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Convection-Diffusion Problems — Outline

1. One-Dimensional Steady-State Conditions – Slide 3
◦ Governing Equation
◦ Discretized Equation for Interior Nodes
◦ Convective Term Discretization
• Central Differencing Scheme
• Upwind Differencing Scheme
• Hybrid Differencing Scheme

◦ Boundedness Issues with Central Differencing Scheme
◦ Boundedness, Transportiveness, and Accuracy of Convective Term

Discretization Schemes
◦ False Diffusion

2. Multi-Dimensional Problems – Slide 23
◦ Discretized Equation for Interior Nodes (Application of Fully Implicit

and Hybrid Differencing Schemes)
◦ Problem 11
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1. One-Dimensional (1D) Steady-State Conditions
Governing Equations

• The effects of convection (besides diffusion) must be accounted for
whenever fluid flow plays a relevant transport role.

• The corresponding governing equation – the convection-diffusion
equation for a general (transported) property φ – can be obtained from
the general transport equation in a differential form for steady-state
conditions by neglecting the transient term as follows

div (ρφu) = div (Γ gradφ) + Sφ

• Overall mass conservation must also be respected and, consequently, the
following equation (steady-state continuity equation) must be added to
the mathematical model formulation.

div (ρu) = 0

• For the current study of simultaneous convection and diffusion transport
of φ, the flow field (u and ρ) is assumed to be known (not calculated).
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1. 1D Steady-State Conditions
Governing Equations

• For 1D (Cartesian coordinates) and in the absence of sources for property
φ (Sφ = 0) the following equations govern the steady-state convection
and diffusion transport processes of φ:

Convection-Diffusion Eq.

d

dx
(ρuφ) =

d

dx

(
Γ
dφ

dx

) Continuity Eq.

d

dx
(ρu) = 0

• The integration of the differential governing equations over a 1D CV at
node P that is surrounded by nodes (faces) W (w) and E (e) yields:

Convection-Diffusion Eq.

(ρuAφ)e − (ρuAφ)w =(
ΓA

dφ

dx

)
e
−
(

ΓA
dφ

dx

)
w

Continuity Eq.

(ρuA)e = (ρuA)w
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1. 1D Steady-State Conditions
Bulk Control Volumes – Discretized Governing Equations
Considering F and D as the convective mass flux and diffusion conductance,
respectively, given by

F ≡ ρu ⇒

 Fw = (ρu)w

Fe = (ρu)e

D ≡ Γ
δx
⇒


Dw = Γ

δxWP

De = Γ
δxPE

and since Aw = Ae = A, the integration of the convection-diffusion and
continuity equations presented before can be written as follows

Feφe − Fwφw = De (φE − φP)− Dw (φP − φW)

Fe − Fw = 0

The diffusion terms were discretized with the central differencing scheme – as
before. No assumption was yet considered for the discretization of the con-
vective terms, particularly, how the transported property φ (and its convective
flux) is calculated at the CV faces.
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1. 1D Steady-State Conditions
Discretized Governing Equations – Convective Term Discretization

• The convective term can be discretized using different schemes. Three
schemes are herein considered:

1. central differencing (CD) scheme;
2. upwind differencing (UD) scheme; and
3. hybrid differencing (HD) scheme.

• Note that the flow field is somehow known and not calculated – flow field
calculation irrelevant at the moment.

Discretized Governing Equations – Central Differencing Scheme
According to the central differencing approach, the calculation of φw and φe
is based on linear interpolation between nodes W and P and nodes P and E,
respectively. For a uniform grid, this scheme yields:

φw =
φW + φP

2
φe =

φP + φE

2
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1. 1D Steady-State Conditions
Discretized Governing Equations – Central Differencing Scheme
Substituting the expressions for φw and φe obtained with the central differencing
scheme in the integrated convection-diffusion equation, we have:

