Heat Transfer

__

Practical Lecture 6

- 40. A solid with volume V and surface area A is at the temperature T_{∞} and is immersed in a fluid at the same temperature. At a given instant t=0, heat starts to be released in the solid at the rate per unit mass $\dot{q}_0 \exp{(-\beta t)}$, where \dot{q}_0 and β are constants. Assuming constant properties and neglecting the internal temperature gradients, deduce an expression for the temperature in the solid as a function of time for t>0.
- 43. The diffuser wall in the exhaust of a rocket motor has a thickness $L=25\,\mathrm{mm}$ and consists of a steel alloy whose properties are $\rho=8000\,\mathrm{kg\,m^{-3}}$, $c=500\,\mathrm{J\,kg^{-1}\,K^{-1}}$, and $k=25\,\mathrm{W\,m^{-1}\,K^{-1}}$. During a fire-resistance test, the wall is at a uniform initial temperature of $T_i=25^\circ\mathrm{C}$ and is exposed to the hot gases resulting from the combustion, whose temperature is $T_\infty=1750^\circ\mathrm{C}$. The outer surface of the wall is insulated. The wall should be maintained at a temperature of at least $100^\circ\mathrm{C}$ below the material melting temperature, which is equal to $1600^\circ\mathrm{C}$. Assume that the diffuser diameter is much larger than the wall thickness and that the convection coefficient on the hot gases side is equal to $500\,\mathrm{W\,m^{-2}\,K^{-1}}$.
 - (a) Determine the temperature on the surface of the wall in contact with gases after 30 s.
 - (b) Determine the time at which the maximum permissible temperature is reached.
- 46. (Homework) A steel ball ($k = 36.4 \,\mathrm{W\,m^{-1}\,K^{-1}}$, $\rho = 7750 \,\mathrm{kg\,m^{-3}}$ and $c = 486 \,\mathrm{J\,kg^{-1}\,K^{-1}}$) with diameter of 8 cm is heated in a furnace until it reaches a uniform temperature of 800°C. It is then cooled by immersion in a bath maintained at 300°C until the temperature in the center of the sphere reaches 500°C. Determine the time required for this cooling, assuming a very high convection coefficient.
- 55. (Homework) A glass of water at $300\,\mathrm{K}$ with $8\,\mathrm{cm}$ in diameter and $12\,\mathrm{cm}$ in height is placed in a refrigerator, which maintains the air temperature at $277\,\mathrm{K}$. The convection coefficient is $5\,\mathrm{W}\,\mathrm{m}^{-2}\,\mathrm{K}^{-1}$. After 6 hours the glass is removed from the refrigerator. Estimate the average water temperature at this time, assuming that there is only heat conduction in the water.