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Abstract. In this document we give a brief overview of classical results re-
lated to the uncertainty principle, exhibiting three of its manifestations. At

the end, we try to transpose the Heisenberg inequality to the torus.

1. Introduction

When one thinks of the uncertainty principle, Heisenberg’s inequality comes to
mind. However, the Heisenberg inequality is just a particular case of a much more
general phenomenon.

The essence of the uncertainty principle can be stated as follows:

The more localized a function is the less localized its Fourier transform is, and
vice versa.

The main difficulty becomes to clarify what is meant by ‘localized’, and surpris-
ingly, there exist many ways to interpret the expression that make the statement
above true.

The ubiquitous example uses variance. As in quantum mechanics, one may think
of a function f ∈ L2(R) with ‖f‖2 = 1 as a kind of probability distribution (with
probability distribution function equal to |f |2), and its variance can be calculated
as the minimum of the integral∫

(x− a)2|f(x)|2dx,

as a function of a. If we call this quantity V (f) and define an analogous quantity

for the Fourier transform of f , denoted by V (f̂), Heisenberg’s inequality tells us
that1

(1) V (f)V (f̂) ≥ 1

4
.

In other words, since V quantifies roughly how spread out a function is, if a
function f is very localized then its Fourier transform must be very spread out and
vice versa.

This inequality is what is usually meant by ‘the uncertainty principle’, but it is
only the beginning. It is easy to see (and we will later show) that inequality (1) is
equivalent to the following statement

(2) ‖tf(t)‖2‖ξ̂f̂(ξ)‖2 ≥
1

2
‖f‖2.

1The right-hand side of this inequality depends on the normalization constant in the definition
of the Fourier transform. Another constant that appears often is 1

16π2 .
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An obvious generalization would be to try to replace the L2 norms by Lp norms.
And indeed we have the following result, for 1 ≤ p ≤ 2.

(3) ‖tf(t)‖p‖ξf̂(ξ)‖p ≥
1

2
‖f‖2.

We can generalize this even further, obtaining an uncertainty principle that

measures the p-norm of tf(t) versus the q-norm of ξf̂(ξ), for arbitrary p and q. We
leave the full statement for later, but we present a particular case as an example:

For all p, q ∈ ]1,∞[ and M ≥ 0 there exists a positive constant K such that

(4) ‖|t|M+1/p′f(t)‖p‖|ξ|M+1/q′ f̂(ξ)‖q ≥ K‖f‖22,

where p′ denotes the conjugate of p.

All the inequalities stated so far refer to ‘global spreadness of f and f̂ ’, in a sense.
For example, a function concentrated on two faraway points would be considered
‘spread out’ from the point of view of variation. However, there also exist local
results, which forbid this ‘split localization’ from happening.

A very basic such inequality is given by Faris [3], which we will prove under
differentiability hypotheses:

Let f ∈ L2(R) with ‖f‖2 = 1, and let E be a measurable set. Then,∫
E

|f |2 ≤ m(E)σ(f̂),

where σ(f̂) =

√
V (f̂). In other words, the more concentrated f̂ is on a single point,

the less f may be concentrated on small intervals.
Cowling and Price [1] show a much more general result, which we will state

without proof:

i. If 0 < α < 1
2n then there exists a constant Kα such that for all f ∈ L2(Rn)

and all measurable E ⊆ Rn,∫
E

|f̂ |2 ≤ Kα|E|2α/n ‖|x|αf‖22 .

ii. If α > 1
2n then there exists a constant Kα such that for all f ∈ L2(Rn) and all

measurable E ⊆ Rn,∫
E

|f̂ |2 ≤ Kα|E|‖f‖2−(n/α)2 ‖|x|αf‖n/α2 .

To conclude our exploration of the uncertainty principle on the real line, we show
a deeper result than the previous two, called Hardy’s theorem, which states that a
function and its Fourier transform cannot both go to zero too fast at infinity. Its
proof requires some machinery from complex analysis, but the end result is neat
and very different than the previous results.