Feφe − Fwφw = De (φE − φP)− Dw (φP − φW)⇔
Fe

2
(φP + φE)− Fw

2
(φW + φP) = De (φE − φP)− Dw (φP − φW)

and re-arranging, [(
Dw +

Fw

2

)
+

(
De −

Fe

2

)
+ (Fe − Fw)

]
φP =(

Dw +
Fw

2

)
︸ ︷︷ ︸

aW

φW +

(
De −

Fe

2

)
︸ ︷︷ ︸

aE

φE ⇔

[aW + aE + (Fe − Fw)]︸ ︷︷ ︸
aP

φP = aWφW + aEφE ⇔ aPφP = aWφW + aEφE

Note that from the integration of the continuity equation Fe − Fw = 0 and, conse-
quently, aP = aW + aE.
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1. 1D Steady-State Conditions
Central Differencing Scheme – Unbounded Solutions

• The application of the central differencing approach to the convective
term poses a limitation on the grid size to obtain a bounded solution –
compliance with the boundedness property. For a specific convective
mass flux (F ) and diffusion coefficient (Γ), there are a minimum number
of CVs – dictated by the relative strength of convection and diffusion
effects – that are required to obtain a stable and accurate solution.

• [Exemplification] Consider the transport of a property φ governed by the
convection-diffusion equation in the 1D domain 0 ≤ x ≤ L. The value of
property φ is prescribed at both domain boundaries: φ (x = 0) = 1 and
φ (x = L) = 0. Considering L = 1m, ρ = 1 kg m−3, and
Γ = 0.1 kg m−1 s−1, determine the numerical solution obtained with the
central differencing (CD) method for the following cases:

1. u = 0.1m s−1 with 5 equally distributed cells;
2. u = 2.5m s−1 with 5 equally distributed cells; and
3. u = 2.5m s−1 with 20 equally distributed cells.
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1. 1D Steady-State Conditions
Central Differencing Scheme – Unbounded Solutions
• The following figure presents the comparison between the numerical solution

(symbols) and analytical solution (solid line) for the three cases.
Case 1

u = 0.1 m s−1 and δx = 0.2 m

Case 2

u = 2.5 m s−1 and δx = 0.2 m

Case 3

u = 2.5 m s−1 and δx = 0.05 m

• The combination of grid parameters (cell spacing) and fluid and flow properties
(ρ, Γ, and u) of Case 2 leads to unrealistic (unbounded) solution with oscillati-
ons characterized by large under- and overshoots – solution containing wiggles.

• The evidence that the boundedness criterion is violated for Case 2 (and not for
Cases 1 and 3) is justified by the sign of the coefficients (aW, aP, and aE) of
the discretized equations – see next slide.
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1. 1D Steady-State Conditions
Central Differencing Scheme – Unbounded Solutions
• According to the boundedness property – that all discretization schemes should

respect – all coefficients of the discretized equations should have the same sign
(positive). The conditions for which this property is respected are calculated as
follows:{

aW > 0
aE > 0 ⇔

{
Dw + Fw

2 > 0
De − Fe

2 > 0
⇔

{
Pew ≡ Fw

Dw
> −2

Pee ≡ Fe
De
< 2

⇔ |Pe| < 2

• To avoid wiggles (unbounded solution) the cell Peclet number, Pe, should be
below 2 because otherwise the coefficients aW and aE have different signs.

• Case 2 does not respect the boundedness property since Pe > 2 (see below),
and consequently, the coefficient of φE will be negative – i.e., aE < 0. (For
Cases 1 and 3, the coefficients aW, aP, and aE have a positive sign. Note that
if aW and aE are positive aP (= aW + aE) is also positive.)

Pe = Pew = Pee = F
D

= ρuδx
Γ

=


0.20, Case 1
5.00, Case 2
1.25, Case 3
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1. 1D Steady-State Conditions

Central Differencing Scheme – Unbounded Solutions

• To obtain a bounded (physically realistic) solution – i.e., to avoid the
violation of the boundedness property that is observed if |Pe| > 2 – the
cell spacing, δx , should be kept below a maximum value. (The maximum
cell spacing value is dictated by fluid properties and flow conditions.)

