)$$

# 4. Average wall temperature – module *vs.* lumped capacitance method results

$$\theta_{\text{LCM}}^* = \exp\left(-Bi \cdot Fo\right) = \exp\left(-\frac{h\alpha t}{kL}\right) =$$

$$= \exp\left(-\frac{2200 \times 3.39 \times 10^{-5} \times 40}{110 \times 0.05}\right) \Leftrightarrow$$

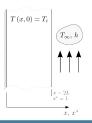
$$\Leftrightarrow \theta_{\text{LCM}}^* \approx 0.581$$

$$\theta_{\mathrm{LCM}}^{*} = \frac{T_{\mathrm{LCM}} - T_{\infty}}{T_{i} - T_{\infty}} \Leftrightarrow \boxed{T_{\mathrm{LCM}} = 112.960\,^{\circ}\mathrm{C}}$$

A relative error of about 10% is observed for  $T_{\rm LCM}$  in relation to the module solution ( $\overline{T}_{\rm Mod.}=124.96\,^{\circ}{\rm C}$ ).

### Module Appl. Example II: Problem Statement

Consider the same plane wall of Example I (same thermophysical properties and geometrical parameters) initially at  $T_i = 20\,^{\circ}\mathrm{C}$ . One surface is perfectly insulated while the other is suddenly exposed to a fluid at  $T_{\infty} = 180\,^{\circ}\mathrm{C}$  and with  $h = 2200\,\mathrm{W.m^{-2}.K^{-1}}$ .



### Evaluate the following using the module:

- 1. elapsed time, t, to observe a temperature equal to  $100\,^{\circ}$ C at the insulated surface (*i.e.*,  $T(x=0,t)=100\,^{\circ}$ C);
- 2. temperature at  $x = 0.08 \,\mathrm{m}$  and at the time instant of 1.; and
- 3. thermal energy absorbed per unit active surface area,  $Q/A_s$ , at the time instant of 1.

#### Module Appl. Example II: Module Application

### **Preliminary Calculations**

| Biot Number | Thermal Diffusivity | Dim. Local Temp. Diff. |
|-------------|---------------------|------------------------|
|             |                     | on (- = )              |

$$Bi = 2.00$$
  $\alpha = 3.39 \times 10^{-5} \,\mathrm{m}^2.\mathrm{s}^{-1}$ 

$$\theta^* \left( 0, Fo \right) = 0.5$$

#### Module Input Data

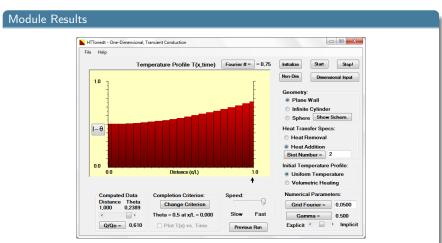
- 2 Heat Transfer Specs: 1 - Geometry:
  - "Heat Addition"
- "Plane Wall" "Biot Number = 2"

- 3 Initial Temperature Profile:
- "Uniform Temperature"

- 4 Numerical Parameters:
- "Grid Fourier = 0.05"
- "Gamma = 0.500"
- "Default Mesh"

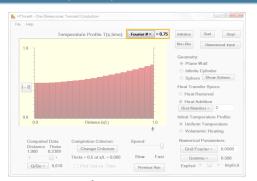
- 5 Completion Criteria:
- "Theta=0.5 at x/L=0.000"

### Module Appl. Example II: Module Application and Results



### Module Application Example II: Results Analysis (1/3)

1. Elapsed time to observe  $T(x=0,t)=100\,^{\circ}\mathrm{C}$ 

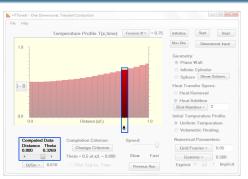


$$Fo = 0.75 \Leftrightarrow t = \frac{0.1^2}{3.39 \times 10^{-5}} \times 0.75 \Leftrightarrow \boxed{t \approx 3 \, \text{min. and } 41 \, \text{sec.}}$$

 $\left(\left(\theta^*\left(0,Fo\right)\right)_{\mathrm{Analytic\,Sol.}}=0.5\Rightarrow t_{\mathrm{Analytic\,Sol.}}pprox3\,\mathrm{min.\,and\,38\,sec.}\right)$ 

### Module Application Example II: Results Analysis (2/3)

2. Temperature at  $x=0.08\,\mathrm{m}$  when  $T(x=0,t)=100\,^{\circ}\mathrm{C}$ 



$$\theta^* (x^* = 0.8, Fo) = 0.3269 \Rightarrow \boxed{T(x = 0.08 \,\mathrm{m}, t) \approx 127.7 \,^{\circ}\mathrm{C}}$$

$$\left( (T(x = 0.08 \,\mathrm{m}, t))_{\mathrm{Analytic \, Sol.}} \approx 127.9 \,^{\circ}\mathrm{C} \right)$$

### Module Application Example II: Results Analysis (3/3)

3. Absorbed energy per unit active surface area,  $Q/A_s$ , when  $T(x=0,t)=100\,^{\circ}\mathrm{C}_s$ 

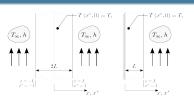


$$Q/A_s = \rho L_c c \left(Q/Q_0\right) \theta_i = 8530 \times 0.1 \times 380 \times 0.610 \times (20 - 180) \Leftrightarrow$$

$$\Leftrightarrow \boxed{Q/A_s \approx -3.16 \times 10^7 \, \mathrm{J \cdot m^{-2}}} \quad \left( \left( Q/A_s \right)_{\mathrm{Analytic \, Sol.}} \approx -3.07 \times 10^7 \, \mathrm{J \cdot m^{-2}} \right)$$

### Useful Relations

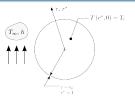
#### Plane Wall



$$\theta^* = \frac{T(x^*, Fo) - T_{\infty}}{T(x^*, 0) - T_{\infty}}$$
$$x^* = \frac{x}{L}$$
$$Fo = \frac{\alpha t}{L^2}$$
$$Bi = \frac{hL}{L}$$

$$\alpha = k/(\rho c)$$

#### Radial Systems



$$\theta^* = \frac{T(r^*, Fo) - T_{\infty}}{T(r^*, 0) - T_{\infty}}$$

$$r^* = \frac{r}{r_0}$$

$$Fo = \frac{\alpha t}{r_0^2}$$

$$Bi = \frac{hr_0}{r_0}$$

$$Q_0 = \rho Vc \left( T_i - T_{\infty} \right)$$