If we call E(a) the set of measurable functions that decay at infinity like e−ax
2

and let E(a, b) be the set of f ∈ E(a) such that f̂ ∈ E(b), Hardy’s theorem talks
about the dimension of these sets as complex vector spaces. As a and b increase,
so does the product ab, and Hardy’s theorem tells us that there is a sharp cutoff
between ab < 1

2 and ab > 1
2 . Indeed, for ab < 1

2 the set E(a, b) is very populated,

being a vector space with infinite dimension, while for ab > 1
2 it is barren, containing
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only the zero function. The cutoff at ab = 1
2 has dimension one, containing only

the gaussian around the origin and its multiples.

Finally, in section 6 we try to adapt Heisenberg’s inequality to the torus, following
Grunbaum and Pinsky [5]. The end result is a Heisenberg-like inequality, under the
rather restrictive hypothesis that f(π) = 0:

‖tf(t)‖2‖nf̂(n)‖2 >
1

2
.

It is of note that this inequality is strict, but sharp, as we will show. The proof
of sharpness is, to the best of my knowledge, original.

2. Convention and context

To begin with, we establish the definition of the Fourier transform. We follow
as in Rauch [6], with the formula (valid in L1(R)):

f̂(ξ) = (2π)−1/2
∫

e−ixξf(x)dx.

For the sake of brevity, the results below will not be given in their most general
form. However, the interested reader may satisfy their curiosity in the bibliography.
Most of these results were taken from Folland’s survey of the uncertainty principle
[4].

3. Heisenberg’s inequality

To begin our excursion into the uncertainty principle, we start with the classical
result

Prop 1. Let f ∈ L1(R) ∩ C1(R) with ‖f‖2 = 1. Then,

‖tf(t)‖2‖ξf̂(ξ)‖2 ≥
1

2
.

Equality happens iff f(t) is a (centered) gaussian, i.e. a rescaling of e−x
2

.

Proof. We begin by noting that ξf̂(ξ) is, up to a factor of i, the Fourier transform of

f ′. Therefore, ‖ξf̂(ξ)‖ = ‖f ′‖, because the Fourier transform preserves L2 norm. If

f ′ 6∈ L2, then the L2 norm of ξf̂(ξ) is infinity and it is easy to see that the inequality
is satisfied. So, let us suppose f ′ ∈ L2. We can then apply Cauchy-Schwarz to get:

(5) ‖tf(t)‖‖ξf̂(ξ)‖ ≥
∣∣∣∣∫ tf(t)f ′(t)dt

∣∣∣∣ .
We now proceed to estimate the right-hand side. We may estimate it by an

integral in a compact interval and integrate it by parts to get∫ M

−M
tf(t)f ′(t)dt =

[
t|f(t)|2

]M
−M
−
∫ M

−M
(tf)′(t)f(t)dt

=
[
t|f(t)|2

]M
−M
−
∫ M

−M
f(t)f(t)dt−

∫ M

−M
tf ′(t)f(t)dt.(6)

Now, notice that, since both f and f ′ are in L2, the limit of all the integrals

in play exists when M → ∞. Therefore, so does limM→∞
[
t|f(t)|2

]M
−M . We can

do even better: if we call M1 the upper limit and M2 the lower limit, we can take
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each limit separately, and obtain that the limit of t|f(t)|2 exists when t → ∞ and
when t→ −∞. Of course, these limits can only be zero, for otherwise f would be
asymptotically close to t−1/2, and therefore not be in L1. As such, taking the limit
M →∞ in (6), we get∫

tf(t)f ′(t)dt = −
∫
ff −

∫
tf ′(t)f(t)dt.

It is easy to manipulate this expression to get the identity

Re

(∫
tf(t)f ′(t)dt

)
= −1

2
,

wherein we used the fact that ‖f‖2 = 1.
We now can now finish the proof of the inequality:

‖tf(t)‖‖ξf̂(ξ)‖ ≥
∣∣∣∣∫ tf(t)f ′(t)dt

∣∣∣∣
≥
∣∣∣∣Re

∫
tf(t)f ′(t)dt

∣∣∣∣
=

1

2
.