◦ As a consequence, for convection-diffusion problems where convection
effects are more relevant than diffusion transport steps, a very large
number of CVs, and, consequently, a high computational cost is
required to obtain a bounded solution.

Transportiveness (1/3)

• Transportiveness (besides conservativeness and boundedness) is a
property that discretization schemes applied to convection-diffusion
problems should possess.
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1. 1D Steady-State Conditions
Transportiveness (2/3)
• The transportiveness property can be perceived with the analytical

solution of the 1D convection-diffusion equation.
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1. 1D Steady-State Conditions
Transportiveness (3/3)

• At a particular location (for instance at x/L = 0.5), the influence of
upstream conditions increases (in relation to downstream) as the relative
importance of convection over diffusion (|Pe|) increases.

• For pure diffusion conditions – stagnant fluid – (Pe = 0) a linear profile is
obtained which means that transport rates are independent of direction.

• Transportiveness property can also be recognized with the figure below:

◦ for pure diffusion, a similar influence
of a property source is observed
independently of direction; and

◦ for simultaneous convection and diffu-
sion transport, the source influence on
neighboring nodes becomes biased
taking into account the flow direction
and the magnitude of Peclet number.
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1. 1D Steady-State Conditions

Central Differencing Scheme – Transportiveness (Lack of)

• The central differencing approach applied to the convective term does
not allow to take into consideration the flow direction or the relative
importance of convection over diffusion, and consequently, this
discretization scheme does not exhibit transportiveness. (Applying the
central differencing scheme, all neighboring nodes exert an effect on a
central node P independently of the flow direction and magnitude of
Peclet number.)

• The lack of transportiveness – as well as the inability to produce bounded
(realistic) solutions for large values of the cell Peclet number – hinders
the application of the central differencing schemes for general purpose
convection-diffusion problems. Therefore, other convective discretization
schemes should be introduced – see next slides.
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1. 1D Steady-State Conditions
Discretized Governing Equations – Upwind Differencing Scheme
The upwind scheme – contrarily to the central differencing scheme – takes
into account the flow direction for the determination of the property φ value
at the cell face: the convected value of φ at a cell face is considered equal to
the value of the upstream node.

Flow in Positive Direction,
u = uw = ue > 0

(F = Fw = Fe > 0)

φw =

{
φW if F > 0
φP if F < 0

Flow in Negative Direction,
u = uw = ue < 0

(F = Fw = Fe < 0)

φe =

{
φP if F > 0
φE if F < 0
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1. 1D Steady-State Conditions
Discretized Governing Equations – Upwind Differencing Scheme
Taking into account the definition for φw and φe presented in the previous
slide, the convective terms Feφe and Fwφw discretized according to the upwind
differencing method are given as follows:

Feφe = φP max (Fe, 0)− φE max (−Fe, 0)

Fwφw = φW max (Fw, 0)− φP max (−Fw, 0)

Feφe − Fwφw = De (φE − φP)− Dw (φP − φW)⇔
[φP max (Fe, 0)− φE max (−Fe, 0)]− [φW max (Fw, 0)− φP max (−Fw, 0)] =

De (φE − φP)− Dw (φP − φW)⇔
{

[Dw + max (−Fw, 0)] + [De + max (Fe, 0)]
}
φP =

[Dw + max (Fw, 0)]φW + [De + max (−Fe, 0)]φE ⇔{
[Dw + max (Fw, 0)] + [De + max (−Fe, 0)] + (Fe − Fw)

}
φP =

[Dw + max (Fw, 0)]φW + [De + max (−Fe, 0)]φE ⇒ . . . Next Slide
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1. 1D Steady-State Conditions