We need now only look at the case for equality. Note that in the very first step we
apply Cauchy-Schwarz on the inner product 〈tf(t), f ′(t)〉. For equality to happen,
f must satisfy a differential equation of the form tf(t) = C1f

′(t). All solutions of

these equations are of the form C2eC1x
2/2, and for the nontrivial solutions to be in

L1 it is necessary that C1 < 0. All such solutions are rescalings of the gaussian,
and since all such rescalings can be multiplied by a unit complex to become real
functions, all inequalities above become equalities. �

It is easy to go from this statement to the statement involving variances:

Corollary 1.1. Define the variance of a measurable function f as

V (f) = inf
a∈R

∫
(t− a)2|f(t)|2dt.

Then if f ∈ L1(R) ∩ C1(R) we have Heisenberg’s uncertainty principle:

V (f)V (f̂) ≥ 1

4
.

Proof. It is obvious by taking infima that we need only show that, for all a, b ∈ R,∫
(t− a)2|f(t)|2dt

∫
(ξ − b)2|f̂(ξ)|2dξ ≥ 1

4
.

But this is the same as showing that

‖(t− a)f(t)‖2‖(ξ − b)f̂(ξ)‖ ≥ 1

2
.

In turn, we can apply the translation invariance of the L2 norm to get that this
is the same as

‖tf(t+ a)‖2‖ξf̂(ξ + b)‖ ≥ 1

2
.

But this is a particular case of proposition 1, where instead of f we have the
function g(t) = e−ibtf(t+ a). �
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The argument above to go from the L2 norm of tf(t) to the variance of f and

likewise for f̂ is rather general. As such, we will not bother to do it again.
There exists an easy generalization of proposition 1 that uses Lp norms:

Prop 2. If f ∈ L1(R) ∩ C1(R) with ‖f‖2 = 1, then for all p ∈ [1, 2] we have

‖tf(t)‖p‖ξf(ξ)‖p ≥
1

2
(2π)

1
2−

1
p .

Proof. Consider the following modification of the argument in the proof of propo-
sition 1: upon deducing

Re

(∫
tf(t)f ′(t)dt

)
= −1

2
,

instead of applying Cauchy-Schwarz to get something like the left-hand side, apply
instead Hölder’s inequality:

‖tf(t)‖p‖f ′‖p′ ≥
∫
|tf(t)f ′(t)|dt.

Then, it is easy to reach the conclusion

‖tf(t)‖p‖f ′‖p′ ≥
1

2
,

and we may apply a modified version of the Hausdorff-Young inequality to replace

f ′ with ξf̂(ξ).
The usual Hausdorff-Young inequality tells us that, for all u ∈ Lp(R), 1 ≤ p ≤ 2,

‖û‖p′ ≤ (2π)
1
p−

1
2 ‖u‖p.

However, we have that, for f ∈ L2, F F f(x) = f(−x), and so we can invert this
result:

‖u‖p′ ≤ (2π)
1
p−

1
2 ‖û‖p.

In particular, applying this result to u = f ′, we get

‖f ′‖p′ ≤ (2π)
1
p−

1
2 ‖F(f ′)‖p.

Finally, we know that F(f ′)(ξ) = ξf̂(ξ), so we finally have the result

‖tf(t)‖p‖ξf(ξ)‖p ≥
1

2
(2π)

1
2−

1
p .

�

This inequality can be generalized a lot further. To see just how further it can be

generalized, we might begin by trying to find bounds on ‖tf(t)‖p‖ξf̂(ξ)‖q. However,

a simple scaling argument shows that this won’t work: if g(t) = c1/2f(ct) (the c1/2

factor is meant to keep the L2 norm fixed) then

(7) ‖tg(t)‖p‖ξĝ(ξ)‖q = c−1−
1
p+

1
2 ‖tf(t)‖p c1/q+

1
2 ‖ξf̂(ξ)‖q.

The only way for this not to be unbounded from above and below is if p = q,
which is precisely the inequality we already had. However, one can add more
parameters to correct this issue.

We will state without proof the results of a paper by Cowling and Price [1], who
investigate, among other things, inequalities of this form:

‖|t|θf(t)‖αp ‖|ξ|φf̂(ξ)‖1−αq ≥ K
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for some positive K.
We can apply scaling arguments as in (7) to see when such an inequality is

plausible. Indeed, if g(t) = c1/2f(ct), we get that

‖|t|θg(t)‖αp ‖|ξ|φĝ(ξ)‖1−αq =

= c
α
2−αθ−α

1
p ‖|t|θf(t)‖αp c

1−α
2 −(1−α)+(1−α)φ+(1−α) 1

q ‖|ξ|φf̂(ξ)‖1−αq

= cα(
1
2−θ−

1
p )−(1−α)(

1
2−φ−

1
q )‖|t|θf(t)‖αp ‖|ξ|φf̂(ξ)‖1−αq .

Therefore, in order for this to possibly be bounded from below, we need to
establish the condition

α(
1

2
− θ − 1

p
) = (1− α)(

1

2
− φ− 1

q
).

And indeed, in their paper, Cowling and Price show that under these conditions
there is indeed a positive real K such that, for all f of unitary L2 norm,

‖|t|θf(t)‖αp ‖|ξ|φf̂(ξ)‖1−αq ≥ K.
However, the proof is rather technical and we will not reproduce it here.

4. Localized Uncertainty

In the introduction we mentioned a local uncertainty principle due to Faris [3],
which we will now show.

Prop 3. Let E be a measurable set and f ∈ L2(R) ∩ C1(R) with ‖f‖2 = 1. Then,∫
E

|f |2 ≤ m(E)‖ξf̂(ξ)‖2.

Proof. We begin by fixing a non-negative C1 approximation of identity kε, for

example, the heat kernel. Define Kε(t) = − 1
2 +

∫ t
−∞ kε. Then, by integrating by

parts, we have the relation∫
kε|f |2 = −2

∫
Kε Re(ff ′),

where the term [kεf ]
∞
−∞ is equal to zero by an argument similar to the one used in

the proof of proposition 1.
Next, we can bound the norm of the right-hand side using Cauchy-Schwarz.

Namely, ∣∣∣∣∫ Kε Re(ff ′)

∣∣∣∣ ≤ ∫ Kε|f ||f ′| ≤ ‖Kεf‖2‖f ′‖2.

Finally, since |Kε(t)| ≤ 1
2 , we have

‖Kεf‖2 ≤
1

2
‖f‖2 =

1

2
,

and we also know that ‖f ′‖2 = ‖ξf̂(ξ)‖2. As such, combining all the pieces, we
have the inequality ∣∣∣∣∫ kε|f |2

∣∣∣∣ ≤ ‖ξf̂(ξ)‖2.

Notice that this argument also works if we shift kε, and so we get

‖kε ∗ |f |2‖∞ ≤ ‖ξf̂(ξ)‖2.
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Therefore, integrating the left-hand side over a measurable set E yields at most

m(E)‖ξf̂(ξ)‖2, and taking ε→ 0 gives us the desired inequality. �

There is another way to read the prevous proposition. If we take E to be a ball
of radius r around some point x, we conclude

Ar(|f |2)(x) ≤ σ(f̂),

where σ =
√
V is the standard deviation. Since, when r → 0, Ar(|f |2) converges

almost everywhere to |f |2 by the Lebesgue differenciation theorem, we conclude

Corollary 3.1. If f ∈ L2(R) ∩ C1(R) with ‖f‖2 = 1 then

‖f‖∞ ≤
√
σ(f̂).

Proof. We present another proof, which does not use the Lebesgue differenciation

theorem. Suppose |f | exceeds

√
σ(f̂) in a set of positive measure. Then, it must

exceed

√
σ(f̂) + 1/k in a set of positive measure for some k. Apply proposition 3

(or rather, the stronger version with standard deviation) with E equal to this set
to reach a contradiction. �

In colloquial terms, the less wide the Fourier transform of a function is, the
shorter the function itself can be, which implies it must be wider. Of course, all of

these arguments could be done with f and f̂ swapped.

5. Hardy’s Theorem

This section could just as well have been named ‘decay at infinity’, for that is
the subject of Hardy’s theorem. This section is more demanding than the previous
two, but the result is neat and different.

In simple terms, Hardy’s theorem states that a function and its Fourier transform
cannot both decay too fast at the same time, and (like in a lot of other manifes-
tations of the uncertainty principle) the most balanced function is the gaussian.