Discretized Governing Equations – Upwind Differencing Scheme

Prev. Slide ⇒
{

[Dw + max (Fw, 0)] + [De + max (−Fe, 0)] + (Fe − Fw)
}
φP =

[Dw + max (Fw, 0)]︸ ︷︷ ︸
aW

φW + [De + max (−Fe, 0)]︸ ︷︷ ︸
aE

φE ⇔

[aW + aE + (Fe − Fw)]︸ ︷︷ ︸
aP

φP = aWφW + aEφE ⇔ aPφP = aWφW + aEφE

Note that from the integration of the continuity equation Fe − Fw = 0 and,
consequently, aP = aW + aE.
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1. 1D Steady-State Conditions

Upwind Differencing Scheme – Accuracy

• The upwind differencing scheme is based on the backward differencing
expression and, consequently, its Taylor series truncation error (TSTE) is
of first-order.

◦ Note that according to the upwind scheme, the net convective flux is
given by the following equation

F c ≡
∫ xe

xw

d

dx
(Fφ) dx = Feφe − Fwφw =

F (φe − φw)⇔ F c = F (φP − φW)

The same result would be obtained if d (Fφ) /dx were substituted by
F (φP − φW) /∆x . Consequently, the upwind discretization scheme is
based on a first-order (backward) differencing scheme.
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1. 1D Steady-State Conditions
Upwind Differencing Scheme – Performance
Cases 1 and 2 (see Slide 8 et seq.) were again solved considering the upwind
scheme applied to the convective term – see results below.

Case 1 Case 2

• Since the upwind scheme complies with the boundedness criterion
(positive coefficients and matrix of coefficients diagonally dominant) the
obtained results are physically realistic.
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1. 1D Steady-State Conditions
Upwind Differencing Scheme – False Diffusion
• The application of the upwind differencing scheme in multi-dimensional prob-

lems leads to spurious (erroneous) results when the flow is not aligned with the
grid lines. The corresponding error is commonly referred to as false diffusion.

• An example of false diffusion for a 2D steady problem is shown below (left –
physical model and right – results). In this problem, no source is considered and
the transport of φ is exclusively controlled by convection. However, the results
falsely suggest the existence of diffusion by a smooth (and not abrupt) profile
transition from φ = 100 to φ = 0 where the the diagonal lines meet each other.
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1. 1D Steady-State Conditions

Discretized Governing Equations – Hybrid Differencing Scheme

• The hybrid differencing scheme is a combination of the central and
upwind differencing approaches.

◦ For |Pe| < 2, the central differencing scheme is considered for the
diffusive and convective terms; and

◦ for |Pe| ≥ 2, the upwind scheme is applied for the convective term
and the diffusion term is set to zero.

[aW + aE + (Fe − Fw)]︸ ︷︷ ︸
aP

φP = aWφW + aEφE ⇔ aPφP = aWφW + aEφE

aW = max
[
Fw,

(
Dw +

Fw

2

)
, 0
]

aE = max
[
−Fe,

(
De −

Fe

2

)
, 0
]

Note that from the integration of the continuity equation Fe − Fw = 0 and,
consequently, aP = aW + aE.
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1. 1D Steady-State Conditions
Hybrid Differencing Scheme
• The upwind scheme overestimates the diffusion transport contribution for

high |Pe| – note that the diffusion term is discretized considering a linear
profile (see the figure in Slide 12 for Pe = 0) and such interpolation
assumption fails strongly when |Pe| is large for which dφ/dx is negligible
at x/L = 0.5. This issue is solved with the hybrid scheme.

• The hybrid scheme is unconditionally bounded – since the coefficients are
always positive – and it satisfies the transportiveness criterion.

• The hybrid scheme yields physically realistic solutions.

Discretization Schemes – Summary of Properties

Property Discretization Scheme
Central Differ. Upwind Differ. Hybrid Differ.