More quantitatively, if f is O(e−ax
2

) and f̂ is O(e−bx
2

) with ab > 1 then f must
be zero. The highest the product ab can get is precisely 1, and in that case f must
be a gaussian.

This theorem requires some knowledge of complex analisys. In particular, we
need the maximum modulus principle and Liouville’s theorem. We will also need a
less common result, called the Phragmén-Lindelöf theorem, which is a variant of the
maximum modulus principle. A proof of this theorem follows. Another exposition
of the following can be found, together with a recap of the important prerequisites,
in Dym & Mckean [2].

Prop 4. (Phragmén-Lindelöf theorem) Let f be a continuous function defined on
a closed angular sector D, of amplitude strictly less than π. Suppose f is analytic
in the corresponding open sector, D. Finally, suppose |f(z)| ≤ CeK|z| for some
C,K ∈ R, and |f | ≤M on the boundary of D. Then, |f | ≤M on the whole of D.

Proof. Suppose without loss of generality that the sector is centered around the
positive half-line, and let ψ be the half-opening. Since by hypothesis ψ < π/2 we
can pick a number B ∈ ]ψ, π/2[.
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Given a parameter A > 0, define fA(z) = f(z) exp(−AzB/ψ). Since we’re work-
ing in a sector, we can define zB with no problem as (reiθ)B = rBeiBθ, where θ is
always chosen to be between −π and π, so that fA is analytic in D and continuous
in D. In the arc of radius R, fA is bounded by CeKR exp(−ARB/ψ Re(eiθzB/ψ)),
and since the exp term grows as Re(eiθzB/ψ) gets smaller, this is maximized when
θz = ψ. As such,

|fA(z)| ≤ CeKR exp(−ARB/ψ cosB).

As R goes to infinity, this expression goes to zero, and so we may pick R0 big
enough such that |fA| is at most M for R bigger than R0. By the maximum
modulus principle applied to the circle slice with radius R0, fA is also at most M
for R < R0. As such, |fA| ≤ M everywhere, and taking A → 0 we have |f | ≤ M
everywhere, as desired. �

We can now start introducing Hardy’s theorem. The crux of the argument is
that if a holomorphic function defined on the complex plane grows exponentially
then it must necessarily be an exponential. That is: if h : C → C is holomorphic

and h(z) = O(eKz
2

) then applying Liouville to e−Kz
2

h(z) we conclude that h must

be a function of the form CeKz
2

.
As such, suppose f is a fast-decreasing function with f̂ fast decreasing as well.

If we can find a way to extend f̂ analytically to the whole complex plane and if f̂

grows slow enough to let the analytic extension be bounded by eKz
2

then, by the

previous observation, f̂ must necessarily be of the form f̂(z) = CeKz
2

. Since f̂ |R
decreases fast, necessarily ReK < 0 and f̂ |R must be a gaussian, which implies that
f is one as well.

This was the overview of the proof. Of course, the devil is in the details. More
precisely, how this analytic extension is done, and how to ensure it doesn’t grow
too fast.

Prop 5. If a > 0 is a real parameter, define E(a) as the set of measurable functions

such that f(t) = O(e−at
2

). Notice that these are in all Lp.

If f ∈ E(a) then we may extend f̂ to the complex plane by the usual definition:

f̂(z) = (2π)−1/2
∫

e−izxf(x)dx.

The function f̂ so defined is analytic.

Proof. First, we check that f̂ is properly defined. Indeed, fixed z = x+ yi, we have
that ∫

|e−iztf(t)|dx =

∫
eyt|f(t)|dt.

It is easy to check that since |f | is bounded from above by a multiple of e−at
2

,
this integral is necessarily finite. Indeed, by completing the square in the exponent,
this argument gives us a bound of the form

(8) |f̂(x+ yi)| ≤ Ce
y2

4a .

We now check that f̂(z) is analytic. We can do this by definition, by explicitly
calculating the derivative. Let hn be a sequence of complex numbers converging to
0. Then,
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(9)
1

hn
(f̂(z + hn)− f̂(z)) = (2π)−1/2

∫
f(t)e−izt

e−ihnt − 1

hn
dt.

We wish to apply the dominated convergence theorem. Since, by hypothesis, f

goes to zero very fast, it is enough to show that the term e−ihnt−1
hn

is uniformly
dominated by something that doesn’t grow faster than exponentially with t.

Define g(z) = ez−1
z (with g(0) = 1). Then, the term in question is given by the

expression

−ig(−ihnt)t.

Since t = O(e|t|), it is enough to show that g(−ihnt) is uniformly bounded by
something that grows exponentially.

Since g is continuous, it is bounded in the unit disk around the origin by some
M ≥ 1. On the other hand, for z outside the unit disk we have |g(z)| ≤ |ez| + 1.
Therefore, g(z) ≤ |ez|+M = O(e|z|).

To conclude the proof, return to the integral in (9). Since hn → 0, the sequence
|hn| is bounded by some N . As such, we have the bound∣∣∣∣f(t)e−izt

e−ihnt − 1

hn

∣∣∣∣ = O(e−at
2+|z||t|+|t|+N |t|).

More or less evidently, that last term has finite integral and therefore the domi-

nated convergence theorem works in (9), yielding f̂ ′(z) = −i(̂tf)(z), and the proof
is complete. �

Prop 6. (Hardy’s theorem) Let a, b > 0 be real parameters. Define E(a, b) as the

set of functions f ∈ E(a) such that f̂ ∈ E(b). Note that E(a, b) is a complex vector
space.

Then, if ab < 1
4 , E(a, b) has infinite dimension. If ab = 1

4 , E(a, b) has dimension

1 and is generated by the gaussian e−at
2

. If ab > 1
4 then E(a, b) = {0}.

Proof. We begin with the observation that if ab = a′b′ then E(a, b) and E(a′, b′)
differ only by a rescaling. As such, we may without loss of generality assume a = b.

The proof of the a < 1
2 case will not be given in detail, but the idea is to create an

infinite number of (linearly independent) functions that go to zero ever-so-slightly
slower than the gaussian. Indeed, define

fn(t) = tn exp(−t2/2).

All fn are linearly independent because of the fundamental theorem of algebra.
Furthermore, all fn are evidently in E(a), so it remains to check that their Fourier
transform is as well. But by integration by parts and induction it becomes clear

that f̂n is of the form pn(ξ) exp(−ξ2/2), for some polynomial pn, which is also in
E(a).

We now turn to the hard part of the proof, which is the case a = 1
2 . Clearly the

gaussian f0 is in E( 1
2 ,

1
2 ), so it remains to show that every element f of E( 1

2 ,
1
2 ) is

a multiple of f0. Note that once we show this, the case a > 1
2 is done, because for

a > 1
2 we have E(a, a) ⊆ E( 1

2 ,
1
2 ), which only contains the gaussians, but nonzero

gaussians are not in E(a, a).
The proof uses several tricks. The first observation is that the Phragmén-Lindelöf

theorem regards functions that grow as eK|z|, but (see inequality (8)) our bound
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on f̂(z) is of the form e−K(Im z)2 , which is exponent-quadratic. As such, we will
begin by taking a square root to make the Phragmén-Lindelöf theorem applicable.
In order for this to work we shall assume from now on that f is an even function.

If f is an even function in E( 1
2 ,

1
2 ), by proposition 5 its Fourier transform can

be extended to an analytic function on the complex plane. It is clear that f̂ is an
even function, and so can be expanded as an even power series

f̂(z) =
∑

cnz
2n.

We will define h(z) as f̂(
√
z). More formally,

h(z) =
∑

cnz
n.

The bound given by proposition 5 translates to h as

|h(z)| ≤Me(Im
√
z)2/2.

Furthermore, the bound on f̂ |R (because f̂ ∈ E( 1
2 )) translates to

|h(t)| ≤Me−t/2,

for t ≥ 0, where it is understood that we might have increased M as to make both
bounds work.

If it were the case that the Phragmén-Lindelöf theorem worked for sectors of
amplitude π, here is how one might continue the argument. Consider the sector D
given by the upper half-plane. We have the bound |h(t)|e−t/2 ≤ M for all real t,
and h(z)e−z/2 grows at most exponentially in radius, because (Im

√
z)2 ≤ |z|. As

such, if the Phragmén-Lindelöf theorem were applicable in this angular sector, we
would have the bound

h(z) ≤Me−z/2, Im z ≥ 0.