Conservativeness
Boundedness Only for |Pe| < 2

Transportiveness
Accuracy – TSTE 2nd Order 1st Order 1st/2nd Order
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2. Multi-Dimensional (MD) Problems
2D Unsteady Governing Equations
In 2D (two-dimensional Cartesian coordinates), transient convection and diffusion
transport processes of a property φ are governed by the following equations:

∂ (ρφ)

∂t
+

∂

∂x
(ρuφ) +

∂

∂y
(ρvφ) =

∂

∂x

(
Γ
∂φ

∂x

)
+

∂

∂y

(
Γ
∂φ

∂y

)
+ Sφ

∂ρ

∂t
+

∂

∂x
(ρu) +

∂

∂y
(ρv) = 0

The first equation corresponds to the convection-diffusion equation for property φ
and the second equation corresponds to the continuity equation. The convection-
diffusion equation can be written as

∂ (ρφ)

∂t
+
∂ (Jx)

∂x
+
∂ (Jy )

∂y
= Sφ

where Jx and Jy correspond to the total flux (convective and diffusive) defined by

Jx = ρuφ− Γ
∂φ

∂x
Jy = ρvφ− Γ

∂φ

∂y
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2. MD Problems

Bulk Control Volumes – Discretized 2D Unsteady Governing Equations
The integration and temporal discretization with the fully implicit scheme of the
2D unsteady convection-diffusion and continuity equations yield the following two
equations. (The superscript "1" used previously to denote properties at time t + ∆t
is hereafter not considered.)(

ρPφP − ρ0
Pφ

0
P
)

∆x∆y · 1
∆t

+ (Je − Jw) + (Jn − Js) = (sC + sPφP) ∆x∆y · 1(
ρP − ρ0

P
)

∆x∆y · 1
∆t

+ (Fe − Fw) + (Fn − Fs) = 0

For convenience, the subtraction of the LHS of the last equation (integration of
the continuity equation) multiplied by φP from the LHS of discretized convection-
diffusion equation lead to:

ρ0
P
(
φP − φ0

P
)

∆x∆y · 1
∆t

+ [(Je − FeφP)− (Jw − FwφP)] +

[(Jn − FnφP)− (Js − FsφP)] = SC + SPφP
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2. MD Problems
Bulk Control Volumes – Discretized 2D Unsteady Governing Equations
The second term on the LHS of the previous equation can be written as follows

Je − FeφP =

(
ρuφ− Γ

∂φ

∂x

)
e

∆y · 1− FeφP =

Feφe − Γe
φE − φP

δxPE

∆y · 1− FeφP = Fe (φe − φP)− De (φE − φP)

where Fe = (ρu)e ∆y · 1 and De = (Γe∆y · 1) /δxPE . The grid Peclet number is
defined as Pee = Fe/De =

[
(ρu)e δxPE

]
/Γe. According to the hybrid diff. scheme:

Je − FeφP =


Fe (φE − φP) Pee ≤ −2
(Fe/2− De) (φE − φP) −2 < Pee < 2
0 Pee ≥ 2.

The last equation can be written as

Je − FeφP = max
[
−Fe,

(
De −

Fe

2

)
, 0
]

︸ ︷︷ ︸
aE

(φP − φE)
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2. MD Problems
Bulk Control Volumes – Discretized 2D Unsteady Governing Equations
The third term on the LHS of the last equation of Slide 24 can be written as follows

Jw − FwφP =

(
ρuφ− Γ

∂φ

∂x

)
w

∆y · 1− FwφP =

Fwφw − Γw
φP − φW

δxWP

∆y · 1− FwφP = Fw (φw − φP)− Dw (φP − φW)

where Fw = (ρu)w ∆y ·1 and Dw = (Γw∆y · 1) /δxWP . The grid Peclet number is de-
fined as Pew = Fw/Dw =

[
(ρu)w δxWP

]
/Γw. According to the hybrid diff. scheme:

Jw − FwφP =


0 Pew ≤ −2
(Fw/2 + Dw) (φW − φP) −2 < Pew < 2
Fw (φW − φP) Pew ≥ 2.

The last equation can be written as

Jw − FwφP = max
[
Fw,

(
Dw +

Fw

2

)
, 0
]

︸ ︷︷ ︸
aW

(φW − φP)
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2. MD Problems
Bulk Control Volumes – Discretized 2D Unsteady Governing Equations
Analogously, the fourth and fifth terms on the LHS of the last equation in Slide 24
can be written as follows

Jn − FnφP = max
[
−Fn,

(
Dn −

Fn

2

)
, 0
]

︸ ︷︷ ︸
aN

(φP − φN)

Js − FsφP = max
[
Fs,

(
Ds +

Fs

2

)
, 0
]

︸ ︷︷ ︸
aS

(φS − φP)

where, Fn = (ρv)n ∆x · 1, Fs = (ρv)s ∆x · 1, Dn = (Γn∆x · 1) /δyPN , and Ds =
(Γs∆x · 1) /δySP .
Substituting the expressions obtained for Je − FeφP, Jw − FwφP, Js − FsφP, and
Jn − FnφP into the last equation of Slide 24, one obtains the following equation

ρ0
P
(
φP − φ0

P
)

∆x∆y · 1
∆t

+ aE (φP − φE)− aW (φW − φP) +

aS (φP − φS)− aN (φN − φP) = SC + SPφP
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2. MD Problems

Bulk Control Volumes – Discretized 2D Unsteady Governing Equations
The last equation of previous slide can be written in a compact form as follows:

aPφP =
∑
nb

anbφnb + b

where,

aP =
∑
nb

anb + ρ0
P

∆x∆y

∆t
− SP b =

ρ0
P∆x∆y

∆t
φ0

P + SC

aE = max
[
−Fe,

(
De −

Fe

2

)
, 0
]

aN = max
[
−Fn,

(
Dn −

Fn

2

)
, 0
]

aW = max
[
Fw,

(
Dw +

Fw

2

)
, 0
]

aS = max
[
Fs,

(
Ds +

Fs

2

)
, 0
]
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2. MD Problems

3D Unsteady Governing Equations
In 3D (three-dimensional Cartesian coordinates), the unsteady convection-diffusion
equation for a property φ reads as follows:

∂ (ρφ)

∂t
+

∂

∂x
(ρuφ) +

∂

∂y
(ρvφ) +

∂

∂z
(ρwφ) =

∂

∂x

(
Γ
∂φ

∂x

)
+

∂

∂y

(
Γ
∂φ

∂y

)
+

∂

∂z

(
Γ
∂φ

∂z

)
+ Sφ
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2. MD Problems
Bulk Control Volumes – Discretized 3D Unsteady Governing Equations
The discretized 3D unsteady convection-diffusion equation for an internal nodal
point P, considering the fully implicit scheme for the temporal discretization and
the hybrid scheme for the spatial discretization reads as follows:

aPφP =
∑
nb

anbφnb + b

where,

aP =
∑
nb

anb + ρ0
P

∆x∆y∆z

∆t
− SP

aT = max
[
−Ft,

(
Dt −

Ft

2

)
, 0
]

b =
ρ0
P∆x∆y∆z

∆t
φ0

P + SC

aB = max
[
Fb,

(
Db +

Fb

2

)
, 0
]

The expressions to evaluate the coefficients aE, aW, aN, and aS presented in Slide
28 still hold for the 3D case. The mass flow rates (1) and conductances (2) at
the east, north, and top CV faces are computed as follows: (1) Fe = (ρu)e ∆y∆z ,
Fn = (ρv)n ∆x∆z , and Ft = (ρw)t ∆x∆y ; and (2) De = (Γe∆y∆z) /δxPE , Dn =
(Γn∆x∆z) /δyPN , and Dt = (Γt∆x∆y) /δzPT .
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2. MD Problems

Suggested Problem:
Problem 11
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Further Reading

• Chapter 5: Convection and Diffusion

• Chapter 5: The Finite Volume Method for
Convection-Diffusion Problems

• Chapter 4: Finite Volume Methods
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