Applying the same result to the lower half-plane, we would have that h(z) =
O(e−z/2), and by the Liouville argument, h(z) would necessarily be of the form

Ce−z/2. Therefore, f̂(z) would be Ce−z
2/2 and thus f(t) = Ce−t

2/2, which is what
we wished to prove.

Unfortunately, the argument above is flawed, which brings us to our second trick.
Instead of using the entire upper half-plane, we may use a section that goes from
the positive half-line to the half-line with a fixed argument θ = θ0 ∈ ]0, π[. Indeed,
if we let z = Reiθ0 range over this half-line, we have that

(Im
√
z)2 = R sin2(θ0/2),

and so
|h(z)e−R sin2(θ0/2)/2| ≤M.

Since sin2(θ0/2) < 1 we also have

|h(z)e−R/2| ≤M.

We will now apply Phragmén-Lindelöf to the function

(10) h(z) exp

(
i z e−iθ0/2

2 sin(θ0/2)

)
,

whose absolute value can be written as

|h(z)| exp

(
−R

sin(θ − θ0
2 )

2 sin(θ0/2)

)
.
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Indeed, for θ = 0 this is bounded by |h(z)| exp(R/2), which is known to be less
than or equal to M ; and for θ = θ0 this is bounded by |h(z)| exp(−R/2) ≤ M .
Finally, since − sin(θ − θ0

2 ) ≤ 1 and h grows at most exponentially with radius,
it is easy to check that (10) grows at most exponentially with radius. Therefore,
Phragmén-Lindelöf is applicable and we reach the result that, on the slice 0 ≤ θ ≤
θ0, ∣∣∣∣h(z) exp

(
i z e−iθ0/2

2 sin(θ0/2)

)∣∣∣∣ ≤M,

and taking θ0 → π we reach the conclusion that, in the upper half-plane,

|h(z) exp(z/2)| ≤M.

The argument can also be applied to the lower half-plane, and by continuity
it also holds for the real line. Therefore, h(z) exp(z/2) is a bounded holomorpic
function, and by Liouville’s theorem must be constant. Hence, h(z) = C exp(−z/2)

for some C and, as a consequence, f̂(t) = C exp(−z2/2), which implies that f is a
gaussian.

This concludes the proof for even f . For odd f , we have that f̂ is an odd
holomorphic function, and we can apply the above argument using the even holo-

morphic function f̂(z)/z instead of f̂(z), because dividing by z only makes it go

to zero faster and oddness of f̂ prevents it from blowing up at the origin. As a

consequence, we reach that f̂(z) = Cze−z
2/2, which, unless C = 0, is not O(e−t

2/2)

on the real line. Therefore, by the decay hypothesis on f̂ , it must be zero.
Now that the proof has been made for even and odd f , we may complete it by

splitting arbitrary f into its even and odd parts. Both of these decay to zero as
fast as f . Furthermore, since the Fourier transform is linear,

f̂odd = f̂odd and f̂even = f̂even,

which by the same argument shows that the Fourier transform of the even and
odd parts of f also decay fast. Therefore, the previous argument is applicable to
either part, with the conclusion that the odd part is zero and the even part is a
gaussian. �

6. Heisenberg on the torus

At first sight, uncertainty principles on the torus seem unlikely, because while the
Fourier transform of a function on the torus can be very concentrated, a function
on the torus can only get so spread out. And in fact, this gives us a very simple
example that shreds any hopes of Heisenberg-like inequality on the torus: the
constant function. Indeed, the constant function equal to one is as spread out as
it gets, and its Fourier transform has the lowest possible variance (zero). Yet their

product is zero, which shows that there can be no non-trivial bound on V (f)V (f̂).
If one tries to adapt the argument for the real line to see what goes wrong, the

problem is clear: when integrating by parts in the real line we can usually show
that things go to zero at infinity, leading to very useful identities of the form∫

f ′g = −
∫
fg′.

This fails for the torus, but there is a very easy, if rather ad-hoc, way to deal with
the problem: picking a point to play the part of ‘infinity’ (usually π) and assume
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that functions are zero there. This leads, for example, to the following ‘Heisen-
berg inequality’, whose proof is just an adjustment of the proof of the Heisenberg
inequality on the real line.

Prop 7. Let f be an absolutely continuous function in the torus with f(π) = 0 and
‖f‖2 = 1. Then, the following inequality holds

(11) ‖tf(t)‖2‖nf̂(n)‖ ≥ 1

2
,

where the t in tf(t) is picked to be between −π and π.

Proof. We know that nf̂(n) is simply the Fourier transform of −if ′. Furthermore,
since the Fourier transform preserves L2 norm, the quantity in the left-hand side
of (11) is equal to

‖tf(t)‖2‖f ′‖2.
We may now apply Cauchy-Schwarz to bound this from below

‖tf(t)‖2‖f ′‖2 ≥
1

2π

∣∣∣∣∫ π

−π
tf(t)f ′(t)dt

∣∣∣∣ .
By integrating the right-hand side by parts, it is easy to reach the identity

Re

(∫
tf(t)f ′(t)dt

)
=

1

2

(
[t|f(t)|2]π−π − 2π‖f‖22

)
= π(|f(π)|2 − 1).

By hypothesis, f(π) = 0, so we simply get

‖tf(t)‖2‖nf̂(n)‖ ≥ 1

2π

∣∣∣∣∫ π

−π
tf(t)f ′(t)dt

∣∣∣∣
≥ 1

2π

∣∣∣∣Re

∫ π

−π
tf(t)f ′(t)dt

∣∣∣∣
=

1

2
.

This completes the proof. �

Note that if we dropped the requirement that f(π) = 0 we would still get a
useable, if clunky, inequality:

(12) ‖tf(t)‖2‖nf̂(n)‖ ≥ 1

2

∣∣|f(π)|2 − 1
∣∣ .

The previous inequality can be slightly strengthened:

Prop 8. The inequality in proposition 7 is strict. That is, under the same hypothe-
ses,

‖tf(t)‖2‖nf̂(n)‖ > 1

2
.

Proof. Note that, for equality to happen, we would have needed to have equality
in the Cauchy-Schwarz step. In other words, f would have to satisfy an equation
of the form

tf(t) = Cf ′(t), a.e.t ∈ ]−π, π[ .

Classical ODE arguments show that the only solutions to this are the gaussians,
but a non-null gaussian does not satisfy f(π) = 0, and so does not satisfy the
hypotheses of the theorem. �
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Despite this, we can show that the inequality is sharp, by making use of inequality

(12). Indeed, let fK(t) = CKe−Kt
2

for t ∈ ]−π, π[, where CK > 0 is picked to make
the L2 norm of f equal to 1. We can study CK as follows:

We know CK =
(

1
2π

∫ π
−π e−2Kt

2

dt
)−1/2

. By an easy change of variable, as

K →∞, we have that 1√
K
CK goes to

√
π.

Now, since fK satisfies an equation of the form tfK(t) = cf ′(t), we have equality
in the Cauchy-Schwarz step of proposition 7, and since this function is real all the
other steps also satisfy equality, leading to

‖tf(t)‖2‖nf̂(n)‖2 =
1

2
(1− CKe−Kπ

2

).

Therefore, if we let gK(t) = fK(t)− fK(π), by the triangular inequality:

‖tgK(t)‖‖nĝK(n)‖ ≤ ‖tfK(t)‖‖nf̂K(n)‖+ ‖tfK(π)‖‖nf̂K(n)‖

=
1

2
− fK(π)2 + fK(π)‖t‖‖nf̂K(n)‖.

It is easy to see that fK(π) ∼
√
Ke−π

2K → 0, so we need now only inspect the

term fK(π)‖nf̂K(n)‖. We know that this is the same as fK(π)‖f ′K‖, and this last
norm can be calculated explicitly:

‖f ′K‖2 =
1

2π

∫ π

−π
|−2CKKte

−Kt2 |2dt.

Since t ∈ ]−π, π[, this can be bounded from above by 2πK2‖fK‖2 = 2πK2, which
grows far slower than fK(π) goes to zero, and so it is easy to conclude that

lim
K→∞

‖tgK(t)‖‖nĝK(n)‖ =
1

2
.

Which shows the sharpness of the inequality.